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Abstract

In this paper, we present a general class of multivariate priors for group-sparse modeling within the Bayesian
framework. We show that special cases of this class correspond to multivariate versions of several classical priors
used for sparse modeling. Hence, this general prior formulation is helpful in analyzing the properties of different
modeling approaches and their connections. We derive the estimation procedures with these priors using variational
inference for fully Bayesian estimation. In addition, we discuss the differences between the proposed inference and
deterministic inference approaches with these priors. Finally, we show the flexibility of this modeling by considering
several extensions such as multiple measurements, within-group correlations and overlapping groups.

I. INTRODUCTION

We consider the general linear model given by

y = Φw + n, (1)

whereM × 1 observationsy of the original unknown signalw are taken with anM × N measurement matrix
(or dictionary)Φ = [φ1,φ2, . . . ,φN ], andn represents the noise. This paper is concerned with the problem of
finding an estimate of the unknown signalw from the observationsy. Generally, the case of interest is theM ≪ N
regime, which makes the problem challenging and requires appropriate modeling of the unknown signalw.

Problems of the general form (1) are very common in signal processing, statistics, neuroscience and machine
learning. Typical applications include compressive sensing, sparse representation, super resolution, source localiza-
tion, variable/model selection and prediction, among manyothers. A general design principle in these approaches is
sparsity, which amounts to finding the most important components ofw and suppressing the elements with relatively
lower importance. In this design, the unknown vectorw is assumed to contain a small number of nonzero elements,
while the majority of the components are zero. This assumption is translated into the optimization problem for
finding w using sparsity-promoting penalty functions, of which the most common example is thel1-norm based
formulation given by

ŵ = argmin
w

β ‖y −Φw‖22 + τ ‖w‖1 . (2)

This formulation is commonly referred to as basis pursuit [1] or lasso [2]. It implicitly models the noisen as
zero-mean white Gaussian distributed with varianceβ−1/2, and τ is the regularization parameter controlling the
strength of the enforced sparsity. A large number of optimization methods have been developed for solving (2).
In addition, different sparse signal models have been proposed extending thel1-norm to the more generallp-norm
with 0 < p ≤ 1.

In the traditional sparse modeling, the sparsity constraint is imposed on individual components ofw. Recently, a
different modeling approach has emerged where sparsity is enforced on groups instead of the individual components.
This group-sparse(also called block-sparse) approach is a natural generalization of the traditional sparse modeling
methods. It effectively models thestructural properties of the signal by clustering relevant signal components
together, such that dependencies between signal components are taken into account. It is also shown to lead to
higher performance in pruning out irrelevant components compared to independent modeling of the coefficients [3].
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Group-sparsity has recently been considered in compressive sensing [3]–[7] and machine learning [8]–[12], and
is also closely related to signal modeling within union of subspaces [3], [13]–[15]. It has rapidly found applications
in, e.g., imaging [16], [17] and network analysis [18], demonstrating promising performance.

A general optimization formulation for group-sparse regularization is

ŵ = argmin
w

β ‖y −Φw‖22 + τ ‖w‖1,2, (3)

where‖ · ‖1,2 denotes the combinedl1/l2-norm with

‖w‖1,2 =
G
∑

i=1

‖wi‖2 , ‖wi‖2 =
√

wT
i wi , (4)

wherewi denotes theith group, andG is the number of groups. Each groupi containsdi elements, such that
∑G

i=1 di = N if the groups are not overlapping. It is clear that this formulation includes the traditionall1-based
formulation as a special case (whendi = 1, ∀i).

The optimization problem (3) is similar to thel1-based optimization, and thus somel1-based approaches can
be applied to this problem with some modifications. Deterministic methods directly addressing the problem (3)
have been developed in [19]–[21], and in group-lasso methods [11], [12]. Several Bayesian approaches have been
developed for group-sparse modeling: the Bayesian group-lasso [22] proposed to use multivariate Laplace priors on
separate groups, and provided a sampling scheme for inference. A similar group-sparse prior is used in covariance
estimation problem in [9]. In [8], [23], Laplacian scale mixtures have been used for the construction of the group-
sparse prior, and the inference is performed using expectation-maximization (EM).

An important issue in all sparse reconstruction problems ischoosing the regularization parametersβ and τ .
Clearly, optimizing (3) jointly with respect to them is not suitable since it results in the trivial solutionβ = τ = 0.
A similar problem is encountered when the problem is converted to weighted least squares problems, as in iteratively
reweighted least squares (IRLS) withlp-priors [24]–[26]. Deterministic heuristic methods are devised for parameter
estimation, such as L-curves [27] or penalizing the trivialsolution [24]. A more systematic approach can be obtained
using Bayesian inference, as shown in this article.

In this paper, we present a Bayesian approach for group-sparse modeling and inference. Using a normal variance
mixture formulation, we present the hierarchical construction of a general signal prior suitable for modeling group-
sparse signals. This general signal prior contains a large class of distributions as special cases, obtained via different
selections of distributions in the hierarchical construction. Using this general formulation, we explore different
options for group-sparse modeling, analyze their connections, and their sparsity-enforcing properties. We show that
some of the special cases of this generalized prior correspond to several standard models used in the sparse and
group-sparse reconstruction literature. For estimation using this class of priors, we provide the hierarchical inference
rules using the variational Bayesian (VB) approach for a fully-Bayesian estimation (i.e., including algorithmic
parameters). We compare the proposed inference with deterministic inference approaches, and show the thresholding
properties of different priors both in deterministic and Bayesian frameworks. Finally, we consider several extended
modeling possibilities within Bayesian group-sparse modeling, such as within-group correlations and overlapping
groups, and consider the multiple measurement vector case.

The rest of this paper is organized as follows. Section II provides the hierarchical construction of the generalized
group-sparse prior using normal variance mixtures. We alsoderive its special cases and show their properties. In
Section III, we develop fully-Bayesian inference methods using these priors via variational Bayesian approximation.
Properties of the modeling and inference in comparison withdeterministic approaches are discussed in Section IV.
Several extensions to Bayesian group-sparse modeling are provided in Section V. Empirical evaluation of different
aspects of the group-sparse modeling are presented in Section VI, and conclusions are drawn in Section VII.

II. BAYESIAN GROUP-SPARSEMODELING

The Bayesian modeling of (1) requires the definition of a joint distribution of all unknown and observed quantities.
This joint distribution typically includes the conditional distribution for the observationsy, and a prior that models
the characteristics of the unknown signalw. In the following, we first present a class of distributions suitable for
group-sparse modeling ofw using variance mixtures of Gaussian distributions. We thenderive its special cases



3

and show the connections between them and models proposed inthe literature. Finally, we complete the Bayesian
model by specifying the observation model and hyperpriors assigned to the parameters of all distributions.

We use the following notation throughout this paper. Vectors are denoted by small-case bold lettersw, while
matrices are in capital bold lettersW. diag(a) is a diagonal matrix with vectora as its diagonal, and〈 · 〉 denotes
the expectation with respect to the corresponding distribution.

A. Signal Models

For modeling the unknown signalw, we first defineG groups of coefficients such that the vectorwi contains
di signal coefficients assigned to groupi. The case withG = N , di = 1, ∀i corresponds to independent sparse
modeling of the coefficients.

Assuminga priori independence between groups, we express the signal prior as

p(w|z) =
G
∏

i=1

p(wi |zi) , (5)

wherez is the vector containing allzi. Sparsity is enforced on each group via the conditional priors p(wi |zi). For
their representation, we use the normal variance mixture model [28] (also called scale mixtures of Gaussians [29],
[30]). Specifically, we represent each groupwi as

wi =
√
zi x , (6)

wherezi > 0 andx is a standard multivariate Gaussian variable, i.e.,x ∼ N (0di
, Idi

) with 0di
a zero vector of

lengthdi andIdi
the di × di identity matrix. It is clear that givenzi, wi is a multivariate Gaussian variable with

zero mean and variancezi Idi
, that is

p(wi |zi) = N (0di
, zi Idi

) . (7)

Notice that the coefficients within each group are not independent. The marginal probability distribution ofwi can
be found by integrating out the latent variables as

p(wi) =

∫ ∞

0
p(wi | zi) p(zi) dzi . (8)

Here,p(zi) is called the mixing distribution and determines the form ofthe marginal distributionp(wi).
Normal variance mixtures have been extensively used in the literature for representing a large number of

distributions, and for deriving efficient inference procedures for parameter estimation. A variety of distributions
can be represented in this fashion by different selection ofthe mixing distributionp(zi).

In this paper, for the mixing distributionp(zi) we consider the generalized inverse Gaussian (GIG) distribution

p(zi|ai, bi, λi) =
(ai/bi)

λi/2

2Kλi
(
√
aibi)

zλi−1
i exp

(

−1

2

(

ai zi + bi z
−1
i

)

)

, (9)

whereKλi
is the modified Bessel function of the second kind. The moments of this distribution are given by [31]

〈zpi 〉 =
Kλi+p(

√
aibi)

Kλi
(
√
aibi)

(

bi
ai

)p/2

. (10)

With this mixing density, the marginal distribution ofwi is found from (8) as the generalized hyperbolic (GH)
distribution [28]

p(wi|ai, bi, λi) =
a
di/4
i

(2π)di/2

b
−λi/2
i

Kλi
(
√
aibi)

Kλi−di/2(
√
ai
√

bi + ‖wi‖22)
(

bi + ‖wi‖22
)di/4−λi/2

. (11)

In this paper, we chose the GIG distribution as the mixing distribution as it includes a fairly broad class of
distributions commonly used as hyperpriors, and the resulting marginal distribution, the GH distribution, again
covers a large number of distributions as special cases. Dueto this generalization, we are able to analyze the
connections between different modeling strategies. As we shall see in the following, several special cases correspond
to standard priors commonly used in sparse modeling.
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Fig. 1. Generalized hyperbolic distributions (a) and log-distributions (b) with varyingλi, whenai = 1, bi = 1 (d = 2, the cross-section is
shown).
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Fig. 2. Generalized hyperbolic distributions (a) and log-distributions (b) with varyinga, whenλi = 1, b = 1 (d = 2, the cross-section is
shown).

To see the rich family of distributions that can be obtained from the GH distribution, distributions obtained with
varying values ofai, bi and λi are depicted in Figs. 1-3. It can be seen that both the centraland tail behavior
can be varied using different parameter values, and as will be shown later, the resulting distributions have different
estimation characteristics. In the following, we considerthe special cases of the GH distribution at the limit parameter
values, along with the mixing distributions. Let us first give some expressions on asymptotic approximations of the
modified Bessel function that will be useful:

Kλ(x) ≈
1

2
Γ(λ)

(x

2

)−λ
, forλ > 0, x → 0 (12)

Kλ(x) ≈
1

2
Γ(−λ)

(x

2

)λ
, forλ < 0, x → 0 (13)

K0(x) ≈ − ln(x) (14)

Kλ(x) ≈
√

π

2x
exp(−x) , for x → ∞ , (15)

and for integerλ,

Kλ+1/2(x) =

√

π

2x
exp(−x)

[

1 +

λ
∑

i=1

(λ+ i)!

(λ− i)!i!
(2x)−i

]

. (16)

1) McKay’s Bessel function distribution:Whenbi → 0 with λi > 0, the mixing GIG distribution reduces to the
gamma distribution, given by

p(zi|ai, λi) =
a
λi/2
i

2λiΓ(λi)
zλi−1
i exp

(

−1

2
ai zi

)

. (17)

The corresponding marginal distribution is

p(wi|ai, λi) =
a
di/4+λi/2
i

πdi/2 2di/2+λi−1

(‖wi‖2)λi−di/2

Γ(λi)
Kλi−di/2(

√
ai ‖wi‖2) , (18)
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Fig. 3. Generalized hyperbolic distributions (a) and log-distributions (b) with varyingb, whenλi = 1, a = 1 (d = 2, the cross-section is
shown).

which is McKay’s Bessel function distribution [32]–[34] (also called multivariate variance-gamma [35], multivariate
generalized Laplace [33], or multivariate K distribution [36], [37]).

We now consider two special cases of (18) that are related to the Laplace distribution. In the caseλi = 1, the
mixing distribution becomes the exponential distribution

p(zi|ai) =
ai
2

exp

(

−1

2
ai zi

)

, (19)

such that the marginal becomes

p(wi|ai) =
a
di/4+1/2
i

(2π)di/2
(‖wi‖2)1−di/2 K1−di/2(

√
ai ‖wi‖2) . (20)

To see the relation with the univariate Laplace distribution, we can use (16) and rewrite (20) for odddi as

p(wi|ai) ∝
exp(−√

ai‖wi‖2)
(‖wi‖2)di/2−1/2





(di−3)/2
∑

i=1

((di − 3)/2 + i)!

((di − 3)/2 − i)!i!
(2
√
ai‖wi‖2)−i + 1



 . (21)

The similarity to the univariate case can be seen from the exponential term, and noticing that all other terms vanish
with di = 1. Note, however, that there are additional terms that are power functions of‖wi‖2. A more directly
related case can be found by the selectionλi = (di + 1)/2, which simplifies (18) using (16) as

p(wi|ai) ∝ a
di/2
i exp(−√

ai‖wi‖2) , (22)

in which case the mixing distribution is a gamma distribution given by

p(zi|ai) =
a
(di+1)/4
i

2(di+1)/2Γ((di + 1)/2)
z
di/2−1/2
i exp

(

−1

2
ai zi

)

. (23)

Both distributions (20) and (22) were termed as multivariate Laplace distributions in the literature: the form in
(20) is used in [37], [38] due to the similarity of the hierarchical structure to the univariate case, and (22) is used in
the Bayesian group-lasso method [22] due to the similarity of the marginal distributions. Here we will use the term
multivariate Laplace for the distribution in (22) since it has an estimation behavior similar to the univariate case
(see Section IV-A). The distribution in (20) will be referred to as McKay(λ = 1). Notice that both distributions
reduce to the univariate Laplace distribution whendi = 1.

It is also possible to integrate outai from p(wi|ai) by assigning a gamma hyperprior on
√
ai. When λi =

(di + 1)/2, the corresponding marginal has a closed form and is given by

p(wi|ka, θa) = Γ(di + ka − 1) [θa + ‖wi‖2]−(di+ka) , (24)

which is the multivariate version of the generalized doublePareto distribution [39], [40].
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Fig. 4. McKay, Laplace, Student’s t, Jeffrey’s and Gaussianlog-distributions (d = 2, the cross-section is shown).

2) Multivariate Student’s t:Whenai → 0 with λi < 0, we have the inverse gamma distribution as the mixing
density

p(zi|bi, λi) =
(bi/2)

−λi

Γ(−λi)
zλi−1
i exp

(

−1

2
bi z

−1
i

)

. (25)

The corresponding marginal is given by

p(wi|bi, λi) =

(

1

π

)di/2 Γ(−λi + di/2)

bλi

i Γ(−λ)

(

bi + ‖wi‖22
)λi−di/2

, (26)

which is a multivariate Student’s t distribution with−2λi degrees of freedom.
Finally, whenai → 0, bi → 0 andλi → 0, we have the Jeffrey’s non-informative priorp(zi) ∝ z−1

i . In this case,
the marginal distribution becomes

p(wi) ∝
(

1

‖wi‖2

)di

. (27)

In summary, the variance mixture model with the GIG mixture distribution includes a number of classical
distributions as special cases at the limiting values of itsparameters. In the following, we mainly limit our discussion
to the four distributions described above, i.e, multivariate McKay(λ = 1), Laplace, Student’s t distributions and
Jeffrey’s prior. These distributions along with the corresponding parameter selections are summarized in Table I.

The log-distributions for all cases are shown in Fig. 4, along with the Gaussian distribution. It is evident that all
distributions have heavy-tails, which is generally considered to be a desirable property for enforcing sparsity and
variable selection.

B. Complete Model

After the signal model is defined, we complete the Bayesian model characterization by modeling the observations
y in (1). Assuming independent Gaussian noise with zero mean and variance equal toβ−1, the conditional
distribution is expressed as

p(y|w, β) = N (y|Φw, β−1), (28)

with a conjugate gamma prior placed onβ as

p(β|kβ , θβ) = Γ(β|kβ , θβ). (29)

A prior is called conjugate if it leads to a posterior distribution that has the same functional form as the prior [41].
The use of conjugate priors significantly simplify the form of posterior distributions. Combining (28), (29) and the
hierarchical signal prior (7) and (9), we define the joint probability distribution as

p(y,w, z, β) = p(y|w, β) p(w|z) p(z|a,b,λ) p(β) p(a,b) . (30)
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TABLE I
SUMMARY OF DISTRIBUTIONS AND PARAMETER ESTIMATES

Parameter Values Distribution Mixing Distribution Variance Parameter Update〈z−1
i 〉 Hyperparameter update

- Generalized Hyperbolic Generalized Inverse Gaussian
√

a√
〈‖wi‖22〉+b

Kλi−di/2−1
(
√

a
√

〈‖wi‖22〉+bi)

Kλ−di/2
(
√

ai

√
〈‖wi‖22〉+bi)

see below forai, bi; λi not provided

bi → 0, λi > 0 McKay’s Bessel function Gamma
√

ai√
〈‖wi‖22〉

Kλi−di/2−1
(
√

ai

√
〈‖wi‖22〉)

Kλ−di/2
(
√

ai

√
〈‖wi‖22〉)

〈ai〉 = (ka + λi)
(

θa + 〈zi〉
2

)−1

bi → 0, λi = (di + 1)/2 Multivariate Laplace Gamma
√

ai√
〈‖wi‖22〉

〈ai〉 =
(

ka + di+1
2

)(

θa + 〈zi〉
2

)−1

ai → 0, λi < 0 Multivariate Student’s t Inverse Gamma di/2−λ
1

2
(〈‖wi‖22〉+bi)

〈bi〉 = (kb − λi)

(

θb +
〈z−1

i 〉
2

)−1

ai → 0, bi → 0, λi → 0 Jeffrey’s Jeffrey’s di
〈‖wi‖22〉

None

wherez, a, b, λ are vectors containingzi, ai, bi, andλi, ∀i respectively. The hyperpriorp(a,b) is used to model
the parametersa andb for their estimation, and will be discussed in Section III-C.

III. VARIATIONAL INFERENCE

Bayesian inference is based on the posterior distributionp(ξ|y) = p(ξ,y)/p(y), whereξ denotes the set of
all unknowns such thatξ = {w, z, β,a,b}. However, as in many multidimensional problems, the Bayesian model
defined with the joint distribution in (30) does not allow forexact inference as the marginal distributionp(y)
is intractable. Therefore, approximation methods must be used for the inference. In the following, we use the
variational Bayesian (VB) approximation [42], [43], whichhas attractive computational properties along with high
estimation performance. With the definition of the joint distribution in (30), the variational Bayes method provides
a distributionq(ξ) that approximates the posteriorp(ξ|y). Specifically,q(ξ) is found by minimizing the Kullback-
Leibler (KL) divergence between the approximation and the unknown posterior as [42], [43]

q∗(ξ) = argmin
q(ξ)

KL(q(ξ) ||p(ξ|y)) = argmin
q(ξ)

∫

q(ξ) log
q(ξ)

p(ξ|y)dξ (31)

= argmin
q(ξ)

∫

q(ξ) log
q(ξ)

p(ξ,y)
dξ + const , (32)

wherep(y, ξ) is the joint probability distribution given in (30). To solve this optimization, the only assumption
needed is an appropriate factorization ofq(ξ). Here we use the mean-field approximation [42] with

q(w, z, β,a,b) = q(w) q(z) q(β) q(a,b) . (33)

Using this factorization in (32), the distributionsq(ξk) of each variableξk ∈ ξ is found as [42], [43]

log q∗(ξk) = 〈 log p(y, ξ)〉q(ξ\ξk)
+ const, (34)

= 〈 log p(y|w, β) p(w|z) p(z|a,b,λ) p(β) p(a,b)〉q(ξ\ξk)
+ const, (35)

whereξ\ξk denotes the setξ with ξk removed. Individual distributionsq(ξk) are updated by (35) at each iteration by
fixing the remaining distributionsq(ξ\ξk), which corresponds to an alternating minimization of the KLdivergence
in (32). This iterative procedure is repeated until the KL distance converges.

The VB method is a generalization of the maximuma posteriori (MAP) and expectation-maximization (EM)
methods. The EM estimates can be found by restricting some distributionsq(ξk) to be degenerate, i.e., delta
distributions at a particular value. On the other hand, MAP solutions can be found by restricting all of the
distributions to be degenerate. When a distribution is degenerate, it can be shown from (32) that its corresponding
estimation amounts to minimizing the negative expected logjoint distribution−〈 log p(ξ,y)〉q(ξ\ξk)

, which reduces
to the log joint distribution in the case of MAP. We will discuss the MAP estimation in more detail in Section IV.

In the following subsections, we provide the explicit formsof the update rules for all unknowns. For notational
simplicity, the optimal distributions are denoted byq instead ofq∗.
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A. Signal Estimate

From (35), the posterior approximation ofw is found as a multivariate Gaussian

q(w) = N (〈w〉,Σw) , (36)

with parameters

〈w〉 = Σw βΦT y , (37)

Σw =
(

βΦTΦ+Λ
)−1

(38)

= Λ−1 −Λ−1ΦT
(

β−1I+ΦΛ−1ΦT
)−1

ΦΛ−1 , (39)

with Λ = diag
(

〈z−1
i 〉

)

, with each〈z−1
i 〉 repeateddi times1. It can be seen from (38) that except whenΦTΦ = I,

the groups area posterioridependent, despite thea priori independence assumption in (5). Sparsity in the groups
occur when particular variables〈z−1

i 〉 → ∞, in which case theith group is pruned out from the signal estimate2.
Notice also the estimation ofΣw requires the inversion of anN × N matrix using (38), and anM ×M matrix
using (39).

B. Estimation of the Variance Parameters

The crucial part of (37) is the estimates ofz−1
i , which control the sparsity and hence the structure of the signal

estimate. Here we derive the estimation rules for the general case with the GIG hyperprior, from which the special
cases can easily be obtained.

First, with some algebra, it can be derived from (35) in combination with (33) that the distributionq(z) factorizes
over q(zi), such that

q(z) =

G
∏

i=1

q(zi) . (40)

Therefore, in the following we provide the update rules for each distributionq(zi). Using (35), we find the
approximate posteriorq(zi) from (7) and (9) as a GIG distribution

q(zi) ∝ z
λi−1−di/2
i exp

(

−1

2

(

ai zi + z−1
i

(

〈‖wi‖22〉+ bi
))

)

, (41)

with the expectation〈‖wi‖22〉 computed as

〈‖wi‖22〉 = ‖〈wi〉‖22 + trace (Σwi
) , (42)

whereΣwi
denotes the submatrix ofΣw corresponding to theith group. The posterior estimate of〈z−1

i 〉 can be
calculated by the moments of this distribution in (10) as

〈z−1
i 〉 =

√
ai

√

〈‖wi‖22〉+ b

Kλi−di/2−1(
√
ai

√

〈‖wi‖22〉+ bi)

Kλi−di/2(
√
ai
√

〈‖wi‖22〉+ bi)
. (43)

The update rules for the limiting cases can be found from thisgeneral form, and are shown in the third column
of Table I.

1Notice that this assumes non-overlapping groups; overlapping groups will be discussed later.
2The modeling used in this paper does not allow for exact sparsity. However, sparsity occurs in practice when estimates〈z−1

i 〉 become
very large such that the coefficients in theith group are numerically indistinguishable from zero.
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C. Estimation of the Hyperparametersai and bi

Notice that in the general case (43), the posterior estimateof z−1
i contains the hyperparametersai, bi, andλi,

which determine the shape of the enforced distribution onwi. With the variational approximation, their posterior
distributions can be estimated using (35) as well, with the appropriate selection of the hyperpriorsp(ai), p(bi) and
p(λi) (or with a joint hyperpriorp(ai, bi, λi)). However, in the general case with GIG mixing distribution, the joint
estimation of allai, bi andλi is challenging: the estimation ofλi requires numerical solutions (instead of analytical
closed form updates), and when all parameters are jointly estimated, the accuracy greatly depends on the initial
estimates.

Therefore, we instead provide hyperparameter estimates ofai andbi in the special cases, and leaveλi as a free
parameter.

1) McKay’s Bessel function distribution:Recall that withbi → 0 andλi > 0, we have the gamma distribution
(17) as the mixing density. As the corresponding hyperpriorfor ai, we choose the conjugate gamma distribution

p(ai) = Γ(ai; ka, θa) , (44)

with the shape parameterka and the inverse scale parameterθa. The posterior becomes

q(ai) ∝ Γ(ai; ka + λi, θa +
〈zi〉
2

) , (45)

with the corresponding update

〈ai〉 = (ka + λi)

(

θa +
〈zi〉
2

)−1

. (46)

The moment〈zi〉 can be found from (41) using (10).
2) Multivariate Student’s t:When ai → 0 with λi < 0, the mixing distribution (25) is an inverse gamma

distribution in terms ofzi, but it is a gamma distribution with respect to the parameterbi. Hence we choose the
gamma distribution that is conjugate forbi

p(bi) = Γ(bi; kb, θb) . (47)

The posterior distribution is found as a gamma distribution

q(bi) ∝ Γ(bi; kb − λi, θa +
〈z−1

i 〉
2

) , (48)

with mean

〈bi〉 = (kb − λi)

(

θb +
〈z−1

i 〉
2

)−1

. (49)

D. Estimation of the noise variance

The Bayesian methodology allows for the estimation of the noise variance as well. Using the prior in (29), the
posterior ofβ becomes a gamma distribution, andβ can be estimated using its mean as

〈β〉 = 2kβ +M

2θβ + 〈‖y −Φw‖22〉
, (50)

with the expectation given by

〈‖y −Φw‖22〉 = ‖y −Φ〈w〉‖22 + trace
(

ΦT ΦΣw

)

. (51)
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E. Summary

The signal priors presented in the previous sections, alongwith the corresponding mixing distributions and
variational estimation rules are summarized in Table I. Thealgorithm alternates between estimating the signalw

using (37), and the variancesz and hyperparametersa, b using the equations shown in Table I, according to the
selected signal distribution.

The normal variance mixture with the GIG mixing distribution is extremely flexible, and encompasses a large
family of distributions some of which can be used for modeling group-sparse signals. Other, non-standard, distribu-
tions can also be obtained by further extending the hierarchical construction and marginalization. The advantages
of using the variance mixture formulation are the tractableproperties of the Gaussian distribution obtained for the
signal estimate in (36) and the conjugate prior mechanism that allows for closed-form estimation of the parameters.

In this work, we used a three-level hierarchical estimationprocedure, involving the estimation ofwi, zi, ai and
bi in alternating fashion. Instead, two-level hierarchical estimation procedures can be devised using the marginal
distributionsp(wi|ai, bi, λi) and appropriate hyperpriors onai andbi (therefore bypassing the estimation ofzi). This
approach is a generalization of Laplacian scale mixtures [8]. However, this approach brings some difficulties: First,
the marginal distributions have complicated forms and the corresponding conjugate hyperpriors onai and bi are
hard to find. Second, the marginal distributions generally do not allow for closed form updates of the posterior mean
w. Finally, the posterior mean updates ofai andbi in general require expectations that do not have closed forms.
Hence, fully-Bayesian inference with this two-level hierarchy is generally hard. Note, however, that if parameter
estimation is not desired, deterministic approaches can beused (see Section IV) with relative ease with some
forms of the marginal distributions, e.g., the Laplace distribution. This approach is closely related to reweighted
l1-minimization schemes [25], [26] and the EM approach presented in [8].

IV. COMPARISON WITH DETERMINISTIC ESTIMATION

The signal priors considered in Section II-A can also be usedin a deterministic maximuma posteriori (MAP)
framework, which is commonly encountered in the literature. Using a deterministic framework allows us to show
some interesting connections between different signal priors and also compare and demonstrate some properties of
the variational Bayesian estimation described before.

When considering MAP optimization with the Bayesian model in this paper, two approaches can be considered.

A. MAP estimation using marginal distributions

By forming the joint probability distributionp(y|w, β)p(w|a,b, λ) using the observation model in (28) and the
generalized hyperbolic distribution in (11) as the signal prior, and applying alog-transform, we obtain the MAP
estimate as

ŵ = argmax
w

log p(y|w, β) +

G
∑

i=1

log p(wi|ai, bi, λi) (52)

= argmin
w

β‖y −Φw‖22 −
G
∑

i=1

2 log
Kλi−di/2(

√
ai
√

bi + ‖wi‖22)
(

bi + ‖wi‖22
)di/4−λi/2

. (53)

Note that the mode of the posterior distribution is sought within this formulation. In the general case with nonzero
ai, bi, andλi, closed form updates forwi cannot be found and numerical solutions are required. However, closed-
form updates can easily be found in the case of multivariate Laplace (22) and t-distributions (26), and Jeffrey’s
prior (27).

In the case of multivariate Laplace priors, the optimization problem becomes

ŵ = argmin
w

β‖y −Φw‖22 +
G
∑

i=1

√
ai ‖wi‖2 , (54)

which is equivalent to thel1/l2-norm formulation in (3). With the multivariate t-distributions, we have

ŵ = argmin
w

β‖y −Φw‖22 +
G
∑

i=1

(di/2− λi) log
(

bi + ‖wi‖22
)

. (55)
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Fig. 5. Thresholding functions for the McKay (λ = 1), multivariate Laplace, multivariate Student’s t (λ = −1), and Jeffrey’s. The dotted
line is ŵi = (ΦTy)i.

Although the connection between this problem and thel1/l2-norm formulation in (3) is not immediately clear, they
are in fact related. Consider the followinglp-norm based group-sparse estimation problem

ŵ = argmin
w

β‖y −Φw‖22 +
G
∑

i=1

τ (bi + ‖wi‖2)p , (56)

with 0 < p ≤ 2. Notice thatp = 1 recovers thel1/l2-norm minimization in (3). Using the formula

lim
p→0

1

p
(bi + ‖wi‖2 − 1)p = log

(

bi + ‖wi‖22
)

, (57)

it can be seen that the multivariate t prior is a limiting caseof the lp-norm based group-sparse estimation procedure.
In addition, in the case of Jeffrey’s priors, the penalty function is the limiting case of‖wi‖p2 as p → 0. In this
regard, the Laplace and t-distributions can be thought to beat the opposite ends of thelp-norm penalties; while
Laplace prior leads to anl1-based method, t-distributions enforce sparsity similar to l0-norms. The generalized
lp-norm based formulation with0 < p < 1 can be constructed using Gaussian variance mixtures as well, but the
mixing distribution is an alpha-stable distribution without a closed-form, which makes the inference very hard.

Using the MAP formulation in (53), we can also analyze the thresholding properties of different distributions
whenΦ is orthonormal, i.e.,ΦTΦ = I. In this case, the problem decouples intoG optimization problems (the
groups become independent), and can be solved for each groupseparately as

ŵi = argmin
wi

−2βwT
i

(

ΦT y
)

i
+wT

i wi +

G
∑

i=1

log p(wi|ai, bi, λi) . (58)

The thresholding functions for different distributions for fixed a, b andβ are shown in Fig. 5(a). The multivariate
Laplace distribution has a soft-thresholding behavior (similar to the univariate case), while the behavior of all other
distributions is similar to hard-thresholding, includingthe McKay (λ = 1) distribution. In addition, the multivariate
Laplace and McKay (λ = 1) priors have a constant bias independent of the signal value. Student’s t and Jeffrey’s
priors do not have this disadvantage; the bias converges to zero as the signal magnitude increases. On the other
hand, the Laplace prior is continuous at the thresholding value, whereas the others have discontinuities, which is
generally considered as a disadvantage since small changesin the data might lead to large changes in the estimation
[44].

In comparison, the thresholding functions obtained by the variational Bayesian inference described in the previous
sections is shown in Fig. 5(b). It can be observed that all thresholding curves become smoother, and in fact, none
of the priors lead to a thresholding rule: the estimates are only “almost” sparse, i.e., they have very small values in
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an interval but are never exactly zero. Interestingly, the thresholding function of the Jeffrey’s prior now exhibits a
soft-thresholding behavior while the bias is again converging to zero as the signal magnitude increases. On the other
hand, the thresholding property of the Laplace and McKay (λ = 1) is decreased. However, it should be emphasized
that whena, b andβ are not constant but also estimated, all priors lead to exactthresholding rules.

Finally, an important remark is that simultaneous estimation of the parametersa and b cannot in general be
performed using the MAP formulation if the hyperpriorsp(a) andp(b) are not suitably chosen. The objective (53)
becomes unbounded from below for some values of parameterska, θa, kb, θb, in which case the global minimum
is obtained at the trivial solutionw = 0, a → 0 andb → 0. Therefore, other methods should be employed, such
as cross-validation or L-curves [27].

B. Hierarchical estimation

A second method is to use the hierarchical representations of the distributions, and consider the joint minimization
problem as

ŵ, ẑ = argmax
w,z

log p(y|Φ,w) +

G
∑

i=1

log p(wi|zi) + log p(zi|ai, bi, λi) (59)

= argmin
w,z

β‖y −Φw‖22 − log |Λ|+wT Λw −
G
∑

i=1

2 log p(zi|ai, bi, λi) , (60)

with Λ = diag
(

z−1
i

)

. A common method for optimization is to consider an alternating iteratively reweighted
minimization problem, where the estimation ofw is done by holdingz fixed and vice versa [24]. However,
the distributionp(zi|ai, bi, λi) and parameterska, θa, kb, θb should be chosen carefully as some selections (e.g.,
λi, ai, bi → 0) cause the objective to be unbounded atw = 0 and z → 0, leading to the trivial solution. This
problem is also observed in the Gaussian probabilistic matrix factorization with flat hyperpriors [45]: while the
variational Bayesian inference allows the estimation of the hyperparameters, MAP estimation fails and gives the
trivial solution.

One possible solution is to bound the objective by replacingwTΛw with wTΛw + ǫΛ whereǫ is generally
chosen in a heuristic manner [24], [26]. In this case, the signal estimatêw is the same as (37), whilez−1

i estimated
using

ẑ−1
i = argmin

z−1

i

z−1
i (‖wi‖22 + ǫ)− di log z

−1
i − 2 log p(zi|ai, bi, λi) . (61)

One important difference between the MAP and Bayesian inference with this hierarchy can be observed by
comparing (61) with the update rules in Section III-B: WhileMAP uses‖wi‖22 + ǫ for updatingzi, the Bayesian
method uses〈‖wi‖22〉 = ‖wi‖22+trace (Σwi

). The last term makes thezi parametersa posterioridependent, while
they are independent in the MAP approach. The Bayesian methodology provides a statistical interpretation of the
term ǫ: it is the estimate of the posterior variance of the groupi. In deterministic approaches, a decreasing sequence
of ǫ is shown to provide better empirical performance. From the Bayesian perspective, this is also expected; the
variance estimate generally decreases at each iteration with more accurate estimates of the signal. This connection
is also observed in [46].

Note, however, calculation oftrace (Σwi
) significantly increases the computational complexity of Bayesian

inference, since the inversion of either anN ×N or M ×M matrix is required using (38) and (39), respectively.
The signal estimate in (37) does not require this inversion and has the same complexity as the MAP approach. The
explicit calculation ofΣw is prohibitive in high dimensional problems. A very simple and crude approximation,
which surprisingly gives good results in some cases, is to only invert the diagonal elements ofΣw and calculate
the trace terms. With this approximation, the computationsreduce fromO(N3) (or O(M3)) to O(N). We evaluate
this approximation in Section VI-D.

V. EXTENSIONS

In this section we discuss some extensions of the group-sparse modeling within the Bayesian framework, along
with the resulting estimation schemes using variational inference.



13

A. Group-sparsity in multiple-measurements

Group-sparsity can also be used in the multiple measurementvector (MMV) problem. Here, the observations are
expressed as

Y = ΦW+N , (62)

where each row ofW ∈ R
N×K corresponds toK related variables with similar sparsity profile, and the groups

are again defined over the columns. MatrixN represents the noise with independent zero-mean Gaussian variables
as entries. To accommodate this generative model, we modifythe mixture model as

Wi =
√
zi X , (63)

with matrix Wi is extracted fromW using the rows contained in groupi, and each column ofX is a standard
multivariate Gaussian variable.

The inference procedures presented so far can accommodate this modeling as well, with small changes in the
updates. With some algebra, it is not hard to see that the posterior distribution ofW becomes factorized with
respect to its columns, and all columns have the same covariance matricesΣW, such that

q(W) = N (〈W〉,ΣW) , (64)

with parameters

〈W〉 = ΣW βΦT Y , (65)

Σ−1
W

= βΦTΦ+Λ , (66)

with Λ defined as before in (38). The change affecting the posteriorupdates of the varianceszi is the use of the
Frobenius norm‖Wi‖2F instead of‖wi‖22, such that instead of (42) we have

〈‖Wi‖2F 〉 = ‖〈Wi〉‖2F +K trace (ΣWi
) . (67)

In addition,di is replaced withKdi in all updates of the parameterzi.

B. Within-group correlations

The framework considered until now correlated the coefficients within each group through the use of a single pa-
rameter only, as can be seen from (7). We can, however, embed additional correlation structure into the formulation,
by the modification

p(wi |zi) = N (0di
, zi C

T
i Ci) , (68)

whereCT
i Ci is the within-group covariance matrix, andzi again is used to control the sparsity. The variance-

mixtures are defined in this case as

wi =
√
ziCix . (69)

Hence, the signalw is a linear transformation of a multivariate Gaussian variable. Note that the matrixCi represents
an integral-type operator, which generates datawi from white noise [47], [48]. This type of modeling, generally
referred to asanalysis-based modeling[49], is useful in modeling signals that are not sparse themselves but can be
represented sparsely in some transform domain, with imagesas typical examples. In this case, the inverse covariance
(

CT
i Ci

)−1
= DT

i Di is chosen as a high-pass operator. For instance, when a forward wavelet transform is applied
to the image, the resulting wavelet coefficients contain a small number of significant groups, and the remaining
majority of the coefficients have negligible magnitudes.

Only small changes are needed in the inference procedures toaccommodate this change in the modeling.
Specifically, the signal update becomes

〈w〉 = Σw βΦT y , (70)

Σ−1
w = βΦTΦ+DT ΛD , (71)

with D is a block-diagonal matrix with theDi-matrices on the diagonal, i.e.,D = diag(Di). All variance parameter
update equations have the same form with‖wi‖22 replaced with‖Di wi‖22.
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C. Overlapping Groups

In some problems, the group structure is designed to be overlapping [19], [50]. This property is desired in certain
applications (especially in bioinformatics [50]), or in cases where the group structure is not knowna priori, in
which case overlapping groups might alleviate problems associated with wrong groupings. If only a few groups
are overlapping, then a simple way to incorporate this in themodeling and inference is to explicitly duplicate the
signal coefficients and columns of the dictionaryΦ that correspond to elements belonging to multiple groups [50].
However, this approach leads to increased computational requirements when many groups overlap.

The approach with expanding the signal dimensions by duplication can readily be handled with modeling and
inference schemes presented so far. Here we consider the approach without duplication. We do not change the
signal modeling and use the signal prior in (5). Notice, however, that the coefficients in multiple groups will have
multiple varianceszi associated with them. Specifically, the factorized signal prior is given by

p(w|z) =
G
∏

i=1

p(wi |zi) =
N
∏

k=1

∏

i∈Ωk

p(wk|zi) (72)

whereΩk is the index set of groups the coefficientwk belongs to. For coefficients that belong to multiple groups,
the prior inverse variances will be added, e.g., ifwk belongs to groupsi and j, the corresponding prior inverse
variance is given byz−1

i + z−1
j . With this modeling, the only modification in the inference is in the construction

of matrix Λ when estimating the signalw. Specifically, we have

Zkk =
∑

i∈Ωk

〈z−1
i 〉 , k = 1, . . . , N. (73)

It should be noted that in this formulation, overlapping groups will have an effect on each other during inference
(due to the added inverse variances). Therefore, higher sparsity might be enforced on coefficients that belong to
many groups. This effect does not exist with the duplicationapproach discussed above. Nevertheless, this scheme
proved to be useful for estimation when the group structure is unknown (see the empirical results in Section VI).

VI. EMPIRICAL EVALUATION

In this section, we present experimental results demonstrating the performance of different signal priors in group-
sparse signal estimation problems. We focus on the multivariate signal priors McKay(λ = 1), Student’s t, Laplace
and Jeffrey’s. We examine the effect of group size and the selection of the groups, and demonstrate the utility of
modeling with overlapping groups in problems where the group structure is unknown. Finally, we compare the
performance of variational Bayesian inference with full covariance estimation and the approximation described in
Section IV.

As a baseline comparison, we use the state-of-the-artl1-norm basis pursuit method SPG [21], which is a
deterministic optimization approach based on spectral projection. This method is very fast and provides high
estimation performance, and hence is suitable for comparing the modeling and inference procedures described in
this paper in terms of estimation accuracy and computational requirements.

The source code developed to obtain the results shown in thissection is available online in
https://netfiles.uiuc.edu/dbabacan/www/software.html.

A. Comparison of Signal Priors

To compare the estimation performance of different signal priors, we generated a collection of signals of length
N = 300 including (i) a sparse signal with 60 coefficients Gaussian-distributed with variance 1, and the remaining
coefficients zero, (ii) a non-sparse signal with 60 coefficients Gaussian-distributed with variance 1, and the remaining
coefficients Gaussian distributed with variance10−3, (iii) Student’s t and (iv) generalized double Pareto (GDP)
distributed signals, which are considered to be compressible with appropriate parameter selections [39] (we use
λ = −1/2 for the Student’s t in (26) andka = 3/4 for the GDP in (24)). Example realizations of these signals are
shown in Fig. 6. A variety of signal characteristics are captured with this collection. Only signal (i) is sparse, whereas
signals (iii) and (iv) are compressible, and signal (ii) is neither sparse nor compressible. Although only signal (i)
is exactly sparse, more coefficients in signals (iii) and (iv) are closer to zero, and therefore the compressibility
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Fig. 6. Example realizations of different signals used in the experiments.

of these signals can be ordered as (iii)≈ (iv) > (i) > (ii). In addition, the energy distribution within the signal
coefficients is very different. In signals (i) and (ii), the magnitude difference between the important and spurious
coefficients is small (generally less than an order of magnitude), whereas in signals (iii) and (iv) this difference
can be very large (e.g., several orders of magnitude).

We fix the group size to 20 (di = 20 ∀i, number of groupsG = 15) and consider two strategies for grouping the
signal coefficients: (1) random grouping and (2) ordered grouping where the coefficients of the original vectorw

are sorted according to their magnitudes, and groups are created by dividing theN sorted indices intoG clusters.
Note that this corresponds to an “oracle” grouping with respect to the coefficient magnitudes. With signal (i), in
both strategies we generate the groups such that they eithercontain all non-zero coefficients or all zero coefficients
(but without magnitude ordering). A completely random grouping results in significant loss in performance and
will be discussed later.

TheM ×N matrix Φ is generated by drawing its entries from a standard Gaussiandistribution and normalizing
the columns to have unitl2-norm. White Gaussian noise with variance10−6 is added to obtain measurementsy. The
unknown vectorw is estimated using the variational Bayesian methods with multivariate McKay(λ = 1), Laplace,
Student’s t (λ = −1) and Jeffrey’s priors. The hyperparameterska, kb, θa and θb are set equal to10−5 to obtain
broad hyperpriors on the parametersai andbi. The noise varianceβ−1 is estimated along with the unknown vector
with all methods. The SPG method does not provide means to estimate this parameter, so the true noise variance
is given to this method.

To measure the reconstruction performance, we use the relative reconstruction error‖ŵ−w‖2/‖w‖2 whereŵ is
the estimated signal andw is the true signal, respectively. The convergence criterion is ‖ŵn−ŵn−1‖2/‖ŵn−1‖2 <
10−10 wheren is the iteration number. The experiments are repeated 100 times with different realizations of matrices
Φ, noise and signalsw. Average estimation results comparing the signal priors with different signals and varying
M/N ratios are depicted in Fig. 7. The results with random grouping are denoted by (R) and the ones with ordered
grouping are denoted by (O).

Several observations can be made from Fig. 7: First, the proposed method outperforms the deterministic approach
SPG in all test cases with all priors, while the performance difference varies depending on the underlying signal.
The performance difference is especially prominent with the sparse signal (i), where the proposed methods achieve
reconstruction errors close to10−3 with as low as0.3M measurements, while SPGL1 requires more than0.7M
measurements to obtain this error level. With the other signals the performance difference is also clear, in some
cases getting close to an order of magnitude.

Second, all priors provide good signal estimates with the highly compressible signals (i), (iii) and (iv) at even low
measurement levels. McKay(λ = 1), Student’s t and Jeffrey’s priors result in more accurate estimation compared to
Laplace at all measurement levels with the sparse signal (i). However, the performance of the priors is close with
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Fig. 7. Comparison of estimation performances of signal priors with different signals. Signal types are denoted at the top of each figure,
and the legend is common to all figures. (R) denotes random grouping (solid lines), and (O) denotes ordered grouping (dashed lines). Note
that the curves corresponding to Mackay (λ = 1), Student’s t and Jeffrey’s priors almost coincide.

the other signals. Especially Student’s t and Jeffrey’s priors give very similar results, and we empirically observed
that manybi parameters of Student’s t are driven to very small values during iterations making the distribution
similar to Jeffrey’s prior.

The performance of all priors is much lower with the non-sparse signal (ii). Interestingly, the Student’s t and
Jeffrey’s priors again provide very good results even though they enforce sparsity to an higher extent. It can be
argued that these priors are very effective in selecting themost important coefficients even with non-sparse signals
where the difference between the important and unimportantcoefficients is not high.

Finally, it is clear that the grouping strategy makes a significant difference in estimation performance. Grouping
coefficients with high magnitude differences results in severe degradations in estimation performance. The degra-
dation in performance is not as severe with signal (i), wherein both cases we classified the groups as zero/nonzero.
The result of completely random grouping is shown in Fig. 10.An interesting observation is that grouping via
magnitude ordering is not as important as identifying the nonzero coefficients when the magnitude differences
within the signal is not large (such as signal (i)).
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Fig. 8. Effect of group size on the estimation performance with different signal priors.

B. Effect of group size

It is evident that the strategy of selecting the groups has a significant effect on the estimation performance. Here
we additionally investigate the effect of the group size on the estimation performance. We report experiments with
the sparse signal (i) in the previous section to precisely control the sparsity level of the signal, since these signals
contain exactly 60 nonzero coefficients. We vary the group sizes asdi = 1, 2, 6, 20, 60. The groups are selected
randomly but groups contain either all non-zero or all zero coefficients. Note that the case withdi = 1 corresponds
to standard sparse reconstruction without groups.

Simulation results with differentM/N ratios are shown in Fig. 8. It is clear that with all priors, grouping
the coefficients result in significant gains in estimation even when the grouping is done randomly (without the
information on the ordering of their magnitudes). While allpriors have similar and high performance, the Laplace
prior is generally slightly inferior compared to others. Finally, as in the previous experiments, the proposed method
outperforms the SPG method independent of the selected signal prior: the proposed method typically requires at
least0.2M less measurements to obtain the reconstruction errors provided by SPGL1, independent of the group
size.

Overall, based on the experimental results, it can be observed that all signal priors approximately provide the same
estimation performance. Due to additional complexity in the estimation rules with the McKay(λ = 1), Student’s
t and Laplace priors, the Jeffrey’s prior is favorable as thecorresponding estimation procedure does not involve
complex special functions and thus is much simpler. However, note that in this work we only consider signal
reconstruction; other priors might prove useful in applications where the goal is data interpretation instead of
reconstruction.

C. Overlapping groups

The group size and selection is critical in estimation performance, as demonstrated in the previous sections.
However, neither of them are knowna priori in general practical settings without additional structural information
of the unknown signalw. In this section, we demonstrate the utility of the modelingwith overlapping groups
(Section V-C) in cases where no information is available about the signal structure.

We again experiment with the sparse signals (i) with 60 nonzero coefficients and 240 zero coefficients. The
nonzero coefficients are chosen uniformly at random and drawn from a standard Gaussian distribution. We consider
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shape curves.

three scenarios with a fixed group size ofdi = 20: 1) “Correct” grouping where the nonzero coefficient locations
are known and groups either contain all nonzero or all zero coefficients, 2) groups are constructed randomly, and
3) overlapping groups, where the signal is divided sequentially into di = 20 coefficient groups with50% overlap
(i.e., group 1 contains coefficients 1 to 20, group 2 containscoefficients 10 to 30, and so on). Estimation results
with these strategies (average of 100) are shown in Fig. 9. Itis clear that modeling with overlapping groups results
in significant improvement compared to random grouping. Random construction of the groups does not provide
good estimates, whereas the difference between the overlapping and correct grouping is not too large. Overlapping
grouping therefore can be used for instance to first estimatethe group structure which can then be used in an
additional inference step for improved performance.

D. Effect of the Covariance Approximation

As mentioned earlier, one disadvantage of the Bayesian methods presented in this paper is the need to compute
the covariance matrixΣw, which is computationally intensive and makes the inference not scalable to problems
with high dimensional data. On the other hand, the approximation to the covariance matrix described in Section IV
significantly reduces the computational load and provides amore efficient inference procedure. In this section, we
evaluate the effect of this approximation in terms of estimation accuracy and speed.

Similar to the previous sections, we generate sparse signals with nonzero coefficients drawn from a standard
Gaussian distribution. The signal size is chosen as 500, thenumber of nonzero coefficients are set to100, and the
group size is fixed to20 where the non-zero group locations are assumed to be known. We use (39) to compute
the full covariance matrices asM < N . Fig. 10 compares the estimation performance and the corresponding
running times with and without the covariance approximation. While the methods with full covariance matrices
have significantly lower estimation error (especially at low M/N ratios), the running times are drastically increasing
with increasingM (approximately in the order ofM3). On the other hand, while the estimation performance is
significantly decreased, the running times of the methods with covariance approximation are approximately constant
for all M levels, indicating that they are scalable to high-dimensional problems. While not investigated in this paper,
a possible method to achieve both high estimation performance and computational efficiency is to divide the problem
into inner- and outer-loops to reduce the number of updates of the covariance matrix [51]. Finally, it is evident that
even with the covariance approximation the proposed methods still provide comparable or better performance than
SPG with approximately same running times.

VII. C ONCLUSIONS

In this paper, we presented a general multivariate signal prior construction suitable for group-sparse modeling.
Using the normal-variance mixture hierarchy, we have shownthat this signal model includes multivariate versions of
a number of signal models commonly used in the literature forsparse signal modeling. Therefore, this construction
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Fig. 10. Comparison of variational Bayesian approaches with different distributions with the full and approximate covariance matrices
(denoted by “App”). (a) Reconstruction errors, (b) runningtimes. The legends are common to both figures.

is useful to compare their characteristics and analyze their connections. We provided estimation rules with these
priors using variational Bayesian inference and empirically demonstrated their estimation performance. Experimental
results suggest that the proposed formulation is very powerful and provides better estimation performance than state-
of-the-art deterministic approaches. In addition, we showed that while all priors provide very similar performances,
Jeffrey’s prior is an attractive choice due to its high estimation performance and simple update rules. We also
provided and evaluated a simple approximation for scalableinference in large-scale problems. Finally, we have
discussed some extensions of group-sparse modeling withinthe Bayesian methodology and have shown that the
proposed method is very flexible and can easily be used for a wide range of problems involving group-sparse
modeling.
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