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Abstract

In this paper, we present a general class of multivariaterpfor group-sparse modeling within the Bayesian
framework. We show that special cases of this class cornespm multivariate versions of several classical priors
used for sparse modeling. Hence, this general prior fortimnas helpful in analyzing the properties of different
modeling approaches and their connections. We derive tivea®n procedures with these priors using variational
inference for fully Bayesian estimation. In addition, wedliss the differences between the proposed inference and
deterministic inference approaches with these priorsalinwe show the flexibility of this modeling by considering
several extensions such as multiple measurements, vgtiomp correlations and overlapping groups.

|. INTRODUCTION
We consider the general linear model given by

y =®w+n, @)

where M x 1 observationgy of the original unknown signal are taken with am\/ x N measurement matrix
(or dictionary)® = [¢1, ¢o, ..., ¢N], andn represents the noise. This paper is concerned with the garobf
finding an estimate of the unknown signalfrom the observationg. Generally, the case of interest is theé < N
regime, which makes the problem challenging and requirpsogpiate modeling of the unknown signail.

Problems of the general form (1) are very common in signatgseing, statistics, neuroscience and machine
learning. Typical applications include compressive sayssparse representation, super resolution, sourcdéZacal
tion, variable/model selection and prediction, among mathers. A general design principle in these approaches is
sparsity, which amounts to finding the most important congpdsiofw and suppressing the elements with relatively
lower importance. In this design, the unknown veatois assumed to contain a small number of nonzero elements,
while the majority of the components are zero. This asswnpi translated into the optimization problem for
finding w using sparsity-promoting penalty functions, of which thestncommon example is thig-norm based
formulation given by

W = argmin B ly — @w[3 + 7wl )
w

This formulation is commonly referred to as basis pursujtdd lasso [2]. It implicitly models the noisa as
zero-mean white Gaussian distributed with variapce /2, and T is the regularization parameter controlling the
strength of the enforced sparsity. A large number of optitidn methods have been developed for solving (2).
In addition, different sparse signal models have been mep@xtending thé -norm to the more generaj-norm
with 0 < p < 1.

In the traditional sparse modeling, the sparsity constiairmposed on individual components ef. Recently, a
different modeling approach has emerged where sparsityfisaed on groups instead of the individual components.
This group-sparsdalso called block-sparse) approach is a natural genatiliz of the traditional sparse modeling
methods. It effectively models thstructural properties of the signal by clustering relevant signal congmts
together, such that dependencies between signal comgoasntaken into account. It is also shown to lead to
higher performance in pruning out irrelevant componentagared to independent modeling of the coefficients [3].
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Group-sparsity has recently been considered in compeesensing [3]-[7] and machine learning [8]-[12], and
is also closely related to signal modeling within union obspaces [3], [13]-[15]. It has rapidly found applications
in, e.g., imaging [16], [17] and network analysis [18], demawating promising performance.

A general optimization formulation for group-sparse regiziation is

w = argmin § [y — @w|3 + 7wz, ©)
W

where|| - ||; » denotes the combineld/l>-norm with
G

Wil = lIwilla, [Iwilla = \/w!wi, 4

i=1

wherew; denotes the'" group, andG is the number of groups. Each grougontainsd; elements, such that
Zle d; = N if the groups are not overlapping. It is clear that this folation includes the traditional -based
formulation as a special case (whép= 1, V).

The optimization problem (3) is similar to thg-based optimization, and thus sorhebased approaches can
be applied to this problem with some modifications. Deterstim methods directly addressing the problem (3)
have been developed in [19]-[21], and in group-lasso mettibd], [12]. Several Bayesian approaches have been
developed for group-sparse modeling: the Bayesian grasgol [22] proposed to use multivariate Laplace priors on
separate groups, and provided a sampling scheme for ierénsimilar group-sparse prior is used in covariance
estimation problem in [9]. In [8], [23], Laplacian scale mires have been used for the construction of the group-
sparse prior, and the inference is performed using expectataximization (EM).

An important issue in all sparse reconstruction problemshigosing the regularization parameteétsand 7.
Clearly, optimizing (3) jointly with respect to them is natitble since it results in the trivial solutigh= 7 = 0.

A similar problem is encountered when the problem is comektd weighted least squares problems, as in iteratively
reweighted least squares (IRLS) withpriors [24]-[26]. Deterministic heuristic methods aresided for parameter
estimation, such as L-curves [27] or penalizing the trigialution [24]. A more systematic approach can be obtained
using Bayesian inference, as shown in this article.

In this paper, we present a Bayesian approach for grougespaodeling and inference. Using a normal variance
mixture formulation, we present the hierarchical congtancof a general signal prior suitable for modeling group-
sparse signals. This general signal prior contains a ldegs of distributions as special cases, obtained via diffter
selections of distributions in the hierarchical constiartt Using this general formulation, we explore different
options for group-sparse modeling, analyze their conaestiand their sparsity-enforcing properties. We show that
some of the special cases of this generalized prior correspm several standard models used in the sparse and
group-sparse reconstruction literature. For estimat&ngithis class of priors, we provide the hierarchical iafere
rules using the variational Bayesian (VB) approach for dyfBlayesian estimation (i.e., including algorithmic
parameters). We compare the proposed inference with digistiminference approaches, and show the thresholding
properties of different priors both in deterministic andyBsian frameworks. Finally, we consider several extended
modeling possibilities within Bayesian group-sparse ntiade such as within-group correlations and overlapping
groups, and consider the multiple measurement vector case.

The rest of this paper is organized as follows. Section Ivigkes the hierarchical construction of the generalized
group-sparse prior using normal variance mixtures. We déwve its special cases and show their properties. In
Section 11, we develop fully-Bayesian inference methodig these priors via variational Bayesian approximation.
Properties of the modeling and inference in comparison déterministic approaches are discussed in Section V.
Several extensions to Bayesian group-sparse modelingravédpd in Section V. Empirical evaluation of different
aspects of the group-sparse modeling are presented iroSadti and conclusions are drawn in Section VII.

Il. BAYESIAN GROUP-SPARSEMODELING

The Bayesian modeling of (1) requires the definition of atjdistribution of all unknown and observed quantities.
This joint distribution typically includes the conditiondistribution for the observationg, and a prior that models
the characteristics of the unknown signal In the following, we first present a class of distributionstable for
group-sparse modeling of using variance mixtures of Gaussian distributions. We ttlerive its special cases



and show the connections between them and models proposked lterature. Finally, we complete the Bayesian
model by specifying the observation model and hyperprissgned to the parameters of all distributions.

We use the following notation throughout this paper. Vextare denoted by small-case bold letters while
matrices are in capital bold lette. diag(a) is a diagonal matrix with vectas as its diagonal, and- ) denotes
the expectation with respect to the corresponding digichu

A. Signal Models

For modeling the unknown signa¥, we first defineGG groups of coefficients such that the vectoy contains
d; signal coefficients assigned to groupThe case withG = N, d; = 1, Vi corresponds to independent sparse
modeling of the coefficients.

Assuminga priori independence between groups, we express the signal prior as

G
p(wlz) =[] p(wilz), ()
i=1

wherez is the vector containing all;. Sparsity is enforced on each group via the conditionalrgiow; |z;). For
their representation, we use the normal variance mixturdemn28] (also called scale mixtures of Gaussians [29],
[30]). Specifically, we represent each growp as

Wi =z X, (6)

wherez; > 0 andx is a standard multivariate Gaussian variable, ke~ N (0g4,,1;) with 04, a zero vector of
lengthd; andI,, the d; x d; identity matrix. It is clear that given;, w; is a multivariate Gaussian variable with
zero mean and variancgl,,, that is

p(wi|z) = N(0g,, 2 1g,) . (7)

Notice that the coefficients within each group are not indelgat. The marginal probability distribution ef; can
be found by integrating out the latent variables as

mWazAmmWnam@nwp ®)

Here,p(z;) is called the mixing distribution and determines the formthe marginal distributiorp(w;).

Normal variance mixtures have been extensively used in iteeature for representing a large number of
distributions, and for deriving efficient inference prouess for parameter estimation. A variety of distributions
can be represented in this fashion by different selectiothefmixing distributionp(z;).

In this paper, for the mixing distribution(z;) we consider the generalized inverse Gaussian (GIG) disimif

. . )\'L/2 1
p(ZZ'|CLi, bi, >\z) == % Z?i_l exXp (—5 (ai zZ; + bl Zi_l)> s (9)
where K, is the modified Bessel function of the second kind. The momehthis distribution are given by [31]
Ky, ibi) (b \"*
<£>:—1¢5—332<5> . (10)
Ky, (Vab;) \ai

With this mixing density, the marginal distribution &f; is found from (8) as the generalized hyperbolic (GH)
distribution [28]

(27T)d1:/2 K)\i( aibi) (bz + HWZ||%)d7/4—>\7/2

In this paper, we chose the GIG distribution as the mixingdrithistion as it includes a fairly broad class of
distributions commonly used as hyperpriors, and the resulinarginal distribution, the GH distribution, again
covers a large number of distributions as special cases.t®ubis generalization, we are able to analyze the
connections between different modeling strategies. Ashadl see in the following, several special cases correspond
to standard priors commonly used in sparse modeling.

p(wila;, bi, \i) = (11)
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Fig. 1. Generalized hyperbolic distributions (a) and laggributions (b) with varying\;, whena; = 1, b; = 1 (d = 2, the cross-section is
shown).
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Fig. 2. Generalized hyperbolic distributions (a) and lagiibutions (b) with varyinga, when; = 1, b = 1 (d = 2, the cross-section is
shown).

To see the rich family of distributions that can be obtaineanfthe GH distribution, distributions obtained with
varying values ofa;, b; and \; are depicted in Figs. 1-3. It can be seen that both the ceamdltail behavior
can be varied using different parameter values, and as wiiffown later, the resulting distributions have different
estimation characteristics. In the following, we consitherspecial cases of the GH distribution at the limit paramet
values, along with the mixing distributions. Let us first@isome expressions on asymptotic approximations of the
modified Bessel function that will be useful:

Ky\(2) ~ %P()\) (g)_x, forA > 0, 2 — 0 (12)
1 T\

K@) ~ 5T (=) (5) . forA< 0,20 (13)

Ko(z) ~ — In(z) (14)

Ky(z) = \/gexp(—x) , forz— oo, (15)

and for integer\,

(16)

A
T )\ +1) _
Kyp1y2(2) = ) 5 exp(=2) |1+ E ,Z, 2x)

1) McKay's Bessel function distributionVhenb; — 0 Wlth )\i > 0, the mixing GIG distribution reduces to the
gamma distribution, given by

Ty = i -t L
p(zilai, \i) = > T00) 2; exp < 2aZ zz> . a7)
The corresponding marginal distribution is
di 44X /2 Xi—d;/2
a; (Iwill2)
p(wz|a27>\l) = 1di/2 9di /24X —1 F()\Z) K}\i—di/2(\/ai HWZ||2)7 (18)
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Fig. 3. Generalized hyperbolic distributions (a) and lagiibutions (b) with varyingh, when\; = 1, a = 1 (d = 2, the cross-section is
shown).

which is McKay's Bessel function distribution [32]-[34]I¢a called multivariate variance-gamma [35], multivagiat
generalized Laplace [33], or multivariate K distributidsg], [37]).

We now consider two special cases of (18) that are relatedetd_aplace distribution. In the case = 1, the
mixing distribution becomes the exponential distribution

g 1
p(zi’ai) = E e€xp <_§a2 Zz) ) (19)
such that the marginal becomes
gli/A+1/2 .
7 1-d;/2
p(wila;) = ) (Iwill2) %72 Ky g jo(v/ai [ will2) - (20)
To see the relation with the univariate Laplace distributiove can use (16) and rewrite (20) for oddas
(di—3)/2 ,
exp(—+/ail|wil|2) ((di —3)/2+4)! i
p(w;la;) —— (2/a;||w; + 11 . (22)
(wilai) (||Wi||2)di/2_1/2 ; ((d; —3)/2 —d)l! ( twill)

The similarity to the univariate case can be seen from themaptial term, and noticing that all other terms vanish
with d; = 1. Note, however, that there are additional terms that areepdunctions of||w;||2. A more directly
related case can be found by the selectigr= (d; + 1)/2, which simplifies (18) using (16) as

p(wila;) o @/ exp(—v/a;|[wil»), (22)
in which case the mixing distribution is a gamma distribntigiven by
(di+1)/4
o) — a; ajo-1/2 o Lo
p(zl|a2) - 2(di+1)/2r((di + 1)/2) zi exXp < 2a2 ZZ) . (23)

Both distributions (20) and (22) were termed as multivaeribaplace distributions in the literature: the form in
(20) is used in [37], [38] due to the similarity of the hieraizal structure to the univariate case, and (22) is used in
the Bayesian group-lasso method [22] due to the similafithe marginal distributions. Here we will use the term
multivariate Laplace for the distribution in (22) since mshan estimation behavior similar to the univariate case
(see Section IV-A). The distribution in (20) will be refedréo as McKayf = 1). Notice that both distributions
reduce to the univariate Laplace distribution whin= 1.

It is also possible to integrate out from p(w;|a;) by assigning a gamma hyperprior Qpiz;. When \; =
(d; +1)/2, the corresponding marginal has a closed form and is given by

p(Wilka,02) = T(di + kq — 1) [0 + ||wil|o] @) (24)

which is the multivariate version of the generalized doudeeto distribution [39], [40].
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2) Multivariate Student’'s tWhena; — 0 with \; < 0, we have the inverse gamma distribution as the mixing
density

bi/2)™ . 1, _
p(2ilbi, \i) = % zi)‘l ! exp <—§bi z; 1) . (25)
The corresponding marginal is given by

di/2 ) .
p(wilbi, Ai) = <l> TCN +d/2) ;\Z +4i/2)
™ b I'(—=X)
which is a multivariate Student’s t distribution with2)\; degrees of freedom.
Finally, whena; — 0, b; — 0 and\; — 0, we have the Jeffrey’s non-informative prip(z;) o zi‘l. In this case,
the marginal distribution becomes
1 \*
o (o) (27)

[will2

(b + [lwi | 3) N4 (26)

In summary, the variance mixture model with the GIG mixtuistribution includes a number of classical
distributions as special cases at the limiting values gfaismeters. In the following, we mainly limit our discussio
to the four distributions described above, i.e, multiveridcKay(» = 1), Laplace, Student’s t distributions and
Jeffrey’s prior. These distributions along with the copmisding parameter selections are summarized in Table I.

The log-distributions for all cases are shown in Fig. 4, glaiith the Gaussian distribution. It is evident that all
distributions have heavy-tails, which is generally copsidl to be a desirable property for enforcing sparsity and
variable selection.

B. Complete Model

After the signal model is defined, we complete the Bayesiadahcharacterization by modeling the observations
y in (1). Assuming independent Gaussian noise with zero mewhvariance equal tg~!, the conditional
distribution is expressed as

p(ylw, 8) = N(y|@w,57), (28)
with a conjugate gamma prior placed gnas
p(Blks, 05) = T'(Blks, 03)- (29)

A prior is called conjugate if it leads to a posterior distibon that has the same functional form as the prior [41].
The use of conjugate priors significantly simplify the forfposterior distributions. Combining (28), (29) and the
hierarchical signal prior (7) and (9), we define the jointlmbility distribution as

p(y,w,z,8) = p(y|w, B) p(w|z) p(zla, b, A) p(8) p(a, b) . (30)



TABLE |
SUMMARY OF DISTRIBUTIONS AND PARAMETER ESTIMATES

Parameter Values Distribution Mixing Distribution Variance Parameter Update, ') Hyperparameter update
a w;||2)+b; .
Generalized Hyperbolic| Generalized Inverse Gaussian va Kngmay/a1 (VA Awil3) +00) see below fora;, b;; \; not provided
Vwil3+b  Kx_a, /2@ A/ (Iwill3)+b:)
\ . o Kay—dy 21 (V@ /Iwil3) o)t
bi =0, >0 McKay's Bessel function Gamma AT Vel L 2 D) = (ka4 s (6a —)
y SAwilD K g2y /(wil3) fai) = (ko +20) (0o + 5
_ vari N N ditl )
bi — 0, \i = (d; +1)/2 Multivariate Laplace Gamma A (ai) = (ka + =3 ) (6’a + 4 ) 1
> 21 -
a; —0, X <0 Multivariate Student’s t Inverse Gamma W (bi) = (kp — \i) <9b +4 L >>
ai —0,b; =0, \; =0 Jeffrey's Jeffrey’s <vai\|2> None

wherez, a, b, A are vectors containing;, a;, b;, and\;, Vi respectively. The hyperprigs(a, b) is used to model
the parametera andb for their estimation, and will be discussed in Section IlI-C

[11. VARIATIONAL INFERENCE

Bayesian inference is based on the posterior distributi§ly) = p(&,y)/p(y), where& denotes the set of
all unknowns such thag = {w, z, 5,a, b}. However, as in many multidimensional problems, the Bayesnodel
defined with the joint distribution in (30) does not allow fexact inference as the marginal distributipfy)
is intractable. Therefore, approximation methods must $edufor the inference. In the following, we use the
variational Bayesian (VB) approximation [42], [43], whitlas attractive computational properties along with high
estimation performance. With the definition of the jointtdisution in (30), the variational Bayes method provides
a distributionq (&) that approximates the posteript¢|y). Specifically,q(&) is found by minimizing the Kullback-
Leibler (KL) divergence between the approximation and thknown posterior as [42], [43]

ey : B : q(é)
() = argmin KL(a(€) | p(ely) = argmin [ a0z > (31)
= ar(;g(lg)lin / q(€) log p?éi’ ] d€ + const (32)

wherep(y, &) is the joint probability distribution given in (30). To s@whis optimization, the only assumption
needed is an appropriate factorizationq@€). Here we use the mean-field approximation [42] with

a(w,z,3,a,b) = q(w)q(z) a(B) a(a,b). (33)
Using this factorization in (32), the distributiongé;) of each variable; € £ is found as [42], [43]

log q*(&k) = (log p(y, &) q(e\¢,) T const, (34)
= (logp(y|w, 5) p(w|z) p(z|a, b, A) p(8) p(a, b)) ¢\, + const, (35)

whereg\ &, denotes the s&twith &, removed. Individual distributiong(£,) are updated by (35) at each iteration by
fixing the remaining distributiong(£\&x), which corresponds to an alternating minimization of the dtkergence
in (32). This iterative procedure is repeated until the Kktaihce converges.

The VB method is a generalization of the maximanposteriori (MAP) and expectation-maximization (EM)
methods. The EM estimates can be found by restricting somigitditions q(£;) to be degenerate, i.e., delta
distributions at a particular value. On the other hand, MAJlutions can be found by restricting all of the
distributions to be degenerate. When a distribution is degge, it can be shown from (32) that its corresponding
estimation amounts to minimizing the negative expecteddog distribution —(log p(&,y)>q(€\€k), which reduces
to the log joint distribution in the case of MAP. We will disssithe MAP estimation in more detail in Section IV.

In the following subsections, we provide the explicit forwfsthe update rules for all unknowns. For notational
simplicity, the optimal distributions are denoted §ynstead ofq*.



A. Signal Estimate
From (35), the posterior approximation ef is found as a multivariate Gaussian

q(w) = N((w), Ew), (36)
with parameters
(w)=%w 3"y, (37)
o= (38T®+A) (38)
A - ATBT (BT dATRT) T BA T (39)

with A = diag ((z; 1)), with each(z; ') repeatedi; times. It can be seen from (38) that except wheA® =1,

the groups are posterioridependent, despite treepriori independence assumption in (5). Sparsity in the groups
occur when particular variable(3;1> — 00, in which case thé'™™ group is pruned out from the signal estinfate
Notice also the estimation df, requires the inversion of aiv x N matrix using (38), and ad/ x M matrix
using (39).

B. Estimation of the Variance Parameters

The crucial part of (37) is the estimateszﬁl, which control the sparsity and hence the structure of theadi
estimate. Here we derive the estimation rules for the géase with the GIG hyperprior, from which the special
cases can easily be obtained.

First, with some algebra, it can be derived from (35) in cambion with (33) that the distributioq(z) factorizes
overq(z;), such that

G

a(z) = [ a(=)- (40)

i=1
Therefore, in the following we provide the update rules facte distributionq(z;). Using (35), we find the
approximate posteriog(z;) from (7) and (9) as a GIG distribution

1-d, 1
q(z;) o z?l 1-d:/2 exp <—§ (ai 2 —|—zi_1 (<HWZH%> + bl))> , (41)
with the expectatior{||w;||3) computed as

(Iwill3) = [[(wa)l[3 + trace (Ew,) , (42)
where X, denotes the submatrix @&, corresponding to thé® group. The posterior estimate Qii‘1> can be
calculated by the moments of this distribution in (10) as

(1) = Vai  Kycagpa(Vai V{llwall3) + b) 43)

VWil + 0 K g pe(vai Vw3 + )

The update rules for the limiting cases can be found fromdkiseral form, and are shown in the third column
of Table I.

INotice that this assumes non-overlapping groups; oveingpgroups will be discussed later.
>The modeling used in this paper does not allow for exact #pakéowever, sparsity occurs in practice when estimdtgs') become
very large such that the coefficients in tH& group are numerically indistinguishable from zero.



C. Estimation of the Hyperparameters and b;

Notice that in the general case (43), the posterior estimfaﬂze,-‘1 contains the hyperparameters b;, and \;,
which determine the shape of the enforced distributiormgnWith the variational approximation, their posterior
distributions can be estimated using (35) as well, with thprapriate selection of the hyperprigséa;), p(b;) and
p(A;) (or with a joint hyperpriomp(a;, b;, A;)). However, in the general case with GIG mixing distributitime joint
estimation of alla;, b; and )\; is challenging: the estimation of; requires numerical solutions (instead of analytical
closed form updates), and when all parameters are jointiynaged, the accuracy greatly depends on the initial
estimates.

Therefore, we instead provide hyperparameter estimates @fidb; in the special cases, and leavgas a free
parameter.

1) McKay's Bessel function distributiorRecall that withb; — 0 and \; > 0, we have the gamma distribution
(17) as the mixing density. As the corresponding hyperdaora;, we choose the conjugate gamma distribution

p(ai) = F(‘%’; ka, 9(1) s (44)
with the shape parametéy, and the inverse scale paramefigr The posterior becomes

(2i)

a(a;) oc T'(ais ka + Aiy 00 + 5 ) (45)
with the corresponding update
(z)\
(a;) = (kg + \) <9a + 5 ) . (46)

The moment(z;) can be found from (41) using (10).

2) Multivariate Student's t:Whena; — 0 with \; < 0, the mixing distribution (25) is an inverse gamma
distribution in terms ofz;, but it is a gamma distribution with respect to the paraméteHence we choose the
gamma distribution that is conjugate for

p(bi) = T'(bi; ki, ) - (47)
The posterior distribution is found as a gamma distribution

(")

a(bi) oc T(bss kyy — Aiy b + ?) ; (48)
with mean
TS|
(bi) = (kp — A\i) <9b + @) . (49)

D. Estimation of the noise variance
The Bayesian methodology allows for the estimation of thseneariance as well. Using the prior in (29), the
posterior of 3 becomes a gamma distribution, aficcan be estimated using its mean as
2kg + M
<5> = 2 u P 2\’
s+ (ly — @wl3)

(50)

with the expectation given by

(ly — ®w|3) = ly — ®(w) |3 + trace (&7 @ 2y,) . (51)
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E. Summary

The signal priors presented in the previous sections, aleitly the corresponding mixing distributions and
variational estimation rules are summarized in Table |. @lgorithm alternates between estimating the sigmal
using (37), and the variancesand hyperparametets b using the equations shown in Table I, according to the
selected signal distribution.

The normal variance mixture with the GIG mixing distributics extremely flexible, and encompasses a large
family of distributions some of which can be used for modglgmoup-sparse signals. Other, non-standard, distribu-
tions can also be obtained by further extending the hier@atlsonstruction and marginalization. The advantages
of using the variance mixture formulation are the tractgilgperties of the Gaussian distribution obtained for the
signal estimate in (36) and the conjugate prior mechanistnahows for closed-form estimation of the parameters.

In this work, we used a three-level hierarchical estimapoocedure, involving the estimation &f;, z;, a; and
b; in alternating fashion. Instead, two-level hierarchicstireation procedures can be devised using the marginal
distributionsp(w;|a;, b;, A;) and appropriate hyperpriors ap andb; (therefore bypassing the estimationzgf. This
approach is a generalization of Laplacian scale mixturgsH{8wever, this approach brings some difficulties: First,
the marginal distributions have complicated forms and theesponding conjugate hyperpriors anand b; are
hard to find. Second, the marginal distributions generadlydt allow for closed form updates of the posterior mean
w. Finally, the posterior mean updatesaqfandb; in general require expectations that do not have closedsform
Hence, fully-Bayesian inference with this two-level hietay is generally hard. Note, however, that if parameter
estimation is not desired, deterministic approaches caundeel (see Section IV) with relative ease with some
forms of the marginal distributions, e.g., the Laplaceribstion. This approach is closely related to reweighted
l1-minimization schemes [25], [26] and the EM approach preseim [8].

IV. COMPARISON WITH DETERMINISTIC ESTIMATION

The signal priors considered in Section II-A can also be useal deterministic maximuna posteriori (MAP)
framework, which is commonly encountered in the literatwsing a deterministic framework allows us to show
some interesting connections between different signarprnd also compare and demonstrate some properties of
the variational Bayesian estimation described before.

When considering MAP optimization with the Bayesian modethis paper, two approaches can be considered.

A. MAP estimation using marginal distributions

By forming the joint probability distributiom(y|w, )p(w|a, b, A) using the observation model in (28) and the
generalized hyperbolic distribution in (11) as the signabmp and applying dog-transform, we obtain the MAP
estimate as

G
W = argmax log p(y|w, 8) + > log p(wila;, bi, A;) (52)

i=1
KAi—di/2(\/a_i b; + ”WZH%)

)di/4—)\i/2

€]
— arg min Blly — ®wl|3 - ZQlog (53)
w i=1 (b + [lwill3
Note that the mode of the posterior distribution is sougtihimithis formulation. In the general case with nonzero
a;, b;, and)\;, closed form updates fow; cannot be found and numerical solutions are required. Hewelosed-
form updates can easily be found in the case of multivariapldce (22) and t-distributions (26), and Jeffrey’s
prior (27).
In the case of multivariate Laplace priors, the optimizatwoblem becomes

G
w = argmin Blly - w3+ > v/ai [will, (54)
w i=1

which is equivalent to thé, /l;-norm formulation in (3). With the multivariate t-distriians, we have

G
W =argmin Blly — @w|5+ Y (di/2 = \;)log (bi + [[wi3) - (55)
w i=1
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Fig. 5. Thresholding functions for the McKay & 1), multivariate Laplace, multivariate Student'sX £ —1), and Jeffrey’s. The dotted
line is w; = (®7y);.

Although the connection between this problem andthé,-norm formulation in (3) is not immediately clear, they
are in fact related. Consider the followirig-norm based group-sparse estimation problem

G
W = argmin 8y — ®wl[3 + ZT (b + [|[wi]l2)" (56)
w i=1
with 0 < p < 2. Notice thatp = 1 recovers thd; /lo-norm minimization in (3). Using the formula

tim = (b 4 [wills — 1) = log (b + [will3) | (57)
p—0 D
it can be seen that the multivariate t prior is a limiting caséhe /,-norm based group-sparse estimation procedure.
In addition, in the case of Jeffrey’s priors, the penaltydiion is the limiting case ofjw;||5 asp — 0. In this
regard, the Laplace and t-distributions can be thought tatbiie opposite ends of tHg-norm penalties; while
Laplace prior leads to afh-based method, t-distributions enforce sparsity simitaiptnorms. The generalized
l,-norm based formulation with < p < 1 can be constructed using Gaussian variance mixtures ashtlthe
mixing distribution is an alpha-stable distribution witliaa closed-form, which makes the inference very hard.
Using the MAP formulation in (53), we can also analyze theesholding properties of different distributions
when & is orthonormal, i.e.®”® = 1. In this case, the problem decouples itooptimization problems (the
groups become independent), and can be solved for each gepagpately as

G
W; = argmin —28 wl (<I’T y)i +wlw; + Z log p(w;la;, by, A;) . (58)
wi i=1

The thresholding functions for different distributiong fixed a, b and 8 are shown in Fig. 5(a). The multivariate
Laplace distribution has a soft-thresholding behavianisir to the univariate case), while the behavior of all othe
distributions is similar to hard-thresholding, includitiie McKay (A = 1) distribution. In addition, the multivariate
Laplace and McKay X = 1) priors have a constant bias independent of the signal v8iuelent’s t and Jeffrey’s
priors do not have this disadvantage; the bias convergesrm & the signal magnitude increases. On the other
hand, the Laplace prior is continuous at the thresholdiigeyvavhereas the others have discontinuities, which is
generally considered as a disadvantage since small chantiessdata might lead to large changes in the estimation
[44].

In comparison, the thresholding functions obtained by #mational Bayesian inference described in the previous
sections is shown in Fig. 5(b). It can be observed that adisholding curves become smoother, and in fact, none
of the priors lead to a thresholding rule: the estimates ahg ‘@lmost” sparse, i.e., they have very small values in
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an interval but are never exactly zero. Interestingly, tiregholding function of the Jeffrey’s prior now exhibits a
soft-thresholding behavior while the bias is again convergo zero as the signal magnitude increases. On the other
hand, the thresholding property of the Laplace and McKay-(1) is decreased. However, it should be emphasized
that whena, b and 3 are not constant but also estimated, all priors lead to ekaesholding rules.

Finally, an important remark is that simultaneous estiomaif the parametera and b cannot in general be
performed using the MAP formulation if the hyperprigr&a) andp(b) are not suitably chosen. The objective (53)
becomes unbounded from below for some values of parametets,, &y, 65, in which case the global minimum
is obtained at the trivial solutiom = 0, a — 0 andb — 0. Therefore, other methods should be employed, such
as cross-validation or L-curves [27].

B. Hierarchical estimation

A second method is to use the hierarchical representatiahe @istributions, and consider the joint minimization
problem as

G
W, 2 = arg max log p(y|®, w) + Y _ log p(w;|2;) + log p(z]ai, bi, As) (59)
W,z i=1
G
= argmin Blly — dwl|3 —log [A| + w" Aw — Y 2log p(zilai, bi, \i) , (60)

i=1
with A = diag (zi‘l). A common method for optimization is to consider an altenwaiteratively reweighted
minimization problem, where the estimation ef is done by holdingz fixed and vice versa [24]. However,
the distributionp(z;|a;, b;, \;) and parameters,, 6,, ks, 0, should be chosen carefully as some selections (e.g.,
Ai,ai,b; — 0) cause the objective to be unboundedwat= 0 andz — 0, leading to the trivial solution. This
problem is also observed in the Gaussian probabilistic imédctorization with flat hyperpriors [45]: while the
variational Bayesian inference allows the estimation @ llyperparameters, MAP estimation fails and gives the
trivial solution.

One possible solution is to bound the objective by replasifigAw with w” Aw + ¢ A wheree is generally
chosen in a heuristic manner [24], [26]. In this case, thadigstimatew is the same as (37), WhiL.*?[1 estimated
using

51— argfnin ZZ_I(HWzH% +¢€) —d;log zl-_l — 2log p(zilai, bi, \i) - (61)

7
z

One important difference between the MAP and Bayesian enfgg with this hierarchy can be observed by
comparing (61) with the update rules in Section Il-B: WHWEAP uses||w;||3 + ¢ for updatingz;, the Bayesian
method useg||w;||3) = ||w;||3 + trace (Xw,). The last term makes the parameters posterioridependent, while
they are independent in the MAP approach. The Bayesian melihgy provides a statistical interpretation of the
terme: it is the estimate of the posterior variance of the group deterministic approaches, a decreasing sequence
of ¢ is shown to provide better empirical performance. From tlageBian perspective, this is also expected; the
variance estimate generally decreases at each iterattbnnvagre accurate estimates of the signal. This connection
is also observed in [46].

Note, however, calculation ofrace (Xy,) significantly increases the computational complexity ofy@&san
inference, since the inversion of either Ahx N or M x M matrix is required using (38) and (39), respectively.
The signal estimate in (37) does not require this inversiwh lzas the same complexity as the MAP approach. The
explicit calculation of¥,, is prohibitive in high dimensional problems. A very simpledacrude approximation,
which surprisingly gives good results in some cases, is tg iowert the diagonal elements &, and calculate
the trace terms. With this approximation, the computatieaice fromO(N?3) (or O(M?)) to O(N). We evaluate
this approximation in Section VI-D.

V. EXTENSIONS

In this section we discuss some extensions of the grougspaodeling within the Bayesian framework, along
with the resulting estimation schemes using variationgdrance.



13

A. Group-sparsity in multiple-measurements

Group-sparsity can also be used in the multiple measureveetdr (MMV) problem. Here, the observations are
expressed as

Y=®W+N, (62)

where each row oW € RV*X corresponds td< related variables with similar sparsity profile, and theup®
are again defined over the columns. MafNxrepresents the noise with independent zero-mean Gausasitles
as entries. To accommodate this generative model, we mtdifynixture model as

W, =z X, (63)

with matrix W; is extracted fromW using the rows contained in group and each column oX is a standard
multivariate Gaussian variable.

The inference procedures presented so far can accommdiateadeling as well, with small changes in the
updates. With some algebra, it is not hard to see that theepasdistribution of W becomes factorized with
respect to its columns, and all columns have the same coeariaatricew, such that

(W) = N(W),Zw), (64)

with parameters
(W)=3wpe'Y, (65)
Sw=88"® + A, (66)

with A defined as before in (38). The change affecting the postapdates of the variances is the use of the
Frobenius normj|W;||% instead of||w;|3, such that instead of (42) we have

(IW3ll7) = [{W3) |3 + K trace (Sw,) - (67)

In addition, d; is replaced withKd; in all updates of the parametey.

B. Within-group correlations

The framework considered until now correlated the coeffitsievithin each group through the use of a single pa-
rameter only, as can be seen from (7). We can, however, entuiitibaal correlation structure into the formulation,
by the modification

p(w;|2) = N (04,2 CIC;), (68)

where CT'C; is the within-group covariance matrix, ang again is used to control the sparsity. The variance-
mixtures are defined in this case as

Hence, the signak is a linear transformation of a multivariate Gaussian \@eiaNote that the matrixC; represents
an integral-type operator, which generates datafrom white noise [47], [48]. This type of modeling, geneyall
referred to asmnalysis-based modelirg9], is useful in modeling signals that are not sparse tledvas but can be
represented sparsely in some transform domain, with imagé&gical examples. In this case, the inverse covariance
(C%FCZ-)_1 = D!D; is chosen as a high-pass operator. For instance, when artbwavelet transform is applied
to the image, the resulting wavelet coefficients contain allsmumber of significant groups, and the remaining
majority of the coefficients have negligible magnitudes.

Only small changes are needed in the inference procedureedommodate this change in the modeling.
Specifically, the signal update becomes

(w) =Zw 5"y, (70)
sl=pd"®+ DT AD, (71)

with D is a block-diagonal matrix with thB®;-matrices on the diagonal, i.d), = diag(D,). All variance parameter
update equations have the same form wjith; |2 replaced with||D; w;||3.
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C. Overlapping Groups

In some problems, the group structure is designed to beapy@rig [19], [50]. This property is desired in certain
applications (especially in bioinformatics [50]), or inses where the group structure is not knosmpriori, in
which case overlapping groups might alleviate problem&@ated with wrong groupings. If only a few groups
are overlapping, then a simple way to incorporate this inrtteeleling and inference is to explicitly duplicate the
signal coefficients and columns of the dictiond@ythat correspond to elements belonging to multiple group$ [5
However, this approach leads to increased computatiogairements when many groups overlap.

The approach with expanding the signal dimensions by daipdioc can readily be handled with modeling and
inference schemes presented so far. Here we consider thieaappwithout duplication. We do not change the
signal modeling and use the signal prior in (5). Notice, havethat the coefficients in multiple groups will have
multiple variances;; associated with them. Specifically, the factorized sigmedrgs given by

€] N
p(wlz) = [ [ p(wilz) = [T T plwrlz) (72)
i=1 k=14i€Qy
where(); is the index set of groups the coefficient belongs to. For coefficients that belong to multiple groups,
the prior inverse variances will be added, e.g.wjf belongs to groups and j, the corresponding prior inverse
variance is given byzl.‘1 + zj_l. With this modeling, the only modification in the inferenesein the construction
of matrix A when estimating the signal. Specifically, we have

Zre= > (z'), k=1,...,N. (73)
1€,
It should be noted that in this formulation, overlappingugs will have an effect on each other during inference
(due to the added inverse variances). Therefore, highesigpanight be enforced on coefficients that belong to
many groups. This effect does not exist with the duplicaBpproach discussed above. Nevertheless, this scheme
proved to be useful for estimation when the group structsrenknown (see the empirical results in Section VI).

VI. EMPIRICAL EVALUATION

In this section, we present experimental results demdirgirethe performance of different signal priors in group-
sparse signal estimation problems. We focus on the mubieasignal priors McKay( = 1), Student’s t, Laplace
and Jeffrey’'s. We examine the effect of group size and thectieh of the groups, and demonstrate the utility of
modeling with overlapping groups in problems where the grstructure is unknown. Finally, we compare the
performance of variational Bayesian inference with ful@dance estimation and the approximation described in
Section V.

As a baseline comparison, we use the state-of-thdiamborm basis pursuit method SPG [21], which is a
deterministic optimization approach based on spectrajeption. This method is very fast and provides high
estimation performance, and hence is suitable for comgdhia modeling and inference procedures described in
this paper in terms of estimation accuracy and computdtietairements.

The source code developed to obtain the results shown irséuion is available online in
https://netfil es. uiuc.edu/ dbabacan/ ww/ software. htn .

A. Comparison of Signal Priors

To compare the estimation performance of different sigmalrg, we generated a collection of signals of length
N = 300 including (i) a sparse signal with 60 coefficients Gaussiatributed with variance 1, and the remaining
coefficients zero, (ii) a non-sparse signal with 60 coeffitdéGaussian-distributed with variance 1, and the remginin
coefficients Gaussian distributed with variand& 3, (i) Student’s t and (iv) generalized double Pareto (GDP)
distributed signals, which are considered to be comprkessiith appropriate parameter selections [39] (we use
A = —1/2 for the Student’s t in (26) andl, = 3/4 for the GDP in (24)). Example realizations of these signads a
shown in Fig. 6. A variety of signal characteristics are aagd with this collection. Only signal (i) is sparse, whesrea
signals (iii) and (iv) are compressible, and signal (ii) &ther sparse nor compressible. Although only signal (i)
is exactly sparse, more coefficients in signals (iii) and @ve closer to zero, and therefore the compressibility
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(i) Sparse Gaussian (ii) Non-Sparse Gaussian

200 250 300 50 100 150 200 250 300
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Fig. 6. Example realizations of different signals used ia é&xperiments.

of these signals can be ordered as @)(iv) > (i) > (ii). In addition, the energy distribution within the signa
coefficients is very different. In signals (i) and (ii), theagnitude difference between the important and spurious
coefficients is small (generally less than an order of mageif, whereas in signals (iii) and (iv) this difference
can be very large (e.g., several orders of magnitude).

We fix the group size to 2Qif = 20 Vi, number of groupss = 15) and consider two strategies for grouping the
signal coefficients: (1) random grouping and (2) orderedigirtg where the coefficients of the original vecter
are sorted according to their magnitudes, and groups aatectdy dividing theV sorted indices intd@+ clusters.
Note that this corresponds to an “oracle” grouping with eesgo the coefficient magnitudes. With signal (i), in
both strategies we generate the groups such that they ethéain all non-zero coefficients or all zero coefficients
(but without magnitude ordering). A completely random grimig results in significant loss in performance and
will be discussed later.

The M x N matrix ® is generated by drawing its entries from a standard Gausssarbution and normalizing
the columns to have uni§-norm. White Gaussian noise with varianie ° is added to obtain measuremegtsThe
unknown vectomw is estimated using the variational Bayesian methods withivadate McKay(\ = 1), Laplace,
Student's t f = —1) and Jeffrey’s priors. The hyperparametéss k;, 6, and 6, are set equal ta0~> to obtain
broad hyperpriors on the parametefsandb;. The noise variancg~"! is estimated along with the unknown vector
with all methods. The SPG method does not provide means itnaistthis parameter, so the true noise variance
is given to this method.

To measure the reconstruction performance, we use thévestatonstruction errofw — w||2 /|| w||2 wherew is
the estimated signal and is the true signal, respectively. The convergence criteisd|w"™ —w" {5 /|| W™ || <
10~ wheren is the iteration number. The experiments are repeated @& twith different realizations of matrices
P, noise and signalss. Average estimation results comparing the signal priotth different signals and varying
M /N ratios are depicted in Fig. 7. The results with random gnogigire denoted by (R) and the ones with ordered
grouping are denoted by (O).

Several observations can be made from Fig. 7: First, thegseghmethod outperforms the deterministic approach
SPG in all test cases with all priors, while the performanifler@nce varies depending on the underlying signal.
The performance difference is especially prominent with gsparse signal (i), where the proposed methods achieve
reconstruction errors close )3 with as low as0.3M measurements, while SPGL1 requires more tham/
measurements to obtain this error level. With the otheragthe performance difference is also clear, in some
cases getting close to an order of magnitude.

Second, all priors provide good signal estimates with tigéllzicompressible signals (i), (iii) and (iv) at even low
measurement levels. McKay& 1), Student’s t and Jeffrey’s priors result in more accuratareation compared to
Laplace at all measurement levels with the sparse signaHjvever, the performance of the priors is close with
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Fig. 7. Comparison of estimation performances of signalrprivith different signals. Signal types are denoted at dipeaf each figure,
and the legend is common to all figures. (R) denotes randompgrg (solid lines), and (O) denotes ordered grouping (eddimes). Note
that the curves corresponding to Mackay=t 1), Student’s t and Jeffrey’s priors almost coincide.

the other signals. Especially Student’s t and Jeffrey’srprgive very similar results, and we empirically observed
that manyb; parameters of Student's t are driven to very small valueinduterations making the distribution
similar to Jeffrey’s prior.

The performance of all priors is much lower with the non-spasignal (ii). Interestingly, the Student’s t and
Jeffrey’s priors again provide very good results even tiotitey enforce sparsity to an higher extent. It can be
argued that these priors are very effective in selectingribst important coefficients even with non-sparse signals
where the difference between the important and unimporaefficients is not high.

Finally, it is clear that the grouping strategy makes a Sigaut difference in estimation performance. Grouping
coefficients with high magnitude differences results inesewdegradations in estimation performance. The degra-
dation in performance is not as severe with signal (i), wiefgoth cases we classified the groups as zero/nonzero.
The result of completely random grouping is shown in Fig. Af. interesting observation is that grouping via
magnitude ordering is not as important as identifying th@zsoo coefficients when the magnitude differences
within the signal is not large (such as signal (i)).
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Fig. 8. Effect of group size on the estimation performancthwlifferent signal priors.

B. Effect of group size

It is evident that the strategy of selecting the groups hagréfieant effect on the estimation performance. Here
we additionally investigate the effect of the group size lo& ¢stimation performance. We report experiments with
the sparse signal (i) in the previous section to precisehtrobthe sparsity level of the signal, since these signals
contain exactly 60 nonzero coefficients. We vary the groupssiasd; = 1,2,6,20,60. The groups are selected
randomly but groups contain either all non-zero or all zegefficients. Note that the case withh = 1 corresponds
to standard sparse reconstruction without groups.

Simulation results with differenf\//N ratios are shown in Fig. 8. It is clear that with all priorspgping
the coefficients result in significant gains in estimatiorrewhen the grouping is done randomly (without the
information on the ordering of their magnitudes). While @iliors have similar and high performance, the Laplace
prior is generally slightly inferior compared to othersn&lly, as in the previous experiments, the proposed method
outperforms the SPG method independent of the selectedlgigior: the proposed method typically requires at
least0.2M less measurements to obtain the reconstruction errorsde\by SPGL1, independent of the group
size.

Overall, based on the experimental results, it can be obddhat all signal priors approximately provide the same
estimation performance. Due to additional complexity i #stimation rules with the McKay(= 1), Student’s
t and Laplace priors, the Jeffrey’s prior is favorable as ¢beresponding estimation procedure does not involve
complex special functions and thus is much simpler. Howewete that in this work we only consider signal
reconstruction; other priors might prove useful in apglmas where the goal is data interpretation instead of
reconstruction.

C. Overlapping groups

The group size and selection is critical in estimation panfnce, as demonstrated in the previous sections.
However, neither of them are knovenpriori in general practical settings without additional struatunformation
of the unknown signaw. In this section, we demonstrate the utility of the modelimigh overlapping groups
(Section V-C) in cases where no information is availableuahibe signal structure.

We again experiment with the sparse signals (i) with 60 namzeefficients and 240 zero coefficients. The
nonzero coefficients are chosen uniformly at random andmifesmn a standard Gaussian distribution. We consider
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three scenarios with a fixed group sizedyf= 20: 1) “Correct” grouping where the nonzero coefficient locas
are known and groups either contain all nonzero or all zegdficients, 2) groups are constructed randomly, and
3) overlapping groups, where the signal is divided seqatytinto d; = 20 coefficient groups wittb0% overlap
(i.e., group 1 contains coefficients 1 to 20, group 2 contaimafficients 10 to 30, and so on). Estimation results
with these strategies (average of 100) are shown in Fig.i8.dkear that modeling with overlapping groups results
in significant improvement compared to random grouping.d®am construction of the groups does not provide
good estimates, whereas the difference between the opértapnd correct grouping is not too large. Overlapping
grouping therefore can be used for instance to first estirtteegroup structure which can then be used in an
additional inference step for improved performance.

D. Effect of the Covariance Approximation

As mentioned earlier, one disadvantage of the Bayesianadstpresented in this paper is the need to compute
the covariance matri,,, which is computationally intensive and makes the infeeenot scalable to problems
with high dimensional data. On the other hand, the approtimdo the covariance matrix described in Section IV
significantly reduces the computational load and providemee efficient inference procedure. In this section, we
evaluate the effect of this approximation in terms of estiomaccuracy and speed.

Similar to the previous sections, we generate sparse sigmi#h nonzero coefficients drawn from a standard
Gaussian distribution. The signal size is chosen as 50uh&er of nonzero coefficients are setlfi), and the
group size is fixed t@0 where the non-zero group locations are assumed to be knowrus#/ (39) to compute
the full covariance matrices a%/ < N. Fig. 10 compares the estimation performance and the qgameldéng
running times with and without the covariance approximati@/hile the methods with full covariance matrices
have significantly lower estimation error (especially at b/ /N ratios), the running times are drastically increasing
with increasing)M (approximately in the order of/3). On the other hand, while the estimation performance is
significantly decreased, the running times of the methodls edvariance approximation are approximately constant
for all M levels, indicating that they are scalable to high-dimemsi@roblems. While not investigated in this paper,
a possible method to achieve both high estimation perfoceand computational efficiency is to divide the problem
into inner- and outer-loops to reduce the number of upddtéseocovariance matrix [51]. Finally, it is evident that
even with the covariance approximation the proposed metktlil provide comparable or better performance than
SPG with approximately same running times.

VIlI. CONCLUSIONS

In this paper, we presented a general multivariate sigriat ponstruction suitable for group-sparse modeling.
Using the normal-variance mixture hierarchy, we have shihanthis signal model includes multivariate versions of
a number of signal models commonly used in the literaturesfparse signal modeling. Therefore, this construction
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Fig. 10. Comparison of variational Bayesian approacheé wdifferent distributions with the full and approximate eolance matrices
(denoted by “App”). (a) Reconstruction errors, (b) runniimges. The legends are common to both figures.

is useful to compare their characteristics and analyze tt@inections. We provided estimation rules with these
priors using variational Bayesian inference and empisicdmonstrated their estimation performance. Experiadent
results suggest that the proposed formulation is very poivand provides better estimation performance than state-
of-the-art deterministic approaches. In addition, we sabwihat while all priors provide very similar performances,
Jeffrey’s prior is an attractive choice due to its high estion performance and simple update rules. We also
provided and evaluated a simple approximation for scalaifkrence in large-scale problems. Finally, we have
discussed some extensions of group-sparse modeling wilieirBayesian methodology and have shown that the
proposed method is very flexible and can easily be used forde wange of problems involving group-sparse
modeling.
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