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Bayesian GWAS and network analysis revealed new candidate
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Abstract The genetic improvement of reproductive traits
such as the number of teats is essential to the success of the
pig industry. As opposite to most SNP association studies that
consider continuous phenotypes under Gaussian assumptions,
this trait is characterized as a discrete variable, which could
potentially follow other distributions, such as the Poisson.
Therefore, in order to access the complexity of a counting
random regression considering all SNPs simultaneously as
covariate under a GWAS modeling, the Bayesian inference
tools become necessary. Currently, another point that deserves
to be highlighted in GWAS is the genetic dissection of com-
plex phenotypes through candidate genes network derived
from significant SNPs. We present a full Bayesian treatment
of SNP association analysis for number of teats assuming
alternatively Gaussian and Poisson distributions for this trait.
Under this framework, significant SNP effects were identified
by hypothesis tests using 95 % highest posterior density
intervals. These SNPs were used to construct associated can-
didate genes network aiming to explain the genetic mecha-
nism behind this reproductive trait. The Bayesian model

comparisons based on deviance posterior distribution indicat-
ed the superiority of Gaussian model. In general, our results
suggest the presence of 19 significant SNPs, which mapped
13 genes. Besides, we predicted gene interactions through
networks that are consistent with the mammals known breast
biology (e.g., development of prolactin receptor signaling, and
cell proliferation), captured known regulation binding sites,
and provided candidate genes for that trait (e.g., TINAGL1
and ICK).

Keywords Counting data . Genes . Reproductive traits . SNP
association

Introduction

An important trait related to the success of pig reproduction is
the number of teats. It reflects directly the mothering ability of
sows (Hirooka et al. 2001), which is a limiting factor for the
increased number of weaned piglets. This trait is known to
have a low to medium heritability (Clayton et al. 1981; and
McKay and Rahnefeld 1990), thus the use of genome-wide
association studies (GWAS) can be useful to search for chro-
mosomal regions that can help to explain the genetic architec-
ture of this complex trait.

At present, many studies has been done using GWAS for
reproductive traits in pigs (Uimari et al. 2011; Onteru et al.
2011 and Schneider et al. 2012). However, these studies have
not pointed out to the discrete nature of these traits, which are
usually considered as counting variables (i.e., number of teats,
number of stillborn and number of weaned, among others).
This kind of trait could potentially follow an appropriate
discrete distribution, such as Poisson. Although this has al-
ready been implemented in animal breeding in the context of
mixed models (Perez-Enciso et al. 1993; Ayres et al. 2013;
Varona and Sorensen 2010) and quantitative trait locus (QTL)
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detection (Cui et al. 2006; Silva et al. 2011a), there are no
reports of GWAS under a Poisson distribution approach.
Therefore, to solve problems related to the complexity of a
Poisson random regression model in a GWAS context, the
Bayesian inference becomes necessary.

Currently, another point that deserves to be highlighted in
GWAS is the genetic dissection of complex phenotypes
through candidate genes network derived from significant
single nucleotide polymorphism (SNP) for different traits.
There are relevant studies involving these networks in human
disease (Liu et al. 2011) and puberty related traits in cattle
(Fortes et al. 2011; Reverter and Fortes 2013). However, in the
pig this approach has not been exploited yet. In summary,
these networks can be performed using the genes symbols
related to significant SNPs, and can be used to examine the
process of shared pathways and functions involving these
genes. Besides, an in silico validation for these studies trough
transcription factors (TF) analyses can be performed.

Toward this orientation, we aimed to present a full Bayes-
ian treatment of SNP association analysis for number of teats
assuming Gaussian and Poisson distributions for this trait.
Under this framework, significant SNP effects were identified
by hypothesis tests using 95 % highest posterior density
intervals. Moreover, we used these SNPs to construct an
associated candidate genes network, and TF analyses, aiming
to explain one possible genetic mechanism behind the referred
trait.

Material and methods

Experimental population and phenotypic data

The phenotypic data was obtained from the Pig Breeding
Farm of the Department of Animal Science, Universidade
Federal de Viçosa (UFV), MG, Brazil. A three-generation
resource population was created and managed as described
by Band et al. (2005a). Briefly, two local breed Piau grand-
sires were crossed with 18 granddams from a commercial line
composed of Large White, Landrace and Pietrain breeds, to
produce the F1 generation from which 11 F1 sires and 54 F1
dams were selected. These F1 individuals were crossed to
produce the F2 population, of which 345 animals were
phenotyped for number of teats.

DNA extraction, genotyping, and SNP selection

DNA was extracted at the Animal Biotechnology Lab from
Animal Science Department of Universidade Federal de
Viçosa. Genomic DNA was extracted from white cells of
parental, F1 and F2 animals, more details can be found in
Band et al. 2005b. The low-density (Habier et al. 2009)
customized SNPChipwith 384 markers was based on the

Illumina Porcine SNP60 BeadChip (San Diego, CA, USA,
Ramos et al. 2009). These SNPs were selected according to
QTL positions previously identified on this population using
meta-analyses (Silva et al. 2011a) and fine mapping (Hidalgo
et al. 2013). From these, 66 SNPs were discarded for no
amplification, and from the remaining 318 SNPs, 81 were
discarded due to a minor allele frequency (MAF) < 0.05.
Thus, 237 SNPs markers were distributed as follows: SSC1
(56), SSC4 (54), SSC7 (59), SSC8 (30), SSC17 (25), and
SSCX (13), being the average distance within each chromo-
some, respectively: 5.17, 2.37, 2.25, 3.93, 2.68, and 11.0 Mb.

Statistical modeling and computational features

A hierarchical Bayesian multiple regression model consid-
ering two different distributions for the data, Gaussian and
Poisson, was proposed. In these models, all SNPs were
fitted simultaneously, analogously to Bayesian models used
in genome wide selection (Meuwissen et al. 2001). How-
ever, given the small number of markers in the present
study, we considered an improvement by inclusion of co-
variance between SNP effects as unknown parameters. In
the first case, when the Gaussian distribution was assumed
for the phenotypes, the following regression model was
considered:

yi ¼ μþ sexþ batchþ hal þ
X237

k¼1
xikβk þ ei; ð1Þ

where yi is the phenotypic observation of animal i (i=1, 2,…,
345); μ is the general mean; sex, batch and halothane (hal)
gene genotype are the fixed effects; βk is the allelic substitu-
tion effect ofmarker k and ei is the residual term ei∼N(0,σe2).In
this model, the covariate xik takes the values 2, 1, and 0,
respectively to the SNP genotypes AA, Aa, and aa at each
locus k. It was assumed a multivariate normal distribution for
the SNP effects vector, β=[β1,β2,…,β237]', β∼N(0,Σ), with
Σ the covariance matrix between markers. Since this matrix is
considered as an unknown parameter, its prior was given by
an inverted Wishart distribution,Σ∼ IW(ν,Σ0), in which ν is
the shape parameter andΣ0 the scale matrix. To incorporate a
prior knowledge about the true covariance between SNP
effects, we proposed to use the linkage disequilibrium (LD)
matrix as Σ0 matrix. Thus, this matrix contained r2 values
provided by snpgdsLDMat function of package SNPRelate
(Zheng et al. 2012) of R software (R Core Team 2013). For the
fixed effects and residual variance, non-informative
(Uniform) and inverse Gamma, σe

2∼IGamma(a,1/b) distribu-
tions were assumed, respectively.

The second approach assumed a Poisson distribution, yi∼
Po(λi), and the model (1) was rewritten under a generalized
linear model (2) approach, in which λi is the Poisson mean and
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log (λi) a latent variable defined from the canonical
(logarithm) link function as follow:

log λið Þ ¼ μþ sexþ batchþ hal þ
X237

k¼1
xikβk þ ei: ð2Þ

The prior distributions assumed for the parameters of mod-
el (2) were the same as in model (1). However, the latent
variables are now considered also as unknown parameters, not
having a recognizable conditional distribution. Thus, the Me-
tropolis–Hastings algorithm was required for the implementa-
tion of the MCMC algorithm.

The models (1) and (2) were implemented, respectively, in
the functions MCMChregress (MCMC for the hierarchical
Gaussian linear regression model) and MCMChpoisson
(MCMC for the hierarchical Poisson linear regression model)
of MCMCpack (Martin et al. 2011) R package. A total of
100,000 iterations with a burn-in period and sampling interval
(thin) of 50,000 and five iterations, respectively, were consid-
ered. All used codes are available in supplementary material
(ESM_1.pdf), and the real data set can be requested directly
with the authors. The convergence of MCMC chains was
verified by Geweke test using boa (Bayesian output analysis)
R package (Smith 2007).

Models were compared by using the posterior distribution
of the deviance P(DM) provided by a particular M model. For
the Gaussian model, each value of this distribution is obtained

directly by D jð Þ
G ¼ ‐2 log ∏

i¼1

345P yijθ jð Þ� �� �
, in which ∏

i¼1

345

P yijθ jð Þ� �
is the value for the likelihood function considering

the set of parameter estimates (θ(j)) at each MCMC iteration j.
Similarly, for the Poisson model, the values came from

D jð Þ
P ¼ ‐2 log ∏

i¼1

345P yijλ jð Þ
i

� �� �
, being λi

(j) the estimate of

Poisson mean, i.e., the exponential of the latent variable log(λi)
generated by Metropolis-Hastings algorithm. Thus, the ran-
dom draws from posterior distributions of the deviance for
both models, P(DG) and P(Dp), were used to simulate the
distribution of deviance difference (Lorenzo-Bermejo et al.
2011) given by P(DG-P). Once this distribution was obtained,
it was possible to propose a hypothesis test based on highest
posterior density (HPD) interval for the deviance difference.
In this context, knowing that lower deviance values indicate
better fitting model, if the interval contains only negative
values, the Gaussian model is indicated as the best one. On
the other hand, an interval containing only positive values
implies the best fit of Poisson model.

Although the used SNPs are at pre-identified QTL posi-
tions in this population as previously cited, therefore
explaining a large amount of total additive genetic variance,
the polygenic effect u∼N(0,Aσu2), was also included in
models (1) and (2) to point out some eventual portion of

variance that was not captured by markers. In order to add
this effect, we used the methodology proposed byHarville and
Callanan (1989) and Vazquez et al. (2010), which is a
reparametrization of the genetic values vector (u) by assuming
the traditional relationship matrix (A) as a diagonal matrix.
This strategy is useful when using computational tools in
which it is impossible to specify the A matrix directly as the
covariance of random effects, as is the case of MCMCpack
used in the present study. In summary, this methodology is
based in the Cholesky decomposition of A matrix (A = LL′)
whose factor L is used to reparametrize the incidence matrix
of random effects (Z), Z* = ZL, implying in u*∼N(0,Iσu2),
being u* a reparametrized vector of genetic breeding values.
Under this approach, it is possible the addition of the individ-
ual random effect directly in the models (1) and (2), whose
solution (bu� ) must be used to obtain the original vector of
breeding values, which is given by &#x03C3;e

2&#x007E;
IGamma(a,1/b). The deviance posterior distributions were
used to compare the models with and without the polygenic
effect in order to verify its real influence in the studied
phenotype.

Once the best model is identified, the significance of SNP
effects can also be obtained directly through 95 % HPD
intervals. Under this approach, if the interval contains the
value zero, the SNP effect is non-significant. These intervals
were constructed for each marker, so that the chromosome
positions of the significant SNPs were used for identifying
genes influencing the analyzed trait.

Genes network and regulatory sequence analysis

Initially, we identified the SNP related genes (the genes which
had a SNP in it sequence or up to 2500 bp before the gene start
or after the end) at dbSNPNCBI web site (http://www.ncbi.
nlm.nih.gov/SNP/) through significant SNPs location and
related gene symbol. For genes that did not have a pig
symbol, we used the human related identifier. The
GeneCards web site (http://www.genecards.org/) and the
program TOPPCLUSTER (http://toppcluster.cchmc.org/)
were used to obtain the genes relationship as there functional
GeneOntology (GO). Thus, it was possible to identify the
biological mechanisms, pathways and functions involving
them. The application Cytoscape (www.cytoscape.org/) was
used to visualize and edit the identified network.

Providing evidence for the interaction between the TF and
its predicted targets via regulatory sequence analysis serves as
an in silico validation for the TF–target interactions in the SNP
genes network (Fortes et al. 2010). Here we used the TFM-
Explorer (http://bioinfo.lifl.fr/TFM/TFME/), a freely available
program. This program takes a set of gene sequences, and
searches for locally overrepresented transcription factor
binding sites (TFBS) using weight matrices from JASPAR
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database to detect all potential TFBS, and extracts significant
clusters (region of the input sequences associated with a
factor) by calculating a score function. This score threshold
is chosen to give a P-value equal or better to 10−3 for each
position for each sequence such as described in Touzet and
Varré (2007). The top TF related (P-value < 0.001) were
identified and for the three most represented (according to P-
value) we construct a network with their interactions (TF-
target) and the gene ontology using the application Cytoscape
and collecting information at GeneCards® website.

Results

Statistical analyses

The results of model comparison between both Gaussian and
Poisson approach identify the Gaussian model as the one with
best fit, since it presented a lower deviance values than
Poisson model (Fig. 1). Considering the polygenic effect in
Bayesian GWAS models, the analysis of the deviance poste-
rior distribution indicated that there is no gain in the models
fitting quality when including this effect as shown on supple-
mentary figure ESM_2.pdf. Using the results from the best
model (Gaussian distribution), we could then identify 19
significant SNPs using a hypothesis test based on 95 %
HPD interval for their effects (Table 1).

Genes network and regulatory sequence analysis

Besides, from significant SNPs identified we could find 13
genes which have those polymorphisms in their sequences or

close, they are: GRM1, LOC100515111, LOC100510992
(SH3BGRL2), LOC100620589 (IER5L), LOC100514061
(TINAGL1), ICK, KIAA1432, ATXN3, LOC100152407,
LOC102166124 (CSGALNACT1), LOC102163192, NHS,
and TRPC4AP. To understand the functions of these genes,
we collected information about their biological process, cel-
lular component and molecular function in the Gene Ontology
(GO). Furthermore, using the application TOPPCLUSTER,
we were able to identify metabolic pathways and interaction
based on human gene names as described in Table 2. With all
genes founded we construct a network with their pathway,
biological process, molecular function and cellular component
(Fig. 2a).

Once the regulatory sequence analysis performed, we iden-
tified 25 transcription factors (TF) strongly related (p-value <
0.001) with 10 of 13 genes identified as shown in the supple-
mentary table (ESM_3.pdf). The top three TF were choosing
for construction of a network with their pathways and gene
ontology (Fig. 2b).

Discussion

Statistical analyses

We used a Bayesian multiple regression models considering
different distribution for the data (Gaussian and Poisson).
Once the number of teats (NT) is considered as a count
phenotype, we checked the efficiency of Gaussian against
Poisson distribution in a SNPs association study. In the anal-
ysis, the deviance value was significantly smaller when using
the Gaussian model (Fig. 1), since the 95 % HPD interval for
the deviance difference (Gaussian less Poisson) did not con-
tain the value zero, containing only negative values. These
results indicate that, based on this criterion, this model is the
most appropriate for estimating the marker effects for the
number of teats by presenting better fitting to the observed
data and also a lower degree of complexity. A special com-
ment must be given for the estimated SNP covariance matrix,
since we observed significant covariance between SNPs, i.e.,
for a large number of SNPs pairs, the HPD intervals did not
include the zero value for the covariance. It is relevant due the
most GWAS analysis including all SNPs simultaneously in
the models (e.g., Bayes CPi and Bayes DPi), its effects are
considered independents. Thus, the present study presents a
practical and general way to take into account this dependence
by assuming a covariance matrix based on previous LD
analysis.

Although the phenotype used is characterized as a counting
discrete variable, the Gaussian distribution better described
the behavior of this trait when compared to the Poisson
distribution. This can be explained by the fact that the Poisson

Fig. 1 Distribution of deviance difference, P(DG-P), between Gaussian
and Poisson GWASmodels fitted to number of teats (NT) in pigs. DG and
DP are the estimated Gaussian and Poisson models deviance, respectively
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distribution is asymmetric and skewed right, and even though
it is continuous, the symmetry of the Gaussian distribution
ensured the best fit, most likely because it was more consistent
with the observed distribution of sample data. Another possi-
ble explanation is that the Poisson distribution assumes that
the variable’s mean is equal to its variance, a condition that
may not have been met when using the study data. Thus, in
future studies, it would be interesting to consider other distri-
butions for discrete random variables for which such an as-
sumption would not need to be met, such as the negative
binomial distribution.

Regarding the polygenic effect in the model, we observed
no improvement in the fitting quality given the similarity
between the deviance posterior distribution from models with
and without this effect (ESM_2). Similar results were cited by
Silva et al. (2011b), which studying this same population did
not observed significant gains in the QTL detections for
carcass traits when including the polygenic effect in the eval-
uated models. In general terms, since the SNPs are located at
known QTL regions that explain a large amount of genetic
variance, and also due to F2 structure that provides a certain
kind of homogeneity in relationship coefficients, the inclusion

of the polygenic effect in the GWAS models was not signif-
icant. Nevertheless, this effect must be tested in GWAS anal-
ysis because in some populations, even in the presence of high
density SNP panels, it can be used to adjust for population
structure differences.

Considering the results from the best model (Gaussian
distribution), a total of 19 significant SNPs, distributed in
chromosomes (SSC) 1, 4, 7, 8, 17, and X (Table 1) were
indentified. This significance was accessed by 95 % HPD
intervals, such that the value zero is not included in the
interval for the marker effect the SNP in question was declared
as significant at a probability level of 5 %. Even results of
GWAS for number of teats being scarce, several QTL for that
trait were previously reported in the same chromosome re-
gions identified on this study. At SSC1 we identified SNPs
overlapping QTL locations from studies for Meishan x
Gottingen (Wada et al. 2000) and Meishan x Large White
cross population (Guo et al. 2008). In the Guo et al. study, they
also found QTL for number of teats overlapping our markers
location onSSC7 and SSC17.

At SSC4, Bidanel et al. (2008) reported a QTLfor NT in a
Chinese Meishan x European Large White cross population.

Table 1 Significant SNPs for the trait number of teats in pigs, their positions in base pairs (bp) at pig chromosome (chr) with their related genes,
posterior mean and 95 % HPD (highest posterior density) intervals for SNP effects

95 % HPD interval

SNP Position (bp) chr Genesa Posterior mean Lower Upper

ALGA0001557 21576278 1 GRM1 −0.4551805 −0.7785922 −0.12447637
ALGA0004074 75728908 1 LOC100515111 −0.5026433 −0.9015982 −0.08779558
ALGA0004774 97143269 1 SH3BGRL2 −0.6260198 −1.0934972 −0.14063153
ALGA0007908 242165688 1 KIAA1432 0.4936047 0.09634696 0.9179789

ALGA0010677 303486951 1 IER5L −0.5267897 −1.0204636 −0.02172639
ALGA0024439 34713731 4 – 0.5115040 0.09656826 0.9618503

ALGA0026100 84090680 4 – 0.6282089 0.06594756 1.1671385

ALGA0027472 100262783 4 – 0.3934344 0.01607044 0.8147838

ALGA0027647 114662647 4 – 0.4305747 0.01093520 0.8081567

ALGA0028649 129467665 4 – −0.4954020 −0.9146217 −0.09985800
ALGA0039880 30978428 7 TINAGL1 −0.4930740 −0.8402710 −0.17129009
ALGA0043403 92021173 7 LOC100152407 −0.6302710 −1.1360743 −0.13179192
ALGA0044983 120223503 7 ATXN3 0.6438884 0.01955658 1.2668060

ALGA0045990 134422073 7 ICK −0.4388611 −0.8196542 −0.08716361
ALGA0048133 75648737 8 – 0.5372867 0.19206533 0.8861433

ALGA0093254 10087010 17 CSGALNACT1 0.3899252 0.01529562 0.7985949

ALGA0094092 31195099 17 LOC102163192 0.3436231 0.05611619 0.6329979

ALGA0094911 43584674 17 TRPC4AP 0.5159049 0.14614182 0.8930050

ASGA0080951 15127052 x NHS −0.4990405 −0.8496433 −0.13886008

a GRM1: glutamate receptor, metabotropic 1; SH3BGRL2: SH3 domain-binding glutamic acid-rich-like protein 2-like; IER5L: immediate early
response gene 5-like protein-like; TINAGL1: tubulointerstitial nephritis antigen-like; ICK: intestinal cell (MAK-like) kinase; CSGALNACT1:
Chondroitin Sulfate N-Acetylgalactosaminyltransferase 1; KIAA1432: KIAA1432; ATXN3: ataxin 3; TRPC4AP : transient receptor potential cation
channel, subfamily C, member 4 associated and NHS: Nance-Horan syndrome
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Ding et al. (2009) also reported a QTL in a White Duroc x
Erhualian pig resource population for that chromosome.
Beeckmann et al. (2003), in a study of Linkage and QTL
mapping for SSC 8, reported a QTL overlapping our marker
identified on this chromosome. Cepica et al. (2003) in a
Linkage and QTL mapping for SSC X reported a QTL over-
lapping our marker identified on this chromosome for number
of teats. The identification of several new markers associated
with teat number traits in this study and the confirmation of
QTL identified in earlier experiments can help us to evaluate
the different markers effects on teat numbers and their biolog-
ical function when added with post GWAS analyses as genes
networks.

Genes network analysis

Among the 19 significant SNPs, 13 genes were identified and
grouped into a network of functional relevance. They were
grouped by features in common between them (i.e., compo-
nent cellular as Nucleus withSH3BGRL2 and ICK). The
SH3BGRL2 gene description is a SH3 domain-binding
glutamic acid-rich-like protein 2-like. In human it is involved
in the control of redox-dependent processes and interact with
Protein kinase C-θ (PKCθ) resulting in the inhibition of
transcription factors like c-Jun, AP-1, and NF-κB (Mazzocco
et al. 2002). Protein interactions involving SH3 domains have
been reported to be involved in signal transduction, cytoskel-
eton rearrangements, membrane trafficking, and other key
cellular processes (Cesareni et al. 2002). Here this gene has
a polymorphism in it sequence related to number of teats trait
and it shars the same component cellular with ICK (intestinal
cell kinase) gene. The intestinal cell kinase gene has been

better studied in human and may be involved in cell-cycle
regulation and apoptosis during mammalian development,
suggesting that ICK plays a key role in the development of
multiple organ systems (Lahiry et al. 2009).

We also identified genes sharing the same biological
process as a response to abiotic stimulus (ATXN3 and
GRM1) and genes with molecular function in common as
cysteine-type peptidase activity (ATXN3 and TINAGL1).
The GRM1 gene is a metabotropic glutamate 1 receptors.
Studies in human identified its presence in many brain
structures as the olfactory circuitry, hypothalamus
(Shigemoto et al. 1992), basal ganglia (Testa et al. 1994)
and it is related to breast cancer (Mehta et al. 2013).
ATXN3 shares this biological process with this gene. This
gene is also known as Machado-Joseph disease (MJD) and
encodes for Ataxin-3 protein which might a play role in
neurodegeneration and modulate the aggregation of abnor-
mal peptides in the pathogenesis of the diseases in human
(Chen et al. 2012). It has been reported to have its expres-
sion altered when induced by stradiol, diethylstilbestrol,
and octyl-phenol in the uterus of immature rats (Hong
et al. 2006).

The ATXN3 also shares the cysteine-type peptidase activ-
ity molecular function with TINAGL1 gene on the network
analyzed here. This gene is also known as tubulointerstitial
nephritis antigen-like 1 and was cited to be differentially
expressed in epithelial teat tissue of pigs in studies of QTL
region–specific of positional candidate genes associated with
the inverted teat defect (Chomwisarutkun et al. 2013). The
other genes of the network analyzed here did not have features
in common with each other but they entered at the net to be
related with the trait analyzed.

Fig. 2 Functional networks and their interactions for number of teats
trait. a The relationships between 13 genes (in octagon red) and their
related subnets: pathway (in blue), biological process (in dark green),
molecular function (in light green), and cellular component (in yellow). b
Transcription factor (TF) network showing three TF: NR3C1, NFIL3 and

SP1(circles shape) with in silico validated targets (hexagon nodes), their
node color scale corresponds to network analyses (cytoscape) score
where red nodes represent higher edges density. Pink nodes are the TF
related pathways (triangle), biological process (diamond), molecular
function (rectangle), and cellular component (elliptic)
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Besides, we explored the promoter regions of the genes
predicted to be targeted by the top TFs, NR3C1, NFIL3, and
SP1, to construct a network of TF-target. NR3C1 is a nuclear
receptor subfamily 3, group C, member 1 which encodes a
glucocorticoid receptor (GR). Studies suggest that GR regu-
lates mammary epithelial cell proliferation during late
lobuloalveolar development (Wintermantel et al. 2005). Here
this TF was associated with seven genes (GRM1, ATXN3,
SH3BGRL2, ICK, KIAA1432, CSGALNACT1, and NHS).
NFIL3 is a nuclear factor, interleukin 3 regulated gene also
known as E4BP4. Cowell (2002) demonstrated that E4BP4
has a widerange of physiological functions working in concert
with members of the PAR family of transcription factors (e.g.,
on the regulation of apoptosis). Here this TF was associated
with the following genes: GRM1, SH3BGRL2, ICK,
KIAA1432, ATXN3, TRPC4AP, and NHS.

The third TF SP1 is a specificity protein which was the first
transcription factor identified and cloned (Dynan and Tjian
1983). There is evidence that SP proteins may play a role in
the growth and metastasis of many tumor types, including
breast, by regulating expression of cell cycle genes and vas-
cular endothelial growth factor (Safe and Abdelrahim 2005).
Here this TF was the most representative associated in a
network with eight SNP genes (GRM1, ATXN3, TRPC4AP,
SH3BGRL2, IER5L, TINAGL1, KIAA1432, and NHS), it
biological process was in utero embryonic development and it
pathway in development Prolactin receptor signaling.

Two genes (TRPC4AP and IER5L) which did not shared
any ontology in the previously network but were highly
related with the three TF and have evidence to be associated
with human breast. The TRPC4AP gene is a transient receptor
potential cation channel, subfamily C, member 4 associated
protein. This gene has been cited to be down regulated in a
study which compared the gene expression profiles in normal
breast epithelia from parous postmenopausal women with and
without breast cancer (Balogh et al. 2007). The IER5L gene is
an immediate early response 5-like protein and it expression is
cited to be downregulated by Arsenic trioxide in women
MCF-7 breast cancer cells (Wang et al. 2011).

Concluding remarks

Our comparative statistical analyses allowed us to confirm the
superiority of Gaussian in relation to Poisson distribution for
the trait number of teats. Although Poisson is appropriated to
count data, its assumption with respect to the equivalence of
mean and variance sometimes can impair its fitting to biolog-
ical data. Thus, more powerful distributions as negative bino-
mial and generalized Poisson can be used as alternative dis-
tributions for counting phenotypes. However, firstly it is nec-
essary to develop the computational tools that contemplate
them in GWAS models.

The F2 populations have a great power to detect QTL
provided by linkage disequilibrium, but also make it difficult
to discriminate between causal and neutral mutations. In this
context, more sophisticated models initially proposed for QTL
detection, especially in F2 populations, can be adapted to
GWAS analysis. Among these models, stand out those pro-
posed by Varona et al. (2005), which include simultaneously
the genetic configuration of the mutation and the probability
of line origin given the neutral markers. Thus, in future re-
search works generalizations of this model can be proposed in
order to point out the non-normal phenotypes and SNP effect
estimation.

The present study provided a rich information resource
about genes related to the number of teats in pigs, increasing
our understanding of the molecular mechanisms underlying
them. The genes network analysis predicted interactions that
were consistent with the known mammal’s breast biology and
captured known regulation binding sites, allowing the identi-
fication of new candidate genes (e.g., TINAGL1 and ICK).
However, the number of teats is a complex trait that is subject
to the action of a large number of genes that are regulated by
several transcription factors, therefore many of them still need
to be identified.
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