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SUMMARY

This paper is concerned with the Bayesian analysis of musical signals. The ultimate

aim is to use Bayesian hierarchical structures in order to infer quantities at the highest

level, including such quantities as musical pitch, dynamics, timbre, instrument identity,

etc. Analysis of real musical signals is complicated by many things, including the presence

of transient sounds, noises and the complex structure of musical pitches in the frequency

domain. The problem is truly Bayesian in that there is a wealth of (often subjective) prior

knwowledge about how musical signals are constructed, which can be exploited in order

to achieve more accurate inference about the musical structure. Here we propose devel-

opments to an earlier Bayesian model which describes each component ‘note’ at a given

time in terms of a fundamental frequency, partials (‘harmonics’), and amplitude. This

basic model is modified for greater realism to include non-white residuals, time-varying

amplitudes and partials ‘detuned’ from the natural linear relationship. The unknown pa-

rameters of the new model are simulated using a variable dimension MCMC algorithm,

leading to a highly sophisticated analysis tool. We discuss how the models and algorithms

can be applied for feature extraction, polyphonic music transcription, source separation

and restoration of musical sources.

Keywords: MUSICAL ANALYSIS, AUTOMATIC PITCH TRANSCRIPTION, PITCH ESTIMA-

TION, INSTRUMENT CLASSIFICATION, AUDITORY SCENE ANALYSIS

1 Introduction

Inference about the high-level information contained in musical audio signals is complex, and

requires sophisticated signal processing tools (Bregman, 1990). In this paper, we focus on the

automatic interpretation of musical signals. Musical audio is highly structured, both in the

time domain and in the frequency domain. In the time domain, tempo specifies the range of

possible note transition rates. In the frequency domain, two levels of structure can be consid-

ered. First, each note is composed of a fundamental frequency (related to the ‘pitch’ of the

note), and partials whose relative amplitudes determine the timbre of the note1. The frequen-

cies of the partials are approximately integer multiples of the fundamental frequency. Second,

several notes played at the same time form chords or polyphony. The fundamental frequen-

cies of each note comprising a chord are typically related by simple multiplicative rules. For

1This frequency domain description can be regarded as an empirical approximation to the true process, which

is in reality a complex non-linear time-domain system (McIntyre, Schumacher and Woodhouse, 1983; Fletcher

and Rossing, 1998)
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example, a C major chord may be composed of the frequencies 523 Hz, 659 Hz 5/4 523

Hz and 785 Hz 3/2 523 Hz. An additional level of structure is the melody, which gives

the frequency dependence of successive notes. A given melody is characterised by the suc-

cession of fundamental frequencies at specific time instants. Figure 2 shows a spectrogram

analysis for a simple monophonic (single note) flute recording (this may be auditioned at www-

sigproc.eng.cam.ac.uk/˜ sjg/sounds/flute.wav). In this both the temporal

segmentation and the frequency domain structure are clearly visible on the plot. In polyphonic

musical examples, several (possibly many!) such structures are superimposed, and the eye is

then typically unable to separate the individual note structures from the spectrogram alone.

The goals of a musical analysis can be manifold, and we seek to make our models general

enough that they will fit with the inference requirements at hand. Some important goals and ap-

plications, which can all be expressed in probabilistic terms through the use of suitably chosen

model structures, include automatic transcription (generation of a musical ‘score’), classifica-

tion and search (e.g. determining which instruments are playing or whether a particular tune is

present) and source separation (separation of individual instruments from a polyphonic mix).

It should be clear from this discussion that musical audio provides an ideal structure for

Bayesian modelling and inference: there is plenty of prior information available (both sub-

jective and physically-based), there is a natural hierarchical structure (from individual partial

frequencies through notes, chords and eventually whole melodies). All of these elements of the

structure should ideally be estimated jointly in order to exploit the full power of the information

available. This is a formidable task that none has successfully achieved to our knowledge. Most

researchers have focused either on very high level, or very low level, modelling alone. Here

we attempt partially to bridge the gap between these extremes, by exploring models which di-

rectly model musical signals in terms of their component ‘notes’, while retaining a moderately

realistic signal level model. Of course, in future work we would wish to see the whole task

performed jointly, and we will expect to see dramatic performance improvements once this is

properly achieved.

At the level of musical notes, two principal tasks may be identified for the analysis of mu-

sical audio: a segmentation step that identifies note transitions in time, and an estimation step

in which the number of notes as well as their fundamental frequencies, their partial structure

and other characteristics are estimated at any given time. We focus on the latter, since efficient

music segmentation algorithms such as the time-frequency (Laurent and Doncarli, 1998), Sup-

port Vector Machines (Davy and Godsill, 2002b) or generalised likelihood ratio (Basseville

and Nikiforov, 1993) techniques can be used for this step.

Numerous musical pitch estimation and analysis techniques can be found in the literature.

Most apply only to monophonic (single note) recordings and rely on nonparametric signal anal-

ysis tools (local autocorrelation function,spectrogram, etc.). We do not have space to reference

all approaches here. Certain authors have, however, adopted methods with a statistical mod-

elling flavour, often using iterative procedures to estimate the individual components of a mu-

sical signal, see for example (De Cheveigne, 1993; Virtanen and Klapuri, 2001; De Cheveigne

and Kawahara, 1999). Bayesian approaches have been surprisingly rare, considering the large

quantities of prior information available about musical signals. Notable exceptions include

(Kashino, Nakadai, Kinoshita and Tanaka, 1995; Kashino and Murase, 1999), who adopt a

Bayesian hierarchical structure for high level features in music such as chords, notes, timbre,

etc. Bayesian models for polyphonic music have been proposed in (Walmsley, Godsill and

Rayner, 1998; Walmsley, Godsill and Rayner, 1999) and it is these that we extend and discuss

in this paper.
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In this paper, we devise novel Bayesian models for periodic, or nearly periodic, components

in a musical signal. The work develops upon models devised for automatic pitch transcription

in (Walmsley et al., 1998; Walmsley et al., 1999) in which it is assumed that each musical note

may be described by a fundamental frequency and linearly related partials with unknown am-

plitudes. The number of notes, and also the number of harmonics for each note are generally

unknown and so a reversible jump MCMC procedure is adopted for inference in this variable

dimension probability space; see (Andrieu and Doucet, 1999; Godsill and Rayner, 1998a; God-

sill and Rayner, 1998b; Davy, Doncarli and Tourneret, 2002) for some relevant MCMC work

in signal processing and audio. Use of these powerful inference methods allows estimation

of pitch, harmonic amplitudes, and the number of notes/harmonics present at each time. The

methods of (Walmsley et al., 1998; Walmsley et al., 1999) have shown promise in highly

complex problems with many notes simultaneously present. However, in the presence of non-

stationary or ambiguous data, problems are expected in terms of large residual modelling er-

rors and pitch errors (especially errors of +/- one octave). Here we seek to address some of

these shortcomings by elaboration of the model to include more flexibility in the modelling

of non-stationary data, modelling of non-white residual noise, and also to allow the modelling

of inharmonicity (or ‘detuning’ of individual harmonics relative to the usual linear frequency

spacing). As before, a variable dimension MCMC strategy is adopted for inference in the new

model, and novel proposal mechanisms are developed for this purpose.

The paper is organized as follows. In Section 2, we present the basic harmonic model for the

description of musical signals. Moreover, we specify the probabilistic framework, and give the

parameter priors. In Section 3, we discuss estimation objectives and summarise the Bayesian

computational method. Simulation results are presented in Section 4, and finally a discussion

is given. Given space restrictions it has been impossible to describe in detail the prior models

and exact MCMC implementation scheme used. In fact we have implemented several different

versions of the models and MCMC algorithms, and the code is still undergoing development as

more sophisticated and realistic modelling assumptions are incorporated. A snapshot detaling

the implementation which generated the simulation results for this paper can be found as Davy

and Godsill (2002a).

2 Bayesian model for musical analysis

Consider for the moment a short-time frame of musical audio data, denoted , in which

note transitions do not occur. This would correspond, for example, to the analysis of a single

musical chord. Throughout, we assume that the continuous time audio waveform has

been discretised with a sampling frequency rad.s , so that discrete time observations are

obtained as . We assume that is bandlimited to

rad.s , or equivalently that it has been prefiltered with an ideal low-pass filter having

cut-off frequency rad.s .

In this section we describe Bayesian models suited to musical audio analysis. We first

introduce a robust monophonic (single note) model for music. We then explain how to expand

it to a polyphonic (many note) model, and discuss the salient features of the approach. It is

assumed throughout that the musical audio has been segmented such that no note transitions

occur for .
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Figure 1: Waveform: flute extract
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Figure 2: Spectrogram: flute extract
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Figure 3: Pitch estimation from flute extract
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2.1 Monophonic case: single note models

In the monophonic case it is assumed that at any given time only one single musical pitch is

sounding, e.g. solo trumpet, or solo clarinet, etc. From this simple case we can build more

sophisticated polyphonic (many note) structures by superposition of several monophonic units.

Physical considerations and empirical observation of spectrograms (see e.g. Fig. 2 - it is

clear from this that there is a series of spectral ‘lines’ corresponding to the fundamental and

partials of each note) lead to the conclusion that the notes in musical signals are composed

of a fundamental frequency and a set of partials. This classic model, see e.g. (Serra,

1997), results from the approximate short-term periodicity of musical signals, which enables

a Fourier series decomposition. In the simplest cases, this idealised assumption holds well

and the following model can be applied for short time segments (as in (Walmsley et al., 1998;

Walmsley et al., 1999)):

(1)

for . Here, is the number of partials present, and give the

amplitudes of these partials, and is a residual noise component. Note that is here

scaled for convenience - its audible frequency is .

It turns out that this model is over-idealised for many realistic cases and must be modified

in several ways to improve performance. In particular, partials can be expected to exhibit

time-varying amplitudes, and the partials can be expected to deviate from the ideal frequency

spacing. These two facts can be accommodated in a new model:

(2)

where the partial amplitudes and can now depend on time, and de-tuning parameters

allow each partial to be offset from its nominal frequency of .

Many evolution models are possible for the amplitude processes and , including

random walks, autoregressions, etc., and most would be tractable within our Bayesian frame-

work. It is important, however, to regularise the evolution of these components a priori in order

that ambiguities between true frequency modelling and modelling of the time-varying ampli-

tudes do not occur. We adopt a simple solution which consists of representing the amplitudes

and in terms of smooth basis functions , (with fixed and known)

such that

(3)

There are many possible choices for the basis functions, and in practice any sufficiently smooth2

interpolation functions will do. Here we have implemented a simple scheme involving raised

2The number of basis functions ( ) has to be upper bounded to avoid unidentifiability: low frequencies

can actually be modelled by a time-varying amplitude as well as by a sinusoid. It is thus important to limit the

number of basis functions such that amp. max is below the lowest note frequency in a given

harmonic signal (e.g., 20 Hz).
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Figure 4: Typical set of Gabor atoms

cosine functions (Hanning windows) with 50% overlap, see Fig. 4. Since is typically cho-

sen much smaller than , the reparameterisation in terms of basis coefficients and

is of much lower dimensionality than the original formulation in terms of and . The

monophonic note model now becomes:

(4)

We note that the model can now be seen as a representation of in terms of a set of Gabor

atoms (Flandrin, 1999). Here, each atom has a precise time-frequency location

and an amplitude where is the temporal centre of . We will refer to each

term or as an ‘atom’ in the subsequent material.

2.2 A polyphonic harmonic model

The above monophonic model can be easily expanded to the polyphonic case, that is for signals

composed of concurrent notes. A suitable model is:

(5)

for . Each note, , now has its own set of parameters, and the nota-

tion is extended in an obvious way with an additional subscript ‘ ’. The (unknown) parameters
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determining the polyphonic model of Eq. (5) are: the total number of notes , the number

of partials for each note , the de-tuning parameters

with , the fundamental frequencies and the

amplitudes . It is assumed that is prespecified.

In vector notation the model is now written as:

(6)

where , , the matrix contains the Gabor atoms

stacked in columns, and contains the amplitude parameters and . The detailed

expressions for and are given in (Davy and Godsill, 2002a).

In practice, musical signals also have non-harmonic components, such as emitted air sounds

or aspiration noise. These components, in addition to any background noise, are subsumed in

the noise term in Eq. (5). It is desirable that the noise models accurately all the possible

sources of model errors. A simple and general possibility is the autoregressive (AR) model of

order :

(7)

where is a zero mean Gaussian white noise of variance . This introduces an additional set

of parameters , and .

Given the linear model formulation of Eq. (5) and the assumption of i.i.d. Gaussian excita-

tion for the AR process, we immediately obtain the likelihood function:

(8)

The -dimensional matrix is constructed by stacking the AR coefficients in rows,

with appropriate zero padding, as detailed in (Davy and Godsill, 2002a).

2.3 Features of the Model

The models proposed in earlier subsections, both monophonic and polyphonic, all fall into the

general category of the linear model. Under a Gaussian prior for this will facilitate inference

in the model by allowing exact simulation of from its full conditional, and marginalisation

of from the posterior distribution. This can provide an important dimensionality reduction

in the model since is often high-dimensional. This, however, is all standard material, and

we see the main interest of our model to be in the specific structure chosen for the -matrix

and in the prior distributions of the unknown parameters, both of which are carefully tuned to

subjective and objective information about musical signals.

The polyphonic model presented as Eq. 5 has several features that distinguish it from other

work in the area. Firstly, it directly incorporates the frequency relationship between partials

and fundamental frequencies. This is different from typical approaches in the literature to

musical pitch transcription which will estimate the frequencies of each line spectral component

independently of the others, performing grouping into units such as chords and notes as a post-

processing stage (but note that papers such as (Gribonval and Bacry, 2001) and (Klapuri, 1999)

go some way towards integrating the harmonic structure directly into the model). This misses

an opportunity for greater estimation accuracy through direct modelling of the waveform at

the level of notes. We retain this feature in our model, based on the earlier model of Eq. (1)
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(Walmsley et al., 1998; Walmsley et al., 1999). An extension provided in the model of Eq. (5)

is the incorporation of detuned harmonics with parameters . Many researchers believe

this to be an important component of any realistic musical instrument model (Fletcher and

Rossing, 1998) and we plan to investigate this claim through use of the new model. Potential

ambiguities can occur if the parameters allow one partial (harmonic) to stray into the

frequency range of adjacent harmonics. However, this ambiguity is suppressed here by careful

choice of priors that favour . Note that this model, which essentially includes

random deviations from the natural harmonic positions, could easily be extended to model the

more systematic trends in spacing of harmonics observed in e.g. string instruments (Fletcher

and Rossing, 1998).

Secondly, instruments produce notes with time varying amplitude, a typical example is

the note attack. A constant amplitude model such as Eq. (1) is clearly unable to deal with

such a case and will lead to misleading parameter inferences. The chosen decomposition of

amplitudes in terms of a set of basis functions (3) ensures smoothness, and reduces the number

of parameters in the model considerably.

Finally, the residual noise is an AR process that can model residual noise from instruments

as well as general background noise.

Further improvements in modelling could be achieved by allowing the fundamental fre-

quencies to vary over the time-frame - however, this leads to a much more intractable model

that we have avoided implementing thus far - provided frame sizes are kept short, the frequen-

cies can usually be modelled as constant within a frame. See (Walmsley et al., 1999) for some

progress on models with time-varying frequency.

Even without time-varying frequencies the price of this more flexible model is a large num-

ber of unknown parameters. The principal unknowns are, then, the number of notes , the fun-

damental frequency, number of harmonics and amplitudes for each note: ,

the AR parameters and the variance . This variable-dimension space of parameters is em-

bedded in a Bayesian scheme as outlined in the next section. To our knowledge this problem

has never received a fully Bayesian treatment before. As will be seen, the Bayesian priors, in

addition to the special structure of , play a key role in defining the model.

2.4 Bayesian model

A natural hierarchical prior structure for the musical model is as follows:

where is introduced later. The form of the prior distributions can be chosen to reflect prior

beliefs about particular types of music, or particular instruments, and this is certainly an inter-

esting line of future study. Here we adopt a generic approach in which the priors are designed

to match the average character of musical notes. We consider the prior distributions one by

one.

Prior for . The amplitudes of the partials determine the characteristic ‘timbre’ of a musical

note. Hence it is important to model these accurately in applications such as source separa-

tion and musical instrument classification. We adopt a zero-mean Gaussian prior for these

parameters. This matches well the variability observed when the same note is played under
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slightly different conditions or on different instruments. It is also reasonable to assume the

scale of the amplitudes is related to the scale of the AR residual process, since the AR resid-

ual models principally non-harmonic noises produced by the instruments. Thus we adopt a

zero-mean Gaussian prior with covariance matrix . Choice of the matrix will then

determine the properties of the prior. We have implemented a number of possibilities here,

and it is clear that the prior would ideally be instrument-specific. However, it is possible to

build in a certain amount of physical prior knowledge without limiting to very narrow classes

of instrument. See for example Fig. 5. This displays a single short-time Fourier magnitude

spectrum for the flute extract in Fig. 1. The spectrum is computed from approximately the first

0.25s of the music where no note transitions occur. The fundamental frequency and partials are

clearly visible, exhibiting a slow decay in amplitude with decreasing frequency. This general

observation applies to most acoustical sounds and so can be usefully incorporated in a prior.

One successful implementation sets as diagonal with diagonal elements equal to ,

where is the number of the partial, is experimentally determined ( is a good match

to many signals we have analysed), and is an unknown scale parameter that is sampled in

the MCMC scheme with an inverted gamma prior. This form of covariance matrix assumes

joint prior independence of all notes, partials and atoms. While this functions well in prac-

tice, it may be argued that dependence should be modelled between partials and atoms within

a particular note. There are many ways this could be achieved and we leave this as a future

topic of research. As an alternative to these physically based priors, we have also implemented

with some success the well knwon G-prior which has been found to be effective in similar con-

texts (Andrieu and Doucet, 1999; Walmsley et al., 1999). A full investigation of the relative

merits of these choices is again left as a topic of future work.

Prior for and . The number of partials is again an instrument- and realisation-specific

quantity. The precise distribution can be learned from training examples with different instru-

ments. The general feature is that a particular instrument has a mean number of partials with a

certain spread about this value. In order to model this, we have adopted an independent Pois-

son prior for each , truncated to user-specified maximum and minimum limits. Similarly,

the number of notes, , has a truncated Poisson prior. These are specified vaguely for general

musical extracts, but can be tuned more precisely when a particular instrument is known to be

present.

Prior for . A third key parameter is the vector of detuning factors, , which is aimed at

modelling slight harmonic de-tuning among the partials. Its value is expected to be close

to zero, and here we assume no dependence between the parameters of different partials,

although for certain instruments theory would dictate the general form of the s (Fletcher and

Rossing, 1998). Here a zero mean independent Gaussian is assumed, with variance , fixed

to a small value in order to favor small de-tuning parameters. The distribution can additionally

be truncated in order that adjacent partials within a single note do not cross over one another

in the frequency domain.

Prior for . For some instruments such as piano or organ, notes are tuned to a fixed grid of

frequencies (one for each key of the instrument). In other instruments, the player will usually

tune notes to be close to the fixed grid of note frequencies, see e.g. the pitch transcription

of the flute extract in Fig. 3. A convenient and informative prior would thus favour these

fixed frequencies above others. Moreover, when several notes are played at the same time (a
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Figure 5: Flute extract

chord), there exist simple relations between the fundamental frequencies. The prior density

should reflect this prior information. However, these considerations only apply to

tonal Western music, and for the sake of generality we here adopt a uniform prior over some

region of interest, min max . Again, there are plenty of interesting possibilities for

informative priors in future investigations.

Remaining parameters. Briefly, regarding the noise , is inverted gamma with pa-

rameters and , is zero-mean Gaussian, with diagonal covariance matrix . is fixed

in our implementations thus far, but we note that standard samplers are readily available should

this parameter become important (Godsill, 2001; Troughton and Godsill, 1998; Troughton and

Godsill, 2001; Vermaak, Andrieu, Doucet and Godsill, 1999).

Posterior distribution Given the above prior structure, the posterior distribution may be

computed. In particular, and are marginalised using standard linear model computations

(Bernardo and Smith, 1994;West and Harrison, 1997) to give a reduced posterior .

Full conditionals are also readily available for , , and , owing to the conjugate prior

structures chosen. These distributions are all employed in the variable dimension MCMC al-

gorithms for computation, as summarised in the next section.

3 Bayesian computations

The precise objectives of inference in these models is very much application driven. In the case

of pitch estimation, for example, point estimates will typically be required for the fundamental

frequencies . The posterior distribution of these parameters will also give a useful estimate

of the uncertainty and multimodality in the posterior. In source separation and instrument

classification tasks, estimates and posterior distributions of the partial amplitiudes, the detuning
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parameters, fundamental frequency and number of harmonics are required for each note. There

are however potential pitfalls in making these estimates, as the individual note ordering is not

constrained in our model and it is quite conceivable that two notes are swapped during the

MCMC simulation. An ordering by, say, increasing fundamental frequency or energy would

help somewhat, although note swapping could still occur when large jumps in parameter values

are made (e.g. a change in fundamental frequency by an octave or more). We have avoided

these ambiguities in this work by estimating functionals that do not depend upon the note

labelling. These are computed as Monte Carlo approximations to posterior means:

(9)

where is the collection of all unknowns in the model,

is a given integrable function with respect to the posterior and is the sample space for the

posterior distribution.3 are (possibly dependent) Monte Carlo samples drawn from .

A suitable family of functions to estimate are spectrogram-like representations. The short-

time energy spectrum of the th component in the model Eq. (5) is defined as

(10)

where is the Fourier transform of

The construction of the spectrogram-like representation consists in computing for

and various values of in

(11)

As stated above, these computations require that a set of samples , , , , ,

, , is available from the posterior . The re-

versible jump MCMC algorithm for achieving this is summarised in the following paragraphs.

The simulation algorithm is a variable dimensionMCMC procedure, using reversible jumps

to achieve model space moves for both the number of harmonics in each note and the number of

notes. Other parameters are updated using Metropolis-within Gibbs sampling moves for non-

standard conditionals and Gibbs sampling where the conditionals are standard. The posterior

distribution in this problem is highly multimodal and strongly peaked. This is partly as a result

of ambiguities inherent in the model, and implies that the MCMC algorithms have to be care-

fully constructed in order to avoid getting stuck in local traps of the distribution. In fact much

of the innovative work in this project has been concerned with generation of effective proposal

distributions for fast exploration of the parameter space. As well as standard random walk

moves, these include independence proposals based upon the sample autocorrelation function

and spectrum of the data, and octave/fifth-jumping moves aimed at moving rapidly between

local maxima (these moves update the number of partials as well, preserving the spectral struc-

ture, and this leads to improved acceptance rates). The reversible jump proposals allow for

several partials to be added/removed at once from a note, and notes may be split and merged

in meaningful ways. Full details can be found in (Davy and Godsill, 2002a).

3The integral over the discrete parameters should be seen as a discrete sum over all the possible values

of these discrete parameters.
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4 Simulation results

Results are presented based on two implementations. The first is a full implementation of the

models as described in the paper with detuned partials and unknown numbers of partials

and number of notes . The full details of this sampler can be found in (Davy and Godsill,

2002a). This first sampler is used to demonstrate the effectiveness of the model in analysising

short data sets containing isolated notes and chords. The second sampler is a reduced version of

the first, in which the partials are not detuned (i.e. is fixed to zero), and the number of notes

is specified a priori (but is sampled using a reversible jump procedure). As a result,

though less robust and general, the second sampler takes far less computational time, both per

iteration and in terms of number of iterations to convergence. It is thus used for a rapid frame-

based analysis of long data sets containing many different pitches and note transitions. In this

way we hope to demonstrate both the potential of the full model and also the possibilities of

realistic analysis for long monophonic and polyphonic musical extracts.

4.1 Full sampler

The first example is a 2-note mixture of a saxophone and trumpet, playing with fundamental

frequencies Hz (F) and Hz (C), assuming A440 Hz tuning. This short extract is taken

from example ‘Commit’ at 2.5s, see reduced sampler section. Note that the number of notes,

as well as the number of partials for each notes were unspecified for the MCMC simulations.

After fitting the model with MCMC to the data, the fitting error is almost perfect when viewed

in the time domain. Figure 6 displays the spectra of the two estimated notes as well as the

spectrum of the error signal. As can be seen, both the number of notes and the number of

partials were accurately estimated (note however that the 10th partial of the note F was missed,

but this had no major consequence for the inference). In addition, the fundamental frequencies

are correctly estimated.

We have also plotted the spectrogram-like representation of the estimated notes, see Fig-

ure 7. As can be seen, the notes are very concentrated around the ’true frequencies’ Hz,

and Hz, which shows that the posterior distribution is well concentrated around the true

frequency values. Moreover, the spectrogram of the original data has also been computed

(for equal comparison, we used as windowing function with 50% overlap). The frequen-

cies and amplitudes of the line components in the two representations are very similar, which

demonstrates again the accuracy of the approach. An audio animation of the MCMC proce-

dure during convergence can be listened to at http://www-sigproc.eng.cam.ac.uk/

˜md283/harmonic.html.

4.2 Reduced sampler

The reduced sampler is applied frame-wise to the data, as in the restoration processing of

(Godsill and Rayner, 1998b). The waveform was arbitrarily segmented into blocks of duration

0.1s with 50% overlap and the reduced MCMC sampler applied in turn to each block. First a

short solo flute extract considered here is the opening of Debussy’s Syrinx, downsampled to

a 22050 Hz sampling rate. This is monophonic throughout and hence processed with

throughout. The pitch estimates obtained are shown in Fig. 3, corresponding to the waveform

and spectrogram in the figures above it. Estimated pitches are plotted logarithmically with grid

lines showing semitone steps relative to A440Hz. The estimated pitch corresponds exactly
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Figure 6: Comparison of the original spectrum with MCMC-estimated spectra. In order to

improve clarity, the original spectrum (top graph in each panel) has been translated by adding

50dB to its amplitude in the four panels. (Top row) Estimated spectra of the individual notes.

(Bottom Left) Spectrum of notes 1 and 2 superimposed. (Bottom Right) Spectrum of the

residual error.

to a manual transcription of the recording with the exception of the brief low G around 12s.

Close listening around 12s shows that the flute plays a low distortion undertone in addition

to the scored pitch at this point, and the algorithm is clearly modelling this undertone. The

‘drop-out’ between 9s and 10s corresponds to a short period of silence. Informal examination

of spectrograms indicates that the reversible jump algorithm for determining the number of

harmonics is very successful. This demonstrates the high reliability and accuracy of the models

for monophonic pitch estimation. Next the example ‘Commit’ (see full sampler above) is

processed in its entirity. There are two notes playing throughout, so is used. Figure 8

displays the pitch estimation results for the extract. Note that the number of notes is known,

and was provided for inference. Comparison with ground truth shows the pitch estimation

accuracy in the presence of polyphonic music.
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Figure 7: (Left) Spectrogram-like representation inferred from the MCMC samples using

Equation (11). (Right) Spectrogram of the original time series, computed using the windows

.

5 Discussion

We have presented rather limited results here. The methods have in fact been tested on a

range of real audio material and found to be robust provided that there are no more than 3

notes playing simultaneously, in which case ambiguities can cause errors in the fundamental

frequency estimation. This result is similar to those reported by other authors using other

techniques, such as (Virtanen and Klapuri, 2001; Kashino et al., 1995). However, these other

methods integrate contextual information or more specific instrument-based knowledge into

the processing, while we have specified prior distributions at a very generic level and have not

integrated temporal information from surrounding data or the relationships that exist between

notes at a particular time. These aspects can all be encoded within a Bayesian framework and

we anticipate that future incorporation of ideas such as these into our problem will lead to
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Figure 8: Ground truth (manual transcription) and pitch extraction for Commit extract, assum-

ing A440 Hz tuning.
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significant enhancements in performance. Computation remains a concern, however, as the

distributions involved are highly multimodal and intractable to more efficient analysis.
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