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Abstract
Although there is evidence that teenagers are at a high risk of crashes in the early months after
licensure, the driving behavior of these teenagers is not well understood. The Naturalistic Teenage
Driving Study (NTDS) is the first U.S. study to document continuous driving performance of
newly-licensed teenagers during their first 18 months of licensure. Counts of kinematic events
such as the number of rapid accelerations are available for each trip, and their incidence rates
represent different aspects of driving behavior. We propose a hierarchical Poisson regression
model incorporating over-dispersion, heterogeneity, and serial correlation as well as a
semiparametric mean structure. Analysis of the NTDS data is carried out with a hierarchical
Bayesian framework using reversible jump Markov chain Monte Carlo algorithms to
accommodate the flexible mean structure. We show that driving with a passenger and night
driving decrease kinematic events, while having risky friends increases these events. Further the
within-subject variation in these events is comparable to the between-subject variation. This
methodology will be useful for other intensively collected longitudinal count data, where event
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rates are low and interest focuses on estimating the mean and variance structure of the process.
This article has online supplementary materials.
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Recent advances in technology for assessing gravitational force (g-force) events using
accelerometers allow social scientists to carefully examine driving behavior in a naturalistic
setting (100-car study; Klauer et al. 2006; Guo et al. 2010). The Naturalistic Teenage
Driving Study (NTDS) is an NIH-funded undertaking that measures driving performance
and risk of teenagers during their early months of licensure (Simons-Morton et al. 2011a,b).
In this study, 42 newly licensed teenage drivers aged 16 to 17 from the Roanoke area in
Virginia were monitored continuously during their first 18 months (between 2006 and 2009)
of independent driving using in-vehicle data recording systems. The study provides valuable
information on risky driving behavior, which can be assessed in terms of elevated g-force
events (the term kinematic event is used interchangeably with g-force event). Counts of
kinematic events are available for each trip (ignition on to ignition off), and their incidence
rates represent different aspects of risky driving behavior. It is common practice in this field
to derive a composite kinematic event as being the occurrence of any one of the following
events at a pre-described g-force: rapid starts, hard stops, hard left turns, hard right turns,
and yaw, a measure of correction after a turn (Wahlberg 2007; Simons-Morton et al.
2011a,b). Simons-Morton et al. (2012) showed in a logistic regression framework that the
composite measure predicts crashes/near crashes as well as using all five measures
individually. The NTDS dataset comprises more than 68,000 trips with the median of 1429.5
trips per individual (range: 157 to 3162), providing the first such intense data ever collected
on teenagers. Our interest in the NTDS is on examining how the composite kinematic event
rates change over time and understanding the effect of important covariates such as day or
night driving, other passengers, and risky friends on these event rates. We are also interested
in understanding the between- and within-individual variation in the event rates over time.
The sources of variation in these longitudinal data are interesting in themselves (is the
within-subject variation sizable compared to the between-subject variations?) and will be
useful in designing future studies in terms of follow-up length and intensity of the
measurements.

Figure 1 presents exploratory analyses for the composite kinematic events in the NTDS.
Figure 1 (a) shows an overall smoothed LOWESS incidence rate, while Figure 1 (b) shows a
smoothed LOWESS curve for each of the 42 participants in the study. An exploratory data
analysis in Figure 1 (c) demonstrates that the intra-driver variability is large relative to the
inter-driver variability. Taken together these figures demonstrate the need for incorporating
a complex mean structure and both between- and within- subject variation into the modeling
framework. Serial correlation may also be an issue to address in these data. Since car trips
are at highly irregular time points, we use the variogram rather than the correlogram to
examine the correlation structure (Diggle et al. 1994). Ideally, we would like to have a
single variogram based on all possible pairs of trips driven by the same subject. This is
impractical, however, because many subjects had 1-3 thousand trips, giving rise to 1-9
million pairs from just one subject. To overcome this problem, we used a subsampling
approach where each trip in the original dataset is paired randomly with another trip for the
same subject. This resulted in approximately 68 thousand pairs (the same size as the original
dataset), for which a standard variogram could be constructed. To account for the
randomness in subsampling, we repeated this procedure 10 times with the resulting
variograms shown in Figure 2. The figure clearly suggests the presence of serial correlation.
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The NTDS data features pose several analytic challenges. First, the model has to be flexible
enough to capture the complicated mean structure, as evident from the non-linear
longitudinal trajectory of the composite kinematic events in Figure 1 (a) and (b). A
parametric specification of the mean structure may be too restrictive in estimating the rich
pattern in these data. Second, Simons-Morton et al. (2011b) used a Poisson model with a
random effect to represent between-subject variation for data analysis. However, this
approach has some weaknesses since there was clear evidence for overdispersion and serial
correlation. Since the appropriate modeling of the sources of variation is important for
understanding the variation in risky driving over time, an important goal in this study, we
need to incorporate between- and within-individual variation as well as serial correlation
into the modeling framework. Third, the large number of trips at irregular intervals on each
individual pose a computational challenges. In view of these challenges, we propose a
Bayesian hierarchical Poisson regression model with a latent process for the long and
unequally spaced sequences of count data. The latent process consists of terms for a
decaying serial correlation, heterogeneity, and over-dispersion. In addition, we propose to
use nonparametric regression methodology to model the longitudinal trajectory to account
for time varying patterns of the outcome. To achieve an efficient Markov chain Monte Carlo
(MCMC), we propose a reparametrization scheme that proves to enhance the convergence.
Further, we implement a fully data-driven, adaptive knot selection scheme that identifies the
optimal number and location of the knots in the longitudinal trajectory via the reversible
jump MCMC (RJMCMC) algorithm (Green 5 1995; DiMatteo et al. 2001; Botts and Daniels
2008). In this paper, we use the polynomial regression spline based on truncated power basis
instead of B-spline bases, which can be evaluated in a numerically stable way by using the
de Boor algorithm. The main advantage of the truncated power function basis is the
simplicity of its construction and the ease of interpreting the parameters in a model that
corresponds to these basis functions.

Generalized linear mixed models (GLMMs) are often used to simultaneously estimate the
mean structure as well as sources of variation for longitudinal discrete data (Karim and
Zeger 1992; McCulloch et al. 2008). In general, however, GLMMs are only suitable when
there is no serial correlation. Various extensions of GLMMs have been proposed that
incorporate serial correlation. In one type of extension, the addition of a latent process is
used to incorporate serial dependence. For Poisson models such an approach has been
studied by Harvey (1989), Smith (1979), Zeger (1988), among others. Albert et al. (2002)
proposed a latent process model for binary data. Chen and Ibrahim (2000) considered a
Bayesian analysis of the basic model by Zeger (1988), focusing on constructing informative
priors from historical data and evaluating the predictive ability of competing models. Hay
and Pettitt (2001) gave a fully Bayesian treatment for sequences of counts, using AR(1) and
alternative distributional assumptions for the random effects. Zhang et al. (2012) developed
a generalized estimating equations (GEE) approach using these data that incorporated a
parametric mean structure, but did not explicitly model the variance structure.

The remaining sections are organized as follows. Section 2 provides the detailed
development of the proposed hierarchical Poisson regression model with three random
effects to account for heterogeneity, serial correlation and over-dispersion, and presents the
regression splines with adaptive knot selection for the mean structure. The prior and
posterior are discussed in Section 3, where model selection via the Deviance Information
Criterion (DIC) is also discussed. Section 4 presents an analysis of the NTDS data. We
conclude the paper with a discussion in Section 5.
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2 The Models
2.1 Model Framework

Suppose that i denotes individual and j denotes trip. We assume that there are I individuals
in the study, each contributing ni trips. Let yij denote the number of composite kinematic
events on the jth trip by the ith individual. Also, let xij = (xij1, xij2, … , xijq)’ denote a q-
dimensional vector of covariates associated with the jth trip for individual i, and β = (β1, …,
βq)’ is the corresponding vector of regression coefficients, j = 1, … , ni, and i = 1, …, I.

To incorporate serial dependence within drivers in the longitudinal count data, we introduce

a latent process  which is assumed to be an autoregressive (AR) process. Conditional on
this latent process, the irregularly spaced measurements yij’s are assumed to follow
independent Poisson distributions with the conditional mean

(1)

where the offset term mij is the mileage for the jth trip on the ith individual. Given g*(tij), ,

and , we assume an AR(1) serial correlation for  in model (1) as

(2)

with  and, consequenlty,  with ρ = exp(−θ), tij is
a time since licensure for jth trip in ith individual, and dij = ∣tij – ti,j–1∣ is the time lag (gap
time) between yi,j–1 and yi,j, for j = 2, …, ni. Here ρ is an autocorrelation parameter, g*(tij) is

the mean function of  is the individual-level random effect which induces

exchangeable correlation between drivers, and  is the trip-level random effect that
accounts for any additional over-dispersion. The random effects are assumed to be

independent of each other with  and . The AR(1) process

, parameterized such that  and

, describes unobserved factors that induce
heterogeneity, over-dispersion, and serial correlation. The parameter θ, where θ > 0,
determines how rapidly the serial correlation decreases with the gap time. We see that as θ

→ 1, then ρ → 0 and , resulting in a model without serial dependence.

Furthermore, when ρ = 0,  and  are not both identifiable and only  is
identifiable.

To capture the nonlinear structure in the mean trajectory, we assume a polynomial
regression spline of order p with k knots for g*(tij) in (2) as

(3)

where p is a pre-specified degree of polynomial spline,

 is the knot sequence with

 is a truncated
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polynomial basis functions of degree p, and  is a corresponding
vector of parameters. We note that the adaptive knot selection allows for the smoothness to
vary over the domain on which the function is defined. Since the optimal number and
location of knots will be chosen in a data-driven manner, they will also be regarded as
unknown parameters and will be simultaneously estimated through a fully Bayesian
approach.

2.2 Reparametrization
For variable selection, Ibrahim et al. (2000) considered a Poisson regression model with a
latent AR(1) process for a time series of counts. In this common time-series model (see
Zeger 1988), they observed that the original Gibbs sampler results in very slow convergence
and poor mixing. In particular, the correlation parameter ρ appears to converge the slowest
among all parameters. They further found that the hierarchical centering technique is suited
for their problem, and appears crucial for convergence of the Gibbs sampler. Unlike our

model setting, they did not consider the random effects  and . Based on our model
described by (1), (2) and (3) and the longitudinal data with a small number of long
sequences, we first applied the hierarchical centering technique as the initial Gibbs
sampling. From an implementation of this initial Gibbs sampling for our real data analysis,

we note that the variance  for  converged very slowly and the convergence and mixing

were worse than that of the correlation ρ. Furthermore, , and ρ are highly correlated.
To improve this slow convergence of the initial Gibbs sampler, we consider the following
reparametrization:

(4)

Let . Thus we have the following Poisson regression model with random effects:

(5)

where , and . Note that the
variance of γij is fixed at 1. From our real data analysis in Section 4, we have observed
meaningful improvement in the convergence of the MCMC sampler when both hierarchical
centering and reparametrization were used. See the supplementary material for more details.
Let m = (m11, m12, …, mI,nI)’ and t = (t11, t12, …, tI,nI)’. Also, let Dobs = (y, m, t, X) and D =
(y, m, t, X, τ, γ, η) denote the observed and complete data, respectively, where y = (y11, y12
… yI,nI)’, X = (x11, x12, …, xI,ni)’, τ = (τ1, τ2, …, τI)’, γ = (γ11, γ12, …, γI,nI)’, and η = (η11,
η12, …, ηI,nI)’. The complete data likelihood function of parameters

 can then be written as
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(6)

where N(·; a, b) denotes the normal probability distribution with mean a and variance b. The
observed likelihood function after integrating out τ, γ, and η in (6) is given by

(7)

3 Posterior Inference
3.1 Prior and Posterior Distributions

We consider a joint prior distribution for . First we consider the

fixed k (number of knots) and ζ (knot locations). We assume that , and θ are

independent a priori. Thus, the joint prior for  is of the form

. We further assume that

(8)

(9)

(10)

where c1, c2, a1, b1, a2, b2, a3, b3, a4, are the prespecified hyperparameters. For both random
k and ζ, we assume the joint prior for (k, ζ) is of the form π(k, ζ) = π(k)π(ζ∣k). Further, we
assume that k ~ Poisson(μk)1(1 ≤ k ≤ K) which is a truncated poisson distribution with mean
μk and range 1 ≤ k ≤ K. Since there is no reason a priori to favor knots at any particular
locations on the domain of g(tij), we assume a flat prior on knot locations ζ in this paper.
Given k, we specify ζ∣k ~ uniform(aζ, bζ), aζ < ζ1 ≤ ζ2 ≤ … ≤ ζk < bζ, with density

(11)

where μk, K, aζ, and bζ are the prespecified hyperparameters. The values of the
hyperparameters for the prior distribution are given in Section 4. Based on the prior

distributions specified above, the joint posterior distribution of  and ζ
based on the complete data D is thus given by
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(12)

where  is defined in (6). Employing the Markov chain Monte
Carlo (MCMC) techniques, we can generate a sample from this joint posterior distribution
and make appropriate inference of the various model parameters using this sample. Given
that k (number of knots) in this paper is assumed random and consequently that the number
of ζ (knot locations) varies with k, we use the RJMCMC algorithm (Green 1995; DiMatteo
et al. 2001; Botts and Daniels 2008) to simultaneously sample the parameters, knot locations
and positions in an integrated manner from their respective full conditionals. In Bayesian
computation, RJMCMC is an extension of standard MCMC methodology that allows
simulation of the posterior distribution on spaces of varying dimensions and it makes it
possible to use MCMC even if the number of parameters in the model is unknown. A
description of the MCMC algorithm for a fixed k as well as a detailed development of the
RJMCMC are given in the Appendix and the supplemental material.

3.2 Model Comparison
Given the rich specification of our proposed model, it is of interest to compare the
performance of the various special cases of the full model. To this end, we carry out a
formal comparison of the models with different random effects using DIC proposed by

Spiegelhalter et al. (2002). For the model in (1), it is not easy to integrate out  analytically.
Although numerical integration or Monte Carlo methods may be used for evaluating the
analytically intractable integrals, these methods are computationally expensive due to the

large size of the data. We therefore took a different approach and treated the  as
parameters. Specifically, we define Ω = (β, η*) and

where Dev(Ω) = −2 log L(Ω∣Dobs) is the deviance function,  is the posterior mean of Ω,

is the penalty for model dimension, and  is the posterior
mean of Dev(Ω). In light of the Poisson structure of the models, we work with the following
expression for the deviance function:

where  is defined in (2). Using the extension to DIC as proposed by Huang et al. (2005) in
the presence of missing covariates, we compute

, and
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Note that this way of computing DIC is possible because we have values of  at each
MCMC iteration and that given η*, no other parameters except β are needed. The DIC
defined above is a Bayesian measure of predictive model performance, which is
decomposed into a measure of fit and a measure of model complexity (pD). The smaller the
value of DIC, the better the model will predict new observations generated in the same way
as the data. Other properties of the DIC can be found in Spiegelhalter et al. (2002) and
Huang et al. (2005).

4 Analysis of the Naturalistic Teenage Driving Study Data
We revisit the NTDS data discussed in Section 1. The response variable yij is the composite
kinematic measure, defined as the totality of the 5 types of kinematic events (rapid start,
hard stop, hard left/right turn and yaw). The offset mij denotes the mileage (in miles) for the
jth trip on the ith individual. The time-dependent covariates xij include the passenger
presence (1 if present; 0 otherwise), time of day (1 if night; 0 if day), and risky friends, a
dichotomized psycho-social variable designed to assess whether the teen has friends who
drink, smoke, or have poor driving habits. In particular, the assessment of the risky behavior
of a teenage driver’s friends was made at 4 time points (baseline, 6, 12 and 18 months); the
4 scores were averaged for each driver, and the average score was then dichotomized
according to the median split among all drivers in the study. We only included the presence
of passengers rather than the number since less than 1% trips had multiple passengers. Table
1 presents some descriptive statistics of the NTDS data. This study has two types of missing
data. First, the presence or absence of passengers is unknown for about 2.8% of the trips due
to technical issues with video recordings that supposedly contain this information. The
missing-completely-at-random assumption seems appropriate in this situation since
technical malfunction is completely independent from either g-force events or the
covariates; we therefore exclude these small number of trips from the analysis. All other
variables involved in our analysis are completely recorded for all trips. The second type of
missing data in this study is the fact that one subject (out of 42) dropped out in the middle of
the study. With respect to the drop-out issue, our analysis based on the likelihood for the
observed data is valid under the missing-at-random assumption. Even if the latter
assumption is not true, it is unlikely that the violation will have a large impact, given the low
frequency of drop-outs.

In all computations, we standardized the covariates by subtracting their sample means and
then dividing by their sample standard deviations. The means and standard deviations are
(0.3105, 0.4627) for presence of a passenger, (0.2362,0.4247) for time of day, and (0.5239,
0.4994) for risky friends, respectively. We did this to accelerate the convergence of the
MCMC, as is done routinely in the Bayesian literature. For interpretation and inference, the
standardized regression parameter was transformed back to the original scale. We first
generated 100,000 Gibbs samples with a burn-in of 10,000 iterations, and we then used
20,000 iterations obtained from every 5th iteration for computing all the posterior estimates,
including posterior means (Estimates), posterior standard deviations (SDs), 95% highest
posterior density intervals (HPDs) and Deviance Information Criteria (DICs). The computer
programs were written in FORTRAN 95 using IMSL subroutines with double-precision
accuracy. The convergence of the Gibbs sampler for all parameters passed the
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recommendations of Cowles and Carlin (1996). All trace plots and auto-correlation plots
showed good convergence and excellent mixing of the MCMC sampling algorithm. Further,
we compared the performance of hierarchical centering and reparametrization with only the
hierarchical centering technique. The convergence based on hierarchical centering and
reparametrization is better than when only hierarchical centering is used (See the
supplementary material for details).

The hyper-parameters of the prior distribution in Section 3 are specified as follows. In (8),
(9), and (10), we take c1 = 100, c2 = 100, a1 = 0.1, b1 = 0.1, a2 = 1, b2 = 0.1, a3 = 0.1, b3 =

0.1, a4 = 1, and b4 = 0.1. These choices ensure that the prior for  is
relatively non-informative. We further use μk = 5 and K = 18 for the number of knot (k). For
the prior of knot locations, ζ in (11), tij is rescaled to the unit interval (i.e., divided by the
maximum value of tij) so that 0 < tij ≤ 1. Then we take aζ = 0 and bζ = 1. Further, as
mentioned in Section 1, we use cubic splines for g*(tij) by setting p = 3 in (3) to incorporate
a flexible mean structure. In order to assess the robustness of our posterior inferences, we
also used prior distributions that corresponded roughly to doubling or halving the prior
variances given above.

The Poisson regression model described in (1)-(3), with three random effects and an AR(1)
process, will be referred to as the full model and denoted by . We are interested in
investigating how the goodness of fit might be affected by excluding some random effect
terms (corresponding to over-dispersion and serial correlation) from  using the DIC
discussed in the previous section. This investigation involves the following submodels:

 (Individual effects and serial correlation effects, but no over-dispersion effects):

 (Individual effects and over-dispersion effects, but no serial correlation effects):

where  for , and  for
.

Table 2 shows the DIC values for the three models under consideration, with the smallest
value (306101.23) corresponding to the full model . In this sense,  fits the data best
among all models considered. This also reaffirms the need for considering over-dispersion
and serial correlation, and is consistent with Figure 2 suggesting the presence of serial
correlation. Interestingly, the measure of model complexity, pD, is the largest for the 
model, even though this is the model with the simplest variance structure. This is due to the
fact that a more complex mean structure is needed for the  model compared to the
other two models. Further, we assessed the AR(1) assumption by estimating the variogram
of the residuals (Figure 3 (b)) using the subsampling approach discussed for Figure 2. If the
specified structure is correct, then the variogram should not show any patterns. If the AR(1)
structure is misspecified, the misspecification would result in a pattern in the variogram.
Since Figure 3 (b) shows no discernible patterns, it appears that the AR(1) structure is
adequate for describing the serial correlation in the data. Furthermore, Figure 3 (a) presents
the LOWESS smoothed empirical variograms without the serial correlation based on 
and shows discernible patterns in time (month). That is, it is not enough to only consider
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heterogeneity between individuals (which is a model similar to that used in Simons-Morton
et al. 2011b) and over-dispersion, and it is necessary to incorporate serial correlation as in
model . In addition to a comparison between two submodels and examining the
variogram on the residuals, we have assessed the goodness-of-fit of the full model 
using residual plots. Figure 4 (a) is a plot of standardized residuals against fitted values, and
Figure 4 (b) is a plot of standard residuals against time since licensure. In each panel, the
line corresponds to a LOWESS smoothed curve of the scatter plot. There are no discernible
patterns in these residual plots, which suggests that the model fits the data well. Figure 5
shows the posterior distribution of the number of knots (k) for the longitudinal trajectory
g(tij) under the full model. The posterior mode is found at k = 5 with k = 4 coming close,
and the posterior probability that k > 12 is virtually 0. Further, in order to investigate
robustness of the posterior estimates to prior specification, we conducted sensitivity analysis
of prior specification under the full model . The sensitivity analyses are presented in the
supplementary material. Overall, the posterior estimates of all parameters are very robust to
the specification of the prior distributions.

Table 3 shows the posterior means, standard deviations and 95% HPD intervals of the
parameters under the full model  averaging over the (k,ζ) space. These estimates are
presented on the scale consistent with model formulations (1)-(3) and on the scale of
unstandardized covariates. The results in Table 3 show that teenage drivers have lower
composite kinematic event rates with passengers in the car than when they are driving alone
(1 – exp(−0.181) = 16.56% lower). Event rates are lower at night than during the day
(17.55% lower), suggesting that the study participants moderated their driving behavior at
night relative to during the day. Risky driving rates were higher among teenagers with risky
friends (50.1% higher). The within-subject variation for the trip-level random effects is

0.394 , which is larger in magnitude than the between-individual variation

. Figure 6 shows that a rapid decrease in the serial correlation with an increase
in time (month) between trips, with a correlation of 0.129 at one month and an almost zero
correlation at 2 months.

Figure 7 shows a plot of the estimated log-transformed composite kinematic event rates over
time (g*(tij) in (2)) and the corresponding 95% HPD intervals obtained from the posterior
samples of the parameters and knots. This plot adjusts for the presence of passengers, day/
night driving, and risky friends and takes full advantage of the specification of our flexible
model. The estimated log-incident rate of the composite kinematic measure for teenage
drivers increases over the first 5 months, and remains relatively stable over the remaining 13
month follow-up period.

5 Discussion
Of public health importance is characterizing both the patterns of risky driving behavior as
well as the variation in this behavior within- and between- individuals. This was a
challenging problem for the NTDS data given the variance structure (serial correlation, over-
dispersion, and between-individual variation), non-linear changes in the mean structure over
the 18 month observation period, and the observation scheme (large numbers of follow-up
trips on a small number of individuals). In this paper, we proposed a Bayesian hierarchical
Poisson regression model for analyzing these complex data. The modeling framework is
flexible with respect to both the mean and the variance structure, with free knot cubic
splines for the mean structure and three random effects to account for heterogeneity, over-
dispersion, and serial correlation. Because of the extra flexibility and complexity, the model
is challenging to fit using MCMC with hierarchical centering, and our analysis benefits from
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the use of several innovative techniques. These include a reparametrization to overcome the
slow convergence problem of MCMC and an adaptive knot selection mechanism by which
the optimal position and locations of the knots are simultaneously selected in a data-driven
manner via RJMCMC.

Three possible models are compared with respect to the DIC and the final model was shown
to be adequate based on various model diagnostics. The results indicate that it is necessary
to include the random effects for over-dispersion, serial correlation, and individual. Our
analysis of the NTDS data showed that teenage risky driving is negatively associated with
the presence of passengers. Thus, it appears that teenage drivers tend to drive in a less risky
manner with passengers in the car as compared with driving alone. We also demonstrated a
lower event rate for night driving, reflecting less risky driving at night by the participants.
Having friends who engage in risky behavior also leads to more risky driving by the
participants. Furthermore, we found that the variation across individuals is similar in
magnitude to the variation within a individual. The statistical modeling was entirely
motivated by a unique data source from a naturalistic driving study on teenagers (NTDS).
New studies of this kind are currently being planned where the methods in this paper will be
essential for valid statistical analysis.

The proposed model and corresponding results have important public health implications for
understanding teenage driving. First, accounting for both over-dispersion and serial
correlation is important for proper inference of covariate effects on composite kinematic
event rates. Ignoring sizable over-dispersion and serial correlation, as was done in Simons-
Morton et al. (2011b), will result in anti-conservative inference (p-value too low and
confidence intervals too narrow). Fortunately, the effects of the presence of passengers,
night driving, and risky friends were so strong, inferences were consistent between those in
Simons-Morton et al. (2011b) and those made here. Second, our results show a relatively
large serial correlation that diminishes to zero at approximately 2 months. This correlation
may correspond to short-lived unobserved behavioral effects. Third, the model shows that
the within-subject variation is high relative to the between-subject variation. This fact is
important for designing driving intervention studies where a large number of measurements
(trips) on each individual should be taken to reduce within subject variation.

There are some areas for future research. First, it is of interest to adapt the approach of
sequential MCMC (Balakrishnan and Madigan 2006) to reduce the computational burden of
MCMC methods in this situation with a small number of long sequences of longitudinal
data. Second, it is assumed here that the serial correlation structure is stationary in the sense
that it only depends on the separation time between two trips by the same driver. This might
not be the case as young drivers gain experience and perspective over time and change their
driving behavior gradually. With the amount of data available, it is difficult to either confirm
or refute this stationarity assumption. Future studies are being planned that have large
number of individuals, and the data from these studies may serve as motivation for
extending the modeling framework to incorporate non-stationary serial dependence.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix: Computational Developments

We first consider the case of fixed k and ζ. Instead of directly sampling 

from  given in (12), we sample 

from . To improve the mixing of the parameters of
interest, we propose a two-step MCMC sampling algorithm: Step 1 Parent MCMC and Step
2 Multigrid Monte Carlo (MGMC) adjustment. In the Parent MCMC step, we sample from
the following conditional distributions using standard Bayesian computation techniques such
as the Metropolis-Hastings algorithm (Hastings 1970), the adaptive rejection algorithm of
Gilks and Wild (1992), and the collapsed Gibbs technique of Liu (1994): (i)

; (ii) ; (iii)

; (iv) ; (v)

; (vi) ; and (vii)

. For (v) and (vii), the collapsed Gibbs technique is
implemented via the following identities:

and

The sampling scheme for the conditional posterior distributions is summarized as follows:

Table A

Summary of conditional posterior distribution and sampling scheme

Condition posterior distribution Sampling scheme

β ∣ ϕ, στ
2, σγ, ση

2, θ, τ, γ, η, Dobs Adaptive rejection algorithm

ϕ ∣ β, στ
2, σγ, ση

2, θ, τ, γ, η, Dobs Exact sampling from normal distribution

η ∣ β, ϕ, στ
2, σγ, ση

2, θ, τ, γ, Dobs Metropolis-Hastings algorithm

γ ∣ β, ϕ, στ
2, σγ, ση

2, θ, τ, η, Dobs Exact sampling from normal distribution

τ, στ
2 ∣ β, ϕ, σγ, ση

2, θ, γ, η, Dobs Collapsed Gibbs technique

τ ∣ β, ϕ, στ
2, σγ, ση

2, θ, γ, η, Dobs Exact sampling from normal distribution

στ
2 ∣ β, ϕ, σγ, ση

2, θ, γ, η, Dobs Metropolis-Hastings algorithm

σγ ∣ β, ϕ, στ
2, ση

2, θ, τ, γ, η, Dobs Metropolis-Hastings algorithm
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Condition posterior distribution Sampling scheme

ση
2, θ ∣ β, ϕ, στ

2, σγ, τ, γ, η, Dobs Collapsed Gibbs technique

ση
2 ∣ β, ϕ, στ

2, σγ, θ, τ, γ, η, Dobs Exact sampling from inverse gamma distribution

θ ∣ β, ϕ, στ
2, σγ, τ, γ, η, Dobs Metropolis-Hastings algorithm

In the MGMC adjustment step, we follow Liu and Sabatti (2000) and take the group

transformation  to obtain the
conditional distribution of g as follow:

(A.1)

We use the Metropolis-Hastings algorithm to sample g from

. After a new g is obtained, we then adjust

 by

When k and ζ are random, the dimension of the parameter space changes as a result of
adding or deleting knots. To address this issue, we used an RJMCMC algorithm (DiMatteo
et al. 2001; Botts and Daniels 2008). RJMCMC algorithm comprises three different types of
transitions: knot addition (birth step), knot deletion (death step) and knot relocation
(relocation step). Letting bk, dk and ζk be the respective probabilities of the three moves we
have

(A.2)

In this paper, we take c = 0.4 for the probability of each move in (A.2). To decide whether or
not to move from current state (k,ζ) to new state (k*,ζ*) using RJMCMC method, we need
to obtain the conditional posterior distributions of (k,ζ) after integrating out ϕ from joint
posterior distribution in (12):
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(A.3)

where

with . To generate a candidate
values of k and ζ, given a new set (k,ζ), we generate ϕ from its conditional posterior

distributions, . For the birth step, we choose a candidate knot
uniformly from existing knots and generate the new knot around the selected knots. That is,
the new ζ* is generated from ζ* ~ N(ζk, τ)1(ζk−2, ζk+2), where N(ζk, τ)1(ζk−2, ζk+2) denote
the truncated normal distribution with mean ζk, variance τ, and range ζk−2 < ζ* < ζk+2. For
the death step, the deleted knot is chosen uniformly from the existing knots. For the
relocation step, we choose a knot ζs uniformly from existing knots. Then a new  is
generated from . In this paper, we choose τ = 0.5 for both the
birth and relocation proposal distributions (See more details in DiMatteo et al. 2001 and the
supplemental material).
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Figure 1.
Exploratory analysis for composite kinematic events in NTDS: (a) Overall smoothed
LOWESS curve of the composite kinematic event for all trips in the study; (b) Individual
smoothed LOWESS curves (dotted line for each driver) compared to the overall LOWESS
curve (thicker line); (c) Individual box plots for loge(composite kinematic events/mile + 1).
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Figure 2.
LOWESS smoothed empirical variograms for the composite kinematic events in the NTDS
based on 10 random pairings.
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Figure 3.
(a) LOWESS smoothed empirical variograms of residuals based on  (without serial
correlation); (b) LOWESS smoothed empirical variograms of residuals based on  (with
serial correlation).
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Figure 4.
Residual plots: (a) standardized residuals versus fitted values; (b) standard residuals versus
time since licensure. Each panel includes a LOWESS smoothed curve of the scatter plot.
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Figure 5.
Posterior distribution of the number of knots for longitudinal trajectory g(tij) under the best
model .
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Figure 6.
Estimated serial correlation under the best model , where the solid line is produced
using exp(−θdij) with dij = ∣tij – ti,j–1∣ and θ = 36.824 (posterior mean). Note that time is
scaled so that t = 1 corresponds to 18 months. The dotted lines are the 95% HPD intervals.
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Figure 7.
Estimated log-longitudinal trajectory g(tij) (composite kinematic event per mile) under the
best model .
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Table 1

Descriptive statistics of the NTDS data (I = 42)

Median Range*

Average driving miles per trip 3.71 (2.10, 15.33)

Total miles per driver 5788.91 (1881.06, 14725.24)

Number of trips per driver 1429.50 (157, 3162)

Age of driver 16.37 (16.22, 17.37)

Passenger presence (%)

 No 69.35 (17.35, 88.48)

 Yes 30.65 (11.52, 82.65)

Time of day (%)

 Day 77.12 (62.76, 93.54)

 Night 22.88 (6.47, 37.24)

Risky friends (%)

 < median average scores 47.61

 ≥ median average scores 52.39

Gender of driver (%)

 Boy 47.62

 Girl 52.38

*
Range of the subject-specific means across the 42 subjects.
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Table 2

DIC Values for Poisson regression models with various random effects

Model Dev(Ω‒ ) pD DIC

MF 239037.01 33532.11 306101.23

MNG 248435.89 30903.28 310242.45

MNC 245761.92 34451.64 314665.20
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Table 3

Posterior Estimates under the best model 

Variable Posterior
Mean

Posterior
SD

95% HPD
Interval

Passenger presence −0.181 0.006 (−0.194, −0.168)

Time of day −0.193 0.006 (−0.204, −0.182)

Risky friends 0.406 0.168 ( 0.072, 0.729)

στ
∗2 0.287 0.070 ( 0.165, 0.423)

σγ
∗2 0.269 0.003 ( 0.263, 0.275)

ση
∗2 0.125 0.006 ( 0.113, 0.137)

θ 36.824 3.709 (29.834, 44.260)
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