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Summary
In this article, we present new methods to analyze data from an experiment using rodent models to
investigate the role of p27, an important cell-cycle mediator, in early colon carcinogenesis. The
responses modeled here are essentially functions nested within a two-stage hierarchy. Standard
functional data analysis literature focuses on a single stage of hierarchy and conditionally
independent functions with near white noise. However, in our experiment, there is substantial
biological motivation for the existence of spatial correlation among the functions, which arise from
the locations of biological structures called colonic crypts: this possible functional correlation is a
phenomenon we term crypt signaling. Thus, as a point of general methodology, we require an analysis
that allows for functions to be correlated at the deepest level of the hierarchy. Our approach is fully
Bayesian and uses Markov chain Monte Carlo methods for inference and estimation. Analysis of this
data set gives new insights into the structure of p27 expression in early colon carcinogenesis and
suggests the existence of significant crypt signaling. Our methodology uses regression splines, and
because of the hierarchical nature of the data, dimension reduction of the covariance matrix of the
spline coefficients is important: we suggest simple methods for overcoming this problem.
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1. Introduction
Colon cancer is among the leading causes of death in the United States and affects men and
women equally. Given the asymptomatic nature of the development of colon cancer and the
limited efficacy of treatments in its advanced stage, prediction of early carcinogenesis is crucial
in prevention of this deadly disease. One important task to this end is to understand the
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biological mechanisms underlying colon carcinogenesis, which includes distinguishing risk
factors and determining alterations in cell-cycle kinetics at various stages of the carcinogenic
process.

Although it is well known that environmental factors, most notably diet, have a significant
impact on the prevention of colon cancer (Cummings and Bingham, 1998), the underlying
mechanisms still remain relatively unexplored. The aim of this article is to present a new
statistical method to analyze data following an experiment conducted by nutrition researchers
at Texas A&M University, to study the interplay between diet and colon cancer at a cellular
level. A carcinogen-induced rat colon tumor system is used in order to investigate the
mechanisms by which diet modulates colon tumor development. The rats are fed particular
diets of interest for specific periods, exposed to a carcinogen that induces colon cancer and
subsequently euthanized for sample collection. The colon is then resected from these rats and
examined for responses of interest.

As a point of general statistical methodology, this article is concerned with hierarchical
functional data, where functions at their deepest possible level are correlated, rather than being
assumed independent as in the standard literature. The major source of novelty in our approach
stems from the fact that unlike the standard functional data analysis (FDA) literature (Ramsay
and Silverman, 1997) that focuses on the special case of one diet/treatment, one animal and
conditional independent functions with near-white noise, our functions are not necessarily
independent. In this article, we develop a new methodology to model and test such dependency.

There is a special architecture of the cells in the colon that is crucial to understanding and
modeling the underlying biological mechanisms of colon cancer (see Morris et al., 2002,
2003, for extensive statistical and biological details). Briefly, in the colon the cells are arranged
in patterns called crypts; finger-like invaginations down toward the muscle layers, the top of
which opens to the luminal surface of the intestine. Apoptosis (programmed cell death),
differentiation, proliferation, and p27 (a protein that inhibits the cell cycle), etc., can be
determined for each cell by staining them with an appropriate chemical. Measuring the levels
of these biomarkers from the histological sections of colonic tissues is a well-documented
technique for determining alterations in cell-cycle kinetics at various stages of the carcinogenic
process (Hong et al., 1997) and may be used to identify the underlying cellular mechanisms
that lead to eventual tumor development.

A crypt is typically 25-30 cells deep and is assayed from the bottom to the top of the crypt.
Progenitor (stem) cells are toward the bottom of the crypt, where daughter cells are generated
(cell proliferation) before moving up the crypt as they mature. While moving up the crypt
toward the lumen, cells lose their ability to divide, and are exfoliated into the lumen of the
intestine upon reaching the surface (Roncucci et al., 2000). Thus cells at different depths within
a crypt are at different stages of maturity, and the cell position with respect to its position within
a crypt is an important variable to consider in any subsequent analysis. We define the relative
cell position, X such that X = 0 at the bottom of each crypt and X = 1 at the topof each crypt,
i.e., for C cells in a given crypt, the ith cell is given a relative cell position (i - 1)/(C - 1).

Morris et al. (2002) previously conjectured the existence of a coordinated response at the crypt
level: biological response in one crypt may affect the response in neighboring crypts. In the
experiment they considered, the spatial locations of the crypts were not measured, which
rendered it impossible to understand the existence or extent of coordinated response. In our
experiment, we have measured the physical locations of the crypts, and thus obtained the mutual
distances among all crypts. Figure 1a shows the location of all the crypts, ≈20 per rat counted
for rats sacrificed at 24 hours after administration of a carcinogen. The circles represent the
physical location of the crypt in the tissue: the first crypt assayed is given a nominal location
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zero. The horizontal axis is the distance in microns. In this study, four groups of animals are
formed by combinations of diet (corn oil or fish oil) and butyrate supplementation (no or yes).

There are two special aspects to the data resulting from this experiment. First, the responses
are inherently functional in nature, as functions of cell position within each crypt, rather than
as discrete measurements. Second, the data resulting from this experiment have a natural
hierarchical structure: diet/treatment groups, rats within diet/treatment, crypts within rat, and
cells within crypts. While many important biological questions can be answered using these
data, for this article, we will focus on the p27 response. p27 is a protein that inhibits the cell
cycle by acting on the cyclin-dependent kinases, and thus is thought to be predictive of
apoptosis and cell proliferation. Our goal in this article is twofold; first, we would like to model
the mean p27 expression profiles taking into account the nested hierarchy: diet, rat, and crypt
levels, respectively. Second, and more importantly for our purposes, we wish to determine if
there is a coordinated response for p27, namely, how the level of p27 in the cells in a given
crypt is affected by neighboring crypts, as function of crypt distances. We call this phenomenon
crypt signaling.

If the observed functions at the various levels of the hierarchy could be well modeled using
simple parametric forms, then estimation could proceed using standard mixed model
methodology (Laird and Ware, 1982) accounting for the between-curve correlation imposed
by design (see Verbeke and Mohlenberghs, 2000). However, some of the p27 expression
profiles in our case cannot be well represented by simple parametric forms, leading us to look
for nonparametric/semiparametric alternatives. There are numerous related approaches in the
literature that deal with nonparametric estimation of replicated functions (e.g., Shi, Weiss, and
Taylor, 1996; Staniswalis and Lee, 1998; Wang, 1998; Fan and Zhang, 2000; Rice and Wu,
2001; Wu and Zhang, 2002; Liang, Wu, and Carroll, 2003; Wu and Liang, 2004) but limit their
scope to a single level of hierarchy. Grambsch et al. (1995) employed FDA-based methods to
model the crypt data structure similar to one we consider here, although they also considered
only one level of hierarchy. Brumback and Rice (1998) present a flexible smoothing spline
based method to model functional data from nested and crossed designs, but treat individual-
specific curves as fixed instead of random effects. Guo (2002) proposed a spline-based
functional mixed model accommodating a broad range of fixed and random effect structures.
Morris et al. (2003) developed a wavelet-based methodology for modeling functional data
occurring within a nested hierarchy. However, in their framework the functions at the lowest
level of the hierarchy (crypts) are assumed independent. Our work extends their methodology,
wherein we accommodate for more general between-curve covariance structures, although we
work with splines.

We handle the problem of nonparametric/semiparametric modeling using regression splines
at the diet, rat, and crypt levels, with a representation of the random effects that allows for
parsimonious modeling of the smoothing parameters. We exploit the link between P-spline
smoothing and mixed models as shown by Wand (2003). This allows us to use the mixed model
technology already in place for fitting penalized splines (Ngo and Wand, 2004) and also in a
Bayesian framework (Crainiceanu, Ruppert, and Wand, 2005). Also because of the hierarchical
nature of the data, dimension reduction of the covariance matrix of the spline coefficients is
important: we suggest simple methods for overcoming this problem. In addition, we allow for
the functions within a subject to be correlated by a parsimonious parametric representation of
the correlations among the functions, using a flexible parametric family of autocorrelation
functions. Although we will phrase much of our discussion in terms of the carcinogenesis
example, the methodology is applicable to model any data where the functional responses (e.g.,
longitudinal, times series profiles) are inherently correlated. The treatment is fully Bayesian
and uses Markov chain Monte Carlo (MCMC) techniques for inference.
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The remainder of the article is organized as follows. In Section 2, we introduce the Bayesian
model for hierarchical spatially correlated functional data. Section 3 deals with the estimation
of the parameters and random variables in the model. In Section 4, we show the application to
the colon carcinogenesis data and discuss model justifications and finally discussion and
conclusions are drawn in Section 5. All the technical details of the MCMC sampler and
simulations can be accessed via the Supplementary Materials.

2. Bayesian Hierarchical Spatially Correlated Functional Model
In this section, we lay out the basic modeling scheme for a spatially correlated functional model
for the colon carcinogenesis data and defer the specifics of estimation to the next section. As
previously described, our data consist of a nested hierarchy of functions. We have as responses:
functions for each crypt, as a function of the relative cell depth, and these functions are sampled
on rats within diet groups.

Suppose d = 1, …, D denotes the diet/treatment group, r = 1, …, Rd the rat, i = 1, …, mdr the
crypt and j = 1, …, ndri the cell within the crypt. Let the marker response (logarithm transformed
p27 in our case) from a given cell observed at location X = Xdrij in a crypt be denoted by
Ydrij (X). Let the mean function within a crypt be Θdri (X), which is corrupted in practice by
near white-noise/measurement error dri = dri (Xdrij, such that

(1)

Within each crypt, the errors εdri = (dri1…drindri)
T are assumed (for simplicity) to have mean

zero and covariance matrix . Here we set .

We will decompose the function ϴdri (·) into functions at the group/diet level, the rat/individual
level and the crypt level, and we will allow the crypt-level functions to be correlated, i.e., we
allow for crypt signaling. The way we do this is to define possibly different basis functions at
the three levels, and we model ϴdri (•) as

(2)

where  are any basis matrix (e.g., regression splines, B-splines, smoothing
splines, wavelets), and (ηd, ζdr; βdri) are the diet, rat, and crypt effects, respectively. Note that

; ;  and  are each (p3, p2, p1)-variate
vectors, where pi is dimension of the spline basis. One could use in principle any nonparametric/
semiparametric basis function to model the individual curves; we will lay out the theory here
using a flexible semiparametric modeling approach that of penalized regression splines
(Ruppert, Wand, and Carroll, 2003). Penalized regression splines are a flexible and easily
implemented methodology for fitting complex nonparametric models. We will revisit this issue
later in the article. Also, note here that we allow the different basis matrix (and hence different
amounts of smoothing) for each level of the hierarchy: diet, rats, and crypts. Although not
needed, this added flexibility will be assumed throughout this article.

With this formulation, the diet-level function is . and the rat-level function is
. In essence, we specify a hierarchical multilevel random effects model at each

level of the hierarchy. Using standard formulation, the random effects distributions are: βdri =
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Normal(0, Σ1) and ζdr = Normal(0, Σ2) both mutually independent. The diet-level effects ηd
are assumed to be fixed effects and are given a prior ηd = Normal(0, Σ3). Note here, with this
construction Σi, i = 1, 2, 3 are of very high dimension, and left unstructured, we are left with
the task of estimating a large number of parameters. Hence, as a practical and methodological
point of view, it is imperative we reduce the dimensionality of these matrices and we suggest
simple tools in the next section.

In standard analysis, the crypt-level functions,  are assumed independent, i.e., the crypt-
level random effects (βdri, βdrk) for crypts (i, k), respectively, are uncorrelated. In our
experiment, it is biologically plausible that the nearer the crypts (in spatial proximity), the
higher the relationship of the overall p27 expression. This phenomenon, termed crypt signaling,
translates as the functions within a rat being correlated across crypts. We model the correlation
between the crypts (i, k) as corr(βdri, βdrk) = ρ{Δdr(i, k), χd}, where ρ(•) is a family of
autocorrelation functions with a parameter vector χd possibly depending on diet and Δ is the
Euclidean distance between the crypts. Thus, we assume the correlation function between any
two crypts is of a parametric form and is only a function of the distance between them.

There are several choices available for the correlation function ρ(•) (see Stein, 1999 for an
extensive overview). In this article, we work with a parametric family of autocorrelation
functions, the Matérn family (Handcock and Stein, 1993; Stein, 1999). We will, however,
follow an alternate parameterization as in Handcock and Wallis (1999) where the isotropic
autocorrelation function has the general form

where κν(•) is the modified Bessel function of order ν. The range parameter, α, controls the
rate of decay of the correlation between observations as distance t increases. Large values of
α indicate that sites that are relatively far from one another are moderately (positively)
correlated. The parameter ν can be described as controlling the behavior of the autocorrelation
function for observations that are separated by small distances. The attractive feature of the
parameterization of Handcock and Wallis (1999) is that the interpretation of α is largely
independent of ν and this aids in our Bayesian computations as it reduces the posterior
correlation between the parameters.

Further, we also assume that the correlation function is stationary with respect to the distance
(crypt locations). The assumption of stationarity in the underlying spatial process is a viable
one in our case because the slice of the colon from where the crypts are assayed is only around
1-1.5 cm long.

Using the above formulation, let Σdr(χd>) be the correlation matrix formed from the terms
. Let , obtained by arranging the βdri's “column-

wise” with . Denote , a p1 mdr × 1 vector
obtained by concatenating the columns of . We assume  are independent of one another
and

(3)

where ⊗ is the Kronecker product. Thus we assume a separable covariance structure on our
crypt-level coefficients.
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3. Models and Estimation
Having laid out our model and distributional assumption in the previous section, this section
describes our modeling approach, which involves the use of regression splines that are
correlated at the crypt level.

3.1 Semiparametric Modeling of Hierarchical Functions
As mentioned before we will model the functions across rat and crypt level in a semiparametric
framework using regression splines although one could, in principle, use any basis function,
e.g., wavelets, B-splines, and smoothing splines. Regression splines are approximations to
functions typically using a low-order number of basis functions. A particularly appealing class
are low-order basis penalized regression splines, which achieve smoothness by penalizing the
sum of squares or likelihood by a penalty parameter. The penalty parameter and the fit using
penalized regression splines are easy to compute using mixed model technology (see Robinson,
1991; Coull, Ruppert, and Wand, 2001; Rice and Wu, 2001, among others). One nice feature
of penalized regression splines is that because they are often cast within the class of mixed
models methods, they are readily adapted to new problems.

For example, in a linear regression spline, the functional form of the crypt-level functions
 is taken as

where (βdri)T = (βdri, I, βdri, L, βdri, S)T are the regression coefficients with subscripts (I, L, S)
corresponding to intercept, linear, and spline parts, respectively. Here C(x) = {(x - κ1)+, …,
(x - κK1)+}, the κ's are knots and the subscripted plus sign denotes the positive part of the

argument. The regression coefficients  are now distributed as Normal(0,
Σ1). Extension to higher-order polynomials are trivial: we use quadratic regression splines in
our data analysis. Ruppert et al. (2003) give a detailed exposition for the number and placement
of knots and their corresponding penalization. For penalized regression splines, the placement
and number of knots is generally not crucial because the penalty takes care of overfitting
(Ruppert, 2002). In our application, the underlying functions at each stage of the hierarchy are
smooth, and hence a small number of knots suffice to capture all the local features of the data.
We take knots at equally spaced quantiles of the data.

The same construction is also used for rat- and diet-level functions. With the above
construction, we are left to estimating the covariance matrices at the diet, rat, and crypt levels
Σi, i = 1, 2, 3. Left unstructured, each of these matrices has p(p +1)/2 unique parameters,
respectively, where p is the dimension of matrices. Because in principle the number of knots
and hence p can be relatively large, there is an obvious need for dimension reduction of these
covariance matrices, a topic we take upin the next section.

3.2 Dimension Reduction of Covariance Matrices
In the implementation of our methodology for our particular example, the number p of the basis
functions is relatively small. At least in principle then we can allow the covariance matrices
(Σi) to be general. However, from both a practical and methodological point of view it is crucial
to lower the dimensionality of (Σi). There are a variety of approaches available to this end. For
example, Shi et al. (1996) achieve parsimony using a principal component decomposition of
the covariance matrix of random effects. In a different context, Daniels and Pourahmadi
(2002) provide a Bayesian method based on Cholesky decomposition.
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In our case, for our implementation we use truncated power series basis functions. Motivated
by a standard mixed-model representation of these basis functions for nonhierarchical settings,
see for example Ruppert et al. (2003, p. 108), our dimension reduction has a natural form. The
essential idea is to take the coefficients at the knots to be independent, while allowing the
polynomial part to have an unstructured covariance matrix. Thus, if pd is the degree of the

regression splines, then we take , where Σα is an unstructured pd × pd matrix

and K1 are the number of knots. A similar formulation is assumed for  and

, where K2 and K3 are the number of knots at the rat and diet levels,
respectively. Note that with this construction, the diet effects are considered mixed effects,

with the spline part of the function being random effects with covariance matrix  while
the polynomial part is given a prior Σc. We set Σc = cI, with c being set to a large number (say
100), thus serving as a noninformative vague prior on our fixed effect (polynomial) coefficients
of the diet-level functions.

3.3 Estimation of Autocorrelation Function
The Matérn class of autocorrelation family is indexed by parameters χ = (α, ν), which control
the range and the rate of decay (smoothness) of the correlation as a function of distance,
respectively. In this article, we will be estimating both the spatial parameters of interest, as it
is crucial in capturing the spatial correlation between the crypt-level functions. The choice of
prior distribution for the autocorrelation parameters is important and can lead to improper
posterior distributions (Stein, 1999). Possible choices of prior distribution include a uniform
prior on (0,dmax) for α, where dmax is the maximum distance between observed crypt locations.
A similar uniform prior limiting ν to be in (0, c) can be taken. The upper limit c is set so that
a wide variety of behaviors is possible. There is little difference in the autocorrelation function
for large values of ν. In fact, for large values of ν, it is diffcult to distinguish between
autocorrelation functions; thus limiting the magnitude of ν does not greatly influence the
behavior near the origin. However, none of these priors ensure any posterior conjugacy, so we
will be using a Metropolis-Hastings (MH) step within a Gibbs sampler to estimate these
parameters.

With this setup the set of model parameters and random variables to be estimated are

 To complete the model specifications, the

covariance matrices (Σa, Σb) are given Inverse Wishart priors and  are given
Inverse Gamma priors. The full conditionals for all the model parameters and random variables
are in proper form and a Gibbs sampler can be used to sample them, except for χd for which
we have to resort to a MH algorithm. The full conditionals for the MCMC sampling scheme
are given in the Supplementary Materials.

4. Application to Colon Carcinogenesis Data
4.1 Implementation of Method

We applied our method to the colon carcinogenesis experiment described in Section 1. In this
study, we have four diet groups formed by combinations of diet (corn oil or fish oil) and butyrate
supplementation (no or yes). There are three rats per diet group, on average around 20 crypts
per rat and average 26 cells per crypt, for a total of 6389 observations. The data are assayed at
four time points: 0, 12, 24, and 48 hours. We focus on the data assayed at the 24-hour time
point for the exposition of our methodology. The p27 responses (logarithm transformed) are
standardized to have overall mean 0 and variance 1. Recall that in our experiment we have the
exact physical mutual distances between the crypts measured as shown in Figure 1a. The circles
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represent the physical locations of the crypt in the tissue: the first crypt assayed is given a
nominal location of zero. The horizontal axis is the distance in microns. On the right-hand side
(Figure 1b) are shown the histograms of the mutual distance Δdr(i, k) between all pairs of crypts
less than 1000 microns apart. Our primary interest is to estimate the correlation function
between 5 and 200 microns.

After some initial data analysis, we assumed the following functional forms for the various
stages of hierarchy, namely, a quadratic penalized regression spline with 3 knots at the crypt
level, and quadratic penalized regression splines with 5 knots at the rat level and diet level.
Thus, our basis functions are of the form,

corresponding to diet level, rat level, and crypt level, respectively, and where m(•) and C(•) are
the polynomial and spline parts, respectively. In fitting the polynomials, we scaled the
polynomials to be approximately orthogonal and to have approximate variance 1, i.e.,

With this model we are essentially treating diet-level effects as mixed effects and the rat- and
crypt-level effects as random. We use the dimension reduction mentioned in Section 3.3,
leaving the covariance matrix of the polynomial terms as unstructured 3 × 3 matrices with an
Inverse Wishart prior and a structured diagonal matrix for the spline part. We set the degrees
of freedom for the Inverse Wishart prior to be p + 1 in order for it to suffciently diffuse around
the prior mean. We use a method of moments estimate as the prior mean for the Inverse Wishart
distribution. We also implemented our method without dimension reduction, i.e., using
unstructured covariance matrices with an Inverse Wishart prior and obtained very similar
answers. The hyperparameters for all Inverse Gamma priors are (1, 1), for them to be suffciently
noninformative. We used a single MCMC chain of 60,000 iterations, keeping every 10th
sample with a burn-in of 10,000 iterations. We ran parallel MCMC chains with diverse starting
values; these converged to the same range of values for each parameter. Algorithmic and
computational details of the MCMC implementation can be accessed via the Supplementary
Materials.

4.2 Results
Figure 2 shows the correlation functions as a function of crypt distance with the corresponding
95% credible interval. Our major interest is in the correlation between the crypt functions
between 25 and 200 microns. We see an interesting degree of correlation between the functions;
the correlation at 25 microns is 0.57 with 95% credible interval (0.44, 0.68). This observation
strongly supports our biological hypothesis of the existence of crypt signaling: the p27
expression in the crypts that are in closer proximity tend to have similar expression levels and
hence are highly correlated. The estimated (posterior mean) of the Matérn order, ν, is 0.11 with
95% credible interval (0.06, 0.17), significantly different from the classic autoregressive model
which corresponds to ν = 0.5.
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Figure 3a shows the posterior mean diet-level functions for the four diet groups: CO is corn
oil and FO is fish oil with or without (±) butyrate supplement. There seem to be some diet
differences especially between the CO + B diet and the rest of the diets. To investigate this
further, we plot the posterior mean along with 90% credible intervals of the pointwise
difference between the diet functions. Figure 3b shows the posterior pointwise differences
between the diet functions as a function of relative cell depth between two pairs of diets. We
find that the CO + B diet is significantly different from the others. As can also be seen from
Figure 3a that the p27 expression tends to be lower in the middle of the crypt. It has been
reported in the biological literature (Lloyd et al., 1999; Sgambato et al., 2000) that p27 happens
to be an inhibitor of cell proliferation, an increase in the number of cells as a result of cell
growth and cell division. The middle of the crypt is the proliferating zone and thus p27
expression tends to be lowest in this zone.

We also investigated the existence of an interaction between diet (fish oil/corn oil) versus
butyrate supplement (yes/no). We first computed the interaction function between diet and
butyrate supplement as a function of relative cell position, namely, fC+B - fC-B - fF+B + fF-B,
where for example the subscript “C + B” indicates corn oil with(+) butyrate and “C - B”
indicates corn oil without(-) butyrate. To gain strength by sharing of information, we then
averaged the interaction function within the middle tertile of the crypt, and constructed a 99%
credible interval for this average, the interval being from (0.08, 1.29). This suggests an
interaction in p27 expression between diet and butyrate supplementation in the middle tertile
of the crypt. We repeated these calculations without taking into account the functional
correlations, and found no such interaction. At least in this instance, taking into account the
functional correlation appears to lead to a somewhat different finding than when the correlation
is ignored. The actual plot is given in Figure 4, where it is seen that the interaction is confined
to the middle tertile.

4.3 Model Justifications
In response to some important concerns of the reviewers, we discuss in this section a few issues
about the model and the methodology. First, we justify some of the assumptions made in
constructing and implementing the model and perform simple checks if the model actually fits.

To understand the nature of the fit at the diet level, we did a marginal analysis, i.e., lumped all
the data together and fit the spline as if the data were independent. The resulting fits have
somewhat the same shape as what we have obtained, i.e., a smooth quadratic type surface. Of
course, as expected, the levels are different, because there are only three rats per diet. Also, as
a part of our exploratory analysis, we looked at many hundreds of crypts, and there is no visual
evidence that the functions vary rapidly in any one part of the crypt, i.e., there is no visual
evidence of the need for spatial adaptation. The functions were relatively smooth within the
crypts and a penalized spline with small number of knots sufficed to capture the variations of
the functions. In principle, however, it would be useful to adjust our method to allow for
spatially adaptive penalties. An example of this in the univariate smoothing context is given
by Baladandayuthapani, Mallick, and Carroll (2005), but in the present context this extra
flexibility does not appear to be needed.

In order to provide at least a partial check on whether the MCMC methodology is driven too
strongly by starting values, priors, run length, etc., we performed the following simple
frequentist pseudolikelihood analysis. For each rat, we fit a marginal cubic regression and
formed the residuals from this cubic regression: visually and with simple spline fits, none of
the rats exhibited vast departures from the cubic regression. Within each crypt, we selected 10
such residuals, equally spaced based on cell position. Thus, for example, if there were 28 cells
in the crypt, we selected the cell numbers (1, 4, 7, 10, 13, 16, 19, 22, 25, 28). These residuals
are linearly independent and, assuming a cubic regression at the rat level, their distribution is

Baladandayuthapani et al. Page 9

Biometrics. Author manuscript; available in PMC 2009 September 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



jointly normally distributed with mean zero and a covariance matrix depending solely upon
the error variance , the Matérn shape and range parameters ν and α, along with the six

parameters in the crypt-level covariance matrix . To parameterize Σa, we
used the construction of Daniels and Pourahmadi (2002), namely, that

In this construction,  ≥ 0 while (ζ1, ζ2, ζ3) are unconstrained. We then maximized
the pseudolikelihood in these parameters. We obtained parameter estimates  and

, very similar to our posterior mean estimates of 0.11 and 0.96, respectively, with
estimated correlation at 25 microns of 0.63. Thus this analysis shows no evidence that our
MCMC methods are being stuck far from reasonable values.

In addition, we redid our model fits for the data below the middle of the crypt and above the
middle of the crypt. Of course, the answers changed, but there was no major evidence that the
correlation functions were vastly different, so that stationarity of the correlation surface seems
a reasonable assumption in our context. As part of that process, we looked at the residuals of
cubic fits at the crypt level, via q - q plots, and they appear to be roughly normally distributed.

One of the referees raised a concern that our separable covariance model requires the Matérn
functions to be independent of cell depth. To test whether this is reasonable, we repeated the
pseudolikelihood method for the bottom third, middle third, and top third of the crypts, using
6 residuals from each crypt rather than 10. The pseudolikelihood estimates for ν were all
between 0.09 and 0.16, with none being significantly different via a likelihood ratio test from
values in this range. The estimated functions are given in Figure 5. The maximum difference
in the correlations in the range of 25-200 microns is approximately 0.15, and when the
calculations are done at the same values of ν = 0.15, the maximum difference is 0.10. Thus,
there appears to be no substantial evidence that the correlation surface of the functions depends
upon cell depth.

5. Discussion and Conclusions
Motivated by an application in colon carcinogenesis, we have proposed a Bayesian method to
model the spatial correlation in hierarchical functions. The individual functions at each stage
of the hierarchy are modeled semiparametrically using regression splines, although of course
one could use any nonparametric/semiparametric basis functions. The data we model here
consist of profiles of p27, an important cell-cycle mediator that changes in early carcinogenesis,
nested within a two-stage hierarchy. Unlike the standard literature, our functions at the lowest
level of the hierarchy (crypts) are not conditionally independent. Thus, as a point of general
statistical methodology we require an analysis that allows for the functions to be correlated at
the deepest level of the hierarchy. We model the spatial correlation between the functions
parametrically using a flexible family of the autocorrelation functions, namely, the Matérn
family. Our analysis gives new insights into the structure of p27 expression in early colon
carcinogenesis. Our results show considerable correlation between the colonic crypt functions
and help establish the existence of the biological phenomenon that we call crypt signaling.

With many knots, fitting an unstructured model for the crypt-level covariance matrix Σ1 clearly
violates the idea of penalization, and could reasonably be seen as the wrong way to attack the
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problem: it is trying to model how the spline regression coefficients vary in a high-dimensional
nonparametric way. Our low-dimensional approximation method enforces penalization, at the
risk of potential model misspecification, and is clearly not the correct approach at the most
general level. This being said, we do feel that our method has great value in practice, and the
formulation of the penalization that we use fits naturally into the literature of penalized spline
smoothing.

In general, a compromise is needed, although in our data example both extremes gave similar
fits. The compromise that we think will work is, in one way or another, to regularize the
estimation of Σ1: our method is one simple and direct form of this. The regularization that
allows for penalization while being flexible seems to us best placed (in the Bayesian
framework) on variable selection methods for covariance matrix estimation, as in for example
Wong, Carter, and Kohn (2003). Implementing such covariance selection methods in the
complex context of our example is an interesting and challenging problem.

As we mentioned before, our aim in the article is twofold. First, model the mean functions at
each level of the hierarchy: diet, rat, and crypt level in a flexible manner. Second, model the
correlation between the random functions at the deepest level of the hierarchy, i.e., crypt level,
in a spatial manner. We believe our computationally intensive Bayesian treatment of the
problem has many advantages. First, our Bayesian hierarchical modeling exercise allows us to
model both the mean functions and correlation function in a unified framework, such that the
uncertainty in the estimation process is accounted for and propagated through, at each level of
the hierarchal model. Secondly, having run the MCMC chain, a number of inferential questions
can be answered in a coherent manner using the posterior distribution (samples) such as exact
confidence statements regarding the mean and correlation function via Bayesian credible
intervals. Although our treatment of the problem is Bayesian, we certainly agree that there are
simpler devices like the marginal pseudolikelihood analysis presented in Section 4.3 available
to answer the questions we pose here. For the application we consider here, these devices might
have to be tailored for the level of detail of inference we achieve here. For example, modeling
the hierarchical functions flexibly using splines, accounting for possibly different number of
replicates at each level of the hierarchy and treating the functions as random effects rather than
fixed effects. Taking into account these observations, these modified devices are no simpler
than the approach we follow here. We also note that we did a small simulation study to evaluate
the operating characteristics of our proposed methodology. We found that the method
performed well on simulated data and the estimated correlation function had reasonable
frequentist properties. The details of the simulation study can be accessed via the
Supplementary Materials.

We have also developed a MATLAB software suite for implementing the methods we describe
in the article. The code will be available for download through the first author's website at
http://odin.mdacc.tmc.edu/~veera/. The directory contains stepby stepdetails about
implementing the MCMC computations we adopt here. The code contains default settings
needing minimal input from an average user like starting values generated using method of
moments approach. The easy to use code also allows an expert user to change the settings like
number of knots for the spline, starting values and priors and hyperparameters.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(a) The vertical axes are the individual rats and the horizontal axes are the distances in microns
and circle represent the physical location of the crypts for all rats assayed at 24-hour time point.
(b) Histogram of the mutual crypt distances (|△|) for all rats assayed at 24-hour time point.
Plotted are the distances less than 1000 microns.
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Figure 2.
Posterior correlations as a function of crypt distance with 95% error bars. The vertical axis is
the correlation and the horizontal axis is the distance between the crypts (△).
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Figure 3.
(a) Shown here are the posterior marginal mean functions for the four diet groups. The
horizontal axis is the relative cell depth. CO is corn oil and FO is fish oil with or without (±)
butyrate supplement. (b) Posterior mean along with 90% credible intervals of the pointwise
difference between the diet functions.
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Figure 4.
Posterior interaction function between diet and butyrate as a function of relative cell depth
using (log)p27 response (a) accounting for correlation and (b) assuming independence between
crypts. Also shown are the 95% Bayesian credible intervals.
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Figure 5.
Plot of correlation function estimates using pseudolikelihood analysis. All the data (solid line),
using only the toptertile of the crypts (dashed line), the middle tertile (dash dotted) and bottom
tertile (dotted line).
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