
Bayesian HMM clustering of x-vector sequences (VBx)
in speaker diarization: theory, implementation and

analysis on standard tasks

Federico Landinia,1,∗, Ján Profantb,1, Mireia Dieza, Lukáš Burgeta
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Abstract

The recently proposed VBx diarization method uses a Bayesian hidden

Markov model to find speaker clusters in a sequence of x-vectors. In this work

we perform an extensive comparison of performance of the VBx diarization

with other approaches in the literature and we show that VBx achieves superior

performance on three of the most popular datasets for evaluating diarization:

CALLHOME, AMI and DIHARDII datasets. Further, we present for the first

time the derivation and update formulae for the VBx model, focusing on the

efficiency and simplicity of this model as compared to the previous and more

complex BHMM model working on frame-by-frame standard Cepstral features.

Together with this publication, we release the recipe for training the x-vector

extractors used in our experiments on both wide and narrowband data, and

the VBx recipes that attain state-of-the-art performance on all three datasets.

Besides, we point out the lack of a standardized evaluation protocol for AMI

dataset and we propose a new protocol for both Beamformed and Mix-Headset

audios based on the official AMI partitions and transcriptions.
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CALLHOME, AMI

1. Introduction

In recent years, speaker diarization works are proliferating. This is due to two

main factors: first, new datasets and challenges are providing new benchmarks

that bring the interest of the community and foster healthy competition. The

most relevant examples are the DIHARD series addressing diarization in a wide

variety of challenging domains [1, 2], CHIME6 [3] providing a very demanding

multi-channel benchmark for diarization, or the recent VoxConverse [4] explor-

ing diarization on several kinds of YouTube videos. Second, the success of the

new end-to-end paradigm for speaker recognition is starting to be adopted for

diarization tasks. Unlike standard diarization approaches which normally deal

with diarization tasks using oracle voice activity detection (VAD), end-to-end

diarization systems deal also with the VAD task. The end-to-end approaches

have the advantage of being able to cope with overlapped speech [5, 6, 7]. Even

if these methods are still limited, e.g. they are restricted to scenarios with a

fixed number of speakers, and mainly tested on artificially created short record-

ings [5, 8], and mostly do not achieve state-of-the-art results [9], this research

line is very promising and indeed prolific.

However, due to the several difficulties that end-to-end approaches still have

to overcome for diarization tasks, in recent speaker diarization evaluations the

best performing systems are based on a more conventional approach, the clus-

tering of x-vectors [10, 11, 12].

In this paper, we show how our current VBx diarization approach, which

clusters x-vectors using a Bayesian hidden Markov model (BHMM) [13], com-

bined with a ResNet101 x-vector extractor [14] achieves superior results on

CALLHOME [15], AMI [16] and DIHARDII [2] datasets.

Besides establishing new baselines for these representative datasets, we per-

form a thorough analysis comparing our results to the best numbers found in

the literature. In the case of AMI dataset, this proved to be a challenging task.
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Most works published on AMI data choose their own partition, references and

audio setup for evaluation, making the comparison between works very com-

plicated. We identified works that were presenting superior performance and

reproducible setups and we evaluated our system in their respective setups. In

this paper, we further provide our own evaluation protocol, which comprises

lists for train/dev/eval partition, references and audios. Our setup is based on

the official partition of AMI corpus. We believe that this setup could serve as

a new standard facilitating a fair comparison of diarization systems on AMI

corpus.

The VBx diarization approach has been presented before [17], but the paper

did not provide any derivation of update formulae, as it was introduced merely as

a special case and simplification of its big-brother BHMM with eigen-voice priors

[18]. The more complex BHMM model from [18] operates directly on frame-

by-frame standard Cepstral features. It is based on a Bayesian HMM where

states correspond to speakers and transitions correspond to speaker turns. To

robustly model speaker distributions it uses an i-vector like model [19, 20]: the

distribution of each speaker is represented by a Gaussian mixture model (GMM).

Such GMM is constrained to live in a low-dimensional eigen-voice subspace and

each speaker can be therefore robustly represented by a fixed-length i-vector

like latent variable.

The VBx used in this paper is based on a similar BHMM model and a

similar idea for modeling speaker distributions. However, it is used for directly

clustering x-vectors, which allows to use a much simpler probabilistic linear

discriminant analysis (PLDA) based model for modeling speaker distributions.

The model is essentially the same as the one in [18] but using only a single

Gaussian component to model speaker distributions. In fact, when VBx was

introduced in [17], it was suggested that the same model and the same inference

from the BHMM model working on a frame-basis [18] could be reused just by

replacing the GMMs that modeled the speaker-specific distributions by single

Gaussians. However, naively re-implementing the algorithm used in [18] is not

effective as the design changes made to obtain the VBx model lead to significant
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simplification of the inference formulae and derivations. Therefore, in this paper,

we present the same derivations and update formulae as in [18], but now for

the simpler VBx. This derivation should be much easier to follow for readers

interested in this specific model. It also allows us to elaborate on how to make

this simplified model much more computationally efficient.

All our code is made publicly available: the recipe for training the x-vector

extractor (same architecture for both 8 kHz and 16 kHz), the trained extractors

and the pipeline for applying BHMM diarization using agglomerative hierar-

chical clustering (AHC) as initialization https://github.com/BUTSpeechFIT/

VBx.

2. VBx Diarization model

This section introduces the VBx model which is used in all the experiments

in this paper. The derivation of the inference formulae is also provided. While

this derivation is essentially the same as the one that can be found in [18], it

only addresses the simple model used in this paper. In fact, the following text

is the same as Section II from [18], rewritten and simplified to address only the

model considered in this paper. We intentionally reused the text, structure and

symbols from the mentioned paper for the following reasons: we want to make

the treatment of the model here as self-contained as possible and we would like

to facilitate the comparison of the simplified model with the more complex full

model proposed in [18].

2.1. Model overview

As described in the previous section, we expect a sequence of x-vectors ex-

tracted from consecutive short segments of speech as input to our diarization

method, which aims to cluster these x-vectors according to their speaker iden-

tity.

Our diarization model assumes that the input sequence of x-vectors is gen-

erated by an HMM with speaker-specific state distributions. To facilitate the
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discrimination between speakers, the speaker- (or HMM state-) specific distri-

butions are derived from a PLDA [21] model pre-trained on a large number of

speaker-labeled x-vectors. More details on how the speaker-specific distributions

are derived from the PLDA are given in section 2.3. For now, it is sufficient to

note that the speaker distributions will be represented only by a latent vector

ys of the same dimensionality as the x-vectors.

We use an ergodic HMM with one-to-one correspondence between the HMM

states and the speakers, where transitions from any state to any state are pos-

sible. Note that our model does not consider any overlapped speech as each

speech frame is assumed to be generated from an HMM state corresponding to

only one of the S speakers. The transition probabilities can be used to discour-

age too frequent transitions between speakers in order to reflect speaker turn

durations of a natural conversation. More details on setting and learning the

transition probabilities can be found in section 2.2.

Let X = {x1,x2, ...,xT } be the sequence of observed x-vectors and Z =

{z1, z2, ..., zT } the corresponding sequence of discrete latent variables defining

the hard alignment of x-vectors to HMM states. In our notation, zt = s indicates

that the speaker (HMM state) s is responsible for generating observation xt.

To address the speaker diarization (SD) task using our model, the speaker

distributions (i.e. the vectors ys) and the latent variables zt are jointly estimated

given an input sequence X. The solution to the SD task is then given by the most

likely sequence Z, which encodes the alignment of speech frames to speakers.

2.2. HMM topology

The HMM topology and transition probabilities model the speaker turn du-

rations. The HMM model is ergodic (transitions between all states are possi-

ble). Figure 1 shows an example of the HMM topology for only S = 3 speakers.

The transition probabilities are set as follows: we transition back to the same

speaker/state with probability Ploop. This probability is one of the tunable pa-

rameters in the model. The remaining probability (1−Ploop) is the probability of

changing speaker, which corresponds to the transition to the non-emitting node
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in Figure 1. From the non-emitting node, we immediately transition to one of

the speaker states with probability πs.
2 Therefore, the probability of leaving

a speaker and entering another speaker s is (1 − Ploop)πs. To summarize, the

probability of transitioning from state s′ to state s is

p(s|s′) = (1− Ploop)πs + δ(s = s′)Ploop, (1)

where δ(s = s′) equals 1 if s = s′ and is 0 otherwise.

The non-emitting node in Figure 1 is also the initial state of the model.

Therefore, the probabilities πs also control the selection of the initial HMM

state (i.e. the state generating the first observation). These probabilities πs

are inferred (jointly with the variables ys and zt) from the input conversation.

Thanks to the automatic relevance determination principle [22] stemming from

our Bayesian model, zero probabilities will be learned for the πs corresponding

to redundant speakers, which effectively drops such speakers from the HMM

model. Typically, we initialize the HMM with a larger number of speakers (see

section 3.2) and we make use of this behavior to drop the redundant speakers

(i.e. to estimate the number of speakers in the conversation).

s1

s2s3

1− Ploop

1− Ploop

1− Ploop

Ploop

Ploop
Ploop

π1

π2

π3

Figure 1: HMM model for 3 speakers with 1 state per speaker, with a dummy non-emitting

(initial) state.

2For convenience, we allow to re-enter the same speaker as it leads to simpler update

formulae.
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2.3. Speaker-specific distributions

The speaker (HMM state) specific distributions are derived from a PLDA

which is a standard model used for comparing x-vectors in speaker verification

[21]. Here, only a simplified variant of PLDA is considered, which is often

referred to as two-covariance model [23]. This model assumes that the dis-

tribution of x-vectors specific to speaker s is Gaussian N (x̂t; m̂s,Σw), where

Σw is the within-speaker covariance matrix shared by all speaker models, and

m̂s is the speaker-specific mean. Speaker means are further assumed to be

Gaussian distributed N (m̂s; m,Σb), where m is the global mean and Σb is the

between-speaker covariance matrix. In general, Σw and Σb can be full covari-

ance matrices. However, to further simplify and speed up the inference in our

model, we assume that the x-vectors are linearly transformed into a space where

Σb is diagonal and Σw is identity. This can be achieved as follows:

Let X̂ be the matrix of original (untransformed) x-vectors that the param-

eters of the original PLDA model m, Σw and Σb were estimated on. The

x-vectors that are used as input for the diarization algorithm are obtained as

X = (X̂−m)E (2)

where E is the transformation matrix which transforms the x-vectors into the

desired space. This matrix can be obtained by solving the standard generalized

eigen-value problem

ΣbE = ΣwEΦ (3)

where E is the matrix of eigen-vectors and Φ is the diagonal matrix of eigen-

values, which is also the between-speaker covariance matrix in the transformed

space. Note that the eigen-vectors E are, in fact, bases of linear discriminant

analysis (LDA) estimated directly from the PLDA model parameters. Therefore,

if we construct Φ only usingR largest eigen-values and assemble E only using the

corresponding eigen-vectors, (2) further performs LDA dimensionality reduction

of x-vectors to R-dimensional space. We use R as one of the hyper-parameters

of the VBx method. In equation (2), we have also subtracted the global mean

from the original x-vectors to have the new set of x-vectors zero-centered.
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In summary, the PLDA model compatible with the new set of x-vectors X

suggests that speaker-specific means are distributed as

p(ms) = N (ms; 0,Φ). (4)

For convenience and for the compatibility with the notation introduced in

[18], we further re-parametrize the speaker mean as

ms = Vys, (5)

where diagonal matrix V = Φ
1
2 and ys is a standard normal distributed random

variable

p(ys) = N (ys; 0, I). (6)

The speaker-specific distribution of x-vectors is

p(xt|ys) = N (xt; Vys, I), (7)

where I is identity matrix.

In our diarization model, we use (7) to model the speaker (HMM state)

distributions. This distribution is fully defined only in terms of the speaker

vector ys (and the pre-trained matrix V shared by all the speakers). The

speaker vector ys is treated as a latent variable with standard normal prior (6),

which is why the BHMM model is called Bayesian3. This way, the full PLDA

model is incorporated into the BHMM in order to properly model between- and

across-speaker variability. Therefore, the model is capable of discriminating

between speakers just like PLDA model when used for speaker verification.

2.4. Bayesian HMM

To summarize, our complete model for SD is a Bayesian HMM, which is

defined in terms of the state-specific distributions (or so-called output probabil-

ities)

p(xt|zt = s) = p(xt|s) = p(xt|ys) (8)

3However, unlike other “Fully Bayesian” HMM implementations [24, 25], we do not impose

any prior on the transition probabilities.
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described in section 2.3 and the transition probabilities

p(zt = s|zt−1 = s′) = p(s|s′) (9)

described in section 2.2. By abuse of notation, p(z1|z0) will correspond to the

initial state probability p(z1=s) = πs in the following formulae.

The complete model can be also defined in terms of the joint probability of

the observed and latent random variables (and their factorization) as

p(X,Z,Y) = p(X|Z,Y)p(Z)p(Y) (10)

=
∏
t

p (xt|zt)
∏
t

p (zt|zt−1)
∏
s

p (ys) ,

where Y = {y1,y2, ...,yS} is the set of all the speaker-specific latent variables.

The model assumes that each x-vector sequence corresponding to an input

conversation is obtained using the following generative process:

for s = 1..S do

ys ∼ N (0, I)

for t = 1..T do

zt ∼ p(zt|zt−1)

xt ∼ p(xt|zt)

2.5. Diarization inference

The diarization problem consists in finding the assignment of frames to

speakers, which is represented by the latent sequence Z. In order to find the

most likely sequence Z, we need to infer the posterior distribution p(Z|X) =∫
p(Z,Y|X)dY. Unfortunately, the evaluation of this integral is intractable,

and therefore, we will approximate it using variational Bayes (VB) inference

[22], where the distribution p(Z,Y|X) is approximated by q(Z,Y). We use

the mean-field approximation [22, 20] assuming that the approximate posterior

distribution factorizes as

q(Z,Y) = q(Z)q(Y). (11)
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The particular form of the approximate distributions q(Z) and q(Y) directly

follows from the optimization described below.

We search for such q(Z,Y) that minimizes the Kullback-Leibler divergence

DKL(q(Z,Y)‖p(Z,Y|X)), which is equivalent to maximizing the standard VB

objective – the evidence lower bound objective (ELBO) [22]

L (q(X,Y)) =Eq(Y,Z)

{
ln

(
p(X,Y,Z)

q(Y,Z)

)}
. (12)

Using the factorization (11), the ELBO can be split into three terms

L̂ (q(X,Y)) = FAEq(Y,Z) [ln p(X|Y,Z)]

+ FBEq(Y)

[
ln
p(Y)

q(Y)

]
+ Eq(Z)

[
ln
p(Z)

q(Z)

]
,

(13)

where the first term is the expected log-likelihood of the observed x-vector

sequence X and the second and third terms are Kullback-Leibler divergences

DKL(q(Y)‖p(Y)) and DKL(q(Z)‖p(Z)) regularizing the approximate posterior

distributions q(Y) and q(Z) towards the priors p(Y) and p(Z). In (13), we

modified the ELBO by scaling the first two terms by constant factors FA and

FB .4 The theoretically correct values for these factors leading to the original

ELBO (13) are FA = FB = 1. However, choosing different values gives us finer

control over the inference, which can be used to improve diarization perfor-

mance. For further details on the specific effects these scaling factors have in

the inference, we refer the reader to [18].

As described above, we search for the approximate posterior q(Z,Y) that

maximizes the ELBO (13). In the case of the mean-field factorization (11),

we proceed iteratively by finding the q(Y) that maximizes the ELBO given

fixed q(Z) and vice versa. This section provides all the formulae necessary

for implementing these updates or for understanding our open-source Python

implementation5. In this section, we do not give any details on deriving the

4Note that similar scaling factor for the third term would be redundant as only the relative

scale of the three factors is relevant for the optimization.
5http://speech.fit.vutbr.cz/software/vb-diarization-eigenvoice-and-hmm-priors
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update formulae. For the readers interested in the derivations, we prepared a

technical report [26].

2.5.1. Updating q(Y)

Given a fixed q(Z), the distribution over Y that maximizes the ELBO is

q∗(Y) =
∏
s

q∗(ys), (14)

where the speaker-specific approximate posteriors

q∗(ys) = N
(
ys|αs,L

−1
s

)
(15)

are Gaussians with the mean vector and precision matrix

αs =
FA

FB
L−1s

∑
t

γtsρt (16)

Ls = I +
FA

FB

(∑
t

γts

)
Φ. (17)

where

ρt = VTxt (18)

In this update formula, γts = q(zt = s) is the marginal approximate posterior

derived from the current estimate of the distribution q(Z) (see below), which

can be interpreted as the responsibility of speaker s for generating observation

xt (i.e. defines a soft alignment of x-vectors to speakers).

If we compare these update formulae to the corresponding ones from the

more complex BHMM model in [18], it can be seen that in [18], Φt is a frame-

dependent full-matrix computationally expensive to calculate. In contrast, Φ

here does not depend on time frame t and, as pointed out in section 2.3, it is

a diagonal matrix. Therefore also matrix Ls is diagonal, and its inversions and

application in (16) become trivial.

2.5.2. Updating q(Z)

We never need to infer the complete distribution over all the possible align-

ments of observations to speaker q(Z). When updating q(Y) using (16) and (17),
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we only need the marginals γts = q(zt = s). Therefore, when updating q(Z),

we can directly search for the responsibilities γts that correspond to the distri-

bution q∗(Z) maximizing the ELBO given a fixed q(Y). Similar to the stan-

dard HMM training, such responsibilities can be calculated efficiently using a

forward-backward algorithm as

γts =
A(t, s)B(t, s)

p(X)
(19)

where the forward probability

A(t, s) = p̄(xt|s)
∑
s′

A(t− 1, s′)p(s|s′) (20)

is recursively evaluated by progressing forward in time for t=1..T starting with

A(0, s) = πs. Similarly,

B(t, s) =
∑
s′

B(t+ 1, s′)p̄(xt+1|s′)p(s′|s) (21)

is the backward probability evaluated using backward recursion for times t =

T..1 starting with B(T, s) = 1.

p(X) =
∑
s

A(T, s) (22)

is the total forward probability and

log p(xt|s) =FA

[
αT

s ρt −
1

2
tr
(
Φ
[
L−1s + αsα

T
s

])
− D

2
ln 2π − 1

2
xT
t xt

]
=FA

[
αT

s ρt −
1

2
φT
[
λs + α2

s

]
− D

2
ln 2π − 1

2
xT
t xt

]
(23)

is the expected log likelihood of observation xt given a speaker s taking into

account its uncertainty q(ys). The second line of (23) corresponds to an efficient

evaluation of this term, where vector φ is the diagonal of the diagonal matrix

Φ, vector λ is the diagonal of the diagonal matrix L−1s and the square in α2
s is

element-wise. Note also that the terms −D
2 ln 2π − 1

2xT
t xt in (23) are not only

constant over VB iterations, but also constant for different speakers s. As a

consequence, contribution of these terms cancels in (19) and therefore does not

have to be calculated at all.
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2.5.3. Updating πs

Finally, the speaker priors πs are updated as maximum likelihood type II

estimates [22]: Given fixed q(Y) and q(Z), we search for the values of πs that

maximize the ELBO (13), which gives the following update formula

πs ∝ γ1s +
(1−Ploop)πs

p(X)

T∑
t=2

∑
s′

A(t−1, s′)p(xt|s)B(t, s) (24)

with the constraint
∑

s πs = 1. As described in section 2.2, this update tends

to drive the πs corresponding to “redundant speakers” to zero values, which

effectively drops them from the model and selects the right number of speakers

in the input conversation.

2.5.4. Evaluating the ELBO

The convergence of the iterative VB inference can be monitored by evaluating

the ELBO objective. For the Bayesian HMM, the ELBO can be efficiently

evaluated (see page 95 of [25]) as

L̂ = ln p(X) +
∑
s

FB

2

(
R+ ln |L−1s | − tr(L−1s )−αT

s αs

)
, (25)

where R is the dimensionality of the x-vectors. Note, that since Ls is a diagonal

matrix, ln |L−1s | can be calculated just as the sum of the log of the elements in

the diagonal. This way of evaluating the ELBO is very practical as the term

p(X) from (22) is obtained as a byproduct of “updating q(Z)” using the forward-

backward algorithm. On the other hand, (25) allows to evaluate the ELBO only

right after the q(Z) update. It does not allow to monitor the improvement in

ELBO obtained form q(Y) or πs updates, which might be useful for debugging

purposes. Therefore, we also provide the derivation formulae for the explicit

evaluation of all three ELBO terms from (13) in [26].

The complete VB inference consisting of iterative updates of q(Y), q(Z) and

parameters πs is summarized in the following algorithm:
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Initialize all γts as described in section 3.2.

repeat

Update q(ys) for s=1..S using (15)

for t = 1..T do

Calculate A(t, s) for s=1..S using (20)

for t = T..1 do

Calculate B(t, s) for s=1..S using (21)

Update γts for t=1..T, s=1..S using (19)

Update πs for s=1..S using (24)

Evaluate ELBO L̂ using (25)

until convergence of L̂

3. Experimental setup

3.1. x-vector extractor and PLDA

As described in the previous section, VBx diarization relies on a pre-trained

x-vector extractor and a PLDA model. Since we report results on both 16 kHz

recordings (DIHARD and AMI) and 8 kHz telephone recodings (CALLHOME),

we train two x-vector extractors and the corresponding PLDA models, one

for each condition. The complete PyTorch [27] recipe for x-vector extractor

and PLDA training is available at https://github.com/phonexiaresearch/

VBx-training-recipe.

3.1.1. x-vector extractor architecture

Both 8 kHz and 16 kHz x-vector extractors use the same deep neural network

architecture based on ResNet101 [14, 28]. In both cases, the neural network

inputs are 64 log Mel filter bank features extracted every 10 ms using 25 ms

window. The two x-vector extractors differ only in the frequency ranges spanned

by the Mel filters, which are 20-7700 Hz and 20-3700 Hz for the 16 kHz and

8 kHz systems, respectively. The x-vector extractor architecture is summarized

in Table 1. The first 2D convolutional layer operates on the 64 × T matrix

14

https://github.com/phonexiaresearch/VBx-training-recipe
https://github.com/phonexiaresearch/VBx-training-recipe


of log Mel filter bank features, where T is the number of frames in the input

segments. For training, we use 4 s segments (i.e. T = 400). The following layers

are standard ResNet blocks [14]. As in the original x-vector architecture [29],

the statistical pooling layer is used to aggregate information over the whole

speech segment (i.e. mean and standard deviation of activations is calculated

over the time dimension). After the pooling layer, a linear transformation is

used to reduce the dimensionality to obtain the 256-dimensional x-vectors.

Table 1: The structure of the proposed ResNet101 architecture. The first dimension of

the input shows the size of the filterbank and the second dimension indicates the number of

frames.

Layer Structure Stride Output

Input - - 64×T×1

Conv2D-1 3× 3, 32 1 64×T×32

ResNetBlock-1
[ 1×1,32
3×3,32
1×1,128

]
× 3 1 64×T×128

ResNetBlock-2
[ 1×1,64
3×3,64
1×1,256

]
× 4 2 32×T/2×256

ResNetBlock-3
[1×1,128
3×3,128
1×1,512

]
× 23 2 16×T/4×512

ResNetBlock-4
[ 1×1,256
3×3,256
1×1,1024

]
× 3 2 8×T/8×1024

Statistics Pooling - - 16× 1024

Flatten - - 16384

Linear - - 256

The x-vector extractors are trained using stochastic gradient descent and

additive angular margin loss [30] with speaker identities as class labels. We

ramp-up the margin during the first two epochs (pass through the training

data) and then train the neural network for another epoch with fixed margin

m = 0.2.

3.1.2. x-vector extractor training data

The 16 kHz x-vector extractor is trained using data from VoxCeleb1 [31]

(323 h of speech from 1211 speakers), VoxCeleb2 [32] (2290 h, 5994 speakers) and

CN-CELEB [33] (264 h, 973 speakers). The energy-based VAD from Kaldi [34]
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toolkit is used to remove silence frames. Speakers with less than 2 recordings are

discarded. Further, we drop utterances with less than 4 seconds of speech. This

way, about 4% of speech data is discarded. Data augmentation is performed the

same way as in the SRE16 Kaldi recipe [35]. This way, we obtain four additional

copies of the data with artificially added noise, music or reverberation. Training

examples are randomly sampled from the training data. This way we extract

about 89 million examples (original and augmented 4s segments), which cover

more than 60% of the speech from the training corpora.

To train the 8 kHz x-vector extractor, the same data sets are used as in the

16 kHz case. Additionally, the following data sets were used: Mixer collection

(NIST SRE 2004-2010, 3805 h, 4254 speakers), Switchboard (1170 h, 2591 speak-

ers) and DeepMine [36] (688 h, 1858 speakers). Any wide-band data used were

downsampled to 8 kHz and passed through a telephone codec. The same data

selection and augmentation was used as for the 16 kHz case. Note that about

30% of DeepMine data were discarded as this dataset contains many utterances

with less than 4 seconds of speech (mostly phrases for text-dependent speaker

verification).

3.1.3. PLDA training

The 8 kHz and 16 kHz PLDA models are trained on the same data as the

corresponding x-vector extractors. For this purpose, one x-vector is extracted

from each individual recording (e.g. one cut from a YouTube video in the case

of the VoxCeleb data). The length of such recordings can range from 4 s to

several minutes. Note that the PLDA trained on such x-vectors is later used in

VBx to operate on x-vectors extracted from much shorter 1.5 s segments. This

mismatch, however, does not seem to negatively affect diarization performance.

3.2. Diarization pipeline

To perform the diarization, each input recording is first split into speech

segments according to the oracle VAD and the segments shorter than 0.1 s are

discarded. From these segments, x-vectors are extracted every 0.25 s from over-
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lapping sub-segments of 1.5 s (or less than 1.5 s for the last sub-segments or

shorter segments). The x-vectors are centered, whitened and length normalized

[37] (which is also done for the PLDA training data).

As described in section 2.2, VBx diarization needs an initial assignment of

x-vectors to speakers. For this purpose, the x-vectors are pre-clustered using

AHC to obtain the initial speaker labels. The only input to the AHC is the

matrix of cosine similarities between all pairs of x-vectors. The threshold used

as the stopping criterion for AHC is tuned to under-cluster so that the following

VBx has more freedom to search for the optimal results and converge to the

right number of speaker models6. Nevertheless, the same threshold is used for

all our results on all the datasets.

In the final step, the x-vectors are further clustered using the VBx model and

the inference described in section 2. For this step, the x-vector dimensionality

is further reduced to 128 dimensions (see parameter R in section 2.3). Note

that unlike in our previous works [11, 13], we do not perform any adaptation

of PLDA models to the target data as this paper aims to present a simple

diarization system which performs well for different datasets. Nevertheless, we

tune the VBx parameters: FA, FB , Ploop on the respective DIHARDII, AMI

and CALLHOME development sets.

In order to demonstrate the effectiveness of the VBx method, we also report

results for baseline systems where only AHC is used to cluster x-vectors. In

this case, the stopping threshold is tuned to obtain the best performance on the

respective development set.

3.3. Evaluation Datasets

3.3.1. CALLHOME

The 2000 NIST Speaker Recognition Evaluation (LDC2001S977) dataset,

usually referred as “CALLHOME”, [38] has been the standard dataset for

6Note that the inference in BHMM cannot converge to higher number of speakers than

what is suggested by the AHC-based initialization.
7https://catalog.ldc.upenn.edu/LDC2001S97
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diarization in the last decade [39, 40, 41]. In its full form8, it consists of

4999 recordings of conversational telephone speech in Arabic, English, German,

Japanese, Mandarin and Spanish. The number of speakers per recording ranges

between 2 and 7, although 87% of the files contain only 2 or 3 speakers. It

amounts to around 15 hours of speech after VAD.

Since a development-evaluation split for CALLHOME is not available, we

split the dataset into two halves as defined in the Kaldi recipe for CALL-

HOME10. We use this split to perform cross-validation to tune parameters i.e.

FA, FB and Ploop.

3.3.2. AMI corpus

When trying to cover the most standard datasets for speaker diarization, we

could not leave AMI out [16]. The AMI meeting corpus is a multi-modal data

collection of 100 hours of meeting recordings. This corpus was recorded us-

ing both close-talking and far-field microphones. It consists of 171 meetings

recorded at the University of Edinburgh (U.K.), Idiap (Switzerland), and the

TNO Human Factors Research Institute (The Netherlands). The dataset comes

with annotations for automatic speech recognition (ASR). AMI has been widely

used by the community for diarization purposes. Still, somewhat surprisingly,

authors do not use a standard evaluation protocol to report the results on this

dataset.

The description of the different evaluation protocols reported in the literature

as well as our proposed new protocol for evaluation on AMI can be found in

section 4.

8Not only the English partition, nor the partition limited to 2 speaker audios sometimes

used.
9One audio is commonly excluded because its references have formatting errors

10https://github.com/kaldi-asr/kaldi/blob/master/egs/callhome_diarization/v2/

run.sh
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3.3.3. DIHARD II

DIHARD II is one of the newest datasets designed for diarization. This

dataset was created as an extension of the first DIHARD dataset for the second

DIHARD challenge [2], the second of a yearly series of challenges designed to

foster research on diarization in hard conditions. One of the main features of this

dataset, is that it contains audios from several sources (YouTube, court rooms,

meetings, etc.) covering a wide range of numbers of speakers per recording (1

to 10) and large variety of channels and audio conditions. The corpus consists

of 192 development and 194 evaluation recordings, containing around 18 h and

17 h of speech, respectively.

3.4. Evaluation protocol

Diarization performance is evaluated in terms of diarization error rate (DER)

as defined by NIST [42]:

DER =
SER+ FA+Miss

Total speech
(26)

where:

• SER stands for speaker error, the amount of time that speech is attributed

to incorrect speakers

• FA is false alarm, the amount of time that non-speech regions are incor-

rectly attributed to a speaker (or time when overlapped speech is found

in single speaker speech regions)

• Miss stands for missed speech, the amount of time that speech is not

attributed to any speaker

• Total speech is the total amount of speech, accounting also for speaker

overlaps.

Note that, as we use oracle VAD in all our experiments, FA error is zero, and

the Miss (due only to non-handled overlapped speech regions) can be directly

calculated as DER−SER as we also report SER. We also evaluate the system
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in terms of Jaccard error rate (JER), which has been established as secondary

metric in the latest diarization challenges [2, 4]. JER is similar to DER, al-

though it weighs every speaker equally, regardless of the amount of speech they

produced. All experiments are evaluated using the dscore tool11.

For a more thorough analysis of results, for CALLHOME and AMI we con-

sider three setups for evaluation: First, a forgiving one in which a 0.25 s collar

is considered for DER estimation and no overlap is evaluated. This is the stan-

dard configuration used for these datasets and allows a comparison of results

with previously published works. Second, we consider a similar evaluation using

a 0.25 s collar but accounting for overlapped speech, as in [4]. This fair setup

covers a pragmatic scenario where all speech is evaluated, while being flexible

on the speaker change points, as no realistic human annotation can achieve

frame-precision. Finally, the full one, in which no collar is used and overlapped

speech is evaluated, which is in line with the setup used in latest diarization

challenges [2, 3]. We consider that looking into the numbers for the fair and

full setups is truly relevant on these datasets: very low DER values are already

being achieved on these sets with the forgiving setup, which suggest that future

evaluations could shift into more challenging setups. Also, the hot-topic end-

to-end approaches are likely to surpass the performance of current systems on

overlapped speech regions, and suitable baselines need to be established.

For the more recent DIHARD II dataset, only the fair and full evaluation

setups are considered.

Note that JER considers no collar and evaluates overlap regions by definition,

so it is not affected by these configurations. To avoid confusion (and repetition),

we only report this value on the full setup.

11https://github.com/nryant/dscore
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4. AMI evaluation protocols

4.1. Evaluation protocols found in previously published works

As pointed out before, when it comes to evaluation on AMI, there is not a

defined evaluation protocol. Different authors evaluate their systems on differ-

ent audio types (recordings from Mix-Headset microphones, microphone arrays,

etc.). Besides, authors use different data partitions (train/dev/eval sets) and

use different references. This makes it practically impossible to compare results

between sites. We would like to highlight that during our search for baselines

in the literature, we found that most works are unaware of this inconsistency of

evaluation protocols for AMI, which frequently leads to unfair comparisons.

Based on our literature review we replicated some evaluation protocols from

works presenting remarkable performance. We use these protocols to evaluate

our approach and fairly compare it with the respective works.

There are two major publicly available recipes for diarization on AMI that

are included in Pyannote12 [43] and Kaldi13 [34] toolkits. These two recipes

evaluate only on one audio type, which is the independent headset microphone

mixed audio (Mix-Headset in AMI). Each recipe also derives their references in

different ways from the official ASR transcriptions. Finally, they both use their

own partitioning of the data, Pyannote uses the Full-corpus AMI partition and

Kaldi claims to use the official Full-corpus-ASR AMI partition14. Nevertheless,

Kaldi partition differs from the Full-corpus-ASR one, as it includes one meeting

in the training set (IB4005) which causes speaker overlap between train and dev

sets. This meeting is explicitly excluded in the Full-corpus-ASR partition.

All the works that we compare with use different combinations of partitions

and references taken mostly from these two recipes. The first six columns in Ta-

ble 3 summarize this mixture of protocols. Some works use Pyannote partition

12https://github.com/pyannote/pyannote-audio/tree/master/tutorials/pipelines/

speaker_diarization
13https://github.com/kaldi-asr/kaldi/tree/master/egs/ami/s5c
14http://groups.inf.ed.ac.uk/ami/corpus/datasets.shtml
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[43, 44], while others use the Kaldi one [45, 46, 47, 48], or even a modified ver-

sion of the Kaldi one, excluding TNO meetings [49, 50]. As for references, AMI

corpus comes only with manual and automatic transcriptions for ASR training

and there are different ways of deriving diarization references out of them, as

will be described later. In previously published works, we find again references

from Pyannote [43, 44, 47, 48] and the ones from Kaldi [46], although some

works use modified versions of these based on their own ASR forced alignment

[45], or simply derive their own [49]. Note also the mix of evaluation setups

(better described in section 3.4) with different collars and criteria for including

or excluding overlapped speech. Column 5 in the table shows the amount of

speech (in seconds) evaluated with each protocol for dev and eval sets. As it

can be seen, evaluation can range from around 13000 to up to 52000 seconds of

speech for the eval set depending on the evaluation setup used.

We strongly believe a standard evaluation protocol should be established on

AMI. Next, we introduce what we believe should be established as this new

standard.

4.2. New AMI evaluation protocol

The following evaluation protocol was built after discussions with researchers

from different labs, authors of official Kaldi and Pyannote recipes (BUT, CLSP

JHU, IRIT).

We propose to use the official Full-corpus-ASR partition14. This way, we

make the scoring of diarization tasks consistent with the scoring of speaker-

attributed ASR. As mentioned before, such partition is very similar to the Kaldi

partition (in fact, dev and eval sets are the same) but it has no speaker overlap

between sets, which makes it suitable for diarization tasks.

Regarding the references, authors of other works do not make clear how their

references were created. Our diarization references are directly derived from the

AMI manual annotations, version 1.6.2.15 These annotations are human tran-

15http://groups.inf.ed.ac.uk/ami/download/
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scriptions of all the meetings, containing words, vocal sounds and punctuation

marks. To generate the references:

• All words are considered as speech and included in the references.

• Sounds of very different nature were annotated as vocal sounds. Some

examples are Dutch speech, whistling, yawn, laughter, cough, clicking

with tongue, raspberry noise, blowing nose, clapping, etc. Some of these

are clearly speech (Dutch speech), while others are clearly noises (blowing

nose, clapping, etc.). For sounds such as laughter or whistling it is simply

unclear if they should be considered for diarization purposes, as this would

depend on the particular application of the system. Besides, we found that

several of these vocal sounds are labeled without time annotations, which

makes it impossible to add them to the references. We therefore decided to

take a well defined, consistent and conservative approach in which all vocal

sounds are discarded. This way, only the words that could be recognized

by an ASR system are considered in our references. This is also more

consistent with the task of speaker-attributed ASR.

• Speaker turns respect precisely the annotations, but adjacent speech seg-

ments (words) of the same speaker are merged not to create false “break”

points. Consider the following example of an ASR transcription with

speech from a single speaker which, as the AMI one, is composed of short

segments of speech for each word:
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starttime=“0.86” endtime=“0.98” word=I

starttime=“0.98” endtime=“1.1” word=like

starttime=“1.1” endtime=“1.40” word=apples

starttime=“1.45” endtime=“1.55” word=but

starttime=“1.55” endtime=“1.62” word=not

starttime=“1.62” endtime=“2.0” word=bananas

 I     like     apples      but     not    bananas

 I     like     apples      but     not    bananas

If adjacent speech segments from the same speaker are not merged, it truly

affects the diarization evaluation when collars are considered, as the collar

is applied over all VAD borders and these “break points” are considered

as one of these borders. These “break points” between adjacent speech

segments are common in the references derived with the Kaldi recipe.

With our processing, the above transcription results in one speech segment

from 0.86 to 1.40 (merged “I like apples”) and another from 1.45 to 2.0

(merged “but not bananas”).

On the other hand, consecutive speech segments from the same speaker

separated by pauses (silence) are not merged in any case. Using the above

example again, we could think that the pause is too short and maybe it

should be discarded and the two segments should be merged into one. But

this kind of processing would require some heuristic to determine which

is the required pause for considering separate speech segments. We prefer

to follow a clean approach keeping the original pauses.

Anyway, in the case of using no collar (which we believe is the best choice
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for evaluation) merging the adjacent speech segments has no effect at all.

Still, we establish it in case anyone would prefer to use a collar.

In later experiments, we use the same partition and references to evaluate

our system with two audio types: AMI Mix-Headset audios and the beamformed

microphone array N1, where BeamformIt [51] is applied using the specific setup

provided for AMI.

The partition, references and audios are shared in our repository16. This

evaluation protocol will also be adopted in the latest Kaldi and pyannote recipes.

Additionally, we also generated an extra version of the references including all

(time-labeled) vocal sounds. As mentioned before, we consider these references

not well defined, but we understand that some researchers might find them

useful.

5. Results

5.1. CALLHOME

We first present in Table 2 the results of our diarization model on CALL-

HOME data. As a baseline, we also provide the result of a standalone AHC

clustering of x-vectors, where its threshold is tuned for optimal performance.

We provide these results to illustrate the gain achieved specifically by VBx di-

arization, which uses AHC as initialization (see section 3.2 for details). Our VBx

system achieves 4.42% DER on the forgiving evaluation setup, outperforming

all systems from previously published works. With the fair evaluation setup,

considering also the overlapped speech (which our system does not handle), per-

formance drops to 14.21% DER. Note, that the result achieved in [9] is obtained

on a subset of the CALLHOME dataset, which makes it not directly compa-

rable with our results. The script provided with their implementation makes

random partitions of CALLHOME dataset into dev/eval so it is not possible to

replicate this partition to make a fair comparison. Finally, with zero collar (full

16https://github.com/BUTSpeechFIT/AMI-diarization-setup
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evaluation setup) increases the error to a total 21.77% DER. We believe that fu-

ture research works should report results using this more challenging evaluation

setup.

Table 2: Diarization performance on CALLHOME. Results marked with * are obtained on

a subset of the dataset and are therefore not comparable, see text for more details.

Evaluation setup
System SER DER JER

Name Collar Overlap

Forgiving 0.25 No

Kaldi (Sell et al. [10]) 6.48 –

Zhang et al. [52] 7.60 –

Lin et al. [53] 6.63 –

Pal et al. [49] 6.76 –

Aronowitz et al. [54] 5.10 –

AHC 8.10 –

VBx 4.42 –

Fair 0.25 Yes

Horiguchi et al. [9] – 15.29* –

AHC 7.53 17.64 –

VBx 4.10 14.21 –

Full 0 Yes
AHC 11.06 25.61 35.48

VBx 7.22 21.77 34.02

5.2. AMI

We first report in Table 3 results for our system using the different evaluation

protocols found in the literature for AMI corpus. As explained in section 4.1, the

mix of protocols between sites called for running experiments with 3 different

data partitions (train/dev/eval sets), 5 sets of references, 2 different types of

audio and considering different evaluation setups to be able to compare with

all works. We would like to highlight again that the different protocols differ

largely in the amount of speech used for evaluation: from only 13309 seconds

of speech considered in [49] up to 52317 seconds considered in [43]. When
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analyzing the results, it can be seen that our VBx system attains the best results

on all evaluation protocols, with two exceptions. The first exception is [48],

which uses Kaldi partition, Pyannote references and Full evaluation setup. This

work presents a fusion of 3 different diarization systems dealing with overlapped

speech, as compared to our single system with no overlap handling. The same

system evaluated only on non overlap regions obtains 7.7% and 5.2% DER on

dev and eval respectively, while VBx obtains only 4.08% on dev and 3.8% on

eval. The second exception is the eval result from [49], which uses Kaldi “no

TNO” partition. While this system has significantly better performance than

our system (only) on the eval set (2.87 vs. 4.58 DER), when analyzing the results

from the paper, it seems to us that this number is an outlier inconsistent with

the other results presented in the work: all systems presented in the paper have

consistently similar performance on dev and eval sets, this particular system

reduces the error more than a 50% (6.21% DER on dev vs 2.87% on eval). Also,

this would not be the system of choice if selected according to the performance

on the dev set, for which the system was tuned (also shown in the table, with

5.02% DER on the dev set and 4.92% DER on eval). Out of all the partitions

used, this is the one with the smallest eval set, which might result in noisier

results.

In Table 3, we have demonstrated that VBx method has superior perfor-

mance as compared to other published works on AMI dataset. However, to

offer a fair comparison, we had to deal with too many protocols. This led us

to the proposal of the new evaluation protocol, described in section 4.2 which

is, already being adopted by other research labs. In Table 4, we report results

obtained with the VBx system with the proposed evaluation protocol. This re-

sults can serve as a reference for future works on this corpus. Once again, results

are also provided for the baseline standalone AHC when it is tuned for optimal

performance (see section 3.2 for details). For the sake of completeness, we pro-

vide results of our system when evaluated on beamformed mic-array audios as

well as on Mix-Headset audios. The system is evaluated on all evaluation se-

tups presented in 3.4. Performance on Beamformed audios gets as low as 3.9%
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DER on the eval set when using the forgiving evaluation. When considering

overlapped speech, DER increases to 14.23%. Finally, without any collar, the

system achieves 20.84% DER and 26.92% JER. For the Mix-Headset audios, re-

sults are consistently better, as expected, achieving 2.10%, 12.53% and 18.99%

DER for forgiving, fair and full evaluation setups, respectively.

Table 4: Diarization performance of the proposed model on AMI with the proposed AMI

protocol.

Audio

type

Evaluation setup
System

development evaluation

Name Collar Overlap SER DER JER SER DER JER

B
ea

m
fo

rm
ed

Forgiving 0.25 No
AHC 6.32 – 7.65 –

VBx 2.80 – 3.90 –

Fair 0.25 Yes
AHC 6.43 14.68 – 8.82 18.36 –

VBx 2.57 10.81 – 4.69 14.23 –

Full 0 Yes
AHC 8.68 22.14 25.29 10.93 25.48 29.85

VBx 4.20 17.66 22.26 6.28 20.84 26.92

M
ix

-H
ea

d
se

t

Forgiving 0.25 No
AHC 3.90 – 3.96 –

VBx 1.56 – 2.10 –

Fair 0.25 Yes
AHC 4.06 12.31 – 5.05 14.60 –

VBx 1.43 9.68 – 2.98 12.53 –

Full 0 Yes
AHC 6.16 19.61 23.90 6.87 21.43 25.50

VBx 2.88 16.33 20.57 4.43 18.99 24.57

5.3. DIHARD II

Diarization results obtained on the DIHARDII dataset are presented in Ta-

ble 5. Our VBx system obtains 18.19% DER on the development set and 18.55%

DER on the evaluation set. When analyzing the table, it can be seen that, in

fact, these are not the best numbers ever published on DIHARDII eval as the

system does not overcome the results from [56], nor the ones we attained on

the challenge [11] which are, as far as we know, still the best in the literature.

However, note that the best results on DIHARDII [11] are obtained with the

same VBx method as described in this paper, but including additional adap-

tation to the DIHARD data and additional steps (overlapped speech handling
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and resegmentation). Similarly, in [56] the diarization system is adapted to the

DIHARD dev data. As mentioned in section 3.2, in this paper we are aiming

to use a generic approach to all datasets, without using the development sets

for training or adaptation purposes. If we compare our system to the results

of [11, 56] when not performing adaptation on the dev set, which are shown in

brackets, our current VBx outperforms both systems.

When evaluating the system with the fair setup, DER improves around a

30% on both sets, resulting in 11.75% and 12.41% on dev and eval, respectively.

6. Conclusion

This paper presents a diarization system based on a Bayesian HMM model

for clustering x-vectors, also known as VBx. Our VBx diarization achieves state-

of-the-art results on CALLHOME, AMI and DIHARDII without performing

specific model adaptation to any of the datasets.

Most of the papers, which we have compared our system with, present clus-

tering of new sets of embeddings/x-vectors. All these approaches are comple-

mentary with VBx: the VBx clustering can be combined with most of these

new embeddings, which shows the further potential of the method.

In the case of AMI dataset, we have presented, for the first time, a fully fair

comparison of our system with several works from the literature. One of the

major contributions of the paper is the proposed evaluation protocol for AMI,

which will be adopted also in future Kaldi and Pyannote recipes, and which we

hope will become a new standard.

The analysis of results for CALLHOME and AMI datasets reveals that sys-

tems are reaching very low diarization error rates when evaluating with the

standard 0.25 s collar and without considering overlapped speech regions. We

believe that, as in latest diarization challenges, systems should be tested using

more challenging evaluation setups considering also overlapped speech and no

collar.

Future work will focus on combining our system with real VAD instead of

31



the oracle labels, to approach the setup of nowadays largely popular end-to-end

techniques.
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danpur, Speaker diarization with region proposal network, in: ICASSP

2020-2020 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), IEEE, 2020, pp. 6514–6518.

32

http://arxiv.org/abs/2004.09249
http://arxiv.org/abs/2004.09249
http://arxiv.org/abs/2003.02966


[7] I. Medennikov, M. Korenevsky, T. Prisyach, Y. Khokhlov, M. Ko-

renevskaya, I. Sorokin, T. Timofeeva, A. Mitrofanov, A. Andrusenko,

I. Podluzhny, et al., Target-Speaker Voice Activity Detection: A Novel

Approach for Multi-Speaker Diarization in a Dinner Party Scenario, Inter-

speech 2020doi:10.21437/interspeech.2020-1602.

URL http://dx.doi.org/10.21437/Interspeech.2020-1602

[8] K. Kinoshita, M. Delcroix, N. Tawara, Integrating end-to-end neural

and clustering-based diarization: Getting the best of both worlds (2020).

arXiv:2010.13366.

[9] S. Horiguchi, Y. Fujita, S. Watanabe, Y. Xue, K. Nagamatsu, End-to-End

Speaker Diarization for an Unknown Number of Speakers with Encoder-

Decoder Based Attractors (2020). arXiv:2005.09921.

[10] G. S. et al., Diarization is Hard: Some Experiences and Lessons Learned for

the JHU Team in the Inaugural DIHARD Challenge, in: Proc. Interspeech,

2018, pp. 2808–2812. doi:10.21437/Interspeech.2018-1893.

URL http://www.danielpovey.com/files/2018_interspeech_dihard.

pdf

[11] F. Landini, S. Wang, M. Diez, L. Burget, P. Matějka, K. Žmoĺıková,
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