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Abstract

Bayesian statistical methods for the estimation of hidden genetic structure of populations
have gained considerable popularity in the recent years. Utilizing molecular marker data,
Bayesian mixture models attempt to identify a hidden population structure by clustering
individuals into genetically divergent groups, whereas admixture models target at separat-
ing the ancestral sources of the alleles observed in different individuals. We discuss the
difficulties involved in the simultaneous estimation of the number of ancestral populations
and the levels of admixture in studied individuals’ genomes. To resolve this issue, we
introduce a computationally efficient method for the identification of admixture events in
the population history. Our approach is illustrated by analyses of several challenging real
and simulated data sets. The software (Bars), implementing the methods introduced
here, is freely available at http://www.rni.helsinki.fi/~jic/bapspage.html.
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Introduction

Molecular markers have shown during the past two
decades their value and versatility in the detection of the
hidden genetic structures of populations. More recently,
the focus in such studies has shifted from an exclusive use
of traditional genetic distance-based methods increasingly
also to utilization of Bayesian model-based approaches
(Pritchard et al. 2000; Dawson & Belkhir 2001; Corander
et al. 2003,2004, 2006; Falush et al. 2003). For recent reviews
of advances in Bayesian demographic modelling, see
Beaumont (2004), and Beaumont & Rannala (2004). However,
it has also become clear that data sets representing complex
population structures are challenging for any of the Bayesian
methods listed above, due to the computational burden
imposed by simulation-based inference. In particular,
inferences about the number of underlying source popu-
lations may be unstable either due to computational
difficulties or problems in the specification of the statistical
model itself.

There are numerous practical challenges concerning
inference about population histories when using mole-
cular methods: (i) the number of available molecular
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markers may be relatively small, (ii) nonmolecular know-
ledge about the demographic history for validation of
results may be scarce, (iii) samples may represent a wide
geographic area comprising many potential source
populations, and finally (iv) some statistical methods may
require a prohibitive amount of computational resources
for the analysis. All these issues are relevant for applica-
tions in molecular ecology. Given the challenges, it is
necessary to understand the limitations of marker-based
demographic inference. Identification of admixture events
in the presence of an unknown number of putative ances-
tral sources in a genetically structured population seems to
be among the least tractable issues. For instance, there is a
range of examples in the literature involving from only a
couple of microsatellite loci (e.g. Heuertz et al. 2004) up to
hundreds of loci (e.g. Rosenberg et al. 2002; Bamshad e al.
2003; Rosenberg et al. 2005), where formal inference about
the number of underlying ancestral populations based on
the sTRUCTURE software (Pritchard et al. 2000; Falush et al.
2003) has not yielded biologically sensible results. A
common feature for these applications is a tendency to
overestimate the number of underlying ancestral sources.
Similarly, in a simulation study comparing various cluster-
ing software for population genetic analyses, Latch ef al.
(2006) observed in BAPs software (Corander ef al. 2003,
2004, 2006) a tendency to overestimate the number of
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underlying populations when the genetic structure was
weak and the analyses were performed at an individual
level (instead of sample population level). However, the
additional spurious clusters that were obtained typically
contained only a very small number of individuals, and
could thus not be regarded as relevant estimates of
panmictic source populations. Overall, Latch ef al. (2006)
concluded that the statistical power of the most recent
BAPs version (Corander et al. 2006) was comparable to that
of STRUCTURE in detecting genetically differentiated groups
in moderately challenging evolutionary scenarios. How-
ever, this version of BAPs requires only a fraction of the
computational resources necessitated by the Markov chain
Monte Carlo (MCMC)-based inference in STRUCTURE. In an
average genetic mixture analysis reported by Latch ef al.
(2006), the results were obtained 300—400 times faster with
BAPS as compared to STRUCTURE. Therefore, the differences
between the two methods become accentuated when the
size and the complexity of the investigated data increase.
Here we introduce a numerically viable strategy for a
reliable identification of admixture events in the ancestry
of sampled individuals using multilocus molecular
markers. The need for this strategy becomes apparent when
considering complex molecular information for which the
earlier approaches to estimation are expected to be neither
reliable nor practically feasible. We discuss the difficulties
involved in determining simultaneously admixture events
and the number of ancestral populations represented in a
sample, and suggest that inference about the latter should
be established prior to the estimation of admixture. The
traditionally used Bayesian formulation makes it tricky to
specify a flexible prior distribution for admixture estimation,
which would allow both for a wide variety of demographic
scenarios and mating systems, and also ensure that the
likelihood does not capture random patterns in the data as
evidence for admixture events. These goals are achieved
here by combining a discrete parameterization of admix-
ture proportions in genomes with a simulation framework
that yields a clear biological interpretation of the estima-
tion results and can be used to assess the statistical signi-
ficance of putative admixture events. It is also shown how
a typical geographical sampling scheme can be utilized
to strengthen the inferences from weakly informative
molecular data. To illustrate our framework, we present
analyses of several challenging real and simulated data sets.

Materials and methods

Statistical methods

Earlier works on BAPs have demonstrated the versatility
of the Bayesian stochastic partition approach to genetic
mixture modelling. In particular, compared to the MCMC-
based estimation used in Corander ef al. (2003, 2004), the

stochastic optimization algorithm introduced in Corander
et al. (2006) improves significantly the applicability of the
mixture model to challenging data sets. Corander et al.
(2006) also introduced a genetic mixture model which
allows partial or complete baseline data from putative
source populations to be coherently incorporated into the
prior specification. In the Appendix, we provide technical
details concerning the weak identifiability of an admixture
model, where the number of ancestral populations is
an unknown parameter. This suggests that the admixture
inferences may be sensitive to the choice of a prior distribution
and that default options may yield spurious results unless
a biologically meaningful number of ancestral populations
is used. Given these apparent inferential problems, we
adopt a sequential modelling strategy where the number
of genetically differentiated sources contributing to a data
set is inferred first using a mixture model. Thereafter, given
such an estimate, admixture events can be learned on a
more stable basis using a Monte Carlo simulation-based
algorithm also described in the Appendix.

In the stochastic partition model for a population con-
sisting of k panmictic parts, a putative population structure
is represented by a partition S = (s,, ... , 5;), which allocates
n sampled individuals into k nonempty clusters. The prior
distribution p(S) of the structure parameter can be defined
in various ways, depending on the availability of biologically
relevant nonmolecular information. First, let 1 < K<n
be an integer specifying an upper limit for the number of
panmictic parts thought to be feasible for the investigated
population. Then, if no further information is imposed
on the prior, a default uninformative choice yields the
probability according to:

¢, if k<K

pS=0(sp,...,5)) = (eqn1)

7
0, otherwise

which corresponds to the uniform distribution over the
partitions with at most K clusters. However, when the
molecular information is weak, e.g. the number of available
marker loci is small or the markers have low levels of
polymorphism, inferences can be strengthened by utilizing
the sample design information in the prior specification as
in Corander et al. (2003). A commonly used sampling strategy
is to collect individuals from a number of geographically
limited areas, yielding local sample populations. This enables
the calculation of the level of genetic differentiation, e.g.
using Fgp measures. On the other hand, the same information
can be used for a further restriction of the prior (1). In fact,
when the number of marker loci is extremely small, no
sensible inferences can be expected from the mixture
clustering without such a restriction. Let I(S) be an indicator
function of the compatibility between a sampling design
and a putative structure S, i.e. I(S) equals one when all
individuals of any local sample population are allocated in
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the same arbitrary cluster of S, and zero otherwise. Also, let
I(k < K) be the indicator function of the number of clusters
k not exceeding the threshold value K. A prior respecting
the sample design can then be defined as:
p(S=C(sq, ..., 5)) = ¢, I(S) (k< K), (eqn 2)
which corresponds to the uniform distribution over
the partitions with at most K clusters and where no local
sample populations have been divided into several clusters.

Assume that the sampled individuals are genotyped at
N; molecular marker loci, such that the number of distinct
alleles atlocus j equals N, j=1, ..., N;. A wide variety of
marker types, such as microsatellites, amplified fragment
length polymorphisms (AFLPs) and single-nucleotide
polymorphisms (SNPs), can be employed in our frame-
work equivalently for haploid, diploid or tetraploid
individuals. It should be noticed, however, that for dominant
markers (such as AFLPs) the inferences are based on
modelling the underlying population genotype frequencies
instead of the allele frequencies considered for the co-
dominant markers. To obtain a tractable Bayesian clustering
model, it is assumed that the marker loci are unlinked and
that the source populations contributing to the observed
sample are in Hardy-Weinberg equilibrium (HWE). These
assumptions lead to the posterior distribution over the
space of putative clustering solutions:

p(Sldata) = p(datal Sp(S)/ Y p(datal S)p(S),

s€@

(eqn 3)

where data refers to the observed marker genotypes and
p(datalS) is the marginal likelihood, also called the prior
predictive distribution of the observed data (see Bernardo
& Smith 1994). The sum in (3) is over the space © of all
partitions; however, only the partitions with positive prior
probabilities will contribute to the sum. Explicit formulae
for p(data|S) have earlier been given in Corander ef al.
(2003, 2004, 2006), based on a Multinomial-Dirichlet model
for the observed genotype frequencies under HWE and
nonlinkage of the markers. Notice that the clusters emerging
under the stochastic partition model are considered ex-
changeable and remain thus completely unlabelled in the
statistical model.

It is important to acknowledge the intrinsic difference
between the marginal likelihood and likelihood in the re-
gular statistical sense. The former refers to the probabilistic
quantification of the information contained in observed
data provided by a specific model structure, when the
uncertainty about the model parameters has been taken
into account. Likelihood, in turn, is usually interpreted as
the conditional distribution of the observed data given
any fixed parameter configuration. Whereas the maximized
likelihood is a nondecreasing function of the degree of
model complexity (e.g. increase of k), the marginal likeli-
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hood obeys the generic scientific Occam'’s razor principle
according to which simpler theories are to be preferred if
they predict empirical data better or equally well as more
complex ones (see, e.g. Bernardo & Smith 1994). In the
current genetic mixture modelling context this means that
the marginal likelihood p(data | S) may decrease considerably
when k is increased, if the data does not contain decisive
support for differences between the allele (or genotype)
frequencies of putative underlying populations.

The stochastic optimization algorithm of Corander et al.
(2006) targets to identify the mode of the posterior dis-
tribution over genetic mixture models with a varying k.
As the posterior distribution (3) is proportional to the
marginal likelihood p(data|S) which can be expressed
analytically, the maximization procedure corresponds to
a search in the space of clustering solutions subject to the
prior constraints. Let a ‘sampling unit’ denote either an
individual in the sampled data or an a priori given group
of individuals, corresponding to the analyses performed
under the prior (1) and (2), respectively. For such sampling
units, the following search operators are used to improve
the estimate of the genetic structure:

1 Move sampling units from one cluster to another in a
stochastic order.

2 Join clusters of sampling units.

3 Split clusters using the Kullback-Leibler (KL) divergence
between sampling units (for definition of KL divergence,
see Corander et al. 2003).

4 Re-allocate several sampling units from a cluster in a
random order.

Although these operators are partially similar to those
employed in the MCMC-based approaches of Corander
et al. (2003, 2004), they are not embedded into a Markov
chain, which makes their use computationally much more
efficient.

Given the posterior mode estimate of the genetic
mixture in terms of S, we proceed with the identification
of admixture events using an algorithm described in the
Appendix. Notice that after the identification of the genet-
ically differentiated parts of a population based on the
mixture model, we allow any individual putatively to have an
admixed ancestry from any of the source populations. This
holds true even if the genetic mixture was inferred using
the prior restriction with respect to the local sample popu-
lations. Also, if the genetic mixture analysis indicates
several roughly equally plausible candidates of the under-
lying structure, the admixture analysis can be performed
separately for each of them. For instance, if the estimated
posterior probabilities for k = 5 and k = 6 are both reasonably
high for some data set, the admixture analysis can be done
both under the estimated genetic mixture with 5 clusters as
well as under that with 6 clusters.
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A summary of the features of the admixture estimation
is as follows. For any particular individual in the data, let
q denote a vector of length k, where the element g; rep-
resents the proportion of the genome inherited from an
ancestral source corresponding to the ith cluster in the
mixture model. Here we consider solely a discrete version
of the admixture coefficients where g; € [0, 0.01, ..., 0.99,
1], foralli=1, ..., k, such that g, = 1. This discretization
simplifies the inference considerably, and we think that
accuracy beyond the level of 1% is not attainable in most
applications and is also not important from the perspective
of practical interpretation. It is worth noticing that in any
admixture model each observed allele represents [100/
(2N))] percentage of the genome in the likelihood (assum-
ing no missing alleles and a diploid species). For instance,
with 10 observed loci for a diploid species, it is not possible
even in theory to infer admixture beyond 5% accuracy.
In particular, we suggest that caution is needed in quan-
titative comparisons of admixture coefficients when the
number of loci available is only small or moderate.

Given the uniform prior distribution for all g-vectors
over their finite support, we can numerically maximize the
posterior of g for any fixed value of the allele (or genotype)
frequencies of the underlying population mixture. By
generating realizations from the posterior distribution of
the allele frequencies and averaging the admixture esti-
mates over these, we obtain a final estimate § of g for each
individual, such that the uncertainty about the underlying
ancestral allele frequencies has been taken into account.

To assess the significance of the estimated admixture
coefficients (§), we utilize a simulation framework that
has a clear interpretation and enables a joint treatment
of all individuals simultaneously. Biologically, it is of im-
portance to determine whether the admixture coefficients
deviating from zero represent genuine contributions from
the corresponding ancestral sources, or whether they, e.g.
simply reflect the uncertainty about the allele frequencies
in two particularly similar source populations. We assess
this issue by simulating multilocus genotypes for, say m,
individuals from each source population in the genetic
mixture model where the allele frequencies match with
the posterior expectation. For each of the simulated indi-
viduals, the admixture coefficients are then estimated by the
same procedure which was used for the individuals in the
observed data. As a consequence, these estimates repre-
sent realizations from the distribution corresponding to
the null hypothesis of no admixture events. Let §; be the
estimated admixture coefficient corresponding to the
source where the individual was allocated in the mixture
estimation. A P value of obtaining an admixture coefficient
less than or equal to 4; under the null hypothesis can then
be calculated as the proportion of the m realizations for
which the condition remains true. This proportion is directly
associated to the chance of obtaining at least comparable

evidence for admixture under random sampling of non-
admixed individuals from the source populations. It is
important to notice that the reference individuals are
generated from the posterior of the allele frequencies of each
inferred ancestral source. Potential differences in the sample
sizes from these sources are taken into account since the
posterior variability increases with decreasing sample size.

For many population genetic studies, it is essential to
ensure that the demographic conclusions are not biased
by the presence of individuals representing source popu-
lations that are not covered by the sampling design to a
sufficient extent. It is clear that a reliable estimation of the
ancestral allele frequencies is not feasible by any method
for populations which are only represented by a limited
number of sampled individuals. Therefore, we have included
in our method the possibility of excluding from the admix-
ture inference very small outlier clusters identified in the
genetic mixture analysis.

Real data sets

To test our method in a challenging real biological scenario,
we performed a re-analysis of the human data set analysed
in Rosenberg et al. (2002). The data consist of 1056 individuals
sampled from 52 different populations around the world.
In total, 377 di-, tri- and tetranucleotide microsatellite loci
spread over 22 autosomal chromosomes were available.
The proportion of missing genotypes is 3.8% and they are
fairly uniformly distributed across the loci. Other analyses
of human demographic history of a similar magnitude are
reported in Bamshad et al. (2003) and Rosenberg et al. (2005).

In the study by Rosenberg et al. (2002), the structure of
human populations was investigated by using the sTRuC-
TURE software. The results showed five well-defined groups
which seemed to correspond to five major geographic
regions, excluding an additional outlier, the Kalash popula-
tion. However, it was also reported in their supplementary
material that the estimation algorithm started to converge
to different solutions in separate runs when the number
of ancestral sources was specified to be higher than six.
Furthermore, the approximate posterior inference about
the number of ancestral sources indicated towards a much
higher value than seemed plausible given the knowledge
about human populations. Therefore, in their global
analysis, the number of sources chosen in the displayed
main results was not based on formal inference, but on
reasoning on the basis of external knowledge.

In all analyses reported here, 100 realizations from the
posterior of the allele frequencies were used in the
expectation step of our estimation algorithm. Furthermore,
to assess the significance of the admixture estimates, 200
individuals were generated from each identified ancestral
source to provide an approximation to the distribution of
the estimates under the hypothesis of no admixture.
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Table 1 Pairwise Fg; values between the groups used for
simulating individuals in the test scenarios (computed using Gpa,
Lewis & Zaykin 2002)

Eurasia Surui America Oceania Karitiana East Asia

Surui 0.163

America 0.063  0.122

Oceania 0.053  0.211 0.093

Karitiana 0.128  0.221 0.090 0.176

East Asia 0.030 0.155 0.054 0.047 0.123

Africa 0.035  0.190 0.091 0.068  0.154 0.054

Simulated data sets

To establish the validity of our method, we conducted a
large-scale simulation study both utilizing the real human
molecular data, and also synthetic populations to provide
a biologically relevant foundation. First, we used the
subpopulations of the human data that were found genetically
diverged in the real data analysis. These subpopulations
correspond to those identified also by Corander ef al. (2004)
in a sample population level analysis of genetic mixture.
Fgr values between the subpopulations were computed
using GDA (Lewis & Zaykin 2002) and these are presented
in Table 1. Posterior means of the allele frequencies of
the subpopulations were used as a basis for simulating
individuals from these panmictic units under the assumptions
of Hardy-Weinberg equilibrium and no linkage among the
loci. Second, to assess the statistical properties of our method
for more limited marker sets, we generated several synthetic
data sets using the EAsyPOP software (Balloux 2001).

In the first human simulation scenario, a total of 55
individuals with genotypes over all 377 loci were repeatedly
generated for five pairs of subpopulations corresponding
to a range of different genetic distances. For both sub-
populations in a specific pair, 25 nonadmixed individuals
were first simulated. In addition, we simulated three
children such that they had one parent in each population,
and two grandchildren such that they had three grandparents
in one and one grandparent in the other population. The same
scenario was repeated for all considered subpopulation
pairs. Two further variants of this simulation framework
were also investigated by letting the number of nonad-
mixed individuals decrease (1 = 20) or increase (1 = 50).

In the final human simulation scenario, we created a
considerably more challenging population setup. In total,
660 individuals were generated from five different
subpopulations, such that 70 of these had an admixed
background. This setup was repeated using 377, 200, and
100 marker loci, such that for the latter two cases, the loci
actually used in the analysis were randomly chosen
from the original ones. The true underlying population
structure is shown in Fig. 2.
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Using the EAsYPOP software we generated four popu-
lations (A-D) for which less informative marker data were
available. A sample of 30 individuals was taken from each
of the populations, and in addition, 10 individuals each
admixed within either the population pair (A, B) or (C, D)
were generated. All these 130 individuals were analysed
twice by performing the genetic mixture analysis both on
individual and sample group levels. Biologically relevant
sample groups were created by dividing the samples from
each population randomly into five groups, each consist-
ing of six individuals. Each admixed individual was
randomly allocated to a sample group consisting of indi-
viduals from either of the two ancestral populations. The
same underlying population setup was used for different
levels of genetic differentiation and for varying numbers of
marker loci (10-20 loci).

Results

Real data sets

For the original human data, the posterior distribution
for the number of ancestral sources was completely
concentrated on k = 7, which is equivalent to the results of
a sample population-based analysis reported in Corander
et al. (2004). In Fig. 1, the estimated admixture proportions
are presented. We note that, in general, Fig. 1 is in a close
agreement with the global-level analysis of Rosenberg ef al.
(2002). For instance, both analyses suggest that:

1 The clearest dual ancestry for a sampled population is
found for Hazara and Uygur, which are of Eurasian-East
Asian origin.

2 The proportion of European ancestry among American
populations is largest for the Mayas.

3 A considerable proportion of the North African Moz-
abite population has an African origin, while the main
component is European.

4 Biaka Pygmy, Bedouin and Japanese samples each
contain a single individual, whose origin clearly deviates
from those of the other individuals in the same sample.

The largest differences observed between the two results
concern the status of the Kalash population as an outlier
and the separation of the American populations. In Rosen-
berg et al. (2002) the American samples were in the global
analysis mainly represented by a single ancestral source,
whereas they are clearly split into three groups in Fig. 1.
The results were more similar to ours when they performed
the analysis using only the sampling populations of Amer-
ican origin. It is useful to consider these differences in the
light of the analyses reported by Rosenberg et al. (2005),
where the same individuals were investigated using an
extended marker set (a total of 993 loci). These additional
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Fig.1 Estimated admixture coefficients for the human data set from Rosenberg et al. (2002). Each column (or vertical line) corresponds to
one individual. Ancestral populations are represented by different colours. Each column is coloured with different colours in proportions
corresponding to estimated admixture coefficients of the corresponding individual. The sampling populations are separated by black
vertical lines and major continental regions by the vertical lines above the coloured area.

True Population
Structure

377 loci

200 loci

100 loci

Fig. 2 Results from a simulation scenario with 660 individuals. The same individuals were analysed using different numbers of loci. When
the number of loci was less than 377, the loci used in the analysis were randomly chosen from the original ones. The individuals were
simulated from five different populations: Eurasia (green), Africa (red), America (blue), Oceania (purple), East Asia (yellow).
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data show that the earlier reported separation of the
Kalash population was presumably an artefact caused
by the numerical instability of the inference, and that the
Americas region should be considered heterogeneous
even when the molecular variation is investigated at a
global level.

When we examined the P values computed for each
individual, we found out that 156 out of the total 1056
individuals had values less than 0.05, indicating at least
moderate evidence for admixed background. The indi-
viduals in the sample populations Hazara and Uygur were all
considered as admixed. In fact, apart from one individual
in Hazara, P values for all individuals in both of these
populations were very close to zero. Other sampling popu-
lations for which a majority of individuals had significant
admixture coefficients were Mozabite, Burusho, Pathan,
Maya, and Bantu-Kenya. The Colombian population can
be taken as an example of a case in which examining
merely the admixture coefficients might imply an admixed
background for the individuals, but where the P values are
not supporting such a conclusion. The estimated propor-
tion of admixed background is around 10% for the
Colombian individuals. However, the P values for the
Colombian individuals range between 0.115 and 0.995
indicating that such an amount of admixture could be
regarded as a result of random variation in the genotype
patterns. This example illustrates that admixture coeffi-
cients can attain nonzero values also for genetically rela-
tively similar alternative ancestral populations which are
still differentiated from the identified primary ancestral
population of an individual. This is due to the shape of
the admixture likelihood, which may under such cir-
cumstances yield for a random set of loci a better score
for classification of an allele to an alternative ancestral
population than to the primary source population of
the particular individual. The P values thus enable the
separation of spurious evidence for admixture from
more conclusive patterns in the marker data, which is
difficult to achieve in a strictly Bayesian analysis using
information solely from the posterior distribution of the
coefficients.

Simulated data sets

For each simulated human data set, our sequential
inference method was able to identify the correct number
of ancestral populations. The results for the first simulation
scenario are presented in Table 2. It is seen that regardless
of the genetic distance of the two source populations, the
identification of admixed individuals using the 0.05 level
of the P value was perfect. However, the estimated values
of the admixture coefficients of the admixed individuals
had in some cases a considerable deviation from the correct
value, and this deviation seemed to increase slightly when
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Table 2 Results of admixture estimation for data simulated from
two distinct human populations

Population1 Population2 Fg, I II 1II v v

Karitiana Surui 0.221 100 100 <0.001 0.10 0.06
America Surui 0.122 100 100 0.005 0.11 0.07
Oceania America 0.093 100 100 0.013 0.13 0.09
Oceania Eurasia 0.053 100 100 0.034 0.20 0.08
Eurasia Africa 0.035 100 100 0.030 0.16 0.09

Three types of individuals were simulated; 25 nonadmixed
individuals from each of the two populations, three individuals
having one parent in each of the two populations, and two
individuals having three grandparents in one and one
grandparent in the other population. The simulation was
performed five times using different pairs of ancestral
populations. The columns presenting the results are as follows: I,
percentage of correct identification of nonadmixed individuals,
using 0.05 level of P value; II, percentage of correct identification
of admixed individuals using 0.05 level of P value; III, average
absolute error in the admixture coefficients of nonadmixed
individuals; IV, average deviation of admixture coefficients
from 0.5 for the second type of simulated individuals; and V,
average deviation of admixture coefficients from 0.25 (or 0.75)
for the third type of simulated individuals.

the two populations were closer to each other. When the
number of nonadmixed individuals from each population
was increased (n =50) or decreased (n =20), the results
were generally in agreement with those given in Table 2.
However, for the larger samples the estimates of the
admixture coefficients were closer to the underlying true
values. Also, when only 20 nonadmixed individuals were
simulated from the subpopulations associated with the
smallest genetic distance (Eurasia and Africa), a single cluster
emerged in the first step of the analysis, thus leaving the
admixture events undetected.

In the simulation framework with five underlying
ancestral sources and 377 loci (see Fig. 2), all the admixed
individuals were correctly identified when using level 0.05
as threshold for the P value. However, two of the nonad-
mixed individuals were also incorrectly detected as having
significant admixture coefficients. When 200 loci were
used, the identification of admixed individuals was still
complete, but four nonadmixed individuals were now
recognized as having admixed background. Finally, with
100 loci the accuracy of identifying admixed individuals
decreased a little. Still only one individual having an admixed
background was falsely assigned nonsignificant admixture
coefficients, but the number of nonadmixed individuals
having significant admixture coefficients was 11.

The simulations utilizing EAsypoP illustrate the apparent
challenge of inferring admixture events from a limited
marker set for weakly differentiated populations (Table 3).
When the markers are very polymorphic under such
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Table 3 Results of admixture estimation for data simulated with EAsyroP

Individual level mixture analysis

Group level mixture analysis

Fyr #Loc #All #Outliers Admix Nonadmix #QOutliers Admix Nonadmix
0.120 20 5 0 7/10 117/120 0 9/10 119/120
0.097 20 15 6 4/4 118/120 0 10/10 119/120
0.057 10 15 17 1/6 107/107 0 6/10 117/120

Four different populations A-D were simulated under three distinct configurations with varying level of differentiation and molecular
information. A sample of 30 individuals was generated from each of the four populations, and in addition, 10 individuals each admixed
within either the population pair (A, B) or (C, D) were created. All these 130 individuals were analysed twice with our sequential method,
by performing the genetic mixture analysis both on individual and sample group levels. The local sample groups were created by dividing
the samples from each population randomly into five groups, each consisting thus of six individuals. Each admixed individual was
randomly allocated to a sample group consisting of individuals from either of the two ancestral populations. The same underlying
population setup was used for three different levels of genetic differentiation and a varying number of marker loci (10-20 loci). The columns
refer to: g, average pairwise Fgp distance between the four simulated populations; #Loc, number of simulated loci in the data; #All, number
of possible distinct allelic forms at any locus; #Outliers, number of individuals that were allocated in genetic mixture analysis to outlier
clusters consisting of less than five individuals; Admix, x/y, y is the number of admixed individuals that were analysed in admixture stage
(not outlier individuals), x is the number of admixed individuals who had significant P values for admixture; Nonadmix, x/y, y as in
Admix, but for the nonadmixed individuals, y is the number of nonadmixed individuals having nonsignificant P values for admixture.

The significance level of 5% was used.

circumstances, some individuals can be assigned to small
outlier clusters. Nevertheless, all major clusters detected in
our simulation studies corresponded to real underlying
populations. The default option in the BAPs admixture
estimation module is to exclude clusters containing less
than five individuals, and hence, in cases where an
admixed individual was assigned to an outlier cluster, the
corresponding admixture event remained undetected.
However, Table 3 illustrates well the advantages of condi-
tioning the inference on relevant local sample populations,
as the accuracy of detecting the true underlying population
structure and the admixture events increases considerably
for the most difficult scenarios. Notice that the actual
simulated molecular information was exactly the same for
the individual level and sample group level analyses. The
local sample populations used here were quite small,
and correspond thus to an only sparsely informative
geographic sampling design.

Discussion

Experiences from the development of our current approach
and applications of previously introduced methods for
detecting admixture events show unquestionably that
such inference is considerably less tractable than genetic
mixture analysis. Nevertheless, when sufficiently informative
marker data are combined with an appropriate statistical
approach, the accuracy of the inferences can be fairly high.
From a theoretical perspective, it is widely accepted that a
purely Bayesian statistical approach offers efficient means
for a solid characterization of the information contained
in empirical data. However, our experiences suggest

that it may be too great a challenge to determine widely
applicable prior distributions that are expected to provide
biologically relevant formal inferences simultaneously
about admixture events and the number of ancestral
populations. In this respect, the actual numerical appli-
cability of any proposed methodology should not be ignored
either. Since the posterior inferences can be dominated
by the likelihood in the presence of uninformative priors,
we developed the simulation based assessment method
to avoid spurious support for admixture events, e.g.
when two ancestral populations are only weakly dif-
ferentiated. All performed simulation studies show that
our method is capable of preserving a low false positive
rate concerning the admixture events, while being even
slightly conservative compared to the nominal significance
level.

Although we have focused here on the admixture esti-
mation based on the mode estimate of the genetic structure
from a mixture analysis, in the BAPS implementation it is
also possible to do inference conditional on either predefined
source populations or other clustering solutions associated
with high posterior values (these can be inserted as pre-
defined populations). The simulation studies showed the
utility of conditioning the genetic mixture inference on local
sample populations for weakly differentiated populations
and very limited marker sets (as was done in Corander
et al. 2003). In practice, it is quite feasible to do mixture
analyses both at the individual and sample group level
(when the latter information exists), since the inference
algorithms are fast. This strategy offers the possibility of
assessing the relevance of the results from a biological
perspective, and may provide further insights about the
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possibility of detecting admixture events. For some appli-
cations, it may also be fruitful to utilize EAsYPOP to simulate
population data with the same level of differentiation
and marker information as observed in the real data. When
such data sets are analysed with BAPs, one can gain infor-
mation about the expected accuracy of inferences for the
real data. EAsYPoP produces data sets based on the GENE-
pop (Raymond & Rousset 1995) data format, which can be
straightforwardly used for BAPs analyses.

The central rationale behind the separation of mixture
and admixture analyses is the importance of identifying
the number of diverged groups hidden in the data. For
instance, outlier groups containing only a single or very
few individuals can then be excluded from an admixture
analysis, since the data would not allow a reliable estima-
tion of the ancestral allele frequencies originating from
such sources. However, it is clear that the power to detect
certain types of admixture scenarios is limited for the mod-
elling approach discussed here. For instance, it is unlikely
that one could reliably infer situations where one or several
population samples consist of only admixed individuals in
which the ancestral sources as such are not represented at
all. For successful admixture identification, the molecular
data should be concisely informative about the events in
the population history. Since the estimation of admixture
proportions is meaningful only when conditioned on a
plausible number of ancestral sources, the importance of
using a reliable estimate for that purpose is stressed. It
should be noticed that some bias is introduced by the
sequential procedure, since when an individual has an
admixed background, only a part of the observed alleles
should affect the posterior of the allele frequencies in
the group to which the individual is assigned. When there
is a sample of a reasonable size containing nonadmixed or
only moderately admixed individuals available from each
considered ancestral source, such biases will in practice be
small.

In our current work, we have been able to design com-
putationally attractive algorithms for an investigation of
the genetic composition of a sample using multilocus mole-
cular markers. For instance, the whole sequential admix-
ture estimation procedure for the complete human data,
which represents quite an extreme evolutionary scenario,
took approximately 30 min on a PC with a 2.8GHz Pentium
4 processor. The performance of the algorithms was very
stable when the human data was repeatedly analysed
using 100 replicate values of the upper bound K, varying it
between 10 and 30. The estimation runs yielded almost
identical results, and indicated all the differentiated
populations presented in Fig. 1. Given the evidence from
analyses of both simulated and real data, we expect that
the advances introduced here facilitate routine application
of the Bayesian approach in investigations of the genetic
structure of populations.
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Appendix

Here we provide details about the admixture estimation
algorithm, and also, the vague identifiability of the number
of ancestral sources contributing to a data set under an
admixture model is discussed.

Identifiability of the number of ancestral sources
contributing to data

Under the assumptions stated in the Materials and
Methods section, it is straightforward to extend the
stochastic partition representing a genetic mixture in
Corander efal. (2004, 2006) to a representation of a
potentially admixed genetic composition of a sample. In
the earlier stochastic partition models corresponding to
a genetic mixture, every allele observed from a specific
individual assigned to a cluster, say i, is restricted to
represent the allelic composition of that source population.
Mathematically, for a fixed partition with k clusters, such
a representation is similar to the likelihood arising under
the latent class mixture model (with k classes) used in
STRUCTURE. The partition model may be generalized by
allowing the alleles of an individual to be assigned to
separate source populations, which leads to a similar
likelihood as that arising under the latent class admixture
model (again with k classes) used in STRUCTURE.

Using a slightly different definition from that in the
Materials and Methods section, let S = (s;, ... , 5,) now rep-
resent a partition of all observed alleles, from all n individ-
uals, into k nonempty clusters. Each s; represents then an
ancestral source contributing to the sample in terms of
certain alleles over the considered loci. For instance,
when one-half of the observed alleles of an individual are
allocated to a particular s;, and the remaining alleles to
another ancestral source, the individual is considered
to have one parent in each of these source populations.
Analogously to Corander et al. (2004, 2006) the marginal
likelihood of the molecular data, conditional on the parti-
tion S, equals then:

kN r(Z%‘J Nag) T
L (o + 1)
p(datal S) = HH l Fj(oc}) L
o F[wa + nijl)] = !
i

(eqn A1)

where T'(:) is the gamma function, i is the number of
copiesof allele [ (I =1, ..., NA(j)) at locus j considered to
emerge from ancestral source i, and a; is a Dirichlet prior
hyperparameter. The statistical model underlying the
marginal likelihood is a product Multinomial-Dirichlet
distribution over the loci and ancestral sources, where the
probabilities p;; represent the unknown allele frequencies

of the ancestral populations (these are integrated out in
equation A1l). Notice that there is no proportionality sign
in (A1) unlike in the comparable formula of Corander et al.
(2003). This is due to derivation directly in terms of a
generalization of the deFinetti representation theorem
(see, e.g. Bernardo & Smith 1994).

The analytical result given in (A1) enables us to investi-
gate some important properties of the stochastic partition
model in the admixture case. In particular, if no alleles are
allocated to ancestral population i at locus j, the corre-
sponding term in the marginal likelihood equals unity for
any value of the hyperparameter. Thus, the value of (A1)
remains the same when the alleles at locus j allocated to
the ancestral source i are moved to another arbitrary
ancestral source, which does not yet have any allocated
alleles at that particular locus. It follows that the predictive
power of the Bayesian model is not lowered by an increase
in the value of k, as the alleles at any locus can always be
allocated to new ancestral sources not having observations
for the particular locus or any loci. This is in sharp contrast
with the behaviour of the stochastic partition model for a
genetic mixture, where an increase in k always induces also
an increase in the effective number of parameters of the
model. Similarly, the value of (A1) remains the same,
whenever two ancestral sources exchange at any locus the
alleles that are allocated there.

These remarks illustrate the important role of the prior
for the admixture configuration of an individual. Since the
marginal likelihood is under many configurations invari-
ant with respect to an increase in k, an admixture model
with an a priori unknown k can be considered as vaguely
identifiable. In particular, when the data are extensive and
represent a complex population structure with many
genetically diverged subpopulations, it may happen that
even a reasonable prior for the admixture configuration
of an individual has only a negligible contribution to the
final inference. We suggest that this vague identifiability
explains the paradoxical behaviour observed, e.g. by
Heuertz et al. (2004) and Rosenberg ef al. (2002, 2005) with
respect to inference about k in the admixture estimation.

Estimation of admixture coefficients

Since it is difficult to specify reasonable priors for the
admixture configuration such that the inferences could be
expected to be stable for a wide range of biological data,
we have developed an alternative strategy to admixture
modelling. This is based on two distinct phases where the
inference about k is settled first using the genetic mixture
model and estimation algorithm of Corander et al. (2006),
and then, the admixture configuration is estimated for
each individual. In the latter stage, we use Monte Carlo
integration combined with a discretized version of standard
constrained steepest descent algorithm (see, e.g. Fletcher
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1987) which provides a numerically extremely fast method
of obtaining the marginal maximum a posteriori estimates
of admixture coefficients. The Bayesian method of Corander
et al. (2006) only requires an upper bound for k to be set as
a hyperparameter, whereas the other hyperparameters are
chosen using reference priors well-established in the literature.
Since an upper bound for the number of genetically diverged
sources contributing to a sample is a concrete quantity, it is
reasonable to formulate a specific opinion about it.

Given an identified genetic mixture with k components,
letpiﬂ i=1,...,kj=1,...,N;I=1, ... ,NA(/-)) be any fixed
values of the allele frequencies over the loci and com-
ponents. In the Monte Carlo integration step p;; is repre-
sented by a realization from the product Dirichlet posterior
distribution of the allele frequencies foreachi=1, ... k. To
simplify the notation, we consider below a single individual
only, since the estimation can be performed analogously
for all individuals. The vector g = (q;, q,, --. , 4,), specifies
the proportions of the ancestral origins (i.e. admixture
coefficients) for a particular individual, with the restrictions:
0<g;<1,Xgq,=1. Denote the observed alleles at locus j by
vector (d;,) where the range of z depends on the number of
alleles known, say N;,. For instance, for a diploid individual
N,; =2, when there are no missing data at locus j. Let d
denote the joint set of (d;,) over loci. Assuming g known,
the probability of observing a particular d, is defined as:
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k
pld;,lq) = Z%Pfj(djzr (eqn A2)
i=1
Under the assumptions stated earlier for the mixture model,
we obtain the following likelihood for all observations for
an individual:

(eqn A3)

Ny Ny k
p(d! g) = HH[Z% pi,-mj;}

j=lz=1{ i=1

Here we consider solely a discrete version of the admixture
coefficients where g, € [0, .01, ...,.99,1], foralli=1, ...,k
such that Xg;=1. The prior for all q-vectors is assumed
uniform in the finite support, which leads to the conditional
posterior:

P(dlq)

YPdlg
qeQ

p(qld) = (eqn A4)

In the maximization step of our algorithm, we obtain the
conditional posterior mode of the admixture coefficients
for each individual. The marginal maximum a posteriori
estimate of g is then given as the mean over the estimates
corresponding to the m realizations of Pii i=1,..,kj=1,
o NpT=1,000, Ny j y) from the product Dirichlet posterior
obtained through the mixture partition model.



