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A b s t r a c t .  There has been much recent interest in Bayesian image analysis, 

including such topics as removal of blur and noise, detection of object bound- 

aries, classification of textures, and reconstruction of two- or three-dimensional 

scenes from noisy lower-dimensionM views. Perhaps the most straightforward 

task is tha t  of image restoration, though it is often suggested tha t  this is an 

area of relatively minor practical importance.  The present paper argues the 

contrary, since many problems in the analysis of spatial da ta  can be interpreted 

as problems of image restoration. Furthermore,  the amounts  of da ta  involved 

allow routine use of computer  intensive methods, such as the Gibbs sampler, 

tha t  are not yet practicable for conventional images. Two examples are given, 

one in archeology, the other in epidemiology. These are preceded by a partial  

review of pixel-based Bayesian image analysis. 
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1. Introduction 

Bayesian image analysis adopts explicit probability models to incorporate gen- 

eral and scene-specific prior knowledge into the processing of degraded images and 

aims to provide a unified framework within which a wide variety of tasks can be 

tackled. Its beginnings can be found in a short note of Besag (1983) and, much 

more significantly, in Grenander (1983) and Geman, S. and Geman, D. (1984). 

An earlier version of this article was presented at the symposium on the Analysis of Statis- 

tical Information held in the Institute of Statistical Mathematics, Tokyo during December 5 8, 

1989. 
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The present paper emphasizes restoration of images, sometimes considered as 

a relatively unimportant topic in practice. However, we believe there are many 

applications, perhaps not conventionally associated with image analysis, where 

restoration has an important role. In Section 2, we provide an introduction to 

pixel-based image analysis from a Bayesian perspective, with emphasis on the 

Gibbs sampler us an inference machine. Sections 3 and 4 describe two applications 

in spatial statistics, one in archeology, where the aim is to find sites of previous 

human activity by examining the phosphate level in the soil, and the second in 

epidemiology, where the risk from a disease over contiguous administrative zones 

must be estimated from noisy observed incidence or mortality rates. 

2. Bayesian formulation 

We suppose that  a set of records y = {Yk: k E T} is generated by stochastic 

degradation of a true pixel image x = {xi: i  E S}. Here we interpret the term 

"pixel" liberally, allowing pixel arrays that have no direct connection with "pic- 

ture elements" and that  may be regularly or irregularly distributed. The finite 

sets S and T may be identical, as in our two applications (except that  in Section 3 

there are several missing observations), or only loosely related. Thus, in Section 4, 

xi represents the underlying log relative risk in zone i and yi is the corresponding 

observed incidence or mortality rate of the disease. On the other hand, in single 

photon emission computed tomography (SPECT), Yk is the Poisson-distributed 

photon count, registered in the k-th of a bank of detectors surrounding the irra- 

diated tissue, and the task is to reconstruct the mean intensity xi in each pixel i 

of an arbitrary regular array superimposed on the underlying image; see Geman, 

S. and McClure (1987), Green (1990) for detailed Bayesian accounts. 

In this paper, we confine attention to the estimation of x or of functionals of 

x, together with an assessment of uncertainty. However, it should be remarked 

that more sophisticated formulations can be adopted in which the pixel image 

is augmented by conceptual image attributes that are often of more fundamental 

importance. For example, in remote sensing of the earth's surface by satellite, each 

xi is usually multivariate, with components in several or many spectral bands, and 

the final aim is not to restore the xi's from the corresponding yi's but typically 

to produce a classification of pixels into land use or crop type selected from a 

prescribed list. Similarly, in computer vision, the goal is rarely that  of restoring 

pixel intensities, which may in any case be recorded with near perfection, but to 

recognize objects in the scene or demarcate them by boundary maps or perform 

some other higher-level task. The reader is referred to Geman, S. and Geman, 

D. (1984), Geman, D. and Geman, S. (1986), Geman, S. and Graffigne (1987), 

Chow et al. (1988) and Geman, D. et al. (1990) for the Bayesian approach to such 

problems, including examples; Besag (1989) provides a partial review.* 

As usual, the first stage of a Bayesian analysis is to specify a prior probability 

density p(x) for each x. We do not necessarily require that  typical realizations of 

{p(x)} should resemble the true scene but the distribution should at least support 

* A superb  review will appear  in Geman ,  D. (1991). See references in au thors '  reply to 

Discussion. 
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the local regularities that  are believed to exist. In particular, we usually antic- 

ipate that nearby pixel values are likely to be more similar than those further 

apart. In assessing the local behavior of any prior distribution, the most useful 

characteristic is the conditional density pi(xi I "" ") of xi occurring at i, given all 

other pixel values. Usually we want this to depend only on the values at a few 

pixels in the immediate vicinity of i; these pixels constitute the "neighbors" Oi 
of i in the terminology of Markov random fields (Besag (1974)). We postpone 

further discussion until the discrete and continuous examples in Sections 3 and 4, 

respectively. However, note that  {p(x)} may contain unspecified hyperparameters 

that need to be estimated in addition to x. 

The second ingredient of the Bayesian formulation is of course the likelihood 

l(y I x) of an image x for observed records y. This is usually determined by 

conventional statistical modeling. In many applications, the y~'s can be assumed 

to be conditionally independent given x and, when S -- T, Yi may depend only on 

x~ with a common density f ,  so that 

(2.1) l(y l x) = I I  f(Yi I x~)" 
iES  

This occurs in both Sections 3 and 4 but we make some further remarks later in 

this section. Note that  l(y I x) may introduce some new parameters. 

If we assume for the moment that the only unknowns are the xi's, then infer- 

ences about x should be based on the posterior density of x given y; that is, 

(2.2) P(x l y) z(y l x)p(x). 

The most obvious Bayesian point estimate of x is that  which maximizes (2.2), 

namely the maximum a posteriori (m.a.p.) estimate x* of x. This is attractive 

when (2.2) has a unique maximum but loses its appeal and is extremely difficult 

to locate if there are many local maxima, as is often the case. Furthermore, the 

determination of x* provides no assessment of precision, and the m.a.p, estimate 

of an arbitrary functional g(x) is not g(x*) but requires fresh calculation. 

As a general rule, we prefer to make inferences empirically by collecting many 

realizations from the posterior distribution (2.2), using a variant of Metropolis' 

method called the Gibbs sampler by Geman, S. and Geman, D. (1984). This 

enables us to tap a major strength of the Bayesian approach, in that  it is not 

concerned merely with point estimates. For example, in restoring a continuous- 

intensity image, an interval estimate can be assigned to each pixel, indicating the 

precision of the restoration; in binary classification, a posterior probability can be 

ascribed to each pixel, rather than mere presence or absence of the attribute; in 

more general classification, the total area attributed to each class can be supple- 

mented by an interval estimate; and the availability of a catalogue of realizations 

from the posterior distribution is in itself a valuable aid to visual understanding. 

The principle of the Gibbs sampler is very simple. Each image pixel is ad- 

dressed in turn and, when at pixel i, the current value there is replaced by a 

new one sampled randomly from the associated univariate conditional density 

P(xi I x-i ,  y) given all other current pixel values x - i  and the fixed records y. 
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When each x/ has been updated, a single cycle of the algorithm is complete, as 

is one step of a Markov chain with stationary transition probabilities. The limit 

distribution of this chain must be consistent with all the individual conditional 

distributions and hence with the joint distribution {P(x ] y)} that they determine 

through the Brook expansion (Besag (1974)). Note that 

(2.3) P(xi ] x - i , y )  oc l(y ] x)p~(xi ]. . .)  

and that only the dependence on x~ in l(y ] x) is relevant. Thus, if (2.1) holds, 

l (y]x)  in (2.3) is substituted simply by f(Yi [xi); whereas in tomography, where 

each xi influences very many yk's, the algorithm becomes ponderous. An interme- 

diate situation occurs when S -- T but blur is present (Besag (1986)). However, 

even if (2.1) holds, it is evident that for "genuine" images, typically containing 

around 105 or 106 pixels, it is not yet feasible to obtain large numbers of ap- 

proximately independent realizations from {P(x ] y)}; there may also be storage 

problems. On the other hand, in unconventional applications, such as those de- 

scribed in Sections 3 and 4, the number of pixels is often no more than 103 and may 

be substantially less. In such situations, the Gibbs sampler is already a workable 

and powerful tool. 

As regards the estimation of additional parameters in p(x) and in l(y ] x), 

we illustrate two approaches in Sections 3 and 4. The first is ad hoc and avoids 

awkward computational problems, whereas the second is philosophically more sat- 

isfactory but does not always allow easy implementation. 

3. Location of archeological sites 

Enhanced soil phosphate content, the result of decomposition of organic mat- 

ter, is often found at sites of known archeological activity. Thus, measurements of 

phosphate concentration over a study region can provide a useful aid in locating 

sites that are already known to exist. 

Consider a rectangular grid of points ("pixels"), labeled i = 1, 2 , . . . ,  n, at 

each of which a measurement yi is available. Suppose xi -- 1 or 0, according to 

whether there is or is not previous activity at i. Buck et al. (1988) describe the 

use of Bayesian change-point analysis to estimate the classification x from the data 

y, and illustrate their methodology on a 16 × 16 grid of measurements taken at 

10 m intervals in a recent Laconia Survey in Greece. Here, we adopt an image 

analysis formulation not only to produce a classification, which might in any case 

be accomplished in many other ways, but  also to provide approximate posterior 

probabilities of previous activity. 

As a prior distribution for x, we adopt the somewhat simplistic binary Markov 

random field, p(x; /3) o¢ e ~ ,  where v denotes the number of like-like adjacencies, 

horizontally, vertically and diagonally, and/3 is an unknown parameter. The con- 

ditional probability of xi occurring at i, given all other xj's, is then 

pi(xi I'" ") oc exp{/3ui(xi)}, xi -- 0, 1, 

where ui(xi) denotes the number of pixels adjacent to i (neighbors) having value 

xi. Thus, /3 > 0 encourages any pixel to adopt the value taken by the majority of 

its neighbors. 
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As regards the records, we follow Buck et al. (1988) in assuming that the 

logarithms of phosphate concentrations Yl , . . . ,  Yn are conditionally independent, 

given x, and have Gaussian distributions with means #(xi) and common variance 

~. Preliminary examination of the data suggested approximate means #(0) = 4.0 

and #(1) = 4.5 but ~ is more difficult to estimate in the absence of the xi's and 

is treated as an unknown parameter. Naive classification therefore assigns x~ -- 1 

to pixels i for which yi > 4.25 and xi = 0 otherwise. The result is shown in 

the first panel of Fig. 1; question marks identify nine missing values at pixels 

i E S \ T .  If the naive classification is regarded as correct, then k -- 0.310 is the 

maximum likelihood estimate of t~ and/~ = 0.36 is the maximum pseudo-likelihood 

estimate (Besag (1975)) of fl; note that, in this particular case, fl could have been 

estimated by (large sample) maximum likelihood but this would not be feasible in 

more complicated models and may not be desirable for reasons discussed in Besag 

(1986, 1989). 

Naive Classification 
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Fig. 1. Classification of sites into high and low phosphate concentrations. 

The posterior probability of x given y, with the above values of/~ and n, is 

( 3 . 1 )  P(x J y )  ~ e x p  ¢)v - 2--~ " 

i E T  
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Several methods of classification based on (3.1) are available, including exact max- 

imum a posteriori estimation (Greig et al. (1989)), iterated conditional modes 

(nesag (1983, 1986)) and iterated conditional expectations (Owen (1989)). How- 

ever, here we prefer to (approximately) maximize the posterior marginal proba- 

bilities P(xi I Y) of the individual xi's using the Gibbs sampler, as first proposed 

by Grenander (1983). Note that if all facets of the model were correct, this choice 

would minimize the expected number of misclassifications. Information accumu- 

lated from 1000 iterations of the Gibbs sampler produced the classification shown 

in the second panel of Fig. 1 and represents the majority verdict at each pixel. 

New estimates of ~ and/3 were then calculated as before and used in a further 1000 

cycles of the Gibbs sampler, and so on for a total of fifteen iterations. The third 

and fourth panels of Fig. 1 show the classification after 3000 and 15000 cycles; 

the final estimates of ~ and/3 were k -- 0.438 and/3 -- 1.04. More informatively, 

Fig. 2 provides the estimated posterior probability that xi -- 1 for each pixel. 

Note, for example, that  evidence of activity in the bot tom right-hand corner is no 

longer suppressed but that any spatial procedure is necessarily of doubtful value 

for border pixels, a problem compounded here by the missing data. Overall, we 

feel that both Figs. 1 and 2 provide useful information for a modest amount of 

computing and that there are many other situations in which a similar analysis 

would be helpful. For a different Bayesian perspective, using fuzzy membership 

models, see Kent and Mardia (1988). 

17 2 1 0 0 0 1 2 2 2 4 0 0 36 96 99 

3 0 0 0 0 0 0 0 0 0 0 0 3 55 97 100 

1 0 0 0 0 0 0 0 0 1 0 0 17 47 88 97 

1 0 0 1 0 0 0 0 0 l i 17 55 74 83 89 

3 1 2 1 0 1 0 0 0 1 1 12 77 69 71 69 

i0 11 16 13 1 0 0 0 0 2 1 6 19 45 56 57 

18 41 63 51 4 1 0 0 0 1 I 9 2 9 11 99 

64 76 71 96 93 13 2 0 [ 1 13 1 0 0 2 5 

82 90 97 100 96 52 9 4 1 1 0 0 0 0 0 13 

82 100 100 100 98 75 33 12 1 2 0 0 0 0 0 0 

82 98 100 100 100 95 57 21 0 0 1 0 0 0 0 3 

73 93 100 100 100 100 87 42 1 0 0 0 0 0 0 1 

61 91 99 100 100 100 94 62 3 0 1 0 0 0 0 1 

49 73 94 99 99 99 94 55 4 9 0 0 0 0 1 7 

41 42 77 96 I00 99 88 50 2 0 0 1 1 3 I0 16 

35 37 56 87 90 93 85 32 1 0 I 4 6 I0 44 45 

F i g .  2. E s t i m a t e d  p o s t e r i o r  p r o b a b i l i t i e s  o f  p r e v i o u s  h u m a n  a c t i v i t y .  

4. Mapping the risk from a disease 

The mapping of risk for a particular disease, based on observed incidence (or 

mortality) rates in a moderately large number of contiguous administrative zones 

("pixels"), is of importance in the production of cancer atlases and elsewhere. 

When the disease is sufficiently specific, chance fluctuations in the correspondingly 

small counts imply that maps based directly on the raw data are at best difficult 

to interpret and are often misleading when the quantities of real interest are the 

underlying risks. There are then advantages in applying some form of smoothing, 
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which may or may not involve a spatial component ,  and in providing point and 

interval est imates for the risks. 

Let  xi denote  the unknown log relative risk in zone i (i = 1, 2 , . . . ,  n) and 

Yi the corresponding observed number  of cases of (or deaths  from) the disease 

during the s tudy period. When  the disease is non-contagious and rare, it is usually 

reasonable to assume tha t  the y~'s, given the x~'s, are independent  Poisson variates 

with means cie x~, where ci is the expected number  of cases in zone i assuming 

constant  risk; i.e. based only on the overall incidence rate  and the (age-adjusted) 

popula t ion  at risk in zone i. We adopt  the formulat ion x = t + u + v for the x~'s. 

Here t is a s tandard  term, associated with measured covariates tha t  are known or 

suspected to be relevant to the disease, and is usually in the guise of a linear model 

t -- A0 with at least A known. The  addit ional  terms, u and v, can be interpreted 

as surrogates for unknown or unobserved covariates; the ui 's  represent variables 

that ,  if observed, would display substantial  spatial  s t ructure  in tha t  the values for a 

pair of contiguous zones would be generally much more alike than  for two arb i t rary  

zones, whereas the vi 's represent uns t ruc tured  variables. The  inclusion of v is due 

to  Breslow (1984), who noted strong empirical evidence of extra-Poisson variat ion 

under  the basic model x = A0. The fur ther  inclusion of u is very close in spirit 

to Clayton and Kaldor  (1987) but  note tha t  there is a slight logical inconsistency 

in their  detai led formulation; see also, Besag and Molli~ (1989) and Molli~ (1990). 

In practice,  it will of ten be the case tha t  either u or v dominates  the other  but  

which one will not usually be known in advance. If u, then  the es t imated risks will 

display spatial s tructure;  if v, then the effect will be to shrink the es t imated risks 

towards the overall mean. Henceforth,  for simplicity and because nothing new is 

lost, we shall ignore t, though measured covariates have been included in some of 

our  practical  investigations. 

We must now formulate  our prior beliefs concerning x as a joint distr ibution 

for u and v. In the absence of other  information,  we assume independence of u 

and v and tha t  v is a realization of Gaussian white noise with unknown variance 

A. For u, we choose a density from among the family 

(4.1) p(u) c<exp{--Ewij¢(ui--uj)}, uET~ n, 
i<j 

based only on pairwise differences among the ui's; here the wij's are prescribed 

non-negative weights, with wij -- 0 unless i and j are contiguous zones, and ¢(z)  

is a specified even function of z, increasing with Izl. The  condit ional density of ui 

is therefore 

pi(uil '")(xexp{-Ewij¢(ui-uj)  }, uiET~, 
jEoi 

where wij -- wji defines wij for i > j and Oi denotes the zones contiguous to i 

and hence its "neighbors" in the terminology of Markov random fields (cf. Section 

2). The  non-zero wij's may take account of the features of contiguous zones, such 

as populat ions  at risk, common boundary  length and so on, but  here we make 
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the simplest choice wij = 1. It should be noted that the family (4.1) is strictly 

improper because it only addresses differences in the u/'s and not their overall 

level. The impropriety could be easily removed by restricting one or more of 

the ui's to any finite interval but is in any case inconsequential to the eventual 

posterior distribution for u and v. 

We have experimented with two choices of ¢. The simplest is ¢(z) = z2/2~, 

where n is an unknown positive constant, in which case (4.1) becomes 

(4.2) p(u l t~) o( ~ e x p  - ~ i ~ j  

where i ~ j denotes i and j are contiguous. This is a Gaussian intrinsic autore- 

gression, if we extend Kiinsch's (1987) terminology to irregular pixel arrays, and 

has conditional moments 

(4.3) E(ul I ' " )  = Var(u, I ' " )  = 

where ni is the cardinality of Oi and ui is the corresponding mean value. The 

scaling in (4.3) would be undesirable for marginal variances but has some appeal 

in the conditional formulation. An interpretation of (4.2) is that it provides a 

stochastic version of linear interpolation. 

Our alternative choice has been ¢(z) = Izl/tc, where ~ is an unknown scale 

parameter. Then ui has conditional density 

(4.4) pi(u~ ] "")  oc - e x p  - - E  tui - ujl ' 
t¢ t~ 

j c O i  

which has its mode at the median rather than at the mean of the contiguous ui's. 

This distribution is therefore more appropriate than (4.2) if discontinuities in the 

risk surface are expected and can be interpreted as a stochastic version of the 

median filter, so popular in remote sensing applications. 

Note that in both the above formulations, ~ $ 0 implies constant ui's, whereas 

tc large implies correspondingly large but spatially structured variation. Similarly, 

I 0 implies v = 0, whereas ~ large implies substantial but unstructured extra- 

Poisson variability. Note also that in the prior distribution of x, induced by those 

of u and v, the conditional density of xi depends on all other Xd'S , not merely on 

those in contiguous zones. 

For definiteness, we now concemrate on (4.2) as the prior density for u. Then 

the joint posterior density of u, v, ~ and ,~ on which we base inferences, rather 

than on that of x, is given by 

' n  

(4.5) P(u,  v, to, A ly ) o( H{exp(-cieX')(cieX~)Y~/yi!  } 

i=1 

x ~-n/2  exp - ~ i ~ j  

{ I n  } 
- E v/2 x prior(~;, )~), x ~-~/2 exp 2-~ i=1 
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where the final term is the prior density for the two hyperparameters, the obvious 

choice for which is proportional to n- lA -1. However, with this choice, (4.5) is 

improper because of its behavior near the origin u -- v = 0, n = A -- 0. It 

should be emphasized that  this behavior does not stem from any spatial aspects of 

the formulation but is a common and unpleasant feature of Bayesian hierarchical 

models in general. Available remedies include banning a neighborhood of n -- 

= 0 in prior(n, A) or invoking a proper prior distribution, though here we have 

chosen prior(n, ~) c< 1. 

We estimate u, v, n and A by approximations to their posterior means, 

= E(~  I y), ~ = E(v  I y), ~ = E(n  I y), i = E(A I y), 

obtained from the Gibbs sampler which, as a by-product, will also produce inter- 

val estimates. Any one cycle of the Gibbs sampler requires each of the 2n + 2 

components of (u, v, n, A) to be updated by sampling from the salient conditional 

distribution. However, there is a technical problem in that, although (4.5) is now 

a proper distribution, it still has a singularity at the origin and this invalidates 

the Gibbs sampler, because the origin becomes an absorbing state of the Markov 

chain. We conveniently avoid this problem, with negligible other effects, using the 

modification 

(4.6) prior(n, A) o( e-~/2% -~/2~, n, A > O, 

where e is a small positive constant having the value 0.01 in our computations. 

The conditional densities of ui and vi are unaltered, while those of n and A remain 

within the family of inverse gamma distributions. For example, ui has conditional 

density 

ni _ a~)2} 
P~(~ I ~-~, v, ~, ~, y) ~ exp  - c i e  u ' + ' '  + u i y i  - -~-~(ui ui E 7~, 

which can be sampled efficiently by carefully designed rejection methods; and 

has conditional density 

re>O, 

which can be sampled using the standard technique for the chi-squared distribu- 

tion. 

In practice, we typically run the Gibbs sampler for an initial period of 1000 

cycles and then collect information from a further 10000 cycles of which we store 

every 10th or 20th for the subsequent construction of approximate interval esti- 

mates etc. The posterior means are estimated by the corresponding sample means. 

However, note that  the logarithm of the joint posterior density of u and v, given 

~, A and y, is a strictly concave differentiable function of u and v and therefore 

possesses a single maximum, a result that  holds whenever ¢(z) is a differentiable 
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convex function of z. Thus, the conditional m.a.p, estimates u* and v* of u and 

v, given k, ~ and y, provide an appealing alternative to ~ and ~) (cf. Section 2) 

and can be located by any deterministic hill-climbing method. For convenience, 

we use the iterated conditional modes (ICM) algorithm in Besag (1983, 1986) to 

find u* and v*. Finally, note that, as a bonus, u* and v* satisfy 

V* = O, Ci eu~ +v* = Yi, 

i=1 i=1 i=1 

so that the fitted total number of cases matches the observed total. 

We illustrate the above methodology on three sets of data. The first two 

involve the 94 d~partements of mainland France; labels, assigned in alphabetical 

order, and contiguities are identified in Fig. 3. The first data set concerns a total of 

2588 deaths from thyroid cancer reported among women during the period 1971- 

1978. The observed mortality rates, relative to the overall mean rate, axe shown 

in Fig. 4. We used the Gibbs sampler to generate successive samples from the 

posterior distribution (4.5) with the prior (4.6) for ~ and )~, and hence estimate the 

posterior means of u, v, ~ and A; in particular, we found k = 0.129 and ~ = 0.011. 

The corresponding conditional m.a.p, estimates u* and v* were calculated by ICM 

and these provide the estimate e u*+'* of true relative risks shown in Fig. 5. There 

is very little difference between these values and those obtained either from the 

means or from the medians of the posterior distribution for x = u + v given by the 

Gibbs sampler. Residuals, calculated as the ratio of the observed mortality rates 

to the estimated risks, axe displayed in Fig. 6. Figures 7 and 8 provide marginal 

10% and 90% points of the posterior distribution of x. 

The second example concerns 4340 deaths from multiple myeloma among men 

during the same period. Here, we found k = 0.009 and ~ = 0.009. Figures 9 

through 13 correspond to Figs. 4 through 8. 

Briefly, the first analysis supports the existence of the spatial effects that  are 

suggested in the raw data. High and low observed rates shrink somewhat towards 

the overall rate, as would be expected. The results for the second data set suggest 

an almost uniform risk among the d~paxtements, with the possible exception of 

zone 56 (Moselle). Of course, any firm conclusions for either data set would require 

more detailed epidemiological and statistical study, including an examination of 

the residuals. 

There are several aspects of this type of analysis that  require thorough inves- 

tigation. Here, we merely describe two simple simulation exercises we carried out 

on the data for thyroid cancer. In the first, we took the estimated values u* +v~ to 

represent the true tog relative risks xi and used these and the corresponding pop- 

ulations at risk to generate an independent Poisson observation y~ for each zone i. 

We then caxried out an analysis of the new yi's to obtain point and interval esti- 

mates for the known xi's and for the hyperparameters of our model. This enabled 

some rough assessments to be made. The posterior means for ~ and A were 0.082 

and 0.010; the former is rather low in comparison to the notional 0.129, though 

this value lay well within the 90% interval for ~, since the posterior distribution 

is rather diffuse. We use the term "notional" because of course the generated yi's 
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Fig. 3. 

--@ 

Labels and  contiguit ies for the  94 d6par tements  of France. 

Fig. 4. Observed mor ta l i ty  from thyroid  cancer, relat ive to the  overall mean  rate.  
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@ 

Fig. 5. Es t ima ted  relative risks for thyroid  cancer, using ICM with  fixed k and ~. 

Fig. 6. Residuals for thyroid  cancer, calculated as the  rat io  of the  observed morta l i ty  

ra tes  to  the  es t imated  risks. 
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Fig. 7. Marginal 10°/0 points for the posterior distribution of relative risk of thyroid 

cancer, estimated from the Gibbs sampler. 

@ 

.@ 

Fig. 8. Margined 90% points for the posterior distribution of relative risk of thyroid 

cancer, estimated from the Gibbs sampler. 
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Fig. 9. 

- . ®  

Observed mortality from multiple myeloma, relative to the overall mean rate. 

....... 

Fig. 10. Estimated relative risks for multiple myeloma, using ICM with fixed k and 
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k£) 

Fig. 11. Residuals for multiple myeloma, calculated as the ratio of the observed mor- 

tality rates to the estimated risks. 

Fig. 12. Marginal 10% points for the posterior distribution of relative risk of multiple 

myeloma, estimated from the Gibbs sampler. 
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Fig. 13. Marginal 90°'/0 points for the posterior distribution of relative risk of multiple 

myeloma, estimated from the Gibbs sampler. 

depend directly only on x and not on the values of u, v, ~ and A. A more important 

consideration is the accuracy of our eventual estimate x* of x in comparison to the 

apparent log relative risks ri calculated directly from the y~'s. The mean squared 

error of the ri 's was 5.1, whereas that of the x* 's was only 1.4, so that  the Bayesian 

procedure provides a substantial improvement. Two further simulations suggested 

that  these figures are typical for this example. As regards interval estimation, 81 

of the 94 known xi's lay within their corresponding 80% intervals, and 89 within 

their 90% intervals. Note that the above method of assessment assumes only the 

correctness of the Poisson formulation used to generate the yi's. 

In the second part of the simulation exercise, the aim was to investigate the 

role of ~ and A in the posterior distribution of relative risk; this also has some 

relevance to the empirical Bayes procedure of Clayton and Kaldor (1987). Here, 

we ran the Gibbs sampler on the original data for a second time but using fixed 

values ~ = 0.129 and )~ = 0.011 throughout. On average, such a procedure will 

produce shorter but erroneous interval estimates for the xi's, because it does not 

account for variability in the estimation of the hyperparameters. However, in this 

example, we found no evidence of a systematic effect on the interval estimates. 

The numbers of cases per zone in each of the above examples are sufficiently 

large that  the Poisson likelihood could be replaced by a Gaussian approximation, 

opening up the possibility of some simplification of the analysis (cf. Clayton and 

Kaldor (1987)). In complete contrast, we now consider an example in which the 
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numbers of cases in individual zones are very low indeed. The data are part of 

a larger data set for 1218 wards (zones) in the North of England and refer to 

the reported incidence of all cancers, excluding leukemias, in the age group 0- 

24 years, during 1968 1985. The number of cases over the entire region is 4997, 

ranging from zero to 20 in individual wards; the largest and smallest populations 

at risk differ by a factor of 134! The region is divided among eight counties, two of 

which, Greater Manchester, in the North West, and Tyne and Wear, in the North 

East, form major industrial conurbations. Here we concentrate on the former, for 

which there are 1904 cases distributed among the 216 wards, with a low of 2 and a 

high of 20. Figure 14 displays the zones, their contiguity graph and the observed 

incidence rates, relative to the overall; shaded zones have above average incidence 

rates. It is difficult to draw any particular conclusions because of the Poisson noise 

and the different sizes of populations at risk, though here these differ only by a 

factor of four. 

Figure 15 is the result of the same Bayesian analysis as in the first two ex- 

amples. Now a very clear pattern is evident and has a reasonable explanation: 

the northwest of Greater Manchester is primarily residential and free from major 

industrial pollution. The existence of such a pattern is not entirely obvious on 

prima facie grounds, since only the age range 0-24 is under consideration, and, so 

far as we are aware, has not been pointed out previously. Not surprisingly, all the 

90% and indeed almost all the 80% equal-tailed posterior intervals for individual 

wards include unit relative risk. Had the pattern been hypothesized in advance, it 

would have been valid to divide the wards into sets, A and A c, comprising those 

in the northwest of the county and those elsewhere, and then to construct the 

posterior distribution of the relative risk, 

E CiCx~ E CiCXi 

iCA iEA c 

E ci E ci 
icA icA c 

from the realizations of the Gibbs sampler. Of course, in this circumstance, a 

classical significance test on the raw incidence rates for A and A c would also 

produce incontestable evidence of a difference; thus, the main point is that the 

Bayesian analysis has unmasked the pattern. Incidentally, a similar effect was 

found in Tyne and Wear; also, the estimated risks were almost identical when the 

prior (4.2) was replaced by (4.4). We end on a somewhat cautionary note, wishing 

to emphasize that almost any analysis at this scale is likely to be precarious. 

Nevertheless, we believe that the Bayesian analysis is an improvement on the 

classical estimation and testing methods that are used currently as one means of 

allocating health service resources on a ward by ward basis. 
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