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Abstract

Very recently, Hartline and Lucier [14] studied single-

parameter mechanism design problems in the Bayesian set-

ting. They proposed a black-box reduction that converted

Bayesian approximation algorithms into Bayesian-Incentive-

Compatible (BIC) mechanisms while preserving social wel-

fare. It remains a major open question if one can find sim-

ilar reduction in the more important multi-parameter set-

ting. In this paper, we give positive answer to this ques-

tion when the prior distribution has finite and small sup-

port. We propose a black-box reduction for designing BIC

multi-parameter mechanisms. The reduction converts any

algorithm into an ε-BIC mechanism with only marginal loss

in social welfare. As a result, for combinatorial auctions

with sub-additive agents we get an ε-BIC mechanism that

achieves constant approximation.

1 Introduction

In this paper, we consider the problem of designing
computationally efficient and truthful mechanism for
multi-parameter mechanism design problems in the
Bayesian setting.

Suppose a major Internet search service provider
wants to sell multiple advertisement slots to a number
of companies. From the history of previous transactions,
we can estimate a prior distribution of each company’s
valuation of the advertisement slots. What mechanism
shall the search service provider use to obtain good
social welfare, or good revenue?

This is a typical multi-parameter mechanism design
problem. In general, we consider the scenario in which a
principal wants to sell a number of different services to
multiple heterogeneous strategic agents subject to some
feasibility constraints (e.g. total cost of providing these
services must not exceed the budget), so that some de-
sired objective (e.g. social welfare, revenue, residual
surplus) is achieved. If we interpret this as simply a
combinatorial optimization problem, then there exists
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approximation algorithms for many of these problems.
And the approximation ratios of many of these algo-
rithms are tight subject to certain computational com-
plexity assumptions. However, if we wants to design
protocols of allocations and setting prices in order to
achieve the desired objective in the equilibrium strate-
gic behavior of the agents, we usually have much worse
approximation ratio. Therefore, it is natural to ask the
following question:

Can we convert any algorithm into a truthful
mechanism while preserving the performance,
say, social welfare?

Unfortunately, from previous work we learn that
this is impossible for some problems. Papadimitriou et
al. [18] showed the first significant gap between the
performance of deterministic algorithms and determin-
istic truthful mechanisms via the Combinatorial Public
Project problem.

Bayesian setting. The standard game theoretic
model for incomplete information is the Bayesian set-
ting, in which the agent valuations are drawn from a
publicly known distribution. The standard solution con-
cept in this setting is Bayesian-Nash Equilibrium. In a
Bayesian-Nash equilibrium, each player maximizes its
expected payoff by following the strategy profile given
the prior distribution of the agent valuations.

In this paper, we will consider multi-parameter
welfare-preserving algorithm/mechanism reductions in
the Bayesian setting, and weaken truthfulness con-
straint from Incentive Compatibility (IC) to Bayesian
Incentive Compatibility (BIC), which means truth
telling is the equilibrium strategy over random choice of
the mechanism as well as the random realization of the
other agent valuations. In many real world applications
such as online auctions, AdWords auctions, spectrum
auctions etc., the availability of data of past transac-
tions make it possible to obtain good estimation of the
prior distribution of the agent valuations. Thus, revisit-
ing the algorithm/mechanism reduction problem in the
Bayesian setting is of both theoretical and practical im-
portance.

Hartline and Lucier [14] studied this problem in
the single-parameter setting. They showed a brilliant



black-box reduction from any approximation algorithm
to BIC mechanism that preserves the performance with
respect to social welfare maximization. In this paper,
we prove that similar reduction also exists for the
realm of multi-parameter mechanism design for social
welfare! Moreover, we can also obtain BIC mechanism
for revenue or residual surplus via some variants of our
black-box reduction.

Our results and technique. Our main result is a
black-box reduction that converts algorithms into BIC
mechanisms with essentially the same social welfare for
arbitrary multi-parameter mechanism design problem
in the Bayesian setting. More concretely, given an algo-
rithm A that provides SWA social welfare, the reduc-
tion provides a mechanism that gives SWA − ε social
welfare and is ε-BIC. The running time is polynomial
in the input size and 1/ε. This resolves an open prob-
lem in [14]. The key idea is to decouple the reported
valuations and the input valuations for the algorithm
A. When the reported valuations are v1, v2, . . . , vn, we
will manipulate the valuations via some carefully de-
signed intermediate algorithms B1, . . . ,Bn, and use al-
location A(B1(v1), . . . ,Bn(vn)). We prove that there
exist intermediate algorithms B1, . . . ,Bn so that there
are prices that achieve BIC. Under certain conditions,
the marginal loss factor in social welfare can be made
multiplicative.

As an application of this reduction, we get a ( 1
2 −

ε)-approximate and εvmax-BIC mechanism for social
welfare maximization in combinatorial auctions with
sub-additive agents. For the more restricted case of
fractionally sub-additive agents, we obtain (1− 1

e − ε)-
approximate mechanism.

Related work. The problem of maximizing social
welfare against strategic agents is one of the oldest and
most famous problems in the area of mechanism design.
It has been extensively studied by the economists in
both Bayesian and prior-free setting without considering
computational power constraint. The celebrated VCG
mechanism [3, 10, 20] which guarantees optimal social
welfare and incentive compatibility is one of the most
exciting results in this domain. However, implementing
the VCG mechanism is NP-hard in general. This is one
of the reasons that VCG mechanism is rarely used in
practice despite of its lovely theoretical features.

In the past decade, computer scientists introduced
many novel techniques in the prior-free setting to de-
sign computationally efficient mechanisms that provide
incentive compatibility and/or good approximation to
optimal social welfare for various families of valuation
functions.

On the one hand, Dobzinski, Nisan and Schapira

[6] proposed poly-time mechanisms which achieved
Ω(1/

√
n)-approximation for general agents and

Ω(1/ log2 n)-approximation for sub-modular agnets.
Dobzinski [4] later proposed a truthful mechanism

which achieved an improved Ω̃(1/ log n)-approximation
for a strictly broader class of sub-additive agents.

On the other hand, if we focus on the al-
gorithmic problem of maximizing social welfare as-
suming all valuations are truthfully revealed, then
the algorithm by Dobzinski, Nisan and Schapira [5]
gave Ω(1/

√
n)-approximation for general case and

Ω(1/ log n)-approximation for sub-additive agents. The
latter approximation ratio is later improved to 1

2 for sub-
additive agents [8] and (1 − 1

e ) for the more restricted
class of fractionally sub-additive agents [4, 9].

The above results suggest that there exists a gap
between the performance of the best poly-time algo-
rithms and that of the best poly-time and incentive com-
patible mechanism. As an effort to study the relation
between designing algorithms and designing truthful
mechanisms with good approximation ratio, Lavi and
Swamy [16] proposed a meta-mechanism that converted
strong rounding algorithms for the standard LP of so-
cial welfare maximization into IC mechanisms. How-
ever, their approach required the rounding algorithm to
work for arbitrary valuation functions. This require-
ment prevents their technique to get good approxima-
tion beyond cases of general valuations and additive val-
uations (via a different linear program). But the more
interesting classes of valuations (e.g. sub-additive val-
uations and sub-modular valuations) lies between these
two extremes. Another notable attempt on reducing IC
mechanism design to algorithm design is the very recent
work by Dughmi and Roughgarden [7]. They proved
that for any packing problem that admitted an FPTAS,
there was an IC mechanism that was also an FPTAS.

Most of the previous effort from computer scientists
has focused on the prior-free setting. Until very recently,
there has been a few work that brought more and more
Bayesian analysis into the field of algorithmic mecha-
nism design. Hartline and Lucier [14] gave a black-box
reduction that converted any Bayesian approximation
algorithm into a Bayesian incentive compatible mech-
anism that preserved social welfare in the single pa-
rameter domain. Bhattacharya et al. [1] studied the
revenue maximization problem for auctioning heteroge-
neous items when the valuations of the agents were ad-
ditive. Their result gave constant approximation in the
Bayesian setting even when the agents had public known
budget constraints. Chawla et al. [2] considered the
revenue maximization problem in the multi-dimensional
multi-unit auctions. They introduced mechanism that
gave constant approximation in various settings via se-



quential posted pricing.
Finally, in concurrent and independent work, Hart-

line et al. [13] study the relation of algorithm and mech-
anism in Bayesian setting and propose similar reduc-
tion. In the discrete support setting that is considered
in this paper, they use essentially the same reduction.
However, their work achieves perfectly BIC instead of
ε-BIC. They also extend the reduction to the more gen-
eral continuous support setting.

2 Preliminaries

2.1 Notations. We use {xi}1≤i≤n to denote an array
of size n. We also use the natural extension of this
notation for multi-dimensional arrays. We will use bold
font x to denote a vector (x1, . . . , xn). We let ∆(S)
denote the set of distributions over the elements in a
set S. For a random variable x, we let E [x] denote its
expectation and let σ [x] denote its standard deviation.
We use subscripts to represent the random choices over
which we consider the expectation and variance. For
instance, Ey∼F [x] is the expectation of x when y is
drawn from distribution F . We sometimes use Ey [x] for
short when the distribution F is clear from the context.

2.2 Model and definitions. In this section, we
will formally introduce the model in this paper. We
study the general multi-parameter mechanism design
problems. In a multi-parameter mechanism design
problem, a principal wants to sell a set of services to
multiple heterogeneous agents in order to optimize the
desired objective (e.g. social welfare, revenue, residual
surplus, etc.). A Bayesian multi-parameter mechanism
design problem with n agents is defined by a tuple
〈I,J ,V ,F 〉.

• I = (I1, . . . , In): The set of services that the
principal wants to sell to the agents.

Since we can impose arbitrary feasibility con-
straints on the allocations, we can assume without
loss of generality that the services are partitioned
into n disjoint sets I1, . . . , In such that the services
in Ii only aim for agent i, and each agent i is inter-
ested in any one of the services in Ii.

• J ⊆ I1 × · · · × In: The set of feasible allocations.

• V = V1 × · · · × Vn: The space of agent valuations.

We let Vi ⊆ RIi denote the set of possible valua-
tions of agent i. We let vmax = maxi,v∈Vi,S∈Ii v(S)
denote the maximal valuation.

• F = F1×F2×· · ·×Fn: The joint prior distribution
of the agent valuations.

We assume the prior distribution is a product
distribution. We let Fi ∈ ∆(Vi) denote the prior
distribution of the valuation of agent i. In this
paper, we only consider distributions with finite
and polynomially large support. We will assume
without loss of generality that the support of each
distribution Fi is {v1i , . . . , v`i}. Suppose vi ∼ Fi, We
will let fi(t) denote the probability that vi = vti .

For example, in the combinatorial auction problem
with n agents and m items, we let [m] = {1, 2, . . . ,m}
denote the set of items. The set of services for each
agent i is the set of all subsets of items, that is, Ii = 2[m],
1 ≤ i ≤ n. The set of feasible allocations is

J = {(S1, . . . , Sn) : Si ∈ Ii, Si ∩ Sj = ∅} .
The set of valuations, Vi, is the set of mappings from

subset of items Ii to R+ that are monotone (vi(S) ≤
vi(T ) for S ⊆ T ) and normalized (vi(∅) = 0). We
usually assume that the valuations in

⋃
i Vi satisfies

certain properties, e.g. sub-additivity, sub-modularity,
etc.

Algorithm. An algorithm for a multi-parameter
mechanism design problem 〈I,J ,V ,F 〉 is a protocol
(may or may not be randomized) that takes a realization
of agent valuations v ∈ V as input, and outputs a
feasible allocation S ∈ J .

Mechanism. A mechanism is an interactive proto-
col (may or may not be randomized) between the prin-
cipal and the agents so that the principal can retrieve
information from the agents (presumably via their bids),
and determine an allocation of services S ∈ J and a col-
lection of prices p = (p1, . . . , pn). The extra challenge
for mechanism design, compared to algorithm design,
is to retrieve genuine valuations from the agents and
handle their strategic behavior.

For each 1 ≤ i ≤ n, we will assume the prior dis-
tribution Fi is public known. But the actual realization
vi ∼ Fi is private information of agent i.

Each agent i aims to maximizes the quasi-linear
utility vi(Si)−pi, where Si is the service it gets and pi is
the price. Thus, the agents may not reveal their genuine
valuations if manipulating their bids strategically can
increase their utility.

Objectives. We will consider three different objec-
tives: social welfare, revenue, and residual surplus. The
expected social welfare of a mechanism M is

SWM = Ev∼F ,(S,p)∼M(v)

[
n∑

i=1

vi(Si)

]
.

Similarly, we will let SWA denote the expected
social welfare of an algorithm A.



Definition 2.1. An algorithm A is α-approximate in
social welfare for a multi-parameter mechanism design
problem 〈I,J ,V ,F 〉, if SWA ≥ αOPT.

The expected revenue of a mechanism is

RM = Ev∼F ,(S,p)∼M(v)

[
n∑

i=1

pi

]
.

The last objective, residual surplus, was recently
proposed by Hartline and Roughgarden [15] as an al-
ternative objective in the flavour of social welfare. In
the residual surplus maximization problem, the princi-
pal aims to maximize the sum of the agents’ utilities
instead of the sum of their valuations. The expected
residual surplus is

RSM = Ev∼F ,(S,p)∼M(v)

[
n∑

i=1

(vi(S)− pi)
]
.

We will let OPT denote the optimal social welfare,
that is, OPT = maxM SWM. Since both revenue and
residual surplus are upper-bounded by social welfare.
We will use OPT as our benchmark for all three objec-
tives.

Solution concepts. Ideally, a mechanism shall
provide incentive for the agents to reveal their valua-
tions truthfully. In this section, we will formalize this
requirement by introducing the game-theoretical solu-
tion concepts that we use in this paper.

Definition 2.2. A mechanism M is Bayesian incen-
tive compatible (BIC) if for each agent i and any two
valuations vi, ṽi ∈ Vi, we have

Ev−i,(S,p)∼M(vi,v−i) [vi(Si)− pi] ≥
Ev−i,(S,p)∼M(ṽi,v−i) [vi(Si)− pi] .

Definition 2.3. A mechanismM is ε-Bayesian Incen-
tive Compatible (ε-BIC) if for any agent i and any two
valuations vi, ṽi ∈ Vi,

Ev−i,(S,p)∼M(vi,v−i) [vi(Si)− pi] ≥
Ev−i,(S,p)∼M(ṽi,v−i) [vi(Si)− pi]− ε .

Other than the above constraints of incentive com-
patibility, the mechanism shall also guarantee that the
agents always get non-negative utility. Otherwise, the
agents may choose not to participate in the mechanism.
This is known as the individual rationality constraint.

Definition 2.4. A mechanism M is individually ra-
tional (IR) if for any realization v of agent valuations,
and any allocation S and prices p by the mechanism,
we always have that for any agent i, vi(Si)− pi ≥ 0.

3 Characterization of BIC mechanisms

In this section, we will introduce a non-trivial char-
acterization of BIC multi-parameter mechanisms via a
novel connection between BIC mechanisms and envy-
free prices. This characterization inspires our reduction
in the next section.

3.1 Fractional assignment problem. We will first
introduce the fractional assignment problems, which
will play a critical role in the results of this paper,
and a useful lemma about envy-free prices in fractional
assignment problems.

In order to distinguish the notations for fractional
assignment problems and those for the mechanism de-
sign problems, we will use superscripts instead of sub-
scripts to specify different entries of a vector for the
fractional assignment problems. For instance, we will
use xs to denote the sth entry of a vector x.

Let us consider a market with ` buyers and m
infinitely divisible products. Each buyer s has a
non-negative demand αs, which denotes the maximal
amount of products the buyer will buy. Each product t
has a non-negative supply βt, which denotes the avail-
able amount of this product in the market. For each
buyer s and each product t, we let wst denote the non-
negative value of buyer s of product t.

The goal is to set prices for the products and to
assign the products to the buyers subject to the demand
and supply constraints. Thus, a solution (x,p) to the
fractional assignment problem consists of a collection
of prices p = (p1, . . . , p`) and a feasible allocation
x = {xst}1≤s≤`,1≤t≤m in the polytope:

{
x : ∀s,

m∑

t=1

xst ≤ αs; ∀t,
∑̀

s=1

xst ≤ βt; x ≥ 0

}
,

where xst denotes the amount of product t that is
assigned to buyer s.

Definition 3.1. A solution (x,p) is envy-free if for
any xst > 0, then t is a product that maximizes the
quasi-linear utility of agent s, and the utility for agent
s is non-negative. That is,

(3.1) ∀s, t : xst > 0⇒ wst−pt = max
k
{wsk−pk} ≥ 0 .

Definition 3.2. An allocation x is market-clearing if
all demand constraints and supply constraints hold with
equality, that is,

∀1 ≤ s ≤ ` :

m∑

t=1

xst = αs , ∀1 ≤ t ≤ m :
∑̀

s=1

xst = βt .



The social welfare maximization problem for a
fractional assignment problem is characterized by the
following linear program (P) and its dual (D).

(P) Maximize Σ`s=1Σmt=1x
stwst s.t.

Σmt=1x
st ≤ αs ∀s

Σ`s=1x
st ≤ βt ∀t
xst ≥ 0 ∀s, t

(D) Minimize Σ`s=1α
sus + Σmt=1β

tpt s.t.

us + pt ≥ wst ∀s, t
us ≥ 0 ∀s
pt ≥ 0 ∀t

We will introduce two useful lemmas about the con-
nection between envy-free prices and social welfare max-
imization for fractional assignment problems. These
lemmas were known in different forms in the economics
literature [11].

Lemma 3.1. If there exist envy-free prices p for a
market-clearing allocation x, then x maximizes the
social welfare, that is, x ·w = maxz z ·w.

Proof. Suppose there exist envy-free prices p for an
allocation x. Let us = maxt {wst − pt}. We have that
us + pt ≥ wst for all s, t. So (u,p) is a feasible solution
for the dual LP.

Moreover, by definition of envy-freeness, we have

∀s, t : xst > 0⇒ us = wst − pt .

Therefore, we get that

∑̀

s=1

m∑

t=1

xstwst =
∑̀

s=1

m∑

t=1

xst(us + pt)

=
∑̀

s=1

αsus +
∑

t

βtpt .

The last equality holds because x is market clearing.
Notice that x is a feasible solution to the primal LP. By
duality theorem, we get that the allocation x maximizes
the social welfare for the fractional assignment problem.

Lemma 3.2. If an allocation x maximizes the social
welfare, then there exist envy-free prices p for the
fractional assignment problem.

Proof. Suppose the allocation x maximizes the social
welfare. Let (u,p) be an optimal solution to the dual
LP. By complementary slackness we get that xst > 0
only if the corresponding dual constraint is tight, that
is, us + pt = wst. Therefore, xst > 0 implies that

wst−pt = us ≥ wsk−pk for all k. Thus p is a collection
of envy-free prices for the allocation x in this fractional
assignment problem.

Note that the above proof also gives a poly-time
algorithm for finding the welfare maximizing allocation
x and the corresponding envy-free prices p by solving
the primal and dual LPs. Moreover, we also get that
the envy-free prices p satisfy a weak uniqueness in the
sense that it must be part of an optimal solution for the
dual LP.

Corollary 3.1. There exists a poly-time algorithm
that computes the welfare-maximizing market-clearing
allocation and the envy-free prices.

3.2 Characterizing BIC via envy-free prices.
We first introduce some notations that will simplify
our discussion. Given a mechanism M for a multi-
parameter mechanism design problem 〈I,J ,V ,F 〉, we
will consider the expected values and expected prices
for each agent when it choose a specific strategy (each
strategy corresponds to reporting a specific valuation).

Assuming the other agents report their valuations
truthfully, agent i’s expected value of the service it
gets, when the genuine valuation is vsi and the reported
valuation is vti , is

wsti = Ev−i,(S,p)∼M(vti ,v−i) [vsi (Si)] .

Similarly, we let pit denote the expected price the
mechanism would charge to agent i if its reported
valuation is vti , that is,

pti = Ev−i,(S,p)∼M(vti ,v−i) [pi] .

By the definition of BIC and IR, the mechanismM
is BIC and IR if and only if for any 1 ≤ i ≤ n and
1 ≤ s ≤ `,

(3.2) wssi − psi = max
t
{wsti − pti} ≥ 0 .

The above equation (3.2) is similar to equation
(3.1) in the definition of envy-freeness in fractional
assignment problem. In fact, the key observation is
that the above BIC condition is equivalent to the envy-
free condition for a set of properly chosen fractional
assignment problems.

Induced assignment problems. For each agent
i, we will consider the following induced assignment
problem. We consider ` virtual buyers with demands
fi(1), . . . , fi(`) respectively, and ` virtual products with
supplies fi(1), . . . , fi(`) respectively. For each virtual
buyer s and each virtual product t, let virtual buyer s



has value wsti on virtual product t. We will refer to this
fractional assignment problem the induced assignment
problem of agent i.

Let us consider the identity allocation xi defined as
follows:

xsti =

{
fi(s) , if s = t ,

0 , otherwise.

We can easily verify that a collection of prices
pi = (p1i , . . . , p

`
i) satisfies constraint (3.2) if and only if

pi satisfies the envy-free condition (3.1) of the induced
assignment problem of agent i with respect to the
above identity allocation. Hence, we have the following
connection between BIC mechanism and the envy-free
prices of the induced assignment problems.

Lemma 3.3. (Characterization Lemma [19]) A
mechanism M is BIC if and only if in the induced as-
signment problem of each agent i the identity allocation
xi = {xsti }1≤s,t≤` maximizes the social welfare, and
pi = (p1i , . . . , p

`
i) are chosen to be the corresponding

envy-free prices.

Comparing with Myerson’s characterization.
Suppose the problem falls into the single-parameter
domain. Each valuation vsi is represented by a single
non-negative real number. With a little abuse of
notation, we let vsi denote this value. Without loss
of generality, we assume that v1i > · · · > v`i . We
let yti denote the probability that agent i would be
served if the reported value was vti . The values wi
in the fractional assignment problems of agent i are
wsti = vsi y

t
i for 1 ≤ s, t ≤ `. Myerson’s famous

characterization [17] of truthfulness in single-parameter
domain implied that the mechanism is BIC if and only if
y1i ≥ · · · ≥ y`i . Indeed, due to rearrangement inequality,
the identity allocation xi maximizes the social welfare
if and only if y1i ≥ · · · ≥ y`i . Thus, the characterization
lemma implies Myerson’s characterization in the single-
parameter domain.

4 Reduction for social welfare

Lemma 3.3 suggests an interesting connection between
BIC and envy-free prices for the induced assignment
problems. Hence, given an algorithm A, we will manip-
ulate the allocation by A based on this connection in
order to make it satisfy the condition in Lemma 3.3.

4.1 Main ideas. Let us first briefly convey two key
ideas in the construction of the welfare-preserving re-
duction.

The first idea is to decouple the reported agent
valuations and the input agent valuations for algorithm

v′2

· · ·

ṽ1

ṽ2

ṽm

A S

B1
B2

Bm

v′1

v′m

Figure 1: High-level picture of the reduction for social
welfare. Bi’s are intermediate algorithms for manipu-
lating the input of algorithm A. ṽi’s are the reported
valuations. v′i’s are the manipulated input valuations
for algorithm A. S is the final allocation.

A. More concretely, we will introduce n intermediate
algorithm B1, . . . ,Bn. Each Bi will take the reported
valuation v′i as input, then output a valuation ṽi that
may or may not equals v′i. Then, we will use algorithm
A to compute the allocation S for agent valuations
ṽ1, . . . , ṽn, and allocate services according to S.

If we revisit the values w̃i in the induced assignment
problem of agent i after this manipulation, we will get
that for any 1 ≤ s, t ≤ `,

w̃sti = Ev−i,ṽ∼B(vti ,v−i),S∼A(ṽ) [vsi (Si)] .

By Lemma 3.3, we need to choose Bi’s carefully,
so that the identity allocations in the manipulated as-
signment problems are welfare-maximizing allocations.
However, from the above equation we can see that by
using Bi to manipulate the ith valuation, we may change
not only the structure of the induced assignment prob-
lem of agent i, but the structure of the induced assign-
ment problems of other agents as well. Hence, we need
to handle such correlation among the induced assign-
ment problems when we choose intermediate algorithms
B1, . . . ,Bn.

The idea that handles this correlation is to impose
an extra constraint on each intermediate algorithm Bi:
if the input valuation v′i is drawn from the distribution
Fi, then the output valuation ṽi also follows the same
distribution, that is, for all 1 ≤ i ≤ n and 1 ≤ t ≤ `,
(4.3) Prv′i∼Fi,ṽi∼Bi(v′i)

[
ṽi = vti

]
= fi(t) .

With this extra constraint, the values w̃i after the
manipulation in the induced assignment problem of
agent i becomes

w̃sti = Ev−i∼F−i,ṽ∼B(vti ,v−i),S∼A(ṽ) [vsi (Si)]

= Eṽ−i∼F−i,ṽi∼Bi(vti),S∼A(ṽ) [vsi (Si)]

= Ev−i∼F−i,ṽi∼Bi(vti),S∼A(ṽi,v−i) [vsi (Si)] .

Thus, from the Bayesian viewpoint of agent i,
the intermediate algorithms B−i of other agents are



transparent. This property enables us to manipulate
the structure of each assignment problem separately.

4.2 Black-box reduction. Given an algorithm A,
the black-box reduction for social welfare will convert
algorithm A into the following mechanism MA:

1. For each agent i, 1 ≤ i ≤ n (Pre-computation)

(a) Estimate the values wi = {wsti }1≤s,t≤` of the
induced assignment problem of i with respect
to algorithm A. Let ŵi = {ŵsti }1≤s,t≤` denote
the estimated values.

(b) Find the social welfare maximizing alloca-
tion xi = {xsti }1≤s,t≤` and the correspond-
ing envy-free prices pi = (p1i , . . . , p

`
i) for the

induced assignment problem of agent i with
estimated values.

2. Manipulate the valuations with intermediate algo-
rithms Bi, 1 ≤ i ≤ n, as follows: (Decoupling)

Suppose the reported valuation of agent i is
v′i = vsi , 1 ≤ i ≤ n. Let ṽi = Bi(v′i) = vti with
probability xsti /fi(s) for 1 ≤ t ≤ `.

3. Allocate services according toA(ṽ). (Allocation)

(a) Let S = (S1, . . . , Sn) denote the allocation by
algorithm A with input ṽ.

(b) For each agent i, suppose the reported valua-
tion is v′i = vsi and the manipulated valuation
is ṽi = vti , charge agent i with price

pti
vsi (Si)

ŵsti
.

The following theorem states that this reduction
produces BIC while preserving the performance with
respect to social welfare.

Theorem 4.1. Suppose A is an algorithm for a multi-
parameter mechanism design problem 〈I,J ,V ,F 〉.

1. If the estimated values ŵi are accurate, then mech-
anism MA is BIC, IR, and guarantees at least
SWA of social welfare.

2. If the estimated values ŵi satisfy that for any
1 ≤ s, t ≤ `, ŵsti ∈ [(1 − ε)wsti , (1 + ε)wsti ], then
mechanismMA is 4εvmax-BIC, IR, and guarantees
at least (1− 2ε) · SWA of social welfare.

3. If the estimated values ŵi satisfy that for any
1 ≤ s, t ≤ `, ŵsti ∈ [wsti − ε, wsti + ε], then
mechanism MA is 4ε-BIC, IR, and guarantees at
least SWA − 2nε of social welfare.

Let us illustrate the proof of part 1. The proofs of
the other two parts are tedious and simple calculations
along the same line. We will omit these proofs in this
extended abstract.

Proof. We consider the case when the estimated values
ŵi are accurate, that is, ŵsti = wsti for all 1 ≤ i ≤ n and
1 ≤ s, t ≤ `.

Individual rationality. By our choice of envy-free
prices, we have that pti ≤ wsti for all 1 ≤ i ≤ n and
1 ≤ s, t ≤ `. Thus, we always guarantee

pti
vsi (Si)

wsti
≤ vsi (Si) .

So the mechanism MA that we get from the re-
duction always provides non-negative utilities for the
agents. Essentially the same proof also shows IR for
part 2 and 3.

Bayesian incentive compatibility. We will first
show that the intermediate algorithms in the decoupling
step of the reduction satisfy constraint (4.3). Let xi
denote the social welfare maximizing allocation that the
reduction finds for the induced assignment problem of
agent i for 1 ≤ i ≤ n. Note that these social welfare
maximizing allocations are market-clearing. We have
that if the reported valuation v′i follows the distribution
Fi, then the distribution of the manipulated valuation
ṽi satisfies that

Pr
[
ṽi = vti

]
=
∑̀

s=1

Pr [v′i = vsi ] Pr
[
ṽi = vti : v′i = vsi

]

=
∑̀

s=1

fi(s)
xsti
fi(s)

=
∑̀

s=1

xsti = fi(t) .

Indeed, the intermediate algorithms satisfy con-
straint (4.3). Thus, for each 1 ≤ i ≤ n the intermedi-
ate algorithm Bi only changes the structure of induced
assignment problem of agent i and leaves the induced
assignment problems of other agents untouched.

Next, we will verify that in each of the manipulated
assignment problem, the identity allocation maximizes
the social welfare and the prices are the corresponding
envy-free prices.

For each agent i, we let w̃i = {w̃sti }1≤s,t≤` and p̃i =
(p̃1i , . . . , p̃

`
i) denote the values and the expected prices

of the virtual products respectively in the manipulated
assignment problem of agent i. We have that for any



1 ≤ r, s ≤ `,

w̃rsi =
∑̀

t=1

Pr
[
ṽi = vti

]
Ev−i,S∼A(vti ,v−i) [vri (Si)]

=
∑̀

t=1

xsti
fi(s)

wrti ;

p̃si =
∑̀

t=1

Pr
[
ṽi = vti

]
Ev−i,S∼A(vti ,v−i)

[
pti
vsi (Si)

wrsi

]

=
∑̀

t=1

xsti
fi(s)

pti .

Thus, in the manipulated assignment problem of
agent i, the utility of the virtual buyer r of the virtual
product s, 1 ≤ r, s ≤ `, is

w̃rsi − p̃si =
∑̀

t=1

xsti
fi(s)

(wrti − pti)

≤
∑̀

t=1

xsti
fi(s)

max
k
{wrki − pki }

= max
k
{wrki − pki } .

Since pi are chosen to be the envy-free prices, we
have that xrti > 0 only if wrti − pti = maxk{wrki − pki }.
Hence, when agent i reports its valuation truthfully,
that is, r = s, the above inequality holds with equality.
So the p̃i are envy-free prices with respect to the identity
allocation x̃i of the manipulated assignment problem
of agent i. By Lemma 3.1 we know the allocation x̃i
maximizes the social welfare. Thus, mechanism MA is
BIC according to Lemma 3.3.

Social welfare. The expected social welfare for
this mechanism is

∑n
i=1

∑`
s=1

∑`
t=1 x

st
i w

st
i . Since for

any 1 ≤ i ≤ n the allocation xi maximizes the social
welfare for the induced assignment problem of agent i,
the social welfare of xi is at least as large as that of the
identity allocation, that is,

∀i :
∑̀

s=1

∑̀

t=1

xsti w
st
i ≥

∑̀

s=1

fi(s)w
ss
i

= Ev∼F ,S∼A(v) [vi(Si)] .

Thus, we have that

SWMA =

n∑

i=1

∑̀

s,t=1

xsti w
st
i ≥

n∑

i=1

Ev∼F ,S∼A(v) [vi(Si)]

= Ev∼F ,S∼A(v)

[
n∑

i=1

vi(Si)

]
= SWA .

4.3 Estimating values by sampling. There is still
one technical issue that we need to settle in the reduc-
tion. In this section, we will briefly discuss how to use
the standard sampling technique to obtain good esti-
mated values of wi = {wsti }1≤s,t≤` for the induced as-
signment problem of agent i for 1 ≤ i ≤ n.

By definition, wsti is the expectation of a random
variable vsi (Si), where Si is the allocated service given
by A over random realization of the valuations v−i of
other agents and random coin flips of the algorithm.
Hence, if the standard deviation of vsi (Si) is not too
large compared to its mean (no more than a polynomial
factor), then we can draw polynomially many indepen-
dent samples and take the average value as our esti-
mated value. More concretely, the sampling algorithm
proceeds as follows.

1. Draw N = 4 c2 log(n`2/ε)/ε2 independent samples
of v ∼ F conditioned on that the valuation of agent
i is vti , where

c =
σv−i,S∼A(vti ,v−i) [vsi (Si)]

Ev−i,S∼A(vti ,v−i) [vsi (Si)]
.

Let v1, . . . ,vN denote these N sample.

2. Use algorithm A to compute an allocation Sk ∼
A(vk) for each sample vk, 1 ≤ k ≤ N .

3. Let ŵsti be the average of vsi (S
k
i ), 1 ≤ k ≤ N .

Lemma 4.1. The estimated values ŵi, 1 ≤ i ≤ n, by
the above sampling procedure satisfy for any 1 ≤ i ≤ n
and 1 ≤ s, t ≤ `,

ŵsti ∈
[
(1− ε)wsti , (1 + ε)wsti

]

with probability at least 1− ε.

Proof. We shall have that

E
[
ŵsti
]

= Ev−i,S∼A(vti ,v−i) [vsi (Si))] = wsti ,

σ
[
ŵsti
]

=
1√
N
σv−i,S∼A(vti ,v−i) [vsi (Si)]

=
c√
N

E
[
ŵsti
]

=
c√
N
wsti .

By Chernoff bound we get

Pr
[∣∣ŵsti − wsti

∣∣ > εwsti
]

= Pr

[
∣∣ŵsti −E

[
ŵsti
]∣∣ > ε

√
N

c
σ
[
ŵsti
]
]

= Pr
[∣∣ŵsti −E

[
ŵsti
]∣∣ > 2

√
log (n`2/ε)σ

[
ŵsti
]]

≤ e− log (n`2/ε) =
ε

n`2
.



Since we only need to estimate n`2 values, by union
bound we get that with probability at least 1 − ε the
estimated value ŵsti is within ε relative error compared
to wsti for all 1 ≤ i ≤ n and 1 ≤ s, t ≤ `.

Thus, if the allocation algorithm A admits SWA

social welfare and the ratio c is only polynomially large,
then by part 2 of Theorem 4.1 we get that mechanism
MA gives (1− 3ε) · SWA social welfare and is 4εvmax-
BIC. The running time is polynomial in the input size
and 1/ε, assuming a black-box call to algorithm A can
be done in a single step. In other words, we get a FPTAS
reduction.

The next lemma gives an alternative bound of the
sampling error with respect to absolute error.

Lemma 4.2. If we draw N ′ = 4 log(n`2/ε)/ε2 indepen-
dent samples, then with probability at least 1 − ε the
estimated values ŵsti ∈ [wsti − εvmax, wsti + εvmax] for all
1 ≤ i ≤ n and 1 ≤ s, t ≤ `.

Proof. In this case, we have

E
[
ŵsti
]

= Ev−i,S∼A(vti ,v−i) [vsi (Si))] = wsti ,

σ
[
ŵsti
]

=
1√
N ′
σv−i,S∼A(vti ,v−i) [vsi (Si)]

≤ 1√
N ′

max
Si

vsi (Si) ≤
1√
N ′

vmax .

By Chernoff bound we get that

Pr
[∣∣ŵsti − wsti

∣∣ > εvmax
]

≤ Pr

[∣∣ŵsti −E
[
ŵsti
]∣∣ > ε√

N ′
σ
[
ŵsti
]]

= Pr
[∣∣ŵsti −E

[
ŵsti
]∣∣ > 2

√
log (n`2/ε)σ

[
ŵsti
]]

≤ e− log (n`2/ε) =
ε

n`2
.

By union bound, we have ŵsti ∈ [wsti − εvmax, wsti +
εvmax] for all 1 ≤ i ≤ n and 1 ≤ s, t ≤ `.

Suppose the ratio vmax/SW
A is upper bounded by

a polynomial of the input size. Then, if we choose
ε = δ SWA/2nvmax in the above lemma, we will get
that ∣∣ŵsti − wsti

∣∣ < δ SWA/2n .

By part 3 of Theorem 4.1 we obtain that mechanism
MA provides at least (1− δ)SWA of social welfare and
is 4ε-BIC and IR. The running time is polynomial in the
input size and 1/δ.

5 Reductions for revenue and residual surplus

In the reduction for social welfare in the previous
section, we only consider market-clearing allocations in
the induced assignment problems. This is because for
any agent i, we want to make sure that the intermediate
algorithm Bi is transparent to all agents except agent
i. If we restrict ourselves to market-clearing allocations,
we do not know any way to get reasonable bounds on
revenue and residual surplus.

However, if we focus on an important sub-class
of multi-parameter mechanism design problems that
includes the combinatorial auction problem and its
special cases, then we have some flexibility in choosing
the allocations for the induced assignment problem
and obtain theoretical bounds on revenue and residual
surplus. More concretely, we will consider mechanism
design problems that are downward-closed. We let φ
denote the null service so that allocating φ to an agent
implies that agent is not served, that is, vi(φ) = 0 for
all 1 ≤ i ≤ n.

Definition 5.1. A multi-parameter mechanism design
problem 〈I,J ,V ,F 〉 is downward-closed if for any fea-
sible allocation S = (S1, . . . , Sn) ∈ J and any 1 ≤ i ≤
n, the allocation (S1, . . . , Si−1, φ, Si+1, . . . , Sn) is also
feasible.

We let δ = min{fi(s) : 1 ≤ i ≤ n, 1 ≤ s ≤ `, fi(s) >
0} denote the granularity of the prior distributions. We
will prove the following result.

Theorem 5.1. For any algorithm A, there is a
mechanism that is IR, BIC, and provides at least
Ω(SWA/ log(1/δ)) of revenue (residual surplus).

5.1 Meta-reduction. We will first introduce a
meta-reduction scheme based on algorithms that com-
pute envy-free solutions for fractional assignment prob-
lems. Suppose C is an algorithm that computes envy-
free solutions (x,p) for any given fractional assignment
problem. Let A be an algorithm for a multi-parameter
mechanism design problem 〈I,J ,V ,F 〉. We will con-
vert algorithm A into to a mechanism MCA:

1. For each agent i (Pre-computation)

(a) Estimate the values wi = {wsti }1≤s,t≤` for the
induced assignment problem of agent i with
respect to A. Let ŵi = {ŵsti }1≤s,t≤` denote
the estimated values.

(b) Use C to solve the induced assignment prob-
lems with estimated values. Let (xi,pi) de-
note the solution by C for the induce assign-
ment problem of agent i.



(c) Let yti = fi(t) −
∑`
s=1 x

st
i denote the unallo-

cated supply of virtual product t in solution
(xi,pi) for all 1 ≤ i ≤ n and 1 ≤ t ≤ `.

(d) Let yi =
∑`
t=1 y

t
i denote the total amount of

unallocated virtual products in (xi,pi) for all
1 ≤ i ≤ n.

2. Manipulate the valuations with intermediate algo-
rithm Bi, 1 ≤ i ≤ n, as follows: (Decoupling)

(a) Suppose the reported valuation of agent i is
v′i = vsi .

(b) Let ṽi = Bi(v′i) = vti with probability xist/fi(s)
for 1 ≤ t ≤ `.

(c) With probability 1−∑t x
st
i /fi(s), the manip-

ulated valuation ṽi is unspecified in the previ-
ous step. In this case, let ṽi = vti with proba-
bility yti/yi for 1 ≤ t ≤ `.

3. Allocate services as follows: (Allocation)

(a) Compute a tentative allocation

S̃ = (S̃1, . . . , S̃n) = A(ṽ) .

(b) For each agent i, let Si = S̃i if the manipu-
lated valuation ṽi is specified in step 2b). Let
Si = φ otherwise. Allocate services according
to S.

(c) For each agent i, suppose the reported valua-
tion is v′i = vsi and the manipulated valuation
is ṽi = vti , charge agent i with price

pti
vsi (Si)

ŵsti
.

The following theorem states the above meta-
reduction scheme converts algorithms into IR and BIC
mechanisms.

Theorem 5.2. Suppose the algorithm C always pro-
vides envy-free solutions.

1. If the estimated values ŵi are accurate, then mech-
anism MCA is IR and BIC.

2. If the estimated values ŵi satisfy that for any 1 ≤
s, t ≤ `, ŵsti ∈ [(1− ε)wsti , (1 + ε)wsti ], then MCA is
IR and 4εvmax-BIC.

3. If the estimated values ŵi satisfy that for any 1 ≤
s, t ≤ `, ŵsti ∈ [wsti − ε, wsti + ε], then MCA is IR
and 4ε-BIC.

Proof. Let us outline the proof for part 1. Proofs of the
other two parts are calculations along the same line.

Note that pti ≤ wsti for all 1 ≤ i ≤ n and 1 ≤ s, t ≤ `.
The mechanism is IR because for any 1 ≤ i ≤ n and
1 ≤ s ≤ ` the utility for an agent i with valuation vsi in
any realization is

vsi (Si)− pti
vsi (Si)

wsti
≥ 0 .

Next, we will show that mechanism MCA is BIC.
We first verify that the intermediate algorithms Bi,
1 ≤ i ≤ n, satisfy the constraint (4.3). For any
agent i, if its valuation vi is drawn from distribution
Fi, then the probability that the manipulated valuation
ṽi = Bi(vi) = vti is

∑̀

s=1

fi(s)

[
xsti
fi(s)

+

(
1−

∑̀

r=1

xsri
fi(s)

)
yti
yi

]

=
∑̀

s=1

xsti +

(∑̀

s=1

fi(s)−
∑̀

s=1

∑̀

r=1

xsri

)
yti
yi

=
∑̀

s=1

xsti +

(∑̀

r=1

fi(r)−
∑̀

r=1

∑̀

s=1

xsri

)
yti
yi

=
∑̀

s=1

xsti +
∑̀

r=1

(
fi(r)−

∑̀

s=1

xisr

)
yti
yi

=
∑̀

s=1

xsti +
∑̀

r=1

yri
yti
yi

=
∑̀

s=1

xsti + yti = fi(t) .

Thus, we get that for each agent i, the intermediate
algorithms Bj , 1 ≤ j ≤ n and j 6= i, are transparent
to it. So the expected value of agent i of the service
it gets, when its genuine valuation is vi = vsi and the
manipulate valuation, is ṽi = vti is exactly

wsti = Ev−i,S∼A(vti ,v−i) [vsi (Si)] .

Hence, the expected value of agent i of the servie
it gets, when its genuine valuation is vi = vsi and the
reported valuation is v′i = vti , is

w̃sti =
∑̀

r=1

xtri
fi(t)

wsri .

And the expected price for agent i when the re-
ported valuation is v′i = vti is

p̃ti =
∑̀

r=1

xtri
fi(t)

Ev−i,S∼A(vri ,v−i)

[
pri
vti(Si)

wtri

]

=
∑̀

r=1

xtri
fi(t)

pri .



Thus, the the expected utility of agent i, when its
genuine valuation is vi = vsi and its reported valuation
is v′i = vti , is

w̃sti − p̃ti =
∑̀

r=1

xtri
fi(t)

(wsri − pri )

≤
∑̀

r=1

xtri
fi(t)

max
k
{wski − pki }

= max
k
{wski − pki } .

Since pi are chosen to be the envy-free prices, we
have that xsri > 0 only if wsri − pri = maxk{wski − pki }.
Hence, when agent i reports its valuation truthfully,
that is, s = t, the above inequality if tight. Moreover,
the above utility is always non-negative. So mechanism
MCA is BIC.

Moreover, the revenue and residual surplus of mech-
anismMCA is related to the social welfare and revenue of
the induced assignment problems as stated in following
proposition.

Proposition 5.1. The expected revenue (residual sur-
plus) of the mechanism MCA equals the sum of the rev-
enue (residual surplus) of the manipulated assignment
problems.

By choosing proper allocation algorithm C, we can
obtain theoretical bounds for the revenue or residual
surplus in the manipulated induced assignment prob-
lems and thus theoretical bounds for mechanism MCA.

5.2 Assignment algorithms. In this section, we
will introduce two algorithms for computing envy-free
solutions for the induced assignment problems. These
two algorithms provides theoretical bounds for revenue
and residual surplus.

Revenue. The first algorithm provides revenue
that is a Ω(1/ log(1/δ)) fraction of SWA, the social wel-
fare by algorithm A. The idea is to introduce proper
reserve prices to the induced assignment problems by
redundant virtual buyers. This is inspired by the tech-
niques by Guruswami et al. [12]. For the induced as-
signment problem of agent i, 1 ≤ i ≤ n, the assignment
algorithm CR for revenue maximization proceeds as fol-
lows:

1. Find the social welfare maximizing allocation xi =
{xsti }1≤s,t≤`.

2. Suppose umax is the maximal valuation among the
virtual buyer-product pair (s, t) with non-zero xsti ,
that is,

umax = max{wsti : 1 ≤ s, t ≤ `, xsti > 0} .

3. Recall that δ = min{fi(t) : 1 ≤ i ≤ n, 1 ≤ t ≤
`, fi(t) > 0} denotes the granularity of the prior
distribution. For 1 ≤ k ≤ log(1/δ):

(a) Consider the following variant of the induced
assignment instance of agent i:
For each virtual product 1 ≤ t ≤ `, add a
dummy virtual buyer with demand 1 + δ and
value uk = umax/2

k for virtual product t and
value 0 for other virtual products.

(b) Find social welfare maximizing allocation xik
and envy-free prices pik for this variant.

(c) Let (x̂ik, p̂ik) be the projection of (xik,pik)
on the original induced assignment problem
of agent i, that is, for any 1 ≤ s, t ≤ `,

x̂stik = xstik , p̂tik = ptik .

4. Return the (x̂ik, p̂ik), 1 ≤ k ≤ log(1/δ), with best
revenue.

Lemma 5.1. Assignment algorithm CR always return
an envy-free solution (x,p). The revenue is at least a
Ω(1/ log(1/δ)) fraction of the optimal social welfare of
the assignment problem.

Proof. The envy-freeness follows from the fact that
(x̂ik, p̂ik), 1 ≤ k ≤ log(1/δ), are projections of envy-
free solutions and thus are also envy-free.

Now we consider the revenue by CR. We let rk
denote the revenue by solution (x̂ik, p̂ik). Note that in
(x̂ik, p̂ik), all prices are at least uk and the amount of
virtual products that are sold is at least

∑
s,t:wst

i ≥uk
xsti .

Hence, we have

rk ≥ wk
∑

s,t:wst≥uk

xsti .

Note that if we extend the definition of uk and let
uk = umax/2

k for all non-negative integer k, then we
have

∞∑

k=1

uk
∑

s,t:wst
i ≥uk

xsti

=

∞∑

k=1

(uk−1 − uk)
∑

s,t:wst
i ≥uk

xsti

=
∑̀

s=1

∑̀

t=1

xsti
∑

k:wst
i ≥uk

(uk−1 − uk)

=
∑̀

s=1

∑̀

t=1

xsti max
k
{uk−1 : wsti ≥ uk}

≥
∑

s,t

xsti w
st
i .(5.4)



On the other hand, the contribution of the tail is
small compared to the social welfare.

∞∑

k=log(1/δ)+1

uk
∑

s,t:wst
i ≥uk

xsti

≤
∞∑

k=log(1/δ)+1

wk ≤
δwmax

2
≤
∑
s,t x

st
i w

st
i

2
.(5.5)

The last inequality holds because allocating the
most valuable virtual product the one of the virtual
buyer is a feasible allocation. Hence, consider the
difference of the above formulas, (5.4) − (5.5), and we
get that

log(1/δ)∑

k=1

rk ≥
log(1/δ)∑

k=1

uk
∑

s,t:wst≥uk

xsti ≥
∑
s,t x

st
i w

st
i

2
.

Thus, by pigeon-hole-principle at least one of the
assignment (x̂ik, p̂ik) provides revenue that is at least a
1/2 log(1/δ) fraction of the social welfare.

The above lemma leads to the following results for
revenue maximization.

Proposition 5.2. Suppose the social welfare given by
allocation algorithm A is SWA, the mechanism MCRA
guarantees at least Ω(SWA/ log(1/δ)) of revenue.

Complementary lower bound. The approxima-
tion ratio with respect to SWA is tight due to the fol-
lowing example. Consider the auction problem with
only one agent and one item. Suppose with proba-
bility 1/2k the agent has value 2k for the item for
k = 1, 2, . . . , log(1/δ). And with probability δ, the agent
has value 0 for the item. In this example, the granularity
of the prior distribution is δ. The optimal social welfare

is
∑log(1/δ)
k=1

1
2k

2k = log(1/δ). But no BIC mechanism
can achieve revenue better than 1.

Residual surplus. We turn to the residual surplus
maximization problem. Note that revenue and residual
surplus are symmetric in the induced assignment prob-
lems. We will use the following assignment algorithm
CRS based on the same idea we use for the revenue max-
imization algorithm.

The residual surplus maximizing envy-free algo-
rithm CRS is as follows:

1. Find the social welfare maximizing allocation xi =
{xsti }1≤s,t≤`.

2. Suppose umax is the maximal valuation among the
virtual buyer-product pair (s, t) with non-zero xsti ,
that is,

umax = max{wsti : 1 ≤ s, t ≤ `, xsti > 0} .

3. Recall that δ = min{fi(t) : 1 ≤ i ≤ n, 1 ≤ t ≤
`, fi(t) > 0} denotes the granularity of the prior
distribution. For 1 ≤ k ≤ log(1/δ):

(a) Consider the following variant of the induced
assignment instance of agent i:
For each virtual buyer 1 ≤ t ≤ `, add a
dummy virtual product with demand 1 + δ
and value uk = umax/2

k for virtual buyer t
and value 0 for other virtual buyer.

(b) Find social welfare maximizing allocation xik
and envy-free prices pik for this variant.

(c) Let (x̂ik, p̂ik) be the projection of (xik,pik)
on the original induced assignment problem
of agent i, that is, for any 1 ≤ s, t ≤ `,

x̂stik = xstik , p̂tik = ptik .

4. Return the (x̂ik, p̂ik), 1 ≤ k ≤ log(1/δ), with best
revenue.

The proofs of the following lemma and theorem is
almost identical to the revenue maximization part so we
omit the proofs here.

Lemma 5.2. Assignment algorithm CRS always return
an envy-free solution (x,p). The residual surplus is
at least a Ω(1/ log(1/δ)) fraction of the optimal social
welfare of the assignment problem.

Proposition 5.3. Suppose the social welfare given by
allocation algorithm A is SWA, the mechanism MCRS

A
guarantees at least Ω(SWA/ log(1/δ)) of residual sur-
plus.

6 Application in combinatorial auctions

In this section we will briefly illustrates how to use the
reduction for social welfare in this paper to derive a
combinatorial auction mechanism that matches the best
algorithmic result.

Combinatorial auctions. In the combinatorial
auctions, we consider a principal with m items (exactly
one copy of each item) and n agents. Each agent has
a private valuation vi ∼ Fi for subsets of items. The
goal is to design a protocol to allocate the items and to
charge prices to the agents.

We will show the following corollaries of our reduc-
tion for social welfare.

Corollary 6.1. For combinatorial auctions with sub-
additive (or fractionally sub-additive) agents where
the prior distributions have finite and poly-size sup-
ports, there is a

(
1
2 − ε

)
-approximate (or

(
1− 1

e − ε
)
-

approximate respectively), εvmax-BIC, and IR mecha-
nism for social welfare maximization. The running time
is polynomial in the input size and 1/ε.



Algorithm. We will consider a variant of the LP-
based algorithms by Feige [8] and use the reduction
for social welfare to convert it into an IR and εvmax-
BIC mechanism. More concretely, we will consider
the Bayesian version of the standard social welfare
maximization linear program (CA):

Maximize
∑

i

∑

t

∑

S

fi(t) v
t
i(S)xi,t,S s.t.

∑

i

∑

t

∑

S:j∈S
fi(t)xi,t,S ≤ 1 ∀j
∑

S

xi,t,S ≤ 1 ∀i, t

xi,t,S ≥ 0 ∀i, t, S

In this LP, xi,t,S denote the probability that agent
i is allocated with a subset of items S conditioned on
its valuation is vti . This LP can be solved in polynomial
time by the standard primal dual technique via demand
queries. See [5] for more details. We let LP ∗ denote
the optimal value of this LP. Moreover, for any basic
feasible optimal solution of the above LP, there are at
most nm` non-zero entries since there are only nm` non-
trivial constraints. Hence, we have the following lemma:

Lemma 6.1. In poly-time we can find an optimal solu-
tion x∗ to (CA) with at most nm` non-zero entries.

Next, we will filter this solution x∗ by removing
insignificant entries. We let x̂i,t,S = x∗i,t,S < ε/nm`.

Note that LP ∗ ≥ fi(t)v
t
i(S) for any i, t, and S since

always allocating subset S to agent i is a feasible
allocation. We get that x̂ is a feasible solution to (CA)
with value at least (1− ε)LP ∗.

Then, we will use the rounding algorithms by Feige
[8] to get a 1

2 -rounding for sub-additive agents and a(
1− 1

e

)
-rounding for fractionally sub-additive agents:

1. Allocate a tentative subset of items S̃i to each agent
i, 1 ≤ i ≤ n, according to the reported valuation
v′i = vti and x̂i,t,S̃i

.

2. Resolve conflicts properly by choosing Si ⊆ S̃i so
that S = (S1, . . . , Sn) is a feasible allocation.

By extending Feige’s original proof, we can show
that there is a randomized algorithm for choosing S
such that for sub-additive agents, we have:

(6.6) Ev−i,S [vi(Si)] ≥
1

2
vi(S̃i) .

And for fractionally sub-additive agents, we have:

(6.7) Ev−i,S [vi(Si)] ≥
(

1− 1

e

)
vi(S̃i) .

We will omit the proof in this extended abstract.
We denote the above algorithm as A. Then, A pro-
vides

(
1
2 − ε

)
-approximation for sub-additive agents and(

1− 1
e − ε

)
-approximation for fractionally sub-additive

agents.

Estimating values. By Theorem 4.1 and 5.1, we
only need to show how to estimate the values wi,
1 ≤ i ≤ n, for the induced assignment problem of agent
i efficiently. Further, by Lemma 4.1, we can efficiently
estimate the values wi = {wsti }1≤s,t≤`, 1 ≤ i ≤ n, if the
following lemma holds.

Lemma 6.2. For any 1 ≤ i ≤ n, and any 1 ≤ s, t ≤ `,

σv−i,S∼A(vti ,v−i) [vsi (Si)]

Ev−i,S∼A(vti ,v−i) [vsi (Si)]
≤
√

4nm`

ε
.

Proof. By inequalities (6.6) and (6.7), we get that

conditioned on S̃i being chosen as the tentative set,

Ev−i,S∼A(vti ,v−i)

[
vsi (Si) : S̃i

]
≥ 1

2
vsi

(
S̃i

)
.

We also have that

σv−i,S∼A(vti ,v−i)

[
vsi (Si) : S̃i

]
≤ max

{
vsi (Si) : S̃i

}

≤ vsi (S̃i) .

Hence,

σv−i,S∼A(vti ,v−i) [vsi (Si)]
2

=
∑

S̃i

x̂i,t,S̃i
σv−i,S∼A(vti ,v−i)

[
vsi (Si) : S̃i

]2

≤
∑

S̃i

x̂i,t,S̃i
vsi (S̃i)

2

≤ 1

min
{
x̂i,t,S̃i

> 0
}


∑

i,t,S̃i

x̂i,t,S̃i
vsi (S̃i)




2

≤ nm`

ε


∑

S̃i

x̂i,t,S̃i
Ev−i,S∼A(vti ,v−i)

[
vsi (Si) : S̃i

]



2

≤ 4nm`

ε
Ev−i,S∼A(vti ,v−i) [vsi (Si)]

2
.

References

[1] S. Bhattacharya, G. Goel, S. Gollapudi, and K. Muna-
gala. Budget constrained auctions with heterogeneous
items. In ACM 42nd Annual ACM Symposium on The-
ory of Computing (STOC), 2010.



[2] S. Chawla, J.D. Hartline, D. Malec, and B. Sivan.
Multi-parameter mechanism design and sequential
posted pricing. In ACM 42nd Annual ACM Sympo-
sium on Theory of Computing (STOC), 2010.

[3] E.H. Clarke. Multipart pricing of public goods. Public
choice, 11(1):17–33, 1971.

[4] S. Dobzinski. Two randomized mechanisms for combi-
natorial auctions. Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Tech-
niques, pages 89–103, 2007.

[5] S. Dobzinski, N. Nisan, and M. Schapira. Approx-
imation algorithms for combinatorial auctions with
complement-free bidders. In ACM 37th Annual ACM
Symposium on Theory of Computing (STOC), page
618. ACM, 2005.

[6] S. Dobzinski, N. Nisan, and M. Schapira. Truthful
randomized mechanisms for combinatorial auctions.
In ACM 38th Annual ACM Symposium on Theory of
Computing (STOC), page 652. ACM, 2006.

[7] S. Dughmi and T. Roughgarden. Black-box random-
ized reductions in algorithmic mechanism design. In
51st Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS), 2010.

[8] U. Feige. On maximizing welfare when utility functions
are subadditive. In ACM 38th Annual ACM Sympo-
sium on Theory of Computing (STOC), page 50. ACM,
2006.

[9] U. Feige and J. Vondrak. Approximation algorithms
for allocation problems: Improving the factor of 1-1/e.
In 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 667–676, 2006.

[10] T. Groves. Incentives in teams. Econometrica: Journal
of the Econometric Society, 41(4):617–631, 1973.

[11] F. Gul and E. Stacchetti. Walrasian Equilibrium with
Gross Substitutes* 1. Journal of Economic Theory,
87(1):95–124, 1999.

[12] V. Guruswami, J.D. Hartline, A.R. Karlin, D. Kempe,
C. Kenyon, and F. McSherry. On profit-maximizing
envy-free pricing. In Annual ACM-SIAM Symposium
on Discrete algorithms, page 1173. Society for Indus-
trial and Applied Mathematics, 2005.

[13] J. Hartline, R. Kleinberg, and A. Malekian. Bayesian
incentive compatibility via matchings. In Annual
ACM-SIAM Symposium on Discrete algorithms, to
appear, 2011.

[14] J.D. Hartline and B. Lucier. Bayesian algorithmic
mechanism design. In ACM 42nd Annual ACM Sym-
posium on Theory of Computing (STOC), 2010.

[15] J.D. Hartline and T. Roughgarden. Optimal mecha-
nism design and money burning. In ACM 40th Annual
ACM Symposium on Theory of Computing (STOC),
2008.

[16] R. Lavi and C. Swamy. Truthful and near-optimal
mechanism design via linear programming. In 49th
Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 595–604, 2005.

[17] R.B. Myerson. Optimal auction design. Mathematics
of operations research, 6(1):58–73, 1981.

[18] C. Papadimitriou, M. Schapira, and Y. Singer. On the
hardness of being truthful. In 49th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS),
pages 250–259, 2008.

[19] J.C. Rochet. A necessary and sufficient condition for
rationalizability in a quasi-linear context. Journal of
Mathematical Economics, 16(2):191–200, 1987.

[20] W. Vickrey. Counterspeculation, auctions, and com-
petitive sealed tenders. Journal of finance, 16(1):8–37,
1961.


