
Bayesian inference analyses of the polygenic architecture of 
rheumatoid arthritis

Eli A Stahl1,2,3, Daniel Wegmann4, Gosia Trynka5, Javier Gutierrez-Achury5, Ron Do2,6, 

Benjamin F Voight7, Peter Kraft8, Robert Chen1,2,3, Henrik J Kallberg9, Fina A S 
Kurreeman1,2,3, Diabetes Genetics Replication and Meta-analysis Consortium10, 

Myocardial Infarction Genetics Consortium10, Sekar Kathiresan2,6, Cisca Wijmenga5, Peter 
K Gregersen11, Lars Alfredsson9, Katherine A Siminovitch12, Jane Worthington13, Paul I W 
de Bakker2,3,14,15, Soumya Raychaudhuri1,2,3,16, and Robert M Plenge1,2,3,16

1Division of Rheumatology Immunology and Allergy, Brigham and Women’s Hospital, Boston, 

Massachusetts, USA. 2Program in Medical and Population Genetics, Broad Institute, Cambridge, 

Massachusetts, USA. 3Division of Genetics, Brigham and Women’s Hospital, Boston, 

Massachusetts, USA. 4Department of Ecology and Evolutionary Biology, University of California, 

Los Angeles, California, USA. 5Department of Genetics, University Medical Center Groningen 

and University of Groningen, Groningen, The Netherlands. 6Center for Human Genetic Research 

and Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, 

Boston, Massachusetts, USA. 7Department of Pharmacology, Perelman School of Medicine, 

University of Pennsylvania, Philadelphia, Pennsylvania, USA. 8Department of Biostatistics, 

Harvard School of Public Health, Boston, Massachusetts, USA. 9Institute of Environmental 

Medicine, Karolinska Institutet Hospital Solna, Stockholm, Sweden. 10A full list of members is 

provided in the Supplementary Note. 11The Feinstein Institute for Medical Research, North 

Shore–Long Island Jewish Health System, Manhasset, New York, USA. 12Department of 

Medicine, University of Toronto, Mount Sinai Hospital and University Health Network, Toronto, 

Ontario, Canada. 13Arthritis Research UK Epidemiology Unit, Manchester Academic Health 

Science Centre, University of Manchester, Manchester, UK. 14Department of Medical Genetics, 

University Medical Center Utrecht, Utrecht, The Netherlands. 15Department of Epidemiology, 

University Medical Center Utrecht, Utrecht, The Netherlands. 16These authors contributed equally 

to this work.

Abstract

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

Correspondence should be addressed to E.A.S. (estahl@rics.bwh.harvard.edu) or R.M.P. (rplenge@partners.org).
AUTHOR CONTRIBUTIONS
Study design: R.M.P., E.A.S., S.R. and P.I.W.d.B. Analysis: E.A.S. (lead), D.W., G.T., J.G.-A., R.D., B.F.V. (primary contributors), 
R.C., H.J.K. and F.A.S.K. Samples and data: C.W., S.K., B.F.V., the Myocardial Infarction Genetics Consortium, the Diabetes 
Genetics Replication and Meta-analysis Consortium, J.W., L.A., P.K.G., K.A.S. and R.M.P. Writing: R.M.P., E.A.S. (leads), D.W., 
P.K. (primary contributors) and all other authors.

Note: Supplementary information is available on the Nature Genetics website.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

HHS Public Access
Author manuscript
Nat Genet. Author manuscript; available in PMC 2019 June 12.

Published in final edited form as:

Nat Genet. ; 44(5): 483–489. doi:10.1038/ng.2232.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t

http://www.nature.com/reprints/index.html


The genetic architectures of common, complex diseases are largely uncharacterized. We modeled 

the genetic architecture underlying genome-wide association study (GWAS) data for rheumatoid 

arthritis and developed a new method using polygenic risk-score analyses to infer the total 

liability-scale variance explained by associated GWAS SNPs. Using this method, we estimated 

that, together, thousands of SNPs from rheumatoid arthritis GWAS explain an additional 20% of 

disease risk (excluding known associated loci). We further tested this method on datasets for three 

additional diseases and obtained comparable estimates for celiac disease (43% excluding the major 

histocompatibility complex), myocardial infarction and coronary artery disease (48%) and type 2 

diabetes (49%). Our results are consistent with simulated genetic models in which hundreds of 

associated loci harbor common causal variants and a smaller number of loci harbor multiple rare 

causal variants. These analyses suggest that GWAS will continue to be highly productive for the 

discovery of additional susceptibility loci for common diseases.

GWAS have led to the discovery of many common variants that are associated with complex 

traits. Given the number of SNPs tested in GWAS, an association must achieve a stringent 

threshold of statistical significance (P < 5 × 10−8) to be considered validated1, and 

contemporary GWAS are underpowered to achieve this genome-wide significance for SNPs 

with modest effects on disease risk2. Assuming that disease-associated SNPs follow the 

distribution of effect sizes suggested by the validated associations, it is probable that many 

more true positive associations reside within GWAS data3 that have only suggestive 

statistical evidence of association. Indeed, as sample sizes have increased, many more 

common variants of modest effect have been discovered for a variety of complex traits4–7. 

However, validated SNP associations explain only a portion of the liability-scale genetic 

variance or heritability of disease estimated from classical family studies, leading to the 

concept of missing heritability8,9. Elucidating the remaining sources of heritability will 

allow investigators to prioritize resources for future genetic studies, including acquisition of 

additional samples, technology development for variant discovery and testing (for example, 

next-generation genotyping arrays or sequencing) and analytical development for detecting 

associations of causal variants across the allele frequency spectrum.

Recently, two statistical methods were developed to assess the contributions of common 

SNPs that do not reach genome-wide significance: polygenic analysis10 and mixed linear 

modeling11. Both methods test many SNPs in aggregate for a collective effect on phenotype. 

In the first method, an additive polygenic risk score based on SNPs that are below a P value 

threshold in a discovery GWAS is tested in an independent set of samples. Using this 

approach, polygenic effects have been shown in schizophrenia10, multiple sclerosis12, heart 

rate13, height4 and body mass index5. The second method estimates additive genetic 

variance (heritability) caused by common SNPs using linear mixed-effect modeling 

including a random effect that represents the polygenic component of trait variation11,14. 

Applied to height11, endometriosis15, Parkinson’s disease16 and other complex traits14,17, 

this method has provided estimates of the heritability caused by common SNPs that are 

scattered throughout the genome. An additional third method3 uses power correction based 

on validated SNP associations to estimate the number of additional SNPs with similar effect 

sizes, but this method estimates the contribution of more modest associations only by 

making strong assumptions about the distribution of effect sizes.
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Although these methods show that additional variance can be explained by common SNPs in 

GWAS data, they have not offered meaningful estimates of the number and effect sizes of 

associated SNPs in the context of a GWAS of a common complex disease. Here, we develop 

a method integrating polygenic analysis10 and the simulation of GWAS data under a 

polygenic disease model, using approximate Bayesian computation, to infer liability-scale 

additive genetic variance and the numbers, allele frequencies and effect sizes of common 

SNPs weakly associated with complex disease.

To understand the contribution of common SNPs to the heritability of rheumatoid arthritis, 

we applied our method to published GWAS data on >28,000 samples from rheumatoid 

arthritis case-control studies2,18. We compared the results of this analysis with those from 

family based heritability studies, a linear mixed model analysis and a simulation study of 

common or rare causal variant models. We then extended our analyses to published GWAS 

data for three additional diseases: celiac disease19, myocardial infarction and coronary artery 

disease (MI/CAD)20,21 and type 2 diabetes (T2D)22. Our results suggest that in all four of 

these common diseases, many hundreds of common SNP associations remain to be 

identified, with total genetic contributions accounting for the majority of the heritability of 

disease. Our results further suggest that common causal variants of weak effect underlie the 

vast majority of these genetic contributions.

RESULTS

Polygenic risk scores for rheumatoid arthritis

We used rheumatoid arthritis GWAS data from six independent case-control collections 

including a total of 5,485 seropositive individuals with rheumatoid arthritis (cases) and 

22,609 individuals without rheumatoid arthritis of European descent (Table 1)2,18. We 

imputed the GWAS data genome wide using the HapMap2 European CEU reference panel 

for a total of over 2.5 million SNPs. We used a study design in which one dataset was used 

as the ‘test’ data and the other five datasets were used for ‘discovery’ so that case-control 

batch effects, as well as population stratification, would not be consistent across the 

discovery and test data.

For the polygenic analysis, we first performed a discovery GWAS using logistic regression 

with five eigenvectors from the principal-component analysis as covariates within each 

dataset and combined the results across the GWAS datasets using an inverse-variance– 

weighted meta-analysis. We then removed all known rheumatoid arthritis risk loci 

(Supplementary Table 1) to focus on previously unidentified SNP associations and pruned 

SNPs by their linkage disequilibrium (LD, r2 < 0.1) (Online Methods), preferentially 

retaining the SNPs with lower discovery GWAS P values (PGWAS), to obtain a set of 

maximally associated independent SNPs with unknown status with respect to disease risk. 

We selected sets of SNPs reaching nine different PGWAS threshold values (PGWAS < 10−4, 

10−3, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5), and for each SNP set, we summed the log-odds– 

weighted risk allele counts for each individual in an independent test dataset using 

discovery-GWAS–estimated risk alleles and effect sizes. We tested the resulting polygenic 

risk scores for association with case-control status using logistic regression with gender and 

five principal component covariates.
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Polygenic risk scores based on large numbers of SNPs were significantly associated with 

rheumatoid arthritis case-control status across a range of PGWAS threshold values (Fig. 1). 

The most significant score was from SNPs with PGWAS < 0.05 (12,788 SNPs had P = 3 × 

10−9). We also analyzed scores based on SNPs with PGWAS in nonoverlapping intervals (for 

example, 0.001 < PGWAS < 0.01) and found that significant polygenic risk score associations 

were caused by SNPs with PGWAS ≤ 0.05 (Supplementary Table 2). These results were 

consistent when we used alternative datasets for testing, alternative quality control and LD 

pruning thresholds, or alternative strategies for removing previously known associations. In 

addition, cases with non-autoimmune diseases in the Wellcome Trust Case Control 

Consortium dataset served as the negative controls and did not have significant polygenic 

risk score associations (Supplementary Fig. 1). Finally, we found the polygenic risk score 

effects to be scattered diffusely throughout the genome; many chromosomes contributed to a 

significant polygenic risk score (PGWAS < 0.05) signal (Supplementary Table 3), and, 

consistent with the results using an independent method in other complex traits17, the 

polygenic risk score effect sizes estimated here were correlated with chromosome size (R2 = 

0.27, P = 0.007). Thus, polygenic risk score associations seemed to be genuinely caused by 

polygenic effects that are specific to rheumatoid arthritis disease risk.

Polygenic risk scores in other common diseases

We continued testing our method using datasets for three additional diseases. We performed 

a polygenic analysis on GWAS data for celiac disease19, MI/CAD20 and T2D22 (Table 1). 

Again, we used the samples from the UK as test data, as these data had restricted geographic 

origins relative to the discovery GWAS data and showed little stratification19,21. For celiac 

disease, we removed the major histocompatibility complex (MHC) region, which has a very 

strong effect on risk and on complex long-distance LD patterns; we did not remove any 

other known risk loci.

We used published GWAS data to show that each disease has a strong polygenic signal. As 

we saw in the rheumatoid arthritis data-sets, the polygenic risk scores were highly 

significantly and specifically associated with all three of these additional common diseases 

(Fig. 1 and Supplementary Fig. 1). Although known SNPs associated with disease risk may 

underlie the polygenic risk score associations for the lowest significance threshold, PGWAS < 

10−4 (celiac disease, 96 SNPs, polygenic risk score P = 2 × 10−16; MI/CAD, 82 SNPs, P = 1 

× 10−6; T2D, 98 SNPs, P = 1 × 10−19), adding thousands of independent SNPs with the 

marginally significant PGWAS < 0.1 did not dilute the significance of the polygenic risk score 

associations (celiac disease, 21,108 SNPs, P = 3 × 10−16; MI/CAD, 22,723 SNPs, P = 3 × 

10−10; T2D, 20,297 SNPs, P = 7 × 10−20).

Disease-associated SNPs and total variance explained

Polygenic scores are made up of an unknown number of true-positive SNPs (signal) as well 

as many unassociated SNPs (noise). To determine how much signal underlies our results, 

and, specifically, to estimate the number of associated SNPs along with their total variance 

explained, we conducted Bayesian inference analyses on our polygenic analysis results. 

Briefly, we analyzed a polygenic disease model in which independent SNPs (NSNPs) 

additively contributed a total liability-scale variance explained (Vtot), with additional 
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parameters included for the distributions of risk allele effect sizes and frequencies 

(Supplementary Fig. 2). We simulated the discovery GWAS and polygenic analysis for 

associated and null SNPs and used polygenic risk score logistic regression R2 values23 

across nonoverlapping SNP sets, including scores stratified by risk-allele frequency 

(Supplementary Table 2), as summary statistics to compare the simulated and observed 

results. We used approximate Bayesian computation with rejection sampling and general 

linear model post-sampling adjustment (ABC-GLM)24,25 to estimate the posterior densities 

of polygenic disease model parameters given the polygenic analysis results (Supplementary 

Fig. 3). See the Online Methods and the Supplementary Note for details.

Figure 2 shows the joint posterior probability densities of the two key polygenic disease 

model parameters, NSNPs and Vtot. These densities are well restricted to within the range of 

uniform priors for these two parameters (NSNPs, 10–10,000 on a log10 scale; Vtot, 0.01–0.5 

for rheumatoid arthritis and 0.01–0.99 for the other diseases). For rheumatoid arthritis, 

excluding all known risk loci, the posterior density mode provided estimates of 18% (95% 

credible interval, 11–24%) of the total variance being explained by 2,231 independent 

disease-associated SNPs (95% credible interval 846–4,608) (Fig. 2 and Table 2). Results 

were robust to alternative prior distributions of the NSNPs and for the effect size paramater 

βv, and validation analyses indicated that the parameters were inferred with reasonable bias 

and precision under a wide range of models (Supplementary Fig. 4). We also applied the 

previously developed linear mixed-effects modeling (LMM) method11,14,26. This 

complementary approach yielded consistent results for the variance explained by common 

SNPs (directly comparable to our Vtot results; Table 2). Given that rheumatoid arthritis 

recurrence rates for relatives of affected individuals yield estimates of a narrow-sense 

heritability of about 0.55 (refs. 27,28) and that previously validated risk loci contribute an 

estimated heritability of 0.18 (refs. 2,29) (Supplementary Table 1), these results show that 

roughly 65% of the heritability of rheumatoid arthritis can be accounted for by purely 

additive effects of common SNPs in the GWAS data that tag causal alleles.

We applied the same polygenic-model inference method to celiac disease, MI/CAD and T2D 

(Fig. 2 and Table 2). We found substantial total liability-scale variance (Vtot) explained by 

GWAS SNPs (celiac disease, 0.43, outside of the MHC; MI/CAD, 0.48; T2D, 0.49). For a 

comparison, validated common SNP associations explain 5% (celiac disease, 27 non-MHC 

loci), 4% (25 MI/CAD loci)30 and 10% (44 T2D loci)31 of the total liability-scale disease 

variance in these three diseases. Taking into account the uncertainty in both methods, 

heritabilities caused by common SNPs estimated using LMM11,14,26 were consistent with 

the Vtot values estimated using polygenic modeling and Bayesian inference, with no clear 

pattern of overestimation seen by using one method compared to the other. Although family 

based heritability estimates vary widely for these three diseases19,32–36, the majority of their 

heritability is explained by common SNPs in GWAS data, without exception (Table 2): 83–

100% of the heritability for celiac disease (heritability of 0.5–0.87, with 0.35 caused by 

HLA alleles in the MHC19,37), 80–100% of the heritability for MI/CAD and 70–100% of the 

heritability for T2D is explained by common SNPs.
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Risk allele frequencies and effect sizes

Our Bayesian analysis generated a posterior distribution of polygenic disease model 

parameters, which determine the minor allele frequencies (MAFs) and genotypic relative 

risks (GRRs) of the inferred common SNP associations. We calculated the mean posterior 

distributions of the MAFs and GRRs of the associated SNPs from 1,000 samples from the 

joint posterior density (Fig. 3). We also determined the marginal prior distributions for the 

MAFs and GRRs that were implied by the model parameters’ Bayesian priors 

(Supplementary Fig. 2). For all four common diseases, the posterior distribution of the 

MAFs of the associated SNPs was shifted from that of the prior distribution (all GWAS 

SNPs after LD pruning) toward the SNPs of more intermediate frequency. The posterior 

distribution of the GRRs indicates that the effect sizes of most of the disease-associated 

SNPs ranged from almost 1 to approximately 1.05, with larger GRRs being seen for less 

common MAFs (1–5%).

Notably, the number of SNPs with moderate effect sizes (measured by liability-scale 

variance explained; GRR > 1.05 for SNPs with MAF = 0.5 and GRR > 1.1 for SNPs with 

MAF = 0.05), and the total variance explained by these SNPs, varied markedly across the 

four diseases. Substantial numbers of SNPs with moderate effect sizes contributed the 

majority of the inferred total liability-scale variance explained for celiac disease (981 (95% 

credible interval 663–1,417) SNPs of the 2,666 total NSNPs explained 0.33 (95% credible 

interval 0.2–0.45) of the Vtot of 0.43) and MI/CAD (597 (95% credible interval 319–874) 

SNPs of the total 1,766 NSNPs explained 0.34 (95% credible interval 0.13–0.5) of the Vtot of 

0.48). Fewer SNPs of moderate effect size explained much smaller proportions of the total 

disease variance in rheumatoid arthritis (212 (95% credible interval 0–492) SNPs of the total 

2,231 NSNPs explained 0.05 (95% credible interval 0–0.14) of the Vtot of 0.18) and T2D 

(298 (95% credible interval 0–588) SNPs of the total 2,919 NSNPs explained 0.14 (95% 

credible interval 0–0.31) of the Vtot of 0.49).

Modeling causal variants

To assess what causal genetic models could explain our results, we performed simulations 

with causal variants and the resulting tag-SNP associations. Recent theoretical studies have 

posited that multiple rare causal variants may result in common SNP associations38. Such 

‘synthetic associations’ probably do not account for most of the validated GWAS signals39, 

but the contribution of these associations to weaker undiscovered common SNP associations 

has not been previously considered. We used 1000 Genomes Project40 data and HAPGEN 

software41 to simulate 10-Mb haplotypes in case-control populations under genetic models 

with varying numbers and effect sizes of either common (MAF > 5%) or rare (MAF < 1%) 

causal variants and determined the patterns of association at marker SNPs interrogated in the 

GWAS data. This approach allowed us to identify causal variant models in which GWAS 

marker SNPs were consistent with our polygenic modeling inference in terms of both their 

number and total variance explained (Supplementary Table 4), as well as their allele 

frequency and effect size distributions (Supplementary Fig. 5). Thus, we could directly 

address allelic heterogeneity and rare causal variant hypotheses underlying weak, polygenic 

effects in GWAS data.
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Only models with few (1–4) common causal variants per locus and those with many (8–16) 

rare causal variants per locus resulted in associated GWAS SNPs that were consistent with 

the Bayesian inference results (Supplementary Table 4 and Supplementary Fig. 5). We 

emphasize that to explain weak undiscovered common SNP associations, causal variants 

must themselves have weaker effects than have been studied previously, particularly for rare 

causal variants10,38,39,42–45. For consistent causal variant models, we simulated the number 

of loci genome wide that yielded our inferred total variance that was explained by the 

associated marker SNPs and calculated the contribution of the causal variants themselves to 

heritability (Fig. 4). Under genetic models with common causal variants, our simulations 

suggested that many hundreds to thousands of common causal variants spread across 

hundreds of loci would account for roughly the same proportion of heritability as their 

GWAS marker SNP tags (Fig. 4) but would not account for all of the disease heritability. In 

contrast, under models in which the causal variants are rare, only a small number of loci 

explain all of the common disease heritability; with larger numbers of loci, heritability 

owing to causal variants quickly exceeds realistic heritability estimates.

DISCUSSION

The biometrical model proposed by R.A. Fisher46 posited that a large number of additive 

genetic factors inherited in a Mendelian fashion could account for the familial patterns of 

complex traits. In 1916, Fisher’s model was criticized by Karl Pearson as being “out of the 

range of experiment by Mendelian methods”47. With the advent of GWAS that interrogate 

millions of common SNPs with high-throughput genotyping arrays and imputation, it is now 

possible to test Fisher’s model of inheritance. In our study, we used polygenic analyses of 

GWAS data to show that a substantial proportion of SNPs reaching at best suggestive levels 

of statistical significance contribute to common disease risk when considered in aggregate 

(Fig. 1).

Our study extends a previously developed method10 by performing approximate Bayesian 

computation (ABC-GLM) to estimate the credible region of polygenic disease model 

parameters (for example, number of SNPs, effect size and allele frequency) that can account 

for polygenic risk score associations. Bayesian inference, together with consistent results 

obtained using the previously developed LMM method11,14, provide convincing evidence 

that substantial variance in disease liability can be explained by common SNPs captured in 

contemporary GWAS data (Table 2). For rheumatoid arthritis, the hidden heritability is on 

par with the variance explained by the validated risk loci, such that a total of ~36% of the 

overall disease liability, or ~65% of the total heritability, can be attributed to the purely 

additive effects of common SNPs. For celiac disease, MI/CAD and T2D, our results suggest 

that the true heritabilities are on the high sides of the ranges of the family based estimates 

and that at least ~70% of the heritability of these diseases is explained by common GWAS 

SNPs.

Bayesian analyses allow for computation of the posterior distribution of polygenic disease 

model parameters, which can then be used to address questions relating to the genetic 

architecture of common disease. Here, in addition to estimating the number of SNPs and 

their total variance explained (Fig. 2), we generated the posterior distribution of the allele 
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frequencies and effect sizes of the inferred, risk-associated SNPs (Fig. 3) and investigated 

plausible causal variant models (Fig. 4). Other potential applications of this type of analysis 

include performing power calculations to predict the outcomes of future genetic studies, 

developing future discovery efforts such as Bayesian and pathway-based GWAS48,49, 

estimating the accuracy of the risk prediction that is attainable with additional validated or 

unvalidated risk alleles50,51 and developing and testing hypotheses for the polygenic 

adaptation52,53 that has affected the risk of complex disease.

Although our results were qualitatively similar across the four common diseases we studied, 

the inferences did vary, with rheumatoid arthritis having a lower estimate (0.18) of total 

liability-scale variance explained (Vtot) by GWAS SNPs than the other three common 

diseases (which ranged from 0.43 to 0.49). This difference is largely a result of the exclusion 

of known loci for rheumatoid arthritis (~30 risk loci that together explain ~18% of the 

phenotypic variance). Furthermore, the inferred distributions of the effect sizes of the 

associated SNPs (measured on the liability scale, implying larger genotypic relative risks for 

lower minor allele frequencies) varied markedly across diseases: the ratios of the Vtot caused 

by SNPs with moderate compared to weak liability-scale effect sizes (corresponding to GRR 

> 1.05 compared to 1.01 < GRR < 1.05 for MAF = 0.5) ranged from roughly three for celiac 

disease and MI/CAD to roughly one-third for rheumatoid arthritis and T2D. These 

differences in our estimates between diseases may have implications for the genetics of these 

diseases and will be validated and better characterized in future studies.

Our simulations incorporating causal variants and GWAS marker SNPs are consistent with 

results from other recent studies10,42–45 and indicate that common causal alleles with weak 

effects can explain most of the polygenic signal observed in GWAS data. Unlike previous 

studies, we examined the impact of causal variant models on multiple weakly associated 

GWAS SNPs rather than considering only the single most strongly associated SNP. We 

found that relatively weak causal variant effect sizes (GRR ~ 1.04, 1.1, 1.5 or 3.5 for MAF = 

50%, 5%, 1% or 0.1%, respectively) are required to be consistent with the polygenic 

analysis of GWAS data.

We show that underlying genetic models with either common (MAF > 5%) or rare (MAF < 

1%) causal variants can be consistent with the data in terms of the total number of associated 

GWAS SNPs and the variance explained. However, under rare causal variant models for 

complex traits, on the order of ten causal loci are required or the variance explained by 

causal variants will exceed the heritability of disease38. This is because rare causal variants 

result in many weakly associated GWAS SNPs (because they are not well tagged by any 

single common SNP) with less total variance explained than the amount explained by the 

causal variants themselves and because substantial allelic heterogeneity (eight or more rare 

causal variants per locus) is required to induce associations throughout the common SNP 

frequency spectrum38,39,45. As our polygenic analysis suggested that the associations are 

diffuse throughout the genome, we conclude that the majority of the causal variants that 

underlie the polygenic signal of association in the GWAS data are themselves common and 

not rare. Common causal variants would account for a proportion of heritability only slightly 

greater than that of the SNPs associated within GWAS, leaving some heritability still 

unexplained.

Stahl et al. Page 8

Nat Genet. Author manuscript; available in PMC 2019 June 12.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



We do not rule out the possibility of a contribution of rare causal variants. Indeed, a genetic 

model positing a mixture of loci harboring common and/or rare causal variants would fit the 

posterior distribution of associated GWAS SNPs better than any single model we simulated; 

this conclusion is based on the observation that the common causal variant models generated 

slightly fewer low-frequency, moderate-effect–size GWAS alleles compared to our posterior 

distribution, whereas rare-variant models generated slightly more (Supplementary Fig. 5). A 

genetic model that posits a mixture of common and rare causal variants could explain all of 

the heritability of disease but would still be dominated by common causal variants (Fig. 3). 

Finally, we note that many extremely rare causal variants that segregate privately within 

families would not induce SNP associations within GWAS data and, therefore, could 

contribute to the remaining estimated heritability under the causal variant models we 

studied.

Even if a complex disease is highly polygenic, it is probable that risk loci will implicate a 

limited number of disease-relevant biological pathways. Recent studies have shown that 

genes in validated rheumatoid arthritis risk loci are functionally related in terms of their 

descriptions in the literature29,54, their physical interactions55 and the tissues in which they 

are specifically expressed56. Furthermore, larger sets of suggestive loci show an over-

representation of broad functional categories57 and tissue-specific expression56 and 

contribute to the disease associations of canonical molecular biological pathways49. By 

extension, many additional validated risk loci would hold great promise for bioinformatic 

analyses to be able to point to the mechanisms of common disease pathogenesis.

Our results have major implications for the design of future genetic association studies to 

identify additional common disease risk loci. Ideally, whole-genome sequencing in large 

case-control collections would capture all types of variants (SNPs, indels and copy number 

variants) across the entire range of allele frequencies (common to low frequency to private). 

However, such a study is prohibitively expensive at this time and comes with its own 

challenges, both computationally and in the interpretation of the results. The polygenic 

model posterior distributions for each of the four diseases examined here give expectations 

of hundreds of SNPs with moderate effect sizes (GRR > 1.05), especially for celiac disease 

and MI/CAD. Although the contributions of previously validated SNPs must be accounted 

for in further analyses, the difference between the Vtot inferred here and the variance 

explained by validated SNPs strongly suggests that there exist many associations that would 

be detectable in larger GWAS. Therefore, our results indicate that the common variant 

GWAS approach will continue to be a highly productive method of identifying additional 

risk alleles for common disease.

URLs.

Full SNP results from a previous rheumatoid arthritis meta-analysis2, http://

www.broadinstitute.org/ftp/pub/rheumatoid_arthritis/Stahl_etal_2010NG/; ABCtoolbox 

software package, http://cmpg.iee.unibe.ch/content/softwares__services/

computer_programs/abctoolbox/index_eng.html; GCTA software package, http://

gump.qimr.edu.au/gcta/.
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METHODS

Methods and any associated references are available in the online version of the paper at 

http://www.nature.com/naturegenetics/.

ONLINE METHODS

GWAS data, quality control and filtering.

Quality control filtering, principal components analysis and genome-wide imputation were 

conducted as previously reported for rheumatoid arthritis2, celiac disease19, MI/CAD20 and 

T2D22. For this study, the rheumatoid arthritis Epidemiological Investigation of Rheumatoid 

Arthritis (EIRA) I and II GWAS datasets2,18 were combined, quality-control filtered and 

imputed. For MI/CAD, HapMap2 SNPs were extracted from data imputed into the 1000 

Genomes European (CEU) reference panel (August 2009 release) (R.D. & S.K., data not 

shown). See the Supplementary Note for further details.

Known rheumatoid arthritis risk loci were removed by excluding the extended MHC region 

(chromosome 6, 25–35 Mb), 2 Mb across the PTPN22 region and 1-Mb regions centered on 

other previously validated SNPs, extended to the furthest SNPs with LD with the known 

SNPs (r2 > 0.1 in HapMap2 release 24) (Supplementary Table 1). The extended MHC region 

(chromosome 6, 20–40 Mb) was removed from the celiac GWAS data.

Polygenic risk score analysis.

Polygenic analyses were conducted as described10. The discovery-set GWAS was conducted 

as previously described (inverse-variance–weighted meta-analysis for rheumatoid 

arthritis2,18 and T2D22, Cochran-Mantel-Haenszel tests for celiac celiac disease19 and a 

combined analysis for MI/CAD20), excluding the samples used as test data (Table 1).

LD pruning by association was conducted to achieve a set of independent SNPs that retained 

as much association signal as possible from the discovery GWAS. Starting with the most 

strongly associated SNP, all SNPs in LD (r2 > 0.1) were excluded until no SNPs with r2 > 

0.1 remained in the data. LD was calculated from HapMap2 release 24 data for all pairs of 

SNPs less than 1 Mb away from each other or across long-distance LD regions (PTPN22, 

chromosome 1: 113–115 Mb; MHC, chromosome 6: 25–35 Mb; chromosome 8: 6–10 Mb; 

chromosome 17: 40–50 Mb). A Perl program to conduct LD pruning is available on request.

Polygenic risk scores were calculated for sets of SNPs that were selected based on nine 

discovery-set GWAS statistical significance thresholds: PGWAS < 10−4, 10−3, 0.01, 0.05, 

0.10, 0.20, 0.30, 0.40 and 0.50 or PGWAS = 0.01, 0.10 and 0.50 for the analyses stratified by 

RAF quintile. For each SNP set, the additive weighted polygenic risk scores PRS were 

calculated for validation set individual i as PRS
i

= ∑
j ∈ SNPs β

⌢⌢

j
d

i j
 where β

⌢⌢

j
> 0 is the 

discovery GWAS log-odds ratio for the risk allele and dij is individual i’s dosage (0−2) of 

that allele. Polygenic risk scores were tested for association with disease status by logistic 

regression with gender and five principal component covariates.
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Polygenic disease modeling.

A polygenic disease model was parameterized in which a number of independent biallelic 

polymorphisms (NSNPs) contributed additively to a total liability-scale variance explained 

(Vtot). The relative per-SNP liability-scale variance explained was modeled by a β-
distribution function, β(1, βv), allowing for a wide range of effect size heterogeneity 

(Supplementary Fig. 2a). The RAF distribution was modeled by the product of the empirical 

distribution (after LD pruning) and the β distribution β(αRAF, βRAF), allowing for mostly 

rare or mostly common risk alleles (Supplementary Fig. 2b). Given a SNP’s variance 

explained, v, and RAF, p, its genotypic relative risk was calculated according to the liability 

threshold model10,58: GRR = 1 + vI
2/2p(1 − p), where I is the quotient of the standard 

normal density at the disease liability threshold and the disease prevalence K. Thus, 

polygenic disease was modeled by five parameters: NSNPs, Vtot, bv, αRAF and βRAF.

Polygenic analyses—from discovery GWAS to polygenic risk score association tests—were 

simulated for comparison with observed results for associated and null SNPs roughly equal 

in number to the total numbers of SNPs obtained after LD pruning of real data (80,000 SNPs 

for rheumatoid arthritis and MI/CAD and 70,000 SNPs for celiac disease and T2D; Table 1). 

Discovery GWAS results were directly simulated from the GRRs and RAFs of the 

associated SNPs and were sampled from case-control–permutated, LD-pruned GWAS 

replicates for null SNPs. Polygenic analysis simulations incorporated the exact study design 

as was used for the real data, except that (i) gender or population stratification was not 

modeled and covariates were not used in the simulated association tests, and (ii) independent 

SNPs were simulated (for comparison with real data LD pruned to r2 < 0.1). See the 

Supplementary Note for additional details.

Approximate Bayesian computation.

To infer the model parameters given the polygenic analysis results, we sampled parameter 

values from prior distributions, simulated a polygenic analysis and performed an 

approximate Bayesian computation with rejection sampling and general linear model post-

sampling adjustment (ABC-GLM)24. See the Supplementary Note for full details.

We sampled polygenic disease model parameters from wide-ranging priors that were as 

‘uninformative’ as possible to consider a broad range of genetic architectures for disease 

risk. For the primary analyses, Vtot values were sampled from a uniform prior on the interval 

0.01–0.99 (0.01–0.5 for rheumatoid arthritis), and NSNPs values were sampled from a log10-

uniform prior on the interval 10–10,000 (that is, log10 NSNPs ~U(1, 4)). Prior distributions 

for the parameters βv (~U(1, 10)), αRAF (~U(0.5, 10)) and βRAF (~U(0.5, 10)) were chosen 

to generate a wide range of prior distributions of risk allele frequencies and effect sizes 

(Supplementary Fig. 2), and we assessed the sensitivity of our inference to alternative priors 

for NSNPs and βv.

We used ABC-GLM24 to perform rejection sampling and post-sampling adjustment to 

estimate posterior probability densities of the model parameters given our observed 

polygenic analysis results. We determined rejection-sampling–based Euclidean distances 

between the simulated and observed transformed summary statistics based on 1,000,000 
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simulation replicates with a 0.2% acceptance rate for the primary analyses. The observed 

polygenic analysis results were not significantly less likely under the polygenic model than 

the accepted simulated results, and the marginal posterior densities of all the individual 

parameters are shown in Supplementary Figure 3. We validated our analysis by performing 

ABC-GLM with the simulated data and verified (i) that our method successfully inferred the 

key properties of simple, intuitive underlying disease models and (ii) that the known 

parameters were roughly uniformly distributed across their posterior probability density 

quantiles (Supplementary Fig. 4).

We extended the ABC-GLM to estimate joint posterior densities and to sample from joint 

posterior distributions using the Markov chain Monte Carlo method. Samples from the joint 

posterior of all five parameters were generated by Markov chain Monte Carlo with a uniform 

updating distribution, and convergence was assessed by comparing samples within and 

between independent chains and by comparing the samples with marginal densities 

estimated by AMC-GLM. Full joint posterior samples were used to obtain posterior 

distributions of the allele frequencies and variances explained (v) for the associated SNPs, 

which were truncated at a v corresponding to a minimum GRR of 1.01 (for MAF = 0.5; the 

GRRs were larger for smaller MAFs) to generate posterior distributions of Vtot and NSNPs 

and of MAF and GRR.

ABC-GLM and the supporting analyses were conducted using the ABCtoolbox software 

package25. Extensions to this method are implemented in a new version of ABCtoolbox (see 

URLs).

Linear mixed-effects model heritability estimation.

Heritability caused by common SNPs was directly estimated from the GWAS datasets using 

an LMM that regressed phenotype on a random-effects kinship matrix estimated from 

genotyped SNPs, with gender as a fixed effect and including principal component covariates, 

using the GCTA software11,14,26. Kinship matrices were estimated from genotyped SNPs 

after stringent quality control (missing data rate <1%, case-control differential missing data 

P > 0.01 and Hardy-Weinberg equilibrium P > 0.001) and adjusted for finite-SNPs 

estimation; individuals showing low-level relatedness were removed, and the results were 

converted to the population-liability scale.

Causal variant modeling.

We used 1000 Genomes Project40 data and HAPGEN software41 to simulate a case-control 

population with a range of underlying causal genetic models varying by the allele frequency, 

number and effect size of the causal variants (Supplementary Note, Supplementary Table 4 

and Supplementary Fig. 5). We simulated 10-Mb regions with an average SNP density and 

genetic length, and calculated case and control haplotype frequencies based on the numbers 

of rare (MAF < 1%) or common (MAF > 5%) causal variants randomly selected from within 

100-kb ‘loci’. We then calculated case and control allele frequencies at HapMap2 SNPs (an 

average of ~8,000 SNPs per region) and LD pruned the SNPs by association (average of 

~240 SNPs). These single-locus simulation results were extrapolated genome wide by 

resampling with replacement until the expected total liability-scale variance explained of 
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induced GWAS SNP associations reached our polygenic modeling Bayesian inference 

(Supplementary Table 4). We identified plausible causal variant models in which the 

simulated marker SNPs and the inferred Bayesian posterior distributions were consistent in 

terms of the number of associated marker SNPs and their allele frequencies and effect sizes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Association of polygenic risk scores with common disease case-control status in 

independent validation datasets. Association P values (log10 scale) are plotted, with the 

number of SNPs used for the calculation of the risk scores shown at right, for SNP sets 

based on PGWAS thresholds ranging from 10−4 (top, green) to 0.5 (bottom, blue). (a) 

Rheumatoid arthritis (all known risk loci removed). (b) Celiac disease (with the extended 

MHC region removed). (c) Myocardial infarction (discovery data) and coronary artery 

disease (test data). (d) T2D.
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Figure 2. 
Posterior probability densities of the number of associated SNPs and the total liability-scale 

variance explained for the Bayesian analysis of the polygenic analysis results. NSNPs are 

shown on the log10 scale on the x axis, and Vtot values are shown on the y axis. The heat 

map colors represent the probability density height, with darker colors indicating higher 

density. Contour lines show the highest posterior density and the 50%, 90% and 95% 

credible regions. (a) Rheumatoid arthritis (with all known risk loci removed). (b) Celiac 

disease (with the extended MHC region removed). (c) MI/CAD. (d) T2D.
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Figure 3. 
Posterior probability distributions of the relative risk and minor allele frequency of the 

inferred disease-associated SNPs. The GRR is shown on the y axis in the left and middle 

images, and the MAF is shown on the x axis in the middle and bottom images. Heat map 

colors indicate the mean posterior numbers of SNPs in risk allele frequency (RAF)-GRR 

bins scaled to the posterior mean number of disease-associated SNPs (indicated in the 

legend). The graphs on the left and at the bottom show the marginal posterior (solid line) and 

prior (dashed line) probability densities. (a) Rheumatoid arthritis (with all known risk loci 

removed). (b) Celiac disease (with the extended MHC region removed). (c) MI/CAD. (d) 

T2D.
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Figure 4. 
Causal variants underlying the rheumatoid arthritis polygenic disease architecture inferred 

from the GWAS data. Plotted are the liability-scale variances explained (Vtot, bars, left y 

axes) and the number of loci harboring causal variants (black line, right y axes). The colored 

sections in the bars partition the Vtot values for previously validated common SNP 

associations (gray), undiscovered GWAS SNP associations induced by causal variants (blue) 

and causal variants (Vtot, in addition to the values for GWAS SNPs, red). Error bars show 

95% confidence intervals for causal variant numbers and Vtot values based on simulations 

achieving a GWAS SNP Vtot value equal to that inferred from the polygenic modeling. Six 

plausible causal variant models are plotted (left to right): (i) 1,900 loci each with a single 

common (MAF > 5%) causal variant, (ii) 894 loci each with 2 common causal variants, (iii) 

391 loci each with 4 common causal variants, (iv) 155 loci each with 8 rare (MAF < 1%) 

causal variants, (v) 16 rare causal variants per locus with v = 0.0005 and (vi) a mixture 

(60:40 ratio of model 2 to model 4 in terms of GWAS SNPs Vtot values, implying 536 

common causal variant loci and 62 rare causal variant loci). The per-causal–variant liability-

scale variances explained (v) for models that are consistent with the polygenic modeling and 
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inference results were v = 0.0001 for common causal variants and v = 0.0005 for rare causal 

variants.
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Table 1

Common disease GWAS data

Disease Discovery and test data (cohorts) Cases Controls Total

SNP platform

N after QC N after LD pruning

Rheumatoid arthritis Discovery (5) 3,964 12,052 10,565 HapMap2

2,100,000 84,000

Celiac disease Test (WTCCC) 1,521 10,557 5,318

Discovery (3) 2,091 3,218 4,776 Illumina 550K

503,000 91,000

Early onset MI/CAD Test (UK2) 1,849 4,936 5,380

Discovery (MIGEN) 2,967 3,075 6,040 HapMap2

1,800,000 90,000

T2D mellitus Test (WTCCC) 1,926 2,935 4,652

Discovery (7) 6,206 8,713 17,427 HapMap2

2,000,000 76,000

Test (WTCCC) 1,924 2,938 4,651

WTCCC, Wellcome Trust Case Control Consortium; MIGEN, Myocardial Infarction Genetics Consortium; UK2, Stage 1 Collection 2 from 

reference 19; QC, quality control.
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Table 2

Comparison of results of different polygenic methods across diseases

Disease Prevalence (%) Family based heritability
a

Caused by common GWAS SNPs

LMM-based heritability (s.e.)

Polygenic modeling and Bayesian 
inference

Total variance 
explained (50% 

CI)
N SNPs (50% 

CI)

Rheumatoid
arthritis

1 0.53–0.68

(−0.13 MHC)b
0.32 (0.037) 0.18 (0.15–0.20)

(+0.04 known non-

MHC)b

2,231
(1,588–2,740)

Celiac disease 1 0.5–0.87

(−0.35 MHC)
b

0.33 (0.042) 0.44 (0.40–0.47) 2,550
(1,907–3,061)

MI/CAD 6 0.3–0.63 0.41 (0.067) 0.48 (0.43–0.54) 1,766
(1,215–2,125)

T2D mellitus 8 0.26–0.69 0.51 (0.065) 0.49 (0.46–0.53) 2,919
(2,335–3,442)

a
Family based heritability estimates were taken from previous data for rheumatoid arthritis27,28, celiac disease18,30, MI/CAD31,32 and 

T2D33,34.

b
We excluded some loci in certain analyses: although the family based heritability estimates are based on the whole genome, the extended MHC 

region was removed from the common GWAS SNP analyses for rheumatoid arthritis and celiac disease, and validated non-MHC loci were further 

removed from the polygenic modeling analysis of the rheumatoid arthritis GWAS data. 50% CI, 50% credible interval; s.e., standard error.
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