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Abstract

Recently generalized exponential distribution has received considerable attentions. In

this paper, we deal with the Bayesian inference of the unknown parameters of the pro-

gressively censored generalized exponential distribution. It is assumed that the scale

and the shape parameters have independent gamma priors. The Bayes estimates of

the unknown parameters can not be obtained in closed form. Lindley’s approximation

and importance sampling technique have been suggested to compute the approximate

Bayes estimates. Markov Chain Monte Carlo method has been used to compute the

approximate Bayes estimates and also to construct the highest posterior density cred-

ible intervals. We also provide different criteria to compare two different sampling

schemes and hence to find the optimal sampling schemes. It is observed that finding

the optimum censoring procedure is a computationally expensive process, and we have

recommended to use the sub-optimal censoring procedure, which can be obtained very

easily. Monte Carlo simulations are performed to compare the performances of the

different methods and one data analysis has been performed for illustrative purposes.
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1 Introduction

Two-parameter generalized exponential distribution (GE) was originally introduced by Gupta

and Kundu [6] as a skewed distribution, and as an alternative to Weibull, gamma or log-

normal distribution. Because of the shape and scale parameters, it is observed that GE

distribution can take different shapes and it can be used quite effectively to analyze skewed

data. Extensive work has been done by several authors on GE distribution, see for example

the review article by Gupta and Kundu [8] and the references cited there.

Although extensive work has been done on the statistical inferences of the unknown pa-

rameters of the GE distribution for complete and censored sample data in the frequentest

context, see for example Madi and Raqab [12], Kundu and Pradhan [10], Mitra and Kundu

[13], but not much work has been done for censored sample data in the Bayesian set up.

Among the different censoring schemes Type-I and Type-II are the two most popular cen-

soring schemes, in the last few years, progressive censoring scheme has received considerable

attention, see for example the book by Balakrishnan and Aggrawala [2] and also the recent

excellent review article by Balakrishnan [1].

Recently in the frequentest set up, Pradhan and Kundu [15] considered the statistical

inference of the unknown parameters of the generalized exponential distribution when the

data are progressively censored and also proposed some optimum censoring schemes. The

aim of this paper is two fold. We consider the same problem as in Pradhan and Kundu [15],

but mainly from the Bayesian perspective. First we consider, the Bayes estimates of the

unknown parameters under the assumptions that both the shape and the scale parameters

have gamma priors and they are independently distributed. It is assumed throughout that

the loss function is squared errors, although any other loss function can be easily incorpo-

rated. As expected the Bayes estimates of the unknown parameters can not be obtained
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in explicit forms. We suggest Lindley’s approximations to compute the Bayes estimates of

the unknown parameters, and also importance sampling technique, to construct the highest

posterior density (HPD) credible intervals of the unknown parameters. We perform some

simulation study to see the performances of the proposed method and also to compare with

the maximum likelihood estimators. It is observed that if we have proper prior information,

then the Bayesian inference has a clear advantage over the classical inference.

The second aim of this paper is to provide the methodology to compare two different

sampling schemes and hence in turn, to compute the optimal sampling scheme, for a given

prior distribution. Recently, Zhang and Meeker [17] and Kundu [9] discussed Bayesian life

testing plan for Weibull distribution. In this paper we provide the optimal sampling plan

for GE distribution. It is observed that finding the optimal sampling plan is a discrete

optimization problem and it is computationally quite expensive. Due to this fact we have

suggested a sub-optimal plan, which can be obtained very easily.

The rest of the paper is organized as follows. In section 2, we provide the model as-

sumption and prior distributions. Approximate Bayes estimates and the construction of

HPD credible intervals are provided in section 3. Numerical results and data analysis are

presented in section 4. The construction of optimal censoring scheme is presented in section

5 and finally we conclude the paper in section 6.

2 Problem Formulation and Prior Assumption

It is assumed that n-identical units are put on a test and the lifetimes of the n-items are

T1, . . . , Tn. It is further assumed that Ti’s are independent and identically distributed GE

random variables with the PDF

f(t;α, λ) = αλ
(
1− e−tλ

)α−1
e−tλ; t > 0. (1)
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Here α > 0 and λ > 0 are the shape and scale parameters respectively. The GE distribution

with the PDF (1) will be denoted by GE(α, λ). The integer m < n is pre-fixed and also

R1, · · · , Rm are m-prefixed non-negative integers such that R1 + · · · + Rm +m = n. At the

time of the first failure t1, R1 of the remaining units are randomly removed. Similarly, at

the time of the second failure t2, R2 of the remaining units are removed and so on. Finally,

at the time of the m-th failure the rest of the Rm = n − R1 − · · · − Rm−1 − m units are

removed. Note that the usual Type-II censored scheme can be obtained as a special case of

the progressive censoring scheme, simply by taking R1 = · · · = Rm−1 = 0.

Now we provide the prior information on the unknown parameters. We use the follow-

ing notation. A random variable X is said to have a gamma distribution with the shape

parameter β > 0 and the scale parameter θ > 0, if X has the following probability density

function;

fGA(x; β, θ) =
θβ

Γ(β)
xβ−1e−θx; x > 0,

and it will be denoted as X ∼ gamma(β, θ).

It is assumed that α and λ have the following independent gamma prior distributions;

π1(α|a, b) = fGA(α; b, a); α > 0, (2)

π2(λ|c, d) = fGA(λ; d, c); λ > 0. (3)

Here all the hyper parameters a, b, c, d are known and non-negative. It may be noted that

for known λ, (2) is the conjugate prior on α. But if both are unknown, the joint conjugate

priors do not exist. Note that it is not unreasonable to assume independent gamma priors

on the shape and scale parameters for a two-parameter lifetime distributions. It is due to

the fact that gamma distributions are very flexible, and the Jeffrey’s (non-informative) prior

is a special case of this. Independent gamma priors have been used in the Bayesian analysis

of Weibull distribution, see for example Berger and Sun [5] or Kundu [9]. For Bayesian
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analysis of the gamma distribution, Son and Oh [16] assumed the gamma prior on the scale

parameter and independent non-informative prior on the shape parameter, which is a special

case of the gamma distribution. Now based on the above priors, in the next section we obtain

approximate Bayes estimates and the corresponding HPD credible intervals.

3 Bayes Estimates and Credible Intervals

In this section we consider the Bayes estimation of the unknown parameters, under the

prior assumptions provided in (2) and (3). For computing the Bayes estimates, we have

mainly assumed the squared error loss function, although any other loss function also can

be incorporated. The likelihood function of the observed sample {(t1, R1), . . . , (tm, Rm)} is

l(data|α, λ) ∝ αmλme−λ
∑m

i=1
ti

m∏

i=1

(1− e−λti)α−1
m∏

i=1

(1− (1− e−λti)α)Ri . (4)

Using the joint prior distribution of α and λ, we obtain the joint distribution of the data, α

and λ as

l(data|α, λ)π1(α|a, b)π2(λ|c, d). (5)

Based on (5), the joint posterior density of α and λ given the data is

l(α, λ|data) =
l(data|α, λ)π1(α|a, b)π2(λ|c, d)∫∞

0

∫∞
0 l(data|α, λ)π1(α|a, b)π2(λ|c, d)dαdλ

. (6)

Therefore, the Bayes estimates of any function of α and λ say g(α, λ) under the squared

error loss function is

ĝB(α, λ) = Eα,λ|data(g(α, λ))

=
∫ ∞

0

∫ ∞

0
g(α, λ)l(α, λ|data)dαdλ

=

∫∞
0

∫∞
0 g(α, λ)l(data|α, λ)π1(λ|a, b)π2(α|c, d)dαdλ∫∞
0

∫∞
0 l(data|α, λ)π1(λ|a, b)π2(α|c, d)dαdλ

. (7)
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It is not possible to compute (7) analytically in this case. Two approaches are suggested

here to approximate (7), namely (a) Lindley’s approximation and (b) Importance Sampling

Procedure.

3.1 Lindley’s Approximation

Lindley proposed his procedure to approximate the ratio of two integrals such as (7). This

has been used by several authors. Based on Lindley’s approximation, the Bayes estimates

of α and λ under the squared error loss function are

α̂B = α̂ +
1

2

(
l30τ

2
11 + l03τ21τ22 + 3l21τ11τ12 + l12(τ22τ11 + 2τ

2
21)
)

+

(
b− 1

α̂
− a

)
τ11 +

(
d− 1

λ̂
− c

)
τ12, (8)

λ̂B = λ̂+
1

2

(
l30τ12τ11 + l03τ

2
22 + l21(τ11τ22 + 2τ

2
12) + 3l12τ22τ21

)

+

(
b− 1

α̂
− a

)
τ21 +

(
d− 1

λ̂
− c

)
τ22. (9)

Here α̂ and λ̂ are the MLEs of α and λ respectively, and a, b, c, d are the known hyper-

parameters. The explicit expressions of τ11, τ12, τ21, τ22, τ30, τ03, l21, l12 are provided in the

Appendix A.

3.2 Importance Sampling

In the previous subsection we obtain the Bayes estimates of the unknown parameters using

the Lindley’s approximation method. Unfortunately, using Lindley’s method it is not possible

to compute the highest posterior density (HPD) credible intervals. In this subsection, we

propose importance sampling procedure to compute the Bayes estimates and also to construct

the HPD credible intervals.
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Under the assumptions on the priors of α and λ as given in (2) and (3), the posterior

density function of α and λ can be written as

l(α, λ|data) ∝ αb+m−1e−α(a−
∑m

i=1
ln(1−e−λti ))λd+m−1e−λ(c+

∑m

i=1
ti)

m∏

i=1

(1− (1− e−λti)α)Ri

(1− e−λti)

∝ fGA(α; b+m, a−
m∑

i=1

ln(1− e−λti))fGA(λ; d+m, c+
m∑

i=1

ti)× h(α, λ),(10)

where

h(α, λ) =

∏m
i=1

(1−(1−e−λti )α)Ri

(1−e−λti )

(a−
∑m

i=1 ln(1− e−λti))b+m
. (11)

Using (10), it is possible to use the importance sampling procedure to compute the Bayes

estimates of any function of α and λ, say g(α, λ) and also to construct the corresponding

HPD credible intervals.

Let us denote the right hand side of (10) as lN(α, λ|data). Therefore, lN(α, λ|data) and

l(α, λ|data) differ only by the proportionality constant. The, Bayes estimate of g(α, λ) under

the squared error loss function is

ĝB(α, λ) =

∫∞
0

∫∞
0 g(α, λ)lN(α, λ|data)dαdλ∫∞
0

∫∞
0 lN(α, λ|data)dαdλ

. (12)

It is clear from (12) that to approximate ĝB(α, λ), using the importance sampling procedure

one need not compute the normalizing constant. We use the following procedure:

• Step 1: Generate

λ1 ∼ gamma(d+m, c+
m∑

i=1

ti) and α1|λ1 ∼ gamma(b+m, a−
m∑

i=1

ln(1− e−λ1ti)).

• Step 2: Repeat this procedure to obtain (α1, λ1), . . . , (αN , λN).

• Step 3: The approximate value of (12) can be obtained as

∑N
i=1 g(αi, λi)h(αi, λi)∑N

i=1 h(αi, λi)
. (13)
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Now we would like to obtain the highest posterior density (HPD) credible intervals of α

and λ using the generated importance sampling procedure. We illustrate the procedure for

α but it can be similarly implemented for λ also.

Suppose ap is such that

P [α ≤ ap|data] = p.

Now consider the following function

g(α, λ) =





1 if α ≤ ap

0 if α > ap.

(14)

Clearly,

E(g(α, λ)|data) = p.

Therefore, an approximate Bayes estimate of ap under the squared error loss function can

be obtained from the generated sample {(α1, λ1), . . . , (αN , λN)} as follows. Let

wi =
h(αi, λi)∑N
i=1 h(αi, λi)

; i = 1, . . . , N.

Rearrange {(α1, w1), . . . , (αN , wN)} as {(α(1), w(1)), . . . , (α(N), w(N))}, where α(1) < . . . <

α(N). Note that w(i)’s are not ordered, they are just associated with α(i). Then an Bayes

estimate of ap is

âp = α(Np),

where Np is the integer satisfying

Np∑

i=1

w(i) ≤ p <

Np+1∑

i=1

w(i).

Now using the above procedure a 100(1 − γ)% credible interval of α can be obtained as

(âδ, âδ+1−γ), for δ = w(1), w(1) + w(2), . . . ,

N1−γ∑

i=1

w(i). Therefore, an 100(1 − γ)% HPD

credible interval of α becomes

(âδ∗ , (âδ∗+1−γ),
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where δ∗ is such that

âδ∗+1−γ − âδ∗ ≤ âδ+1−γ − âδ for all δ.

4 Numerical Experiments and Data Analysis

4.1 Numerical Experiments

In this subsection, we present some experimental results to observe the behavior of the

proposed methods for different sample sizes, for different priors and for different sampling

schemes. All the computations are performed at the Indian Statistical Institute Kolkata.

We have considered different sample sizes; n = 20, 25, 30, different effective sample sizes;

m = 10 and 15, different hyper-parameters (a, b, c, d) and ten ([1]- [10]) different sampling

schemes. In all cases we have used α = 1.5 and λ = 1.0.

For a particular, n, m and a sampling scheme, using the algorithm proposed by Balakr-

ishnan and Sandhu [3] we have generated the progressively censored generalized exponential

distribution. First we have used the non-informative gamma priors for both the shape and

scale parameters, i.e, when all the hyper-parameters are zero and we call it as Prior-1. Note

that as the hyper-parameters go to zero, the prior density becomes inversely proportional

to its argument and also becomes improper. This density is commonly used as an improper

prior for parameters in the range of zero to infinity and this prior is not specifically related

to gamma priors only. It should also be mentioned that even if we take non-proper prior,

the joint posterior density of α and λ is still proper.

For comparison purposes, we have considered informative gamma priors also. For example

we have considered Prior-2: a = 1.5, b = 2.25, c =5 and d = 5. Purposely, we have taken the

prior means to be same as the original means. Note that Prior-1 and Prior-2 are two extreme

priors. In one case it is totally non-informative (Prior-1) and in the other case, prior means
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are exactly equal to the original means. In practice most of the priors will be in between

these two extremes.

In all cases squared error loss functions has been used for computing the Bayes estimates.

For a particular censoring scheme, we compute MLEs and the Bayes estimates using Lindley’s

approximations. We compute asymptotic confidence intervals of α and λ based on the Fisher

information matrix. We also compute the Bayes estimates and 95% highest posterior density

(HPD) credible intervals based on 1000 importance sampling. We replicate the process for

2000 times and average estimates, mean squared error, average confidence length /credible

length and 95% coverage percentages are reported in Table 1, 2 & 3.

Note that the sampling schemes, [1], [3], [5], [7], [9] are the usual Type-II censoring

schemes, i.e., n − m items are removed at the time of the m-th failure. The sampling

schemes [2], [4], [6], [8], [10] are just the opposite of the Type-II sampling schemes, i.e.,

n − m items are removed at the time of the first failure. Let us denote this censoring as

Type-III censoring scheme, as in Pradhan and Kundu [15]. For fixed n and m, the expected

experimental time of the Type-II censoring schemes are less than the corresponding Type-III

censoring schemes. The expected experimental time of any other censoring scheme will be

always between these two extremes, for fixed n and m.

Some of the foregoing points are made very clear from the tables. It is clear that the MLEs

and the Bayes estimates using Lindley’s approximation behave very much in a similar manner

particularly, in case of non-informative priors. The Bayes estimates obtained using MCMC

are slightly less biased than the MLEs or the Bayes estimates obtained using Lindley’s

approximations, but the mean squared errors are almost the same. Interestingly, similar

behavior has been observed for prior-2 also. Even in case of prior-2, the biases of the

Bayes estimates obtained using MCMC are slightly less than the Bayes estimates obtained

using Lindley’s approximations, but their mean squared errors are almost the same. Now
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Table 1: Average values of the maximum likelihood estimators and Bayes estimators under
prior-1 and the corresponding mean squared errors (in parenthesis).

n m Scheme No. MLEs Bayes (MCMC) Bayes (Lindley)
α λ α λ α λ

20 10 (9*0, 10) [1] 1.3590 1.1489 1.5835 1.1201 1.3431 1.1312
(0.0966) (0.0804) (0.1022) (0.0938) (0.1068) (0.0993)

20 10 (10, 9*0) [2] 1.3958 0.8817 1.5448 1.0191 1.3532 0.8299
(0.0729) (0.0711) (0.0715) (0.0670) (0.0762) (0.0733)

25 10 (9*0, 15) [3] 1.2394 0.7604 1.5920 1.1924 1.1891 0.6972
(0.0835) (0.0513) (0.0904) (0.0477) (0.0888) (0.0502)

25 10 (15, 9*0) [4] 1.2683 0.7856 1.4532 0.9868 1.2666 0.7602
(0.0711) (0.0516) (0.0695) (0.0498) (0.0739) (0.0561)

25 15 (14*0, 10) [5] 1.4143 0.9635 1.5158 1.0633 1.4651 0.9134
(0.0526) (0.0742) (0.0513) (0.0703) (0.0566) (0.0740)

25 15 (10, 14*0) [6] 1.4123 0.8971 1.4643 0.9878 1.4070 0.8752
(0.0449) (0.0503) (0.0410) (0.0540) (0.0428) (0.0519)

30 10 (9*0, 20) [7] 1.1654 0.6829 1.5531 1.2538 1.1159 0.6263
(0.0775) (0.0461) (.0794) (0.0501) (0.0789) (0.0523)

30 10 (20, 9*0) [8] 1.2150 0.7339 1.4629 0.9947 1.4163 0.9122
(0.0599) (0.0387) (0.0508) (0.0310) (0.0579) (0.0325)

30 15 (14*0, 15) [9] 1.3043 0.8099 1.5624 1.1518 1.3070 0.8025
(0.0575) (0.0458) (0.0512) (0.0424) (0.0519) (0.0478)

30 15 (15, 14*0) [10] 1.3260 0.8321 1.4883 0.9853 1.3245 0.8135
(0.0456) (0.0242) (0.0399) (0.0216) (0.0417) (0.0236)

comparing the results for prior-1 and prior-2, it is clear that the Bayes estimates based on

informative priors behave much better than the Bayes estimates based on non-informative

priors or MLEs in terms of biases, MSEs and lengths of credible intervals. Therefore, if the

prior information are available, then we should use the Bayes estimates, otherwise MLEs

may be used to avoid the computational cost.

4.2 Data Analysis

In this subsection we provide a data analysis for illustrative purposes. The data have been

taken from Lawless [11] and it represents the failure or censoring times of 36 appliances
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Table 2: Average values of the Bayes estimators under prior-2 and the corresponding mean
squared errors (in parenthesis).

n m Scheme No. Bayes (MCMC) Bayes(Lindley)
α λ α λ

20 10 (9*0, 10) [1] 1.5230 1.0055 1.4421 0.8686
(0.0943) (0.0347) (0.0993) (0.0584)

20 10 (10, 9*0) [2] 1.5428 1.0088 1.4596 0.8875
(0.0627) (0.0400) (0.0710) (0.0429)

25 10 (9*0, 15) [3] 1.4899 1.0512 1.5212 0.9528
(0.0752) (0.0377) (0.0720) (0.0355)

25 10 (15, 9*0) [4] 1.4893 1.0015 1.4481 0.8777
(0.0739) (0.0356) (0.0698) (0.0338)

25 15 (14*0, 10) [5] 1.4906 1.0044 1.3960 0.8866
(0.0415) (0.0304) (0.0437) (0.0289)

25 15 (10, 14*0) [6] 1.4981 0.9961 1.4461 0.9031
(0.0375) (0.0239) (0.0395) (0.0201)

30 10 (9*0, 20) [7] 1.4752 1.0871 1.5483 0.9966
(0.0767) (0.0457) (0.0706) (0.0418)

30 10 (20, 9*0) [8] 1.4896 0.9958 1.4261 0.8615
(0.0534) (0.0384) (0.0501) (0.0319)

30 15 (14*0, 15) [9] 1.4881 1.0507 1.4257 0.8921
(0.0478) (0.0361) (0.0439) (0.0315)

30 15 (15, 14*0) [10] 1.5156 0.9987 1.4117 0.8812
(0.0337) (0.0163) (0.0362) (0.0210)

subjected to an automatic life tests. The data given below consists of only the failure times:

11, 35, 49, 170, 329, 381, 708, 958, 1062, 1167, 1594, 1925, 1990, 2223, 2327, 2400, 2451,

2471, 2551, 2565, 2568, 2694, 2702, 2761, 2831, 3034, 3059, 3112, 3214, 3478, 3504, 4329,

6367, 6967, 7846, 13403. The same data set is analyzed by Pradhan and Kundu [15]. It is

observed in Pradhan and Kundu [15] that the GE distribution fits very well to the complete

data in terms of Kolmogorov-Smirnov distance.

For illustrative purposes, we have generated three different progressively censored samples

using three different sampling schemes with n=36 data with m=12, as follows:
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Table 3: Average confidence length /credible interval of the MLES / Bayes estimators and
the 95 % coverage percentage (in parenthesis).

n m Scheme No. MLEs Bayes Bayes
Prior-1 Prior-2

α λ α λ α λ

20 10 (9*0, 10) [1] 2.1172 1.5212 1.7585 1.9554 1.5137 1.5238
(94) (93) (97) (96) (94) (96)

20 10 (10, 9*0) [2] 1.9107 1.2561 1.7461 1.1059 1.6116 0.9727
(96) (92) (97) (92) (97) (92)

25 10 (9*0, 15) [3] 1.7912 1.4805 1.4650 1.2611 1.2808 1.1828
(94) (94) (92) (96) (92) (98)

25 10 (15, 9*0) [4] 1.6625 1.1734 1.6080 1.1102 1.4837 0.9843
(95) (91) (97) (92) (98) (92)

25 15 (14*0, 10) [5] 1.8680 1.4404 1.4662 1.3192 1.2677 1.0904
(96) (94) (96) (96) (97) (97)

25 15 (10, 14*0) [6] 1.7281 1.0456 1.4432 0.9566 1.3607 0.8563
(96) (96) (97) (92) (98) (95)

30 10 (9*0, 20) [7] 1.6045 1.4169 1.8660 1.6873 1.3725 1.0724
(95) (93) (91) (92) (93) (93)

30 10 (20, 9*0) [8] 1.5009 1.1044 1.6537 1.4036 1.9274 1.1467
(96) (92) (93) (93) (98) (99)

30 15 (14*0, 15) [9] 1.6799 1.2398 1.7518 1.3334 1.4921 0.9770
(98) (94) (92) (92) (95) (92)

30 15 (15, 14*0) [10] 1.5444 0.9998 1.7473 1.0205 1.7166 0.9013
(95) (94) (95) (92) (97) (97)

Censoring Scheme 1: (15, 5, 4, 9*0). We obtain the following progressively censored sample:

11, 35, 49, 329, 1062, 1167, 1594, 1990, 2451, 2471, 2551, 3059.

Censoring Scheme 2: (11*0, 24). We obtain the following progressively censored sample: 11,

35, 49, 170, 329, 381, 708, 958, 1062, 1167, 1594, 1925.

Censoring Scheme 3: (24, 11*0). We obtain the 11, 35, 49, 329, 381, 958, 1062, 1594, 1925,

2223, 2451, 2471.

For each of the censoring scheme, we compute MLEs and Bayes estimates of α and λ.

Since we do not have any prior information, we take a = b = c = d = 0 for Bayes estimates.
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The estimate of the parameters are given in Table 4. It is clear that without the presence of

Table 4: MLEs and Bayes estimates of the parameters of generalized exponential distribution
for the appliances data under different progressive censoring schemes.

Censoring MLEs Bayes (Lindley) Bayes (MCMC)
Scheme α λ α λ α λ

1 0.89532 0.00074 0.89140 0.00072 0.88301 0.00066
2 0.79080 0.00020 0.72308 0.00017 0.71086 0.00025
3 0.88723 0.00093 0.87542 0.00091 0.86982 0.00087

any prior knowledge the MLEs and Bayes estimates behave in a very similar manner in all

the cases considered.

5 Optimum Progressive Censoring Scheme

For a practitioner, finding the best progressive censoring scheme is quite important. Recently

finding the optimal progressive censoring scheme has received some attention in the statistical

literature, see for example Balasooriya and Balakrishnan [4], Ng, Chan and Balakrishnan

[14], Kundu [9] and the references cited there.

In most of the practical situation, the sample size n is fixed, depending on the available

resource. If the practitioner has a choice on the effective sample size m, the obvious choice

should be m = n, to achieve the maximum efficiency in estimating the unknown parameters.

If both the sample size n and the effective sample size m < n are fixed in advance, a natural

question arises how to choose a particular censoring scheme. Should one choose just based

on convenience, or based on some statistical criterion.

Before progressing further, first we need to know what are the possible sampling schemes

and how do we compare two censoring schemes. If somebody has a choice on n and m,

therefore, the obvious choice will be m = n and n should be as large as possible. But
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in most of the practical situations, the experimenter may not have a choice on n and m.

Therefore, possible censoring schemes mean, for fixed sample size n and effective sample size

m, different choices of {R1, . . . , Rm}, such that

R1 + . . .+Rm = n. (15)

The problem boils down as follows: for fixed n and m choose that particular censoring

scheme which is optimum. To define an optimum censoring scheme, first we need to define

a criterion, based on which the optimality can be defined. If time is the only criterion, i.e.,

the expected experimental time should be minimum, then clearly the usual type-II censoring

scheme (R1 = . . . = Rm−1 = 0) is the optimum criterion. In this paper, we define the

optimality in terms of the information measure. We would like to choose that particular

censoring scheme which provides the maximum information of the unknown parameters. A

progressive censoring scheme R(1) = {R
(1)
1 , . . . , R(1)

m } is better than R(2) = {R
(2)
1 , . . . , R(2)

m },

if R(1) provides more information than R(2) about the unknown parameters.

Naturally the questions come how to define the information measure of the unknown

parameters for a particular censoring scheme and how to compare two different censoring

schemes. In these respects considering the corresponding Fisher information matrices and

compare them seem to be the natural choice. If only one parameter is unknown then compar-

ing the corresponding Fisher information measures is quite simple. It is only the comparison

of two real numbers. If more than one unknown parameters are present, then one needs

to compare two Fisher information matrices. Comparison of the two Fisher information

matrices is not a trivial task. Some of the existing choices are to compare the traces or the

determinants of two matrices. Unfortunately in presence of the shape and scale parameters,

it has been observed, see Gupta and Kundu [7], that the trace or the determinant are not

scale invariant. Therefore, it quite likely that a particular censoring scheme may be optimum

with respect to a given unit, but if we change the unit of the data, then it may not remain
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the optimum scheme, which is not very desirable. To avoid this problem, using the ideas

of Zhang and Meeker [17] and Kundu [9], in the next subsection we propose two different

criteria.

5.1 Criteria

In this subsection we propose two criteria to compare two censoring schemes and that can

be used to find the optimum censoring scheme. Both the criteria are based on the estimation

of the precision of the p-th (0 < p < 1) quantile. The p-th quantile of the GE(α, λ) is

Tp = −
1

λ
ln
(
1− p

1

α

)
. We define two different information measures for a given censoring

scheme, say R = (R1, . . . , Rm), based on estimating lnTp, as it was used by Zhang and

Meeker [17] and Kundu [9]. From the two different information measures, we can easily

define two different criteria and they can be easily used to compare two different censoring

schemes also.

Criterion 1: First let us define the first information measure for a given sampling scheme

and also for a given data set as follows:

I1(R) = Vposterior(R)(lnTp) (16)

here R = (R1, . . . , Rm) denotes the sampling plan and Vposterior(R)(lnTp) denotes the posterior

variance of lnTp. Since the posterior variance of lnTp depends on the data, we consider

Edata{Vposterior(R)(lnTp)}, to make it a criterion, which is independent of data, see Kundu

[9], i.e.

C1(R) = Edata{Vposterior(R)(lnTp)}. (17)

One drawback about the Criterion 1 is that it is a function of the quantile point p. Using the

idea of Gupta and Kundu [7] and Kundu [9], we propose Criterion 2, which is independent

of p.
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Criterion 2:

C2(R) = Edata

{∫ 1

0
Vposterior(R)(lnTp)dW (p)

}
. (18)

In this case the weight function 0 ≤ W (p) ≤ 1, is a non-negative weight function defined on

on [0, 1] and it has to be decided before hand depending on the problem. For example if

somebody is interested to give more stress at the center, then more stress should be given

near p = 0.5, on the other hand if somebody is interested to give more stress at the tails,

then W (·) can be chosen accordingly.

Therefore, if we have two different censoring schemes, say R(1) and R(2), then R(1) is

better than R(2), with respect to the criterion 1, if C1(R
(1)) < C1(R

(2)). Similarly, it is true

for criterion 2. The main problem here is the computation of (17) and (18). We use Lindley’s

approximation and simulation technique to approximate (17) and (18) as given below.

5.2 Finding the Optimum Scheme

First we mention how to approximate (17) and (18) numerically. In the Appendix B, we have

explained in details how to approximate Vposterior(R)(lnTp) and
∫ 1

0
Vposterior(R)(lnTp)dW (p)

using Lindley’s approximation. The following Monte Carlo approximation method can be

used to compute (17) and (18) numerically.

Monte Carlo Approximation:

• Step 1: Generate α and λ from the joint prior distribution of α and λ assumings that

they are proper.

• Step 2: For the given censoring scheme, generate a progressively censored sample

t1, . . . , tm when the lifetime distribution is GE with parameters α and λ.
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• Step 3: Calculate the approximate values of Vposterior(R)(lnTp) and
∫ 1

0
Vposterior(R)(lnTp)dW (p)

as suggested in Appendix B.

• Step 4: Repeat the procedure, say N times and compute their averages.

Now to find the optimum censoring scheme with respect to Criterion 1 or Criterion 2, one

needs to compute (17) or (18) for all possible censoring scheme and choose that one which has

minimum (17) or (18). It should be noted that this is a discrete optimization problem and

it can be solved in finite number of steps. Although the total number of sampling schemes

are finite, they can be quite large. For fixed m and n, total

(
n− 1

m− 1

)
possible progressive

censoring schemes are available. For example, when n = 25 and m = 12, then the possible

number of censoring schemes are

(
24

11

)
= 2496144, which is quite large. Till date, We do not

have any efficient algorithm to find the optimal censoring scheme in this case. We propose

the following sub-optimal censoring scheme. Note that for fixed n and m all the censoring

schemes of the form (R1, . . . , Rm) such that R1+ . . .+Rm = n−m, will belong to the convex

hull generated by the points (n−m, 0, ..., 0) ... (0, ..., 0, n−m). Therefore, a sub-optimal

censoring scheme can be obtained by choosing the optimal censoring scheme among these

extreme points on the convex hull.

For illustrative purposes, we have presented different values of C1(R) for different p and

C2(R) whenW (p) = 1 for all 0 < p < 1. We have taken n = 20 andm = 8 and 12. The hyper

parameters of α and λ are (a=1, b=2.5) and (c=1, d=1) respectively. We have reported the

results only for the extreme points in Table 5 and Table 6. It is clear that Type-III censoring

provides the minimum variance (maximum information) in most of the cases and Type-II

provides the maximum variance in all the cases among the sub-optimal schemes.

One natural question is, how to implement this optimum censoring procedure in practice,

when the the priors are not known. In practice we can use independent gamma priors as

18



Table 5: The values of C1(R) and C2(R) for different R, when n=20 and m=8.

R C1(R) C2(R)
p = 0.50 p = 0.90 p = 0.95 p = 0.99 p = 0.999

(12, 7*0) 0.3060 0.2918 0.2103 0.2001 0.1950 0.4616
(0, 12, 6*0) 0.3321 0.2338 0.2244 0.2147 0.2093 0.4651
(0, 0, 12, 5*0) 0.3513 0.2502 0.2402 0.2300 0.2243 0.4845
(3*0, 12, 4*0) 0.3737 0.2663 0.2567 0.2453 0.2390 0.5100
(4*0, 12, 3*0) 0.3981 0.2830 0.2732 0.2606 0.2539 0.5394
(5*0, 12, 0, 0) 0.4281 0.3054 0.2935 0.2793 0.2712 0.5771
(6*0, 12, 0) 0.4651 0.3307 0.3167 0.3022 0.2934 0.6235
(7*0, 12) 0.5055 0.3568 0.3410 0.3253 0.3154 0.6754

they are very flexible, but still we need to know the the corresponding hyper-parameters. If

nothing is known, then some pilot survey can be carried out and using the integrated likeli-

hood approach, estimates of the hyper-parameters can be obtained. Model misspecification

is an important issue in this case, it has not been addressed here. More work is needed along

that direction.

6 Conclusions

In this paper we have considered the Bayesian inference of the unknown parameters of

the generalized exponential distribution when the data are progressively censored. Under

the assumptions of independent gamma priors on both the shape and scale parameters the

Bayes estimates are obtained using Lindley’s approximation and also by importance sampling

technique. It is observed that if the prior information are available, then the Bayes estimates

have clear advantages over the MLEs.

We have also used two different criteria to choose the optimum censoring plans. It is

observed that finding the optimum censoring scheme is a discrete optimization problem and

we have suggested sub-optimal censoring scheme which can be obtained very easily. The
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Table 6: The values of C1(R) and C2(R) for n=20 and m=12.

R C1(R) C2(R)
p = 0.50 p = 0.90 p = 0.95 p = 0.99 p = 0.999

(8, 11*0) 0.2128 0.1356 0.1286 0.1211 0.1169 0.3199
(0, 8, 10*0) 0.2111 0.1376 0.1311 0.1238 0.1201 0.3116
(2*0, 8, 9*0) 0.2133 0.1399 0.1333 0.1261 0.1226 0.3115
(3*0, 8, 8*0) 0.2176 0.1441 0.1369 0.1298 0.1257 0.3136
(4*0, 8, 7*0) 0.2221 0.1468 0.1401 0.1332 0.1289 0.3180
(5*0, 8, 6*0) 0.2242 0.1486 0.1410 0.1331 0.1289 0.3156
(6*0, 8, 5*0) 0.2321 0.1543 0.1471 0.1391 0.1346 0.3288
(7*0, 8, 4*0) 0.2375 0.1580 0.1503 0.1420 0.1377 0.3331
(8*0, 8, 3*0) 0.2438 0.1617 0.1540 0.1457 0.1413 0.3399
(9*0, 8, 2*0) 0.2498 0.1653 0.1572 0.1485 0.1443 0.3470
(10*0, 8, 0) 0.2557 0.1687 0.1603 0.1516 0.175 0.3538
(11*0, 8) 0.2641 0.1738 0.1653 0.1564 0.1523 0.3641

detailed comparison of the optimal and sub-optimal censoring schemes are in progress and

it will be reported later.
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Appendix A

For the two-parameter case, using the notation (λ1, λ2) + (α, λ), the Lindley’s approximation

can be written as

ĝ = g(λ̂1, λ̂2) +
1

2
(A+ l30B12 + l03B21 + l21C12 + l12C21) + p1A12 + p2A21, (19)

where

A =
2∑

i=1

2∑

j=1

wijτij, lij =
∂i+jL(λ1, λ2)

∂λiiλ
j
2

, i, j = 0, 1, 2, 3, and i+j = 3, pi =
∂p

∂λi
, wi =

∂g

∂λi
,

wij =
∂2g

∂λi∂λj
, p = ln π(λ1, λ2), Aij = wiτii + wjτji, Bij = (wiτii + wjτij)τii,

cij = 3wiτiiτij + wj(τiiτjj + 2τ
2
ij).

In this case

L(α, λ) = m(lnα + lnλ)− λ
m∑

i=1

ti +
m∑

i=1

(α− 1) ln
(
1− e−λti

)
+

m∑

i=1

Ri ln
(
1− (1− e−λti)α

)
.

Let us use the following notation for i = 1, . . . ,m.

ξi = 1− e−λ̂ti , ξ′i = tie
−λ̂ti , ξ

′′

i = −t2i e
−λ̂ti , ξ

′′′

i = t3i e
−λ̂ti

We have

τ11 =
W

UW − V 2
, τ12 = −

V

UW − V 2
, τ22 =

U

UW − V 2
,

where

U = −
∂2L

∂α2
=

m

α2
+

m∑

i=1

Ri(ln ξi)
2ξαi

(1− ξαi )
2

.

V = −
∂2L

∂α∂λ
= −

m∑

i=1

ξ′i
ξi
+

m∑

i=1

Riξ
′
iξ
α−1
i

(1− ξαi )
2
[1− ξαi + α ln ξi] .

W = −
∂2L

∂λ2
=

m

λ2
− (α− 1)

m∑

i=1

ξiξ
′′
i − (ξ

′
i)

2

ξ2
i

+α
m∑

i=1

Riξ
α−2
i

(1− ξαi )
2

[
(α− 1)(ξ′i)

2 + ξiξ
′′
i − ξα+1

i ξ′′i + ξαi (ξ
′
i)

2
]
.
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l30 =
∂3L

∂α3
=
2m

α3
−

m∑

i=1

Ri(ln ξi)
3ξαi (1 + ξαi )

(1− ξαi )
3

.

l03 =
2m

λ3
+ (α− 1)

m∑

i=1

1

ξ4
i

(
{ξ′′′i ξi + ξ′′i ξ

′
i − 2ξ

′
iξ

′′
i } ξ

2
i − 2ξiξ

′
i(ξiξ

′′
i − (ξ

′
i)

2)
)

−α
m∑

i=1

Ri

(1− ξαi )
3

{[
(α− 1)(α− 2)ξα−3

i (ξ′i)
3 + 3(α− 1)ξα−2

i ξ′iξ
′′
i + ξα−1

i ξ′′′i

−(2α− 1)ξ2α−2
i ξ′iξ

′′
i − ξ2α−1

i ξ′′′i + (2α− 2)ξ
2α−3
i (ξ′i)

3 + 2ξ2α−2
i ξ′iξ

′′
i

]
(1− ξαi )

+2αξ′iξ
α−1
i

[
(α− 1)ξα−2

i (ξ′i)
2 + ξα−1

i ξ′′i − ξ2α−1
i ξ′′i + ξ2α−2

i (ξ′i)
2
]}

.

l12 =
m∑

i=1

1

ξ2
i

(ξ′′i ξi − (ξ
′
i)

2)−
m∑

i=1

Ri

(1− ξαi )
3

[{
(ξα−1
i ξ′′i + (ξ

′
i)

2(α− 1)ξα−2
i )(1− ξαi + α ln ξi)

+α(ξ′i)
2ξα−2
i (1− ξαi )

}
(1− ξαi ) + 2α(ξ

′
i)

2ξ2α−2
i (1− ξαi + α ln ξi)

]
.

l21 = −
m∑

i=1

Riξ
′
i

(1− ξαi )
3

[
2ξα−1

i ln ξi(1− ξαi ) + αξα−1
i (ln ξi)

2(1 + ξαi )
]
.

Now when g(α, λ) = α, we have

w1 = 1, w2 = 0, wij = 0, i, j = 1, 2;

therefore,

A = 0, B12 = τ 2
11, B21 = τ21τ22, C12 = 3τ11τ12, C21 = (τ22τ11 + 2τ

2
21) A12 = τ11, A21 = τ12.

Now (8) follows by using

p1 =

(
b− 1

α̂
− a

)
and p2 =

(
d− 1

λ̂
− c

)
.

For (9), note that g(α, λ) = λ; then

w1 = 0, w2 = 1, wij = 0, i, j = 1, 2;

and

A = 0, B12 = τ12τ11, B21 = τ 2
22, C12 = τ11τ22 + 2τ

2
12, C21 = 3τ22τ21 A12 = τ21, A21 = τ22.
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Appendix B

In this Appendix first we provide the approximation of Vposterior(R)(lnTp) using Lindley’s

technique and then along the same line the approximation of
∫ 1

0
Vposterior(R)(lnTp)dW (p)

also can be obtained. Since

Vposterior(R)(lnTp) = Eposterior(R)(lnTp)
2 − (Eposterior(R)(lnTp))

2, (20)

we approximate Eposterior(R)(lnTp) and Eposterior(R)(lnTp)
2 separately. We will use (19) in

both the cases. For that purpose we just need to specify w1, w2, w11, w12, w21, w22 only. The

rest of the quantities are already available in Appendix A.

Approximating Eposterior(R)(lnTp):

g(α, λ) = Tp = ln
(
− ln

(
1− p

1

α

))
− lnλ = ln (− ln u(α))− lnλ = v(α)− lnλ,

where

u(α) = 1− p
1

α , v(α) = ln(− ln u(α)).

Note that

u′(α) =
1

α2
p

1

α (ln p), u′′(α) = −
1

α4
×
[
p

1

α (ln p)2 + 2αp
1

α (ln p)
]

Therefore, in this case

w1 =
u′(α)

lnu(α)u(α)
= a1(α) (say), w2 = −

1

λ
,

w11 =
u′′(α)u(α) ln u(α)− u′(α)(u′(α) ln u(α) + u′(α))

(u(α)(ln u(α)))2
= b1(α) (say)

w22 =
1

λ2
, w12 = w21 = 0.

Approximating Eposterior(R)(lnTp)
2:

g(α, λ) = (v(α)− lnλ)2 .
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In this case

w1 = 2a1(α)(v(α)− lnλ), w2 =
2

λ
(lnλ− v(α)),

w11 = 2(a1(α)
2+b1(α)v(α))−2b1(α) lnλ, w12 = −

2

λ
a1(α) = w21, w22 =

2

λ2
(1− lnλ+ v(α)) .

Now to approximate
∫ 1

0
Vposterior(R)(lnTp)dW (p), note that

∫ 1

0
Vposterior(R)(lnTp)dW (p) =

∫ 1

0
Eposterior(R)(lnTp)

2dW (p)−
∫ 1

0
(Eposterior(R)(lnTp))

2dW (p).

Therefore
∫ 1

0
Vposterior(R)(lnTp)dW (p) can be approximated using numerical integration with

respect to the weight function W (·).
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