
Bayesian Analysis (2017) 12, Number 1, pp. 1–30

Bayesian Inference and Model Assessment for
Spatial Point Patterns Using Posterior

Predictive Samples

Thomas J. Leininger∗ and Alan E. Gelfand†

Abstract. Spatial point pattern data describes locations of events observed over
a given domain, with the number of and locations of these events being random.
Historically, data analysis for spatial point patterns has focused on rejecting com-
plete spatial randomness and then on fitting a richer model specification. From
a Bayesian standpoint, the literature is growing but primarily considers versions
of Poisson processes, focusing on specifications for the intensity. However, the
Bayesian literature on, e.g., clustering or inhibition processes is limited, primarily
attending to model fitting. There is little attention given to full inference and
scant with regard to model adequacy or model comparison.

The contribution here is full Bayesian analysis, implemented through genera-
tion of posterior point patterns using composition. Model features, hence broad
inference, can be explored through functions of these samples. The approach is
general, applicable to any generative model for spatial point patterns.

The approach is also useful in considering model criticism and model selec-
tion both in-sample and, when possible, out-of-sample. Here, we adapt or extend
familiar tools. In particular, for model criticism, we consider Bayesian residu-
als, realized and predictive, along with empirical coverage and prior predictive
checks through Monte Carlo tests. For model choice, we propose strategies using
predictive mean square error, empirical coverage, and ranked probability scores.
For simplicity, we illustrate these methods with standard models such as Poisson
processes, log-Gaussian Cox processes, and Gibbs processes. The utility of our
approach is demonstrated using a simulation study and two real datasets.

Keywords: Cox process, cross-validation, Gibbs process, Markov chain Monte
Carlo, nonhomogeneous Poisson process, predictive residuals, ranked probability
scores, realized residuals, Strauss process.

1 Introduction

Spatial point pattern data refers to the field of spatial analysis that examines spatial
locations of events observed over a given domain, with the number and locations of
these events being random. Analysis of such data involves understanding the underlying
process generating these events. This includes learning whether locations of points can
be explained say by associated covariate-driven intensity surfaces or perhaps through
a clustering or inhibition mechanism. As examples, a point pattern may consist of the
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locations of trees in a forest or the locations of crimes in a city. Potential covariate
information might include climate variables or socio-economic variables, respectively.
There may be extra information attached to the event (marks), such as the species of
the tree or the type of crime.

Point pattern analysis often begins by exploring whether such a point pattern ex-
hibits complete spatial randomness (CSR), i.e., whether locations occur independently
and uniformly over the domain. Anticipating rejection of CSR, a more complex model
will be specified for the data, often on mechanistic or behavioral grounds. Within the
Bayesian framework, the literature is growing but primarily considers versions of Pois-
son processes, focusing on specifications for the intensity (see below). The Bayesian
literature on other useful processes, such as processes where the intensity for the model
need not be available as in clustering or inhibition models, is limited and primarily fo-
cuses on model fitting. There is little attention given to full inference with uncertainty
and scant with regard to model criticism or model comparison.

Our contribution is to provide a fully model-based Bayesian approach to posterior
inference, model validation, and model selection for spatial point process models. Imple-
mentation is through generation of posterior point patterns using composition. Model
features, hence broad inference, can be explored through functions of these samples.
The approach is general, applicable to any generative model for spatial point patterns.

More precisely, the approach we propose is that which has emerged as the dominant
strategy for Bayesian data analysis these days, simulation from the posterior distribution
for the model to provide full inference with uncertainty estimates. The novelty here is
that we focus on simulating posterior predictive point patterns. In particular, using
bracket notation for densities, we write our model in the general form [S|θ][θ], where S
denotes a point pattern realization and θ denotes model parameters. We observe Sobs,
and after we fit the model we obtain posterior samples θ∗

l from [θ|Sobs]. We then use
composition to create posterior predictive samples S∗

l from [S|Sobs] by drawing S∗
l from

[S|θ∗
l ]. Inference follows by creating posterior samples of any function or feature say

h of S as {h(S∗
l ), l = 1, 2, . . . , L} from [h(S)|Sobs]. Of course, the θl’s enable learning

directly about the posterior distribution of the function b(θ) if b is available explicitly.
If not, we show how to use Campbell’s Theorem (Illian et al., 2008) with the S∗

l ’s to
learn about b(θ).

The story from a Bayesian perspective is: if we can fit the model and if we can sample
point patterns under the model, we can implement arbitrary inference. As an aside, if we
can sample, we can also develop prior–posterior comparison to assess Bayesian learning.

Moreover, if posterior point patterns can be generated, they can help in assessing
model adequacy and performing model selection. We adapt and extend familiar tools. In
particular, for model adequacy, we propose examination of Bayesian residuals (drawing
on the work of Baddeley et al., 2005), both realized and predictive, as well as empirical
coverage and prior predictive checks through Monte Carlo tests. For model selection, we
use predictive mean square error, empirical coverage and ranked probability scores. We
consider both in-sample and, when possible, out-of-sample approaches. In this regard,
the essence of our contribution is developed in Sections 4 and 5 below, after we review
some basic theory for point patterns and several classes of point pattern models.
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The point pattern literature is very large, covering theoretical development and
computational tools for analyzing many types of point patterns, including simple point
patterns, multivariate point patterns, marked point patterns, and spatiotemporal point
patterns (see, e.g., Møller and Waagepetersen, 2003; Illian et al., 2008; Gelfand et al.,
2010). Furthermore, useful software such as the R package spatstat (Baddeley and
Turner, 2005) allows extensive point pattern analysis.

Important Bayesian contributions have been made by Møller and colleagues (Møller
et al., 1998, 2006; Møller and Waagepetersen, 2007; Berthelsen and Møller, 2008). In
addition, there has been a recent strand which considers Poisson process models, fo-
cusing on a rich range of specifications for the intensity. See, e.g., Kottas and Sansó
(2007) and Taddy and Kottas (2012). Some recent Bayesian work (e.g., Illian et al.,
2012; King et al., 2012) has employed integrated nested Laplace approximation (INLA)
(Rue et al., 2009) for inference. Work that follows our inference paradigm in the context
of sequential evolution of point patterns is considered in Møller and Rasmussen (2012).
See also suggestions in a conference address by Møller (2012). With regard to model crit-
icism, they suggest using posterior predictive model checking. We demonstrate that in
many cases prior predictive model checking is needed for effective assessment of model
adequacy. Finally, we find some quite recent Bayesian model checking work, primarily
validating intensities, in Taddy (2010), Zhou et al. (2015), and Xiao et al. (2015).

For simplicity, in elaborating our inference and model assessment approach, we focus
on a subset of common models: namely, the homogeneous Poisson process (HPP); the
nonhomogeneous Poisson process (NHPP); the log-Gaussian Cox process (LGCP); and
a Gibbs process for inhibition, specifically the Strauss process. We use a simulation
study as well as two real data examples to illuminate our ideas. In the interest of space,
we do not consider other attractive models such as the Neyman–Scott processes and
shot noise processes (Banerjee et al., 2014) or the recent determinantal point processes
(Lavancier et al., 2015).

The remainder of the paper begins in Section 2 by briefly reviewing basic point
process models and some useful results for point patterns. Section 3 reviews methods
for Bayesian fitting of these models and generating point patterns under these models.
Section 4 elaborates our model-based approach to point pattern inference. Section 5
discusses model criticism and model comparison strategies. In Section 6, we present a
brief simulation study and then, in Section 7, we offer two real data examples to further
demonstrate our approach. Section 8 closes with a summary of our contribution and
provides several ideas for future work.

2 Some basic modeling and theory

Again, we denote a point pattern realization over R
2 by S. The point pattern will be

observed over a domain of interest, denoted by D, a bounded region in R
2. As a result,

the observed point pattern will be finite but with a random number of points. It will be
denoted by S ∩ D and the finite set of points comprising this pattern will be {si}ni=1,
where n ≡ N(D) is the number of points observed in D. The number of points in any
set A ⊆ D will be denoted by N(A). The distribution for the locations of the points
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must have a valid density fn(· ;θ) for any n and parameters values θ. Since the points
are unordered and labeled arbitrarily, this location density fn(s1, s2, . . . , sn;θ) must be
symmetric in its arguments.

2.1 Moment measures and Campbell’s Theorem

Moment measures are characteristics of a point process. The first-order moment mea-
sure, called the intensity, is denoted by λ(s) and is used to define λ(A) ≡ E[N(A)] =∫
A
λ(s)ds. The second-order moment measure, called the second-order intensity, is de-

noted by γ(s, s′), and addresses the covariance structure. If, for bounded sets A and B,
γ(A×B) ≡ ES

∑
s,s′∈S 1(s ∈ A, s′ ∈ B), then γ(s, s′) is defined as the function satisfy-

ing γ(A×B) =
∫
1((s, s′) ∈ A×B)γ(s, s′)ds′ds. If A∩B = ∅, γ(A×B) = E[N(A)N(B)].

The pair correlation function (PCF), also called the reweighted second-order intensity, is
defined as g̃(s, s′) = γ(s, s′)/λ(s)λ(s′) and provides a standardized version of the second-
order measure (see, e.g., Illian et al., 2008, p. 220). A process is said to be second-order
reweighted stationary if g̃(s, s′) can be simplified to be a function of d = ||s − s′||, in
which case the PCF is written as g̃(d).

The Papangelou conditional intensity (Illian et al., 2008) inherits the parameters of
the model and is defined as

λ(s|S;θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f(S ∪ {s};θ)
f(S;θ) if s �∈ S, and

f(S;θ)
f(S \{s};θ) if s ∈ S,

(1)

where f(· ;θ) is the finite point process density (usually defined with respect to a ho-
mogeneous Poisson process with intensity 1; see, e.g., Møller and Waagepetersen, 2007)
and S \{s} denotes S with {s} removed.

The main theoretical tool we employ here is Campbell’s Theorem (see, e.g., Illian
et al., 2008), which gives the expectation of the summation over S ∩ D of a function
h(s) (restriction to D ensures that expectations exist). It states that

ES∩D

[ ∑
si ∈S∩D

h(si)
]
=

∫
D

h(s)λ(s) ds. (2)

For example, letting g(s) = 1(s ∈ A) for some set A ⊂ D, Campbell’s Theorem says that∑
si∈S 1(si ∈ A) is an unbiased estimator for

∫
D
1(s ∈ A)λ(s) ds =

∫
A
λ(s) ds = λ(A).

Anticipating the discussion of inference in Section 4, (2) suggests how, for a given h, we
can directly create a Monte Carlo integration for the left side with posterior samples,
hence a Monte Carlo integration for the posterior mean of the integral on the right side.

Similarly, Campbell’s Theorem has a bivariate form for h, a function of two points
in S:

ES∩D

[ ∑
si, sj ∈S∩D

i �=j

h(si, sj)
]
=

∫
D

∫
D

h(s, s′)γ(s, s′) ds ds′. (3)
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(3) is useful for exploring second-order properties of a point process and enables similar
Monte Carlo integration for the posterior mean of the right side.

A more general result is the Georgii–Nguyen–Zessin (GNZ) formula (Georgii, 1976;
Nguyen and Zessin, 1979), which applies to h of the form h(s;S\{s}) and gives the
equality

ES∩D

[ ∑
si∈S

h(si,S\{si})
]
= ES∩D

[ ∫
D

h(s,S)λ(s|S)ds
]
, (4)

where λ(s|S) is the Papangelou conditional intensity. Again, Monte Carlo integration
enables the posterior mean for the right side.

2.2 Some standard models

A Poisson process (Illian et al., 2008) with a spatially varying intensity λ(s) is re-
ferred to as a nonhomogeneous Poisson process (NHPP). Here, N(A) is distributed as
Poisson(λ(A)) and, if A and B are disjoint, then N(A) and N(B) are independent con-
ditional on λ(s). The spatially varying intensity may include a regression component
and is often specified in the form λ(s) = λ0 exp{xT (s)β} where λ0 is baseline intensity
and x(s) is a vector of covariates at location s. In general notation, we will write λ(s;θ).
For a realization S, the NHPP likelihood is

fS(S;θ) =
exp{−λ(D;θ)}

(
λ(D;θ)

)n
n!

× n!
∏
si∈S

λ(si;θ)

λ(D;θ)

= exp{−λ(D;θ)}
∏
si∈S

λ(si;θ).

(5)

The case with λ a constant is referred to as a homogeneous Poisson process (HPP).

When λ(s) is a realization of a non-negative stochastic process, then we have a
Cox process. The log-Gaussian Cox process (LGCP) is characterized by the log of the
intensity surface arising from a Gaussian process (GP) realization (Møller et al., 1998).
If Z(s) is a GP with mean m(s) and covariance function c(s, s′) and the intensity is
written as λ(s) = λ0 exp{xT (s)β + Z(s)}, the LGCP likelihood takes the form

fS(S;θ) = exp

{
−λ0

∫
D
exp{xT (s)β+Z(s)}ds

}
(λ0)

n exp

{∑
si∈S(x

T (si)β+Z(si))

}
.

(6)
The integral in (6) is stochastic and is never available explicitly.

A point process is a Gibbs process with pairwise interactions if its finite point process
density can be written as f(S;θ) = exp{−Q(S;θ)} where

Q(S;θ) = c0(θ) +
∑
si∈S

h1(si;θ) +
∑

si,sj∈S,i �=j

h2(si, sj ;θ). (7)

Here, c0(θ) is an unknown (usually intractable) constant making the density integrate
to 1 and hk denotes a potential of order k, with h2 usually being a function of interpoint
distance, dij = ||si − sj ||.
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The Strauss process (Strauss, 1975) is a Gibbs process which sets h2(d) = − log γ
if d ≤ R and 0 otherwise. h2 ≥ 0 is required for integrability which implies that 0 ≤
γ ≤ 1. Specifying h1(s) = β provides a constant first-order intensity, resulting in a
homogeneous Strauss process. The finite point process density for the homogeneous
Strauss process is then

f(S;θ) = e−c0(β,γ) βN(D) γsR(S), (8)

where sR(S) counts the number of pairs of points (si, sj) ⊂ S ∩D with ||si − sj || ≤ R.
We see that, given R, sR(S) is a sufficient statistic. Viewed as a function of R, it
will be useful below for model checking. Working with Gibbs processes in general, and
the Strauss process in particular, is facilitated by the Papangelou conditional intensity
(Illian et al., 2008) which takes the form

λ(s|S;θ) = β γsR(S∪{s})−sR(S\{s}). (9)

Conveniently, the unknown normalizing constant cancels out.

3 Bayesian fitting and sampling

In Section 3.1, we provide a brief review of Bayesian model fitting for the models in-
troduced in Section 2.2. Some require advanced Markov chain Monte Carlo (MCMC)
algorithms to obtain posterior samples of model parameters. Section 3.2 discusses sam-
pling point patterns under the various models.

3.1 Bayesian fitting for standard models

Nonhomogeneous Poisson processes

For the NHPP model, again we specify the intensity as λ(s) = λ0 exp{xT (s)β} and plug
into (5). A gamma prior distribution for λ0 provides a conjugate prior distribution, but
no conjugate prior specifications exist for the regression coefficients {βj} due to the
integral in the likelihood; a normal distribution is usually employed. Fitting the model
now requires MCMC with a Gibbs step for λ0 and a Metropolis–Hastings step for the βj .
We find that a random walk Metropolis–Hastings step for each βj is usually adequate.
The integral in the exponent has no explicit form. Typically, numerical integration is
used by discretizing the domain D and evaluating the function exp{xT (s)β} at the
centroids of the grid cells.

Log-Gaussian Cox processes

Prior specification for the LGCP requires the mean function m(s) and the correlation
function c(s, s′) for the Gaussian process. With regard to specifying Z(s), we suggest
using m(s) ≡ −c(s, s)/2 to provide E[eZ(s)] = 1, which, along with a zero-mean speci-
fication for any regression coefficients, roughly sets E[λ(s)] = λ0 a priori. Møller et al.
(1998) provide some discussion about the choice of covariance function; some care is
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needed in specifying the priors for the hyperparameters. With the Matérn covariance
function in the form σ2ρ(||s − s′||;φ), σ2 and φ are not identifiable (Zhang (2004)),
suggesting that informative priors for one of these parameters will be needed for well-
behaved model fitting.

In the absence of prior knowledge, we suggest estimating φ at its minimum contrast
estimate using the pair correlation function (Møller et al., 1998), which we denote by
φ̃. In our experience (based on extensive simulation not presented here), this estimate
seems to be more robust than the K-function minimum contrast estimate. With φ
fixed, σ2 will now be well identified. We use either a log-normal or gamma prior for σ2,
preferably centered around its minimum contrast estimate σ̃2.

Sampling λ0 and the βj can be handled as discussed previously for the NHPP.
Sampling the Z’s cannot be done efficiently through Gibbs sampling as in the usual
geostatistical setting. Simple Metropolis–Hastings samplers get stuck easily in local
modes; more advanced MCMC methods are required. A common approach is to use a
Metropolis-adjusted Langevin algorithm (MALA), as discussed in Møller et al. (1998)
and Christensen et al. (2005). Girolami and Calderhead (2011) provide some exten-
sions, including Hamiltonian Monte Carlo methods, which require less tuning. Murray
et al. (2010) and Murray and Adams (2010) develop an elliptical slice sampling (ESS)
algorithm for latent Gaussian fields and their hyperparameters.

We employ elliptical slice sampling here; it is easy to implement and requires no
matrix inversions or estimation of the Fisher information matrix. We found Algorithm
2 in Murray and Adams (2010) to work well for updating the hyperparameters with el-
liptical slice sampling for updating Z. Each of the algorithms for fitting LGCPs requires
discretizing Z to a finite-dimensional grid over the domain D in order to evaluate the
integral in the exponent of the likelihood function (6). After discretizing, Monte Carlo
integration is used, evaluating the function exp{xT (s)β + Z(s)} at the centroids of the
grid cells, similar to what was done for the NHPP model. Waagepetersen and Schweder
(2006) show that the approximation converges to the exact value as the size of the grid
cells goes to zero.

Gibbs processes

In the Gibbs process likelihood (7), the normalizing constant, being a function of the
model parameters, complicates model fitting. Frequentist estimation generally proceeds
by maximizing the pseudolikelihood, i.e., the product of the Papangelou conditional in-
tensities, which removes the normalizing constant. Baddeley and Turner (2000) describe
how to use the Berman–Turner device (Berman and Turner, 1992) to obtain maximum
pseudolikelihood estimates. King et al. (2012) provide a Bayesian version in which the
pseudolikelihood is again used. To avoid using the pseudolikelihood, Møller et al. (2006)
discuss an auxiliary variable approach in which the auxiliary variable comes from the
same state space as the point pattern. In their approach, the normalizing constant can-
cels in the Metropolis–Hastings ratio. Berthelsen and Møller (2006) further study this
approach and demonstrate its use for Strauss processes and we employ it below.
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3.2 Sampling methods for standard models

Our proposed approach relies on simulating posterior point patterns given the observed
point pattern, i.e., generating S∗ from [S|Sobs]. This will be done through composition
using a posterior parameter draw. Hence, we need to be able to generate a point pattern
under a specified model, given the values of the parameters for that model.

Generating an NHPP realization, given an intensity λ(s), is done using the Lewis–
Shedler thinning approach (Lewis and Shedler, 1979). We draw a point pattern from
an HPP with intensity λmax ≡ sups∈D λ(s) and then thin the sampled points using
rejection sampling. Generating an LGCP realization employs a similar approach for a
given realization λ(s). Since the Gaussian process involves an infinite number of random
variables, a discretization is made and a Gaussian process realization is generated on
the associated tiled surface. Then, λmax is calculated and the Lewis–Shedler approach
is applied to produce a sample.

Generating Gibbs process realizations can be done using an MCMC chain with a
birth–death algorithms, as in Illian et al. (2008), Section 3.6.3. Summaries such as n
or

∑
i h1(si) +

∑
i �=j h2(si, sj) are monitored until convergence seems to be achieved.

Alternatively, Berthelsen and Møller (2002, 2003) develop a perfect simulation algo-
rithm to simulate from spatial point processes such as Strauss processes. Their method,
using dominated coupling from the past, provides a simulation from the exact desired
distribution, whereas the birth–death algorithms only provide an approximation.

4 Inference

4.1 The general inference approach

As noted in the Introduction, we write our model in the general form [S|θ][θ]. We
observe Sobs and, after we fit the model, we obtain posterior samples θ∗

l from [θ|Sobs].
Then, using composition, i.e., by drawing S∗

l from [S|θ∗
l ], we obtain posterior predictive

samples {S∗
l , l = 1, 2, . . . , L}.

Returning to Campbell’s theorem, it was noted that summing over the indicator
function 1(si ∈ A) provides an unbiased estimator for E[N(A)] = λ(A;θ) whose usual
Bayes estimate is E[λ(A;θ)|Sobs]. If λ(A;θ) is available explicitly, a Monte Carlo in-
tegration for E[λ(A;θ)|Sobs] is

1
L

∑
l λ(A;θ

∗
l ). When we cannot calculate λ(A;θ), we

note that E[λ(A;θ)|Sobs] = E[N(A)|Sobs] ≈ 1
L

∑L
l=1

∑
s∗li∈S∗

l
1(s∗li ∈ A), providing the

desired Monte Carlo integration. Of course, the members of the set {
∑

s∗li∈S∗
l
1(s∗li ∈

A), l = 1, 2, . . . , L} provide posterior predictive samples of N(A).

More generally, we may be interested in inference on b(θ), some characteristic of the
point process (examples below), based upon the posterior [b(θ)|Sobs]. With posterior
samples, {θ∗

l } and an explicit b(·), we obtain {b(θ∗
l )} for such inference, as usual. If

interest is in the predictive distribution[h(S)|Sobs] where h(S) is a feature of the point
pattern (examples below), then the set {S∗

l } provides the set {h(S∗
l )} for inference.

For a function v(S,θ) of both the point pattern and the parameters, if v is available
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explicitly we can use {θ∗
l ,S∗

l } to generate samples from [v(S,θ)|Sobs].

A challenge is that often, b(θ) is not available explicitly. Then, the strategy is to
find h(S) such that E(h(S)|θ) = b(θ). Now, to obtain b(θ∗

l ), for each θ∗
l , we need to

generate samples S∗
lb, yielding a Monte Carlo integration for b(θ∗

l ), that is,
1
B

∑
b h(S∗

lb).
A rich class of such b(θ)’s arises through Campbell’s Theorem. From (2), the right
side provides bg(θ) =

∫
D
g(s)λ(s;θ)ds. For a given θ∗

l , the foregoing posterior samples
provide a Monte Carlo integration for the left side. Similar opportunities are available
for the bivariate version of Campbell’s Theorem in (3).

Apart from λ(A;θ), examples of b(θ)’s from Section 2 include λ(s;θ), γ(d;θ), and
g̃(d;θ). The usual distance-based measures such as the G- and K-functions (Illian
et al., 2008) are defined through functions v(S,θ) such that E[v(S,θ)|θ] = G(d;θ)
or E[v(S,θ)|θ] = K(d;θ) (Banerjee et al., 2014). The inhomogeneous K-function (Bad-
deley et al., 2000) is another example. In this way, we obtain model-based estimates
of these quantities rather than the customary empirical estimates. The former provide
inference under a model; the latter may be viewed as more exploratory. Another ex-
ample of v(S,θ) arises through the realized residuals, motivated by frequentist residual
analysis as discussed in Baddeley et al. (2005, 2008) and below. A simple version would
consider the posterior distribution, [N(A)− λ(A;θ)|Sobs].

A further example is the Papangelou conditional intensity in (1) where v(S,θ) takes
the form λ(s|S;θ). Then, the GNZ result (4) provides further b(θ)’s of interest, i.e., here,
the right side is bg(θ) = ES∩D[

∫
D
g(s,S)λ(s|S;θ)ds] with Monte Carlo integration for

the left side.

Examples of h(S) of interest include N(A), [N(A), N(B)], N(A)/N(D), along with
the posterior distribution of conditional events, e.g., [N(A)|N(B) = m;Sobs]. A further
example is the predictive residual with posterior distribution, [Nobs(A) − N(A)|Sobs].
Altogether, we see a strategy for implementation of rich posterior inference for general
spatial point pattern models.

Bayesian residual analysis

Residuals are a common tool for model assessment. In particular, Baddeley et al. (2005,
2008) develop various notions of residuals for point patterns. For example, they define
a raw residual, analogous to the standard residual from a regression model, as

Rθ̂(B) ≡ N(B)−
∫
B

λ̂(s|S)ds, (10)

for B ⊆ D where λ̂(s|S) ≡ λ(s|S; θ̂) is the estimated Papangelou conditional intensity
function. In the Bayesian setting, we would work with the realized residual, which
removes the hat in (10), and consider its posterior.

More generally, Baddeley et al. (2005) define the h-weighted innovation measure as

I(B, h, λ) ≡
∑

si ∈S∩B

h(si,S\{si})−
∫
B

h(s,S)λ(s|S)ds. (11)
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The innovations have mean 0 under the true model, as can be seen using (4). Choices of
h include h(s,S) = 1/λ(s|S) which defines the inverse λ residuals, in the spirit of Stoyan
and Grabarnik (1991). With h(s,S) = 1/

√
λ(s|S), an analogue of the Pearson residual

from Poisson regression arises. Estimators are obtained by inserting an estimator of
λ(s|S). Again, in the Bayesian setting, we work with realized residuals.

From a Bayesian perspective, the posterior distribution of
∫
B
h(s,S)λ(s|S)ds and,

in fact, I(B, h, λ) would be studied. In particular, these innovations are of the form
v(S,θ) and so their posteriors can be obtained as described in Section 4.1. We can use
the posterior mean, E[

∫
B
h(s,S)λ(s|S)ds | S ], to obtain a point estimate and can also

examine whether 0 falls in a given credible interval.

With regard to validation, under a given model, should credible intervals created
from these innovation distributions over many sets be expected to achieve empirical
coverage of 0 at roughly the nominal level? For the raw/realized innovations, the answer
is no. The raw innovations compare an observed count with the posterior distribution
for the expectation of that count. Though we hope the expectations are close to the raw
innovations, the credible intervals provide coverage for the expected counts rather than
for the counts themselves. Thinking of the regression analogue, the raw innovations are
akin to employing the distribution [y−μy|Data] when we should employ the distribution
for the predictive innovations, [y − ypred|Data].

Instead, we adopt predictive residuals,

Rpred(B) = Nobs(B)−Npred(B), (12)

where, as above, posterior samples S∗
l supply the draws N∗

(l)(B), hence the posterior

predictive distribution of Npred and, thus, of Rpred(B).

Finally, for an h-scaled innovation as in (11), Baddeley et al. (2005) define the
smoothed innovation field r(u;θ) at location u ∈ D as

r(u;θ) = e(u)

∫
D

k(u− v)dI(v,h,θ)

= e(u)

[ ∑
si∈S

k(u− si)h(si,S\{si})−
∫
D

k(u− v)h(v,S)λ(v|S;θ)dv
]
, (13)

where k(s) is a probability density on R
2 used as a smoothing kernel and e(u) ≡

1/
∫
D
k(u − v)dv is an edge correction. This field puts positive atoms at each si ∈ S

and a negative value elsewhere and then smoothes using the kernel. So, a comparison
is made between the intensity estimate under a model and an empirical estimate of
the intensity. Positive values indicate locations where the empirical intensity was higher
than the model intensity, conversely for negative values.

Baddeley et al. (2005) estimate θ to obtain a residual field, r(u; θ̂). With a posterior
distribution for λ(s;θ), illustratively, we can obtain a posterior distribution for r(u;θ)
for the NHPP and LGCP models. Additionally, one can create a plot showing those
regions that have a credible interval (for the smoothed innovation) which contains 0,
those regions that have a credible interval above 0, and those below 0. Such plots are
demonstrated in the data examples of Section 7.
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Model Criticism Model Comparison
Out-of-sample Predictive residual analysis,

Residual field analysis (informal),
Empirical coverage

Posterior vs. empirical (informal),
Predictive mean square error,
Ranked probability score

In-sample Prior predictive MC tests,
Discrepancy measures (DGSV)

Posterior vs. empirical (informal),
Predictive mean square error,
Ranked probability score

Table 1: Proposed techniques for model criticism and model comparison.

5 Model criticism and model comparison

Model assessment using a fitting/training sample and an independent validation/test
sample is now standard practice. With point pattern data, such an approach may not
be available. Under a conditionally independent location distribution, as with NHPP’s
and LGCP’s, the answer is yes. However, with an inhibition model, holding out points
will alter the nature of the interpoint distances, hence the interaction structure. This
will be true in general for a point pattern model, such as a Gibbs process, where there
is dependence between the locations of the points.

When cross-validation is permissible, to date there is limited discussion for point pro-
cesses. Diggle and Marron (1988) adapted leave-one-out cross-validation from Bowman
(1984) for bandwidth selection for kernel intensity estimates. For a Bayesian approach
where MCMC model fitting is needed, the computational burden required for leave-one-
out cross-validation is impractical. However, we can employ holdout, developing training
and test datasets. Suppose we decide to administer 20% holdout. We cannot simply re-
move 20% of the data at random. This will fix the size of the point pattern rather than
allowing it to be random. Rather, the p-thinning approach, as in Illian et al. (2008), can
be applied to create appropriate training and test data. The p-thinning proceeds point-
by-point, independently deleting si ∈ S with probability 1−p. This produces a training
point pattern Strain and test point pattern Stest, which are independent, conditional on
λ(s). In fact, Strain has intensity pλ(s), Stest has intensity (1− p)λ(s), and the revised
validation intensity compared with the fitting intensity is λtest(s) = (1−p

p )λtrain(s).

As a high level summary of the various criteria which we detail in the remainder
of this section, we offer Table 1. We emphasize that all of the proposed techniques are
implemented as a post model fitting exercise.

5.1 Model adequacy through empirical coverage

When cross-validation is possible, using a validation sample Stest, posterior predictive
point patterns will supply the posterior predictive distribution of, say N(B). The pre-
dictive residuals should be centered around zero for an adequate model. If we look at a
set of subregions {Bk}, we expect the empirical coverage to be roughly the nominal level
of coverage if the model is adequate. How shall we create a set {Bk}? Baddeley et al.
(2005), Section 11.1 propose to analyze a set of residuals over disjoint partitions Bk

of the domain, similar to quadrat counting (see, e.g., Diggle, 2003). With an irregular



12 Bayesian Inference and Model Assessment for Spatial Point Patterns

domain D, division into disjoint subregions of similar size can be time-consuming and is,
in fact, unnecessary. We prefer to draw random subregions uniformly over D and then
evaluate the residuals or innovations in each subregion. Moreover, there is no reason to
require the Bk be disjoint in which case we can draw as many Bk as desired, subject to
the requirement that each Bk has the same area. Denote the area of each Bk by q|D|
so q represents the size of each Bk relative to D. For various q’s we can evaluate the
innovation or residual measures on each of the Bk’s and obtain the observed empirical
coverage of 0.

In the sequel, we take the shape of each Bk to be a square but, depending upon
D, there may be some reason to choose the shape more carefully. The use of squares
sometimes limits the placement of the Bk when q is large and also access to the edges
of D. Work by Sherman and Carlstein (1994), Lahiri (1999), and Lahiri (2003) suggests
letting the shape of Bk mimic the shape of D. Furthermore, with randomly placed,
overlapping Bk, it can be hard to identify regions where the model fits poorly. Disjoint
Bk, as is demonstrated in Illian et al. (2009), alleviate this problem but, with regard to
empirical coverage, Bernoulli trials based upon random Bk’s will suffice.

In-sample model criticism

When we can not develop a test sample we resort to in-sample model criticism. This leads
to familiar work on posterior model checks by Gelman et al. (1996) (henceforth GMS)
and work on prior model checks by Dey et al. (1998) (henceforth DGSV). GMS is more
common and easier to do. However, it doesn’t criticize the model well enough and uses
the data twice (once to fit, once to check). DGSV is more computationally demanding
but is formally coherent and uses the data only once. Both GMS and DGSV employ
Monte Carlo tests in looking at discrepancy measures, D(S;θ) which, for instance,
might be N(A)− λ(A;θ).

GMS looks at [D(S;θ)|Sobs] and compares it with [D(Sobs;θ)|Sobs]. The problem is
evident. Draws of S from [S;θ|Sobs] will look too much like Sobs and discrepancies will
look too much like D(Sobs;θ); the model checking will not be critical enough. Given
that assessing adequacy for point pattern models is difficult, GMS will not be good
enough.

DGSV create S∗
l ’s from the marginal distribution of S by drawing θ∗

l from the
prior distribution [θ] and then S∗

l from [S|θ∗
l ]. Then, they obtain [S,θ|S∗

l ] and compare
[D(S∗

l ;θ)|S∗
l ] with [D(Sobs;θ)|Sobs]. DGSV compare the observed discrepancy with the

discrepancies you expect under the model; GMS compare the observed discrepancies
with what you expect under the model and the observed data. The computational
demand required for DGSV is evident; one must fit and sample for every S∗

l .

With regard to model checking, Møller and Rasmussen (2012) and Møller (2012)
seem to embrace simulation akin to the GMS approach. Monte Carlo tests are proposed
to examine discrepancies of the formD(Sobs,S∗

l ,θ
∗
l ) = v(Sobs,θ

∗
l )−v(S∗

l ,θ
∗
l ). In-sample,

our empirical coverage model criticism check will also suffer the GMS problem; it will not
be critical enough. For a collection of Bk’s, we look at the set {[Nobs(Bk)−N(Bk)|Sobs]}
and check empirical coverage relative to nominal coverage. We see that the S∗

l ’s will be
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too similar to Sobs so the N(Bk) that we generate given Sobs will tend to look too much
like Nobs(Bk), since the latter is a function of Sobs.

Consider a simpler checking function approach which can be expected to supply
model criticism through the prior predictive framework. Suppose h(S) is a function
only of the point pattern. For instance, in assessing the adequacy of an HPP or Strauss
process model, given a radius R = r, suppose we consider the statistic, sr(S) discussed
at the end of Section 2.2. We can implement a Monte Carlo test for sr(Sobs) and the
set {sr(S∗

b ), b = 1, 2, . . . , B} where the S∗
b ’s are generated under the model. If there is

interaction between the points in S, then as we run through a set of r’s (motivated
by the size of the region), these Monte Carlo tests should criticize the HPP model but
potentially support Strauss process models in the vicinity of a suitable r.

An alternative h(S), working with the {Bk} above, is the sample variance across
the {N(Bk)}. This variance would be expected to be smaller under a stationary Strauss
process than under an HPP. So, most directly, we could calculate h(Sobs) and compare
with the collection of h(S∗

b )’s, again using a Monte Carlo test. To enrich the assessment,
we could consider varying cell sizes and varying numbers of cells, each providing a
Monte Carlo test. Yet another choice might adopt a checking function in the form
of a χ2 statistic, i.e., v(S;θ) =

∑
{Bk}(N(Bk) − λ(Bk;θ))

2/λ(Bk;θ) to employ as a
discrepancy measure above.

5.2 Model comparison

A typical attempt at model selection uses ad-hoc tests of the homogeneity and indepen-
dence assumptions of CSR but, having decided which assumption to relax, there is no
clear procedure for comparing models. Often model comparison is not even considered;
a model is adopted on mechanistic or behavioral grounds. Lack of fit using the methods
described above can eliminate some models but will not help when choosing among
adequately fitting models. Also, informal model comparison is frequently employed. For
instance, when appropriate, we might develop posterior intensities to compare with the
observed point pattern (or a kernel intensity estimate).

The first discussions of formal Bayesian model selection for point processes appear
in Akman and Raftery (1986) and Raftery and Akman (1986), who discuss computing
Bayes factors for NHPPs and change point Poisson processes, respectively. Guttorp
and Thorarinsdottir (2012) perform model choice via a reversible jump algorithm that
allows movement between two nested models. They can then use the work of Akman
and Raftery (1986) to compute a Bayes factor.

Model comparison should be done in predictive space since parameters have no
meaning across models, raising the question, “What would we be predicting?” Since
counts for sets are often of interest, a natural choice would focus on [N(A)|Sobs] for
A ⊂ D. In particular, we would compare Nobs(A) with [N(A)|Sobs;Mj ] for each model,
j = 1, 2, . . . , J . Here, for model j with parameters θj , we obtain posterior samples, θ∗

j,l

and then S∗
j,l. Again, we would want to do this out-of-sample through p-thinning, as with

NHPP’s, LGCP’s, and for cluster processes which are superpositions of NHPP’s. As for
criteria, we can look at predictive mean square error (PMSE), perhaps standardized by
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the expected number (the usual loss function for Poisson counts) and ranked probability
scores (RPS) (Gneiting and Raftery, 2007).

We remind the reader that the RPS arises from a proper scoring rule and offers an
informative metric for assessing the performance of a predictive distribution. For count
data, the ranked probability score (RPS) is appropriate (Epstein, 1969). For us, the
RPS compares the posterior predictive distribution for a cell count with the degenerate
distribution associated with the observed cell count using a sum of squares over the
set of support values {0, 1, 2, . . . }. RPS prefers models yielding predictive distributions
that are concentrated around the observed value.

If cross-validation is available, we would employ the RPS with our hold-out data,
comparing observed counts in subsets to posterior predictive distributions for these
counts. Specifically, returning to {Bk}, for a given model Mj , we can compute an out-
of-sample RPS for each Bk, say RPSj(Bk). Averaging these over k yields a performance
measure forMj . Model selection would choose the model with the smallest average RPS.
If holding out data is not possible, we would examine these metrics in-sample.

6 Simulation study

The Duke Forest data example in the next section provides an effective criticism of
a NHPP model in favor of a LGCP model. In the online supplement (Leininger and
Gelfand, 2015) we offer a simulation investigation comparing a HPP, a NHPP, and a
LGCP. Here, we offer a simulation study focused on criticizing the HPP in favor of a
Strauss process when the latter is the true process. More precisely, we examine whether
a Strauss model is criticized when fitted to data from an HPP, and whether a Strauss
model is preferred over an HPP model when fitted to data from a Strauss process.

The two data-generating processes used in the simulation study are an HPP with
λ = 100 and a Strauss process with (β = 250, γ = 0.05, R = 0.05). These latter
choices were made to both generate roughly 100 points on the unit square. The Strauss
process was also chosen to imply a strong amount of inhibition, so the Strauss process
is similar to the HPP in its first-order intensity but differs strongly in its second-order
characteristics.

Two domains were used in order to provide a comparison between the learning
available on a small domain versus on a larger domain. By keeping the parameter
values the same for the two domains, we achieve low and high intensity settings. The
small domain D1 is the unit square [0, 1]× [0, 1] and the larger domain D2 is the square
[0,

√
10] × [0,

√
10], such that the larger domain is ten times larger than the smaller

domain (which should facilitate seeing inhibition, hence distinguishing the two process
models).

The models fitted to each simulated dataset are an HPP model with λ unknown
and a Strauss model with (β, γ) unknown and R = 0.05 fixed. The HPP model uses a
Gamma prior with E[λ] = 100 and V ar[λ] = 0.1. The Strauss model uses the priors
β ∼ Uniform(75, 400) and γ ∼ Beta(1, 6). The prior for γ implies moderate to strong
inhibition since it has a mode around 0.05 and most of its mass is below 0.4. Ten
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r HPP, D1 Strauss, D1 HPP, D2 Strauss, D2

0.01 0.579 0.915 0.670 0.999
0.02 0.554 0.972 0.650 1.000
0.03 0.544 0.991 0.698 1.000
0.04 0.443 0.991 0.611 1.000
0.05 0.496 0.994 0.583 1.000

Table 2: For each model, the average quantile of sr(Sobs) using Monte Carlo tests,
averaged over ten simulations of an HPP(100) on the domains D1 = [0, 1] × [0, 1] and
D2 = [0,

√
10]× [0,

√
10].

r HPP, D1 Strauss, D1 HPP, D2 Strauss, D2

0.01 0.289 0.799 0.001 0.583
0.02 0.012 0.585 0.001 0.530
0.03 0.002 0.494 0.001 0.568
0.04 0.001 0.469 0.001 0.534
0.05 0.001 0.454 0.001 0.537

Table 3: For each model, the average quantile of sr(Sobs) using Monte Carlo tests,
averaged over ten simulations of a Strauss(β = 250, γ = 0.05, R = 0.05) process on D1

and D2.

replications of point patterns from each data-generating process were simulated over
each domain and both models were fit to each simulated dataset.

First, we compare the coverage and ranked probability scores for the predictive
residuals over random subsets of the domain. Again, with a Gibbs process, hold out is
not available. Using RPS for model choice, the correct model was chosen only slightly
more than 50% of the time, even in the high intensity setting. The coverages of the
predictive residuals in all cases were at or above the nominal 90% level. Altogether, first
order diagnostics do not distinguish the models.

For a better assessment of model fit we turn to second-order diagnostics. Prior
predictive checks were run using the discrepancy function sr(S). As noted previously,
this is a sufficient statistic for the Strauss process and should be able to separate the
two models since it focuses on pairwise characteristics of the point pattern.

For each domain, Table 2 obtains the average quantile of sr(Sobs) across the repli-
cates, using Monte Carlo tests, as described in Section 5.1.1, for r = 0.01, 0.02, 0.03,
0.04, and 0.05. We see that even on the smaller domain, the Strauss model produces
values much smaller than that observed, while the HPP model performs adequately.
The Strauss model with associated prior specification is not well-suited for the HPP
data, though there can be sensitivity to the prior on γ. We note that there is sub-
stantial variation in the quantiles across the replications, arguing for the usefulness of
the replications. This variation is mitigated as the domain grows, for example, for D2

compared with D1.

Table 3 performs the same comparisons for replications from the Strauss(β = 250,
γ = 0.05, R = 0.05) process. This simulation shows that we can clearly separate the
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Figure 1: (a) The locations of 530 American sweetgum trees in a tract of Duke Forest
and (b) the elevation in meters over the same region.

Strauss processes from the HPP, rejecting the HPP model when a Strauss process is
the underlying data-generating process. The HPP model always generates sr(S∗

b ) values
that are too large because it does not include any inhibition. Here, there is less variability
in the quantiles across replications than for those in the previous table. This simulation
study confirms that sr(S) is an effective discrepancy function for distinguishing between
HPPs and stationary processes with inhibition, such as the Strauss process.

7 Real data examples

We present two real data examples to illustrate the methods proposed in the previous
sections. In Section 7.1, we consider an analysis of tree data from Duke Forest, in which
we compare a NHPP model and a LGCP model. In Section 7.2, we look at the classic
Swedish pines dataset, which exhibits some regularity, and compare an HPP model with
several Strauss process models.

7.1 Duke Forest example

We first consider a point pattern consisting of the locations of American sweetgum trees
(Liquidambar styraciflua) in a subplot of Duke Forest in Durham, North Carolina, USA.
Figure 1(a) shows the locations of these trees within the tract of forest. Elevation is also
available on a fine grid over the region, as shown in Figure 1(b).

NHPP model

For this data, elevation is expected to be significant in explaining the intensity. Trees
may be more likely to grow at certain elevations or elevation may act as a surrogate
for other unobserved covariates. In fact, here, elevation may serve as a proxy for soil
moisture. A spatial trend surface might also be included. Moreover, since other species
are on this tract, some sort of competition covariate could be constructed. However, for
now we include only a linear and quadratic trend in elevation, so the regression model
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Figure 2: Posterior distributions for the parameters of the NHPP model. The posterior
mean is marked by the solid vertical line and the 95% credible intervals are marked by
the dashed lines.

Figure 3: (a) The posterior mean of the intensity surface for the NHPP model and
(b) the posterior mean of the intensity surface for the LGCP model.

for the intensity of a NHPP is

log λ(s) = log λ0 + β1 elev(s) + β2 elev
2(s). (14)

We use the prior λ0 ∼ Gamma(aλ = 1.3, bλ = 50), which gives E[λ0] = 0.026. It
may be simplest to expect, a priori, each E[βj ] = 0 and then specify the prior for λ0

induced by first specifying the prior for E[N(D)] = λ(D) = λ0|D|. Our prior for λ0

implies a priori E[N(D)] ≈ 500 with a wide variance. For the regression coefficients,

we use βj
ind∼ Normal(0, ω2) for j = 1, 2 and a large value ω2 (e.g., ω2 = 1000). We ran

our MCMC scheme for 10,000 iterations of burn-in and then collected 20,000 posterior
samples of the model parameters.

Figure 2 shows the posterior distributions of λ0, β1, and β2; all are significantly
different from 0. The X matrix was centered prior to fitting the model so that λ0 is
roughly interpretable as the average intensity across D. At a point s∗ with average
elevation, the intensity λ(s∗) is about 0.044. A location that is 5 meters higher in
elevation than the average has an intensity that is around exp{5β1 + 52β2} ≈ 0.095
percent of the intensity at the mean elevation. Figure 3(a) provides the posterior mean
of the intensity surface under the NHPP model.

We employed the Lewis–Shedler algorithm to generate L = 1000 posterior predictive
point patterns; S∗

l arises from a NHPP with intensity λ(l)(s), where the lth posterior
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Figure 4: The posterior distributions for (a) λ(D) and (b) N(D) under the NHPP model
and for (c) λ(D) and (d) N(D) under the LGCP model, both using the Duke Forest
data.

samples of λ0, β1, and β2 are used to construct λ(l)(s). Consider the posterior for
λ(D) =

∫
D
λ(s)ds. This integral was approximated to evaluate the likelihood in (5)

during the model fitting, so these posterior samples have already been computed. Fig-
ure 4(a) shows the posterior distribution of λ(D); it has a posterior mean of 528.97 with
a 95% credible interval of (485.12, 575.18). Figure 4(b) shows the predictive distribution
for N(D); it has a posterior mean of 530.70 and a 95% credible interval of (468, 595).
The distributions have the same center but the latter has greater spread, as expected.

LGCP model

We fit an LGCP model to compare with the NHPP model. The prior specifications
remain the same except for the inclusion of the local Gaussian adjustment to the log-
intensity. A Matérn covariance function was used with smoothness ν = 3/2, chosen
after discussions with ecologists involved in the project. We fit the model, running
10,000 iterations of burn-in and then taking 100,000 posterior samples. Elevation and
squared elevation were again used as covariates. Again, we thin the posterior parameter
samples and retain L = 1000 posterior point patterns.

Figure 5 shows the posterior distributions for λ0, β1, β2, and σ2. The minimum
contrast estimate φ̃ was 0.0427. It appears that the linear effect for elevation was again
significant here, with a posterior mean similar to that obtained under the NHPP model.
The quadratic effect of elevation has a credible interval that does overlap 0, however,



T. Leininger and A. E. Gelfand 19

Figure 5: Posterior distributions for the parameters of the LGCP model. The posterior
mean is marked by the solid vertical line and the 95% credible intervals are marked by
the dashed lines. The HPP MLE λ̂ is given by the dotted line in the first panel.

Model p Raw Innovations Predictive Residuals
NHPP 0.5 0.29 / 0.18 0.84 / 0.76
LGCP 0.5 0.76 / 0.44 0.98 / 0.90
NHPP 0.8 0.14 / 0.09 0.74 / 0.82
LGCP 0.8 0.76 / 0.29 0.99 / 0.88

Table 4: Coverage of the 90% credible intervals for the raw innovations and predictive
residuals in the Monte Carlo test for thinning levels p = 0.5, 0.8 and q = 0.05. The
coverage on the training dataset is given before the forward slash and the coverage on
the test dataset is given after the forward slash.

and the posterior mean is much closer to 0 than for the NHPP. We also note that the
posterior mean for λ0 is essentially the same as the MLE estimate under the HPP model,
λ̂ = n/|D| = 0.0273. Figure 3(b) shows the posterior mean intensity surface for λ(s)
under the LGCP model. It seems to better capture the observed point pattern compared
with the posterior mean intensity for the NHPP. Panels (c) and (d) in Figure 4 show the
posterior distributions for λ(D) and N(D). These posterior distributions are essentially
indistinguishable from those obtained using the NHPP model.

Model diagnostics

Table 4 presents the empirical coverage of the raw innovations and the predictive resid-
uals for the Duke Forest data. We first used p-thinning with p = 0.5 and p = 0.8 to
create training and test datasets. We used K = 200 squares of size 0.05× |D| and cal-
culated 90% credible intervals for the raw residuals and 90% prediction intervals for the
predictive residuals using both the training data and the test data. We see the severe
undercoverage with the raw innovations, particularly for the NHPP. For the predictive
residuals, we see that the NHPP exhibits undercoverage even in-sample while the LGCP
achieves nominal coverage out of sample and expected elevated coverage in-sample. The
results for the inverse λ and Pearson residuals are not shown but are similar to those
for the raw residuals. The NHPP seems inadequate while we do not criticize the LGCP.

Finally, in Figure 6 we turn to the smoothed raw innovation fields, as discussed
in Section 5.1. A bivariate Gaussian kernel was used with a bandwidth chosen using
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Figure 6: Posterior mean of the smoothed raw innovation fields for the (a) NHPP and
(b) LGCP models and posterior coverage plots for the smoothed raw innovation fields for
the (c) NHPP and (d) LGCP models. The coverage plots describe whether a pointwise
credible interval (CI) contains 0 or whether the interval is completely above or below 0.

cross-validation. We see that the smoothed innovation field for the NHPP model has
more extreme negative and positive values than the LGCP model. That is, the NHPP
intensity was too low in areas where a lot of data was observed (the high positive values
in the smoothed residual field) and too high in areas where data was sparse (the negative
values). The LGCP residual field is generally much closer to 0, i.e., it is closer to the
empirical intensity.

The bottom row of Figure 6 shows locations which have a pointwise credible interval
that contains 0, our proposed companion plot for the smoothed innovation plot. For the
NHPP model, about 60% of the locations in D have a raw innovation posterior 95%
credible interval which is entirely below 0 and 25% of the locations have a credible
interval that is entirely above 0. So, about 15% of the domain is being covered by the
residual intervals, which is roughly what we found in Table 4. In contrast, for the LGCP
model, 33% of the domain has a raw innovation credible interval entirely below 0, 58%
has an interval containing zero, and about 9% has an interval entirely above 0. Again,
the NHPP performs inadequately.

Model selection

The foregoing investigation suggests that the NHPP model is inadequate. Nonetheless,
to illustrate model comparison, for both the NHPP and LGCP models, we compute
the ranked probability scores and predictive mean square error for the training and test
data when holding out roughly 50% of the data using p-thinning. We set K = 200 and
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Figure 7: Average RPS and standardized PMSE for the NHPP model (solid black line)
and the LGCP model (dashed lines) fitted to the Duke Forest test data for three cross-
validation sets with p = 0.5.

sample the Bk locations uniformly over D, each Bk being a square of size q|D| with
q ∈ (0, 0.1); q > 0.1 limits where the Bk can fall in D. The average RPS and predictive
residual coverage were calculated for both the training and test data. We replicated
this analysis three times (applying p-thinning to the dataset three separate times) and
performed this analysis for each set of training and test data. We then averaged over
these replications to provide the shown results.

The top row of Figure 7 compares the average RPS for the two models on both the
training and test datasets across different values of q. The same set of Bk was used
for both the training and test data. The NHPP model clearly performs worse than the
LGCP model. The bottom row of Figure 7 presents the average standardized PMSE
for both models in the same format as the top row. The LGCP model again provides
an advantage. In terms of RPS, the LGCP provides results that are 15–35% better
on the test data for q ≥ 0.05. The LGCP model provides standardized PMSE on the
test data that is 25–40% better for q in the [0.005, 0.025] range and 5–10% better
elsewhere.

Using both the RPS and standardized PMSE results, the LGCP model emerges as
preferable to the NHPP model (in conjunction with the previous section which showed
that the NHPP exhibited some lack of model fit). Section 1 in the online supplementary
material contributes extra analyses related to inference and model diagnostics for this
example. Section 2 in the online supplementary material uses simulation examples to
further investigate the ability to perform model selection between HPPs, NHPPs, and
LGCPs.
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Figure 8: Plots of (a) the Swedish pines data, (b) profile pseudolikelihood for the Strauss
model as a function of R, and (c) the (sorted) nearest neighbor distances. The dashed
line in (b) indicates the profile maximum pseudolikelihood estimate R̂ = 0.72. The
dashed lines in (c) indicate the candidate R values of 0.25, 0.45, 0.55, and 0.72.

7.2 Swedish pines data

We now fit a HPP and a Strauss model to the Swedish pines data from Ripley (1981) and
Baddeley and Turner (2000). The data consists of the locations of 71 pine saplings within
a 10 m× 10 m square. Figure 8 shows the data, along with the profile pseudolikelihood of
the Strauss model (across radius R), and the ordered nearest neighbor distances for each
si ∈ S. We compare the HPP model with four Strauss models, each having a different
value for R. The smallest observed interpoint distance is 0.22 with most of the nearest
neighbors being greater than 0.5, so the values of R we consider are R = 0.25, 0.45, 0.55
and the profile maximum pseudolikelihood estimate, R̂ = 0.72. These candidate values
are shown as dashed horizontal lines in Figure 8(c).

For the HPP model, a Gamma prior was used for λ with E[λ] = 70/|D| and V ar[λ] =
0.01. The HPP model was run for 1,000 iterations of burn-in and then 50,000 posterior
samples were collected. The Strauss models all used the uniform prior γ ∼ U(0, 0.75)
and uniform priors for β which varied by model (e.g., the Strauss model with R = 0.72
used β ∼ U(0.9, 3.3)). The Strauss models were run for 5,000 burn-in iterations and then
106 posterior samples were taken. For the Strauss models, longer runs were required due
to a tendency for the chain to not move for long periods of time. Møller et al. (2006)
noted this as well; we found it to worsen as γ gets smaller or as R gets larger. For all
models, 1,000 posterior predictive point patterns were generated using thinned posterior
samples of model parameters.

Figure 9(d) shows the posterior distribution for γ, the interaction potential, under
the Strauss model with R = 0.72. Because the Strauss model becomes an HPP for γ = 1,
the posterior for γ suggests that interaction is present, since most of the mass is in the
range (0.1, 0.4). Figure 9 shows the posterior distributions for n and N(A) under both
models, where A = [2, 4.5]× [2, 6] and |A| = 0.1|D|. The posterior summaries for both n
and N(A) are similar under both the HPP and Strauss(R = 0.72) models, though the
posteriors under the Strauss model are more concentrated around the observed values.
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Figure 9: Plots of (a) the Swedish pines data with subregion A labeled and the pos-
terior distributions for (b)–(c) n and N(A) under the HPP model, and (d)–(f) γ, n,
and N(A) under the Strauss(R=0.72) model. The solid and dashed lines indicate the
posterior means and 95% credible intervals, respectively, and the dotted lines indicate
the observed values.

Model adequacy and comparison

Table 5 shows the in-sample RPS, PMSE standardized by the expected number, and
coverage results for the HPP and Strauss models using 200 random boxes ({Bk}) placed
in D with size q|D|. Using predictive residuals, the models all give similar coverage. In
fact, the coverage percentages for all of the models are well above the 90% nominal
level, which, in-sample, is not unexpected. The RPS results show that the performance
of the Strauss and HPP models is very similar, with the largest differences occurring
for the largest box size (q = 0.10) and large R (more different from the HPP). The
standardized PMSE results show improved predictive performance as we go from the
HPP to Strauss processes with increasing R’s.

As with the simulation example, we turn to second order model comparison using
sr(S). We compare sr(Sobs) with those generated under the prior expectations of each
model by simulating 999 point patterns ({S∗

b }) from the prior predictive distribution of
each model. To address sensitivity to the value of r used, we compare the discrepancy
function for several values of r: 0.25, 0.45, 0.55, 0.72, and 0.90. The results of the model
criticism checks are given in Table 6. The table shows, for each value of r, the Monte
Carlo p-value, i.e., the proportion of simulated sr(S∗

b )’s that are below the observed value
sr(Sobs) for each of the five models. In general, for each r, the HPP is nearly significant
and always “more” significant than the corresponding Strauss process models. Moreover,
for r = 0.72, the data formally criticizes the HPP model and the Strauss models with
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Strauss Strauss Strauss Strauss
HPP (R=0.25) (R=0.45) (R=0.55) (R=0.72)

Ranked Probability Score
q = 0.005 0.25 0.25 0.25 0.25 0.24

0.01 0.34 0.34 0.34 0.34 0.33
0.025 0.51 0.52 0.54 0.51 0.49
0.05 0.71 0.74 0.80 0.73 0.69
0.10 1.17 1.04 1.04 0.99 1.07

Standardized PMSE
q = 0.005 1.77 1.62 1.50 1.51 1.54

0.01 1.59 1.46 1.34 1.30 1.27
0.025 1.50 1.38 1.27 1.17 1.09
0.05 1.45 1.38 1.27 1.14 1.02
0.10 1.60 1.39 1.19 1.10 1.07

Empirical Coverage
q = 0.005 1.00 1.00 1.00 0.98 0.98

0.01 1.00 1.00 1.00 1.00 1.00
0.025 1.00 1.00 1.00 1.00 1.00
0.05 1.00 1.00 1.00 1.00 1.00
0.10 1.00 1.00 1.00 1.00 1.00

Table 5: RPS, standardized PMSE, and empirical coverage (nominal 90% intervals) for
the HPP and Strauss models on the Swedish pines data.

smaller R. Using a discrepancy function targeting second-order characteristics, within
this set of models, the Strauss(R = 0.72) model is the only one that receives no criticism.

8 Summary and future work

We have presented a general approach for posterior inference, model criticism, and
model selection under Bayesian modeling for spatial point pattern data. For models
which allow generation of point patterns given parameter values, we assert that rich
inference can be straightforwardly done through simulation of posterior predictive point
patterns. We propose using p-thinning to perform cross-validation for Poisson and Cox
processes, which allows model checking and comparison on an independent test point

Model r = 0.25 0.45 0.55 0.72 0.90
HPP 0.086 0.100 0.053 0.021 0.074
Strauss(R=0.25) 0.435 0.141 0.089 0.052 0.097
Strauss(R=0.45) 0.350 0.483 0.167 0.053 0.086
Strauss(R=0.55) 0.341 0.470 0.416 0.070 0.085
Strauss(R=0.72) 0.344 0.454 0.400 0.359 0.244

Table 6: Monte Carlo p-values of sr(Sobs) for each model fitted to the Swedish pines
data.
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pattern from the same process (except for a scaling of the intensity function). We offered
Bayesian analogues of point pattern residuals and innovations and argue for predictive
residuals because they are more suitable for comparing empirical coverage with nominal
level of coverage.

For model criticism, we argued for prior predictive model checks in the context of
empirical coverage when holding out data is possible. For in-sample criticism, we sug-
gested discrepancy functions tailored to the classes of models under investigation. For
model selection, we can first determine whether a candidate model exhibits strong indi-
cations of lack of fit. Then, for adequate models, we proposed comparison of predictive
inference for set counts with observed counts for these sets. We suggested comparison
using PMSE and RPS, averaged over sets, to provide a measure of model performance.
We would do this out-of-sample when possible, in-sample otherwise. We caution that
the ability to successfully assess model fit and model performance is often hampered
by small sample sizes and also by the weak information that a point pattern realization
offers about the underlying point process generating it. Often, several models may ap-
pear to perform equally well; subject matter insight into the process driving the point
pattern would help to make a choice.

Areas for future work include extending our tools to Neyman–Scott processes, shot
noise Cox processes, marked point patterns with discrete and continuous marks, inho-
mogeneous Gibbs processes, and spatio-temporal point patterns.

Supplementary Material

Online Supplementary Material for Bayesian Inference and Model Assessment for Spa-
tial Point Patterns Using Posterior Predictive Samples (DOI: 10.1214/15-BA985SUPP;
.pdf). Further analysis of the Duke Forest example is given in the online supplementary
material, showing posterior distributions for first- and second-order marginal intensi-
ties, the pairwise correlation function, and other features of interest. Then a simulation
study is presented, showing the performance of predictive residual coverage and model
choice using RPS for various models under several data-generating scenarios. Data is
generated under an HPP, an NHPP, and different specifications of LGCPs and then
each model is fit to each data scenario. With many observations, the simpler models
show signs of lack of fit when the data-generating process is more complex.
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