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Abstract

The ability to infer parameters of gene regulatory networks is emerging as a key prob-

lem in systems biology. The biochemical data are intrinsically stochastic and tend to be

observed by means of discrete-time sampling systems, which are often limited in their com-

pleteness. In this paper we explore how to make Bayesian inference for the kinetic rate

constants of regulatory networks, using the stochastic kinetic Lotka-Volterra system as a

model. This simple model describes behaviour typical of many biochemical networks which

exhibit auto-regulatory behaviour. Various MCMC algorithms are described and their per-

formance evaluated in several data-poor scenarios. An algorithm based on an approximating

process is shown to be particularly efficient.

Keywords : Biochemical networks, block updating, Lotka-Volterra model, Markov jump pro-

cess, MCMC methods, parameter estimation, reversible jump, systems biology.

1 Introduction

A high current priority in the biological sciences is the development of new techniques for

integrative and predictive modelling (Bower and Bolouri, 2001; Kitano, 2001; Kirkwood et al.,

2003). This is based both on the realisation that traditional reductionist approaches need to

complemented by efforts to reconstruct an understanding of how systems function as a whole

(i.e. “systems biology”) and also on the massive amounts of detailed experimental data being

produced by high-throughput technologies, such as gene expression micro-arrays. As knowledge

of underlying mechanisms has advanced, it has also become increasingly apparent that there is

an important stochastic element inherent in cell and molecular processes. Stochastic variation

at this level can have significant impacts even on high-level outcomes such as an organism’s

development and ageing (Finch and Kirkwood, 2000).

To date, relatively little work has addressed the implications of the stochastic nature of the

gene regulatory networks in terms of modelling and data analysis (McAdams and Arkin, 1997;

Arkin et al., 1998). The biochemical reactions involved in gene regulation typically involve very

low concentrations of key reactants which interact with each other and with DNA (Guptasarma,

1995). Stochastic variation arises both from randomness of molecular diffusion and from effects
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of chance in the combinatorial assembly of transcription factor complexes at DNA control se-

quences. Experimental evidence (Zlokarnik et al., 1998) confirms that gene expression occurs

in abrupt stochastic bursts. Conventional deterministic chemical kinetics fail to describe the

development of systems of coupled biochemical reactions correctly when both concentrations

of reactants and reaction rates are low (Zheng and Ross, 1991). Recognition of the fact that

chemical reaction steps occur discretely and at random times is vital.

One of the most important challenges in developing systems-level models of stochastic gene

regulatory processes is how to estimate the values of the key rate parameters. Realistic models

involve many parameters of biological interest and importance. Experimental technology is

improving rapidly, so that (semi-)quantitative high-resolution single-cell data of the type that is

most informative for the building of stochastic models is now realistically attainable (Pepperkok

and Ellenberg, 2006). Typically, data is generated via fluorescence microscopy, then processed

to extract gene expression time series (Shen et al., 2006).

Traditionally, network models have been given a continuous deterministic interpretation

leading to a set of coupled ordinary differential equations. The inference problem then becomes

one of estimating the kinetic rate parameters and a variety of techniques are possible ranging

from ad hoc parameter tuning to sophisticated model-based Bayesian methods; see, for example,

Brown and Sethna (2003), Barenco et al. (2006) and Liebermeister and Klipp (2005) for the

latter. For intracellular processes, it is well known that stochastic effects are important (Bahcall,

2005; McAdams and Arkin, 1999) and so methods are required which explicitly account for

intrinsic stochastic effects. Another important consideration is that the experimental procedures

mentioned in the previous paragraph rarely allow for the simultaneous measurement of more

than a small number of the key reactants. Therefore the case of how to make inferences using

only partial observation of the system is of particular interest.

Until recently, stochastic gene regulatory models have been too complicated for direct infer-

ential analysis and in current work (see Arkin et al. (1998)) parameters are set to biologically

plausible starting values and then tuned in an ad hoc manner in an attempt to match experimen-

tal data. However, progress in Bayesian stochastic-simulation methodology allows, in principle,

direct inference to be made for the parameters of any fully specified model, taking account of

prior information about parameter values in the form of probability distributions.

A typical stochastic gene regulatory model describes the evolution of u species Y1, Y2, . . . , Yu

(in thermal equilibrium inside some fixed volume) using a set of v reaction equations R1, R2, . . . , Rv.

Such systems are represented using chemical reaction notation as follows:

R1 : p11Y1 + p12Y2 + · · · + p1uYu −→ q11Y1 + q12Y2 + · · · + q1uYu

R2 : p21Y1 + p22Y2 + · · · + p2uYu −→ q21Y1 + q22Y2 + · · · + q2uYu

...
...

Rv : pv1Y1 + pv2Y2 + · · · + pvuYu −→ qv1Y1 + qv2Y2 + · · · + qvuYu
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where pkj is the stoichiometry associated with reactant j in reaction k and qkj is the stoichiometry

associated with product j in reaction k. Each reaction Rk has a stochastic rate constant θk and

a rate law hk(Y, θk), where Y = (Y1, Y2, . . . , Yu) is the current state of the system measured in

numbers of molecules. The rate law describes the instantaneous hazard of reaction Rk occurring

under an assumption of mass action kinetics (Gillespie, 1977). The effect of reaction Rk is to

change the value of each Yj by qkj − pkj. A consequence of the model is that, at time t, the

time to the next reaction has an exponential distribution with rate h0(Y, θ) =
∑v

k=1 hk(Y, θk),

and the reaction is of type k with probability hk(Y, θk)/h0(Y, θ). Hence, the process is easily

simulated using discrete event simulation methods. Within the chemical kinetics literature, this

technique is known as the Gillespie algorithm (Gillespie, 1977); see Wilkinson (2006) for further

details of stochastic kinetic modelling and its application to systems biology.

A naive approach to parameter inference in this context would be to work with a deterministic

approximation to the stochastic model. Parameter estimates can then be obtained by using

standard least squares or maximum likelihood approaches. However, Tian et al. (2007) show

that this strategy does not work well in general. In this paper, we describe a systematic attempt

to conduct rigorous inference for a partially and discretely observed stochastic kinetic model.

There have been several attempts in the recent literature to tackle this problem. Reinker et al.

(2006) assumed full observation of the system at discrete times but the applicability of their

methods are limited due to the extent to which non-Bayesian methods can cope with hidden

data. In particular, the parsimony assumptions that they use have the effect of downward-

biasing of parameter estimates. Rempala et al. (2006) study a model for gene transcription

containing two species. They assume data are obtained with the process in steady state and use

the tractability of the steady state distribution for their model to integrate out the unobserved

specie. Using these simplifications they develop a Bayesian inference algorithm for the rate

constants in their model. The applicability of these techniques are somewhat limited and could

not be applied to the non-linear models typically of interest in systems biology (including the

model considered in this paper). Golightly and Wilkinson (2006, 2007) develop two very general

inference algorithms based on a diffusion approximation to the true discrete stochastic model.

Although their approximation captures the intrinsic stochastic variation and they have shown

that their method works well for many problems, it nevertheless ignores the discreteness of

the underlying process which can be important in low copy number scenarios. This point is

highlighted by Tian et al. (2007), who develop an algorithm based on the exact process but

which requires observation of all species within the system. Their procedure evaluates the

likelihood function and uses a genetic algorithm to search for the maximum likelihood estimate.

In contrast, the method developed here provides a fully Bayesian solution to the parameter

estimation problem for the exact model in the context in which not all species are observed.

Furthermore, our procedure can be extended in a straightforward way to allow for experimental

error in the observation process.

3



To illustrate the methodology, the system we use is of Lotka-Volterra type (Lotka, 1925;

Volterra, 1926), and describes the time evolution of two species, usually called predator and prey

(Renshaw, 1991). Although not explicitly a gene-regulatory model, the “species” represented in

the model could equally well be molecular species and the model serves to gain insight into how

inference might be done in more realistic and complex networks. The Lotka-Volterra system

is a basic stochastic process which is sufficiently complex to explore the behaviour typical of

many biochemical networks that exhibit auto-regulatory behaviour; see Gillespie (1977) for

further background on stochastic and deterministic versions of the Lotka-Volterra model and

its chemical kinetic interpretation. Jost and Arditi (2000) describe methods for estimating

parameters for predator-prey models from time series but these are not appropriate for sparse

observation on models with significant amounts of intrinsic noise. This case is considered by

Gilioli et al. (2007) and they describe procedures similar in spirit to those develop by Golightly

and Wilkinson (2006) and suffer from the potential disadvantages described previously.

The main contribution of this paper is to show how exact inferences can be made despite the

discreteness and partial nature of the data. Section 2 examines how inferences can be made for

the kinetic rate constants by using a complete data trace and then, in Section 3, we show how

this can be achieved when only discretely observed time course data are available. Experimental

results often measure only part of the discretised data, for example, by missing some or all of one

of the chemical “species”. In Section 4, we describe how inferences can be obtained in various

data-poor scenarios and in Section 5, the methods are illustrated using simulated data.

2 Inferential issues for the general model

2.1 Analysis using complete data

Suppose the entire process y is observed over the interval [0, T ] and that the ith unit interval

(i, i+1] contains ni =
∑v

k=1 rki reactions with reaction times and types (tij, kij), j = 1, 2, . . . , ni,

that is, reaction Rkij
occurs at time tij. The likelihood function for the parameters θ is

π(y
∣

∣θ) =







T−1
∏

i=0

ni
∏

j=1

hkij

{

y(ti,j−1), θkij

}







exp

{

−

∫ T

0
h0{y(t), θ} dt

}

(1)

where ti0 ≡ i (Wilkinson, 2006). In the case of mass-action kinetic rate laws typically used in

this area, the hazard function can be written as

hk(Y, θk) = θk gk(Y ), k = 1, 2, . . . , v. (2)

This leads to a convenient factorisation of the likelihood function which in turn permits a

conjugate choice of prior distribution for the rate constants viz. independent gamma components

θk ∼ Γ(ak, bk), k = 1, 2, . . . , v. (3)
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Application of Bayes Theorem produces a posterior distribution which retains parameter inde-

pendence, with for k = 1, 2, . . . , v

θk|y ∼ Γ

(

ak + rk, bk +

∫ T

0
gk{y(t)} dt

)

, (4)

where rk is the total number of type k reactions occurring in (0, T ]. Note that the integrals here

are simply finite sums as the integrands are piecewise constant functions. Thus, with complete

data, parameter inference is straightforward.

2.2 Analysis using discrete data

Experimentally it is not feasible to observe the times and types of all reactions. However, it is

often possible to observe the levels of the species at a discrete number of time points. We shall

assume that data are observed on a regular grid and scale time so that the data are

y =
{

y(t) =
(

y1(t), y2(t), . . . , yu(t)
)

′

: t = 0, 1, 2, . . . , T
}

.

Generalisations to a non-regular grid are straightforward but not considered in this paper.

Assuming the independent gamma prior specification for the rate constants in (3), the pos-

terior distribution for θ = (θ1, θ2, . . . , θu)′ given the discrete data y can be determined using an

MCMC scheme with two blocks. One block simulates the entire process y(0, T ] conditional on

the parameters θ and the observed data y, and the other block simulates the parameters given

the entire process as in (4).

The probability law for the entire latent process y(0, T ] conditional on the observations can

be expressed as

π(y
∣

∣y, θ) =

T−1
∏

i=0

π{y(i, i + 1]
∣

∣y(i), θ}

π{y(i + 1)|y(i), θ}
(5)

where

y(i, i + 1] = {y(t) : t ∈ (i, i + 1]}

denotes the latent process in interval i (i = 0, 1, . . . , T − 1) and π{y(i + 1)|y(i)} represents the

conditional distribution of population levels at the end of an interval conditional on those at the

start of the interval. This factorisation shows that, given the population sizes at the interval

boundaries y and the reaction rates θ, the latent process can be broken down into a collection of

independent intervals. Thus, the problem of simulating an entire latent process can be simplified

into one of simulating each interval in turn from y(i, i+1]|θ, y(i), y(i+1). The following section

describes two ways in which this can be achieved in the context of a simple but analytically

intractable example.
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3 The Lotka-Volterra model

The stochastic kinetic Lotka-Volterra model describes the evolution of two species Y1 (prey) and

Y2 (predator) using three reaction equations:

Y1
θ1−→ 2Y1 prey reproduction

Y1 + Y2
θ2−→ 2Y2 predator reproduction

Y2
θ3−→ ∅ predator death

More conventionally we can express the probabilistic laws governing the time evolution of the

process as: in a (small) interval (t, t + dt], the process evolves according to

Pr{Y1(t + dt) = y1(t) + 1, Y2(t + dt) = y2(t)|y1(t), y2(t)} = θ1y1(t) dt + o(dt)

Pr{Y1(t + dt) = y1(t) − 1, Y2(t + dt) = y2(t) + 1|y1(t), y2(t)} = θ2y1(t)y2(t) dt + o(dt)

Pr{Y1(t + dt) = y1(t), Y2(t + dt) = y2(t) − 1|y1(t), y2(t)} = θ3y2(t) dt + o(dt).

Thus the Lotka-Volterra model is a Markov jump process in which each reaction occurs at a

particular rate that depends on the current state of the system. The three possible reactions

(reaction types 1, 2 and 3) have mass-action reaction rates at time t described by (2), where

g1(t) = y1(t), g2(t) = y1(t) y2(t), g3(t) = y2(t). (6)

Therefore, when the entire process y is observed over the interval [0, T ] and we take a prior

distribution with independent gamma components (3) for the rate constants, the posterior dis-

tribution also has independent components, with

θ1|y ∼ Γ

(

a1 + r1, b1 +

∫ T

0
y1(t) dt

)

,

θ2|y ∼ Γ

(

a2 + r2, b2 +

∫ T

0
y1(t)y2(t) dt

)

,

θ3|y ∼ Γ

(

a3 + r3, b3 +

∫ T

0
y2(t) dt

)

,

(7)

where rk is the total number of type k reactions occurring in (0, T ].

The problem of determining the posterior distribution when the data are discretely observed

as

y =
{

y(t) =
(

y1(t), y2(t)
)

′

: t = 0, 1, 2, . . . , T
}

rests on how to simulate a latent process within each interval from y(i, i + 1]|θ, y(i), y(i + 1).

3.1 Reversible jump method

A complicating feature of simulating the latent process in a particular interval is that not only

are the times and types of reaction not known but neither is the total number of reactions
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that have taken place. A standard way of addressing this problem is to use a reversible jump

algorithm (Green, 2003) which proposes small changes to the latent process; see, for example,

Gibson and Renshaw (1998) and Boys and Giles (2007). Suppose that in interval i there are

rki reactions of type k. These reaction counts are non-negative and must satisfy the population

counts of predator and prey at the ends of the interval. This latter requirement imposes two

constraints on the three reaction counts and so they may be decomposed as

rki = si + ski, (8)

where ski is the (known) minimal number of type k reactions that must have taken place, and si

is the (unknown) number of occurrences of all three types of reaction (“triples”). These triples

arise because a combination of all three reaction types (in any order) produces no net change in

population levels. Determination of the ski is an integer linear programming problem. However,

in this simple case, it is straightforward to write out the solution explicitly viz.

s′1i = max{y1(i + 1) − y1(i), 0}, s′2i = max{y1(i) − y1(i + 1), 0},

s′3i = y2(i) − y2(i + 1) + s′2i;

if s′3i > 0 then s1i = s′1i, s2i = s′2i, s3i = s′3i

else s1i = s′1i − s′3i, s2i = s′2i − s′3i, s3i = 0.

The reversible jump scheme operates on the number of triples in each interval and consists of

three move types:

Birth move: with probability b, a new triple (reaction types 1, 2 and 3) is added with inde-

pendent reaction times taken uniformly within the interval

Death move: with probability d, a randomly selected triple is deleted within the interval

Shift move: with probability 1 − b − d, a randomly selected reaction is shifted within the

interval.

The likelihood function for the latent process y(i, i + 1] is

π{y
∣

∣y(i), θ} =







ni
∏

j=1

hkij

{

y(ti,j−1), θkij

}







exp

{

−

∫ i+1

i

h0{y(t), θ} dt

}

, (9)

where ti0 ≡ i and the hazards hk(Y, θ) are as in (2) and (6). Thus the Metropolis-Hastings accep-

tance probability for each move that generates proposal ỹ(i, i + 1], takes the form min(1, AM ),

M ∈ {B,D,S}, where

AB = LR ×
d

(r1i + 1)(r2i + 1)(r3i + 1)b
, AD = LR ×

r1ir2ir3ib

d
, AS = LR,

and LR = π{ỹ
∣

∣y(i), θ}/π{y
∣

∣y(i), θ}. Note that the simplicity of these acceptance probabilities

is due in part to the cancellation of the (complicated) conditional distributions π{y(i+1)|y(i), θ}

in the acceptance ratio.
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3.2 Block updating method

Reversible jump methods can be very inefficient in moving around the state space. An alternative

and potentially more efficient strategy is to propose an entire new interval from a closely related

process. Such block updating strategies have been shown to be effective in a wide variety of

latent process models; see, for example, Shephard and Pitt (1997), Liechty and Roberts (2001),

Blackwell (2003) and Wilkinson and Yeung (2004). Here we use a block updating strategy which

uses a random walk proposal on the number of type 1 reactions and then proposes reactions

times using Poisson process approximations to the reaction processes.

Suppose a new value r̃1i is proposed for the number of type 1 reactions from f(r̃1i|r1i). This

value, together with the population sizes at the ends of the interval, then determines the numbers

of type 2 and 3 reactions (r̃2i and r̃3i) in the proposed new interval. One choice of proposal is a

(symmetric) discrete random walk in which the current value is augmented by the difference (y)

between two independent Poisson random variables with same mean λ, with probability function

p(y) = e−2λIy(2λ), where Iν(·) is a regular modified Bessel function of order ν (Johnson and

Kotz, 1969; Abramowitz and Stegun, 1984).

Proposals for the reaction times are made by approximating the reaction process for each

reaction type with independent inhomogeneous Poisson processes whose rates λki(t) vary linearly

from the initial hazard to the final hazard for the interval, that is, for k = 1, 2, 3

λki(t) = (i + 1 − t)hk{y(i), θk} + (t − i)hk{y(i + 1), θk}, t ∈ [i, i + 1].

These processes can easily be simulated (conditional on the number of reactions r̃ki) using a

homogeneous Poisson process with mean rate {hk{y(i), θk} + hk{y(i + 1), θk}}/2 and then, for

hk{y(i + 1), θk} 6= hk{y(i), θk}, re-scaling time with

t = i +

√

hk{y(i), θk}2 + [hk{y(i + 1), θk}2 − hk{y(i), θk}2] (t′ − i) − hk{y(i), θk}

hk{y(i + 1), θk} − hk{y(i), θk}
.

Clearly a proposal based on the homogeneous process could be used but the additional complex-

ity associated with the linear inhomogeneous process is minor and leads to improved mixing of

the algorithm. Finally, a new proposal for the latent process ỹ(i, i+1] is obtained by combining

the events in the three reaction processes.

The use of Poisson process approximations and random walk move in generating the proposal

can be corrected for via a Metropolis-Hastings step. Let Q{y|y(i), r1i, r2i, r3i} denote the law

of the bivariate stochastic process producing the proposed new interval and P{y|y(i), y(i + 1)}

denote the true “target” process. Then the new interval is accepted with probability min(1, A),

where

A =

dP

dQ
{ỹ|y(i)}

dP

dQ
{y|y(i)}

×
f(r1i|r̃1i)p(r̃1i)p(r̃2i)p(r̃3i)

f(r̃1i|r1i)p(r1i)p(r2i)p(r3i)
, (10)
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p(rki) is the probability function of a Poisson random variable with mean {hk{y(i), θk}+hk{y(i+

1), θk}}/2 (the distribution of rki under Q), and the Radon-Nikodym derivative of the true

process with respect to the approximate process is

dP

dQ
{y|y(i)} =







ni
∏

j=1

hkij

{

y(ti,j−1), θkij

}

λkij ,i(tij)







exp

{

h0{y(i), θ} + h0{y(i + 1), θ}

2
−

∫ i+1

i

h0{y(t), θ} dt

}

.

Note that this derivative is simply a likelihood ratio and measures the accuracy of the linear

approximation to the true rate processes.

Finally, note that a quicker (but approximate) version of the block updating method can be

obtained by not correcting for the use of approximate processes in the derivation of the proposal.

This has the effect of dropping the Radon-Nikodym derivatives in (10) and, as the reaction times

are no longer needed, the update is obtained with fewer operations. Of course, the drawback is

that the posterior distribution for θ obtained from the resulting MCMC scheme is only approxi-

mate. However, as demonstrated in Section 5, this approximate posterior distribution may well

be accurate enough to enable correct inferences to be made about the rate parameters.

4 Partially observed data

Suppose now that only prey can be observed at each of the observation time points because the

number of predators is hard to measure. Thus the data on which to base inferences are

y1 = {y1(t) : t = 0, 1, 2, . . . , T} .

One question of interest is whether it is still possible to make inferences for all three reaction

rates (and also the predator numbers), that is, whether the model becomes unidentifiable. This

partially observed case requires the additional specification of a marginal model for the initial

number of predators; we denote this (prior) distribution by π{y2(0)}.

A MCMC scheme to simulate the posterior distribution π(y[0, T ], θ|y1) can be constructed

in a similar fashion to the previous algorithm but instead of updating single intervals of the

latent process one at a time, the scheme updates intervals in pairs. In each pair update, the

numbers of prey and predator are fixed at the two ends, but in the middle, the number of prey

is fixed and the number of predators allowed to vary. Thus, the entire latent process is updated

by simulating from y(i, i + 2]|θ, y(i), y1(i + 1), y(i + 2) for i = 0, 1, . . . , T − 2. Additional moves

are also used to update the number of predators at the beginning and end of the process, that is,

y2(0) and y2(T ). Note that our MCMC scheme has the unusual feature of updating overlapping

blocks. This strategy has a sound theoretical basis (Carter and Kohn, 1996) and is used here

to ensure that the unobserved predator levels are all updated at each iteration of the MCMC

scheme.
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4.1 Reversible jump method

This strategy requires few alterations to the reversible jump method described earlier. The main

change is that, in the birth, death and shift moves, reactions can be added and deleted anywhere

within both unit intervals. However, only new paired intervals with the correct number of prey

at the middle, y1(i + 1), are accepted. Note that a change in the number of predators at the

middle of the paired intervals may necessitate a change in the triple counts si and si+1 (in

(8)) due to a change in ski and sk,i+1, the (recalculated) minimal number of type k reactions

that must have taken place (consistent with numbers of predator and prey at the ends of the

intervals). The Metropolis-Hastings acceptance probability for each move type which generates

proposal ỹ(i, i + 2] takes the form min
{

1, AM × δỹ1(i+1),y1(i+1)

}

, M ∈ {B,D,S}, where δ·· is

Kronecker’s delta function,

AB = LR ×
d

(r1i + r1,i+1 + 1)(r2i + r2,i+1 + 1)(r3i + r3,i+1 + 1)b
,

AD = LR ×
(r1i + r1,i+1)(r2i + r2,i+1)(r3i + r3,i+1)b

d
, AS = LR,

and

LR =
π{ỹ(i, i + 1]

∣

∣y(i), θ}π{ỹ(i + 1, i + 2]
∣

∣y1(i + 1), ỹ2(i + 1), θ}

π{y(i, i + 1]
∣

∣y(i), θ}π{y(i + 1, i + 2]
∣

∣y(i + 1), θ}
,

with π(·|·) as in (9). The reversible jump method for dealing with the uncertainty about y2(0) and

y2(T ) again uses the birth, death and shift move types but now these are applied only to type 3

reactions within the unit intervals at each end, as they produce no net change in the number of

prey and a single (unit) change in the number of predators. The acceptance probability for a

proposed new end interval ỹ(T − 1, T ] takes the form min {1, AM}, M ∈ {B,D,S}, where

AB = LR ×
d

(r3i + 1)b
, AD = LR ×

r3ib

d
, AS = LR,

and LR = π{ỹ
∣

∣y(T − 1), θ}/π{y
∣

∣y(T − 1), θ}. The equivalent calculations for a proposed new

first interval ỹ[0, 1) are very similar but with an adjustment for the distribution of the initial

number of predators, that is, taking LR = π{ỹ
∣

∣y1(0), ỹ2(0), θ}π{ỹ2(0)}/[π{y
∣

∣y(0), θ}π{y2(0)}].

As before, any accepted proposed new interval may require an alteration to the triple counts in

these intervals.

4.2 Block updating method

The block updating scheme for pairs of intervals again uses random walk proposals f(r̃ki|rki).

In the first interval of each interval pair, new values r̃1i and r̃3i are proposed for the numbers

of type 1 and type 3 reactions. These together with the number of prey at the ends of the

interval and the number of predators at the start of the interval determines the number of

type 2 reactions (r̃2i) in the proposed new interval. In the second interval, the reaction counts

are perturbed by proposing a change to the number of type 1 reactions (r̃1,i+1). The numbers
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of types 2 and 3 reactions (r̃2,i+1 and r̃3,i+1) are then fixed. Full realisations of the intervals

are proposed by simulating the first and second interval in each pair from the approximating

processes Q{y|y(i), r̃1i, r̃2i, r̃3i} and Q{y|y1(i + 1), ỹ2(i + 1), r̃1,i+1, r̃2,i+1, r̃3,i+1} respectively, as

described in section 3.2. Finally, the proposed replacements ỹ1 and ỹ2 to the interval pair

y1 = y(i, i + 1] and y2 = y(i + 1, i + 2] are jointly accepted with probability min(1, A), where

A =

dP

dQ
{ỹ1|y(i)}

dP

dQ
{y1|y(i)}

×
f(r1i|r̃1i)f(r3i|r̃3i)p(r̃1i)p(r̃2i)p(r̃3i)

f(r̃1i|r1i)f(r̃3i|r3i)p(r1i)p(r2i)p(r3i)

×

dP

dQ
{ỹ2|y1(i + 1), ỹ2(i + 1)}

dP

dQ
{y2|y(i + 1)}

×
f(r1,i+1|r̃1,i+1)p(r̃1,i+1)p(r̃2,i+1)p(r̃3,i+1)

f(r̃1,i+1|r1,i+1)p(r1,i+1)p(r2,i+1)p(r3,i+1)
,

(11)

and the mass functions p(rki) and the Radon-Nikodym derivatives are as defined in section 3.2.

Note that the mass functions p(r̃k,i+1) are determined conditional on the proposed number of

predators ỹ2(i + 1) at the centre of the paired intervals.

Random walk proposals can also be used to make adjustments to the end unit intervals in

a similar vein. A new proposal ỹ1 for the final interval y(T − 1, T ] is determined using the

technique described above to construct the first of the interval pairs, and is accepted with a

Metropolis-Hastings probability calculated using the first line in (11) with i = T − 1. A new

initial interval ỹ[0, 1) is constructed by using a random walk proposal distribution f{ỹ2(0)|y2(0)}

to perturb the initial number of predators and a random walk innovation r̃1,0 for the number

of type 1 reactions in the interval. These, together with the numbers of prey at the interval

end-points and the number of predator at the end of the interval, determine the other reaction

counts r̃2,0 and r̃3,0. A proposed new interval is simulated from Q{y|y1(0), ỹ2(0), r̃1,0, r̃2,0, r̃3,0}

and accepted with probability min(1, A), where

A =

dP

dQ
{ỹ|y1(0), ỹ2(0)}

dP

dQ
{y|y(0)}

×
f{y2(0)|ỹ2(0)}π{ỹ2(0)}

f{ỹ2(0)|y2(0)}π{y2(0)}
×

f(r1,0|r̃1,0)p(r̃1,0)p(r̃2,0)p(r̃3,0)

f(r̃1,0|r1,0)p(r1,0)p(r2,0)p(r3,0)
.

5 Analysis of simulated data

We illustrate the method using data simulated from a Lotka-Volterra process with rate constants

θ1 = 0.5, θ2 = 0.0025 and θ3 = 0.3 and initial population values of y1(0) = 71 prey and

y2(0) = 79 predators. These initial values are those obtained after running the process for

a short time from some arbitrarily chosen population levels. In order to assess the extent to

which the data dominate the prior in this example, we take weakly informative independent

exponential prior distributions with mean 100 for the rate constants.

We present here results using data from n unit intervals, each contributing m observations

on a regular grid giving a further T = n × m data points in addition to the initial values.

11



We begin by considering the (n = 40,m = 1) case in which the process is observed at the

end of 40 subsequent unit intervals. These data are shown in Figure 1 and clearly display the

oscillatory and interaction patterns between the prey and predator populations typical of this

process. Standard diagnostics were used to assess the convergence of the MCMC algorithms.

Thinning of the MCMC output was employed to yield a posterior sample of size 20,000 with

low autocorrelations. The reversible jump sampler (rj) with move probabilities b = d = 0.3

required a burn-in of 50,000 iterations and a thin of 1,000 iterates. In contrast, both the block

updating scheme (bu) and its approximation (a) needed only 500 iterations to burn-in and a

further thin of 10. These schemes used random walk updates on r1 with tuning parameter

λ = 1 + r2
1/200, a choice found to induce good mixing. Here the approximate algorithm refers

to simulation from the approximate process Q. Interestingly, the approximate scheme typically

demonstrated superior mixing properties to its exact counterpart. The rj algorithm was roughly

five times faster than the bu algorithm (per iteration). Also the approximate scheme was typically

over twenty times faster than the bu algorithm, with slightly superior mixing behaviour. For

comparison purposes, we also include results obtained by using the algorithm based on a diffusion

approximation (d) described in Golightly and Wilkinson (2007), using the same burn-in and

thinning as the bu and a algorithms (and imputing nine latent observations between each pair of

actual observations). Combining iteration speed with the convergence and mixing performances

of the algorithms gives job times for the rj : bu : d : a algorithms which scale roughly as

500 : 25 : 5 : 1. These figures illustrate the efficiency of the block updating schemes and the

additional benefit of approximating the underlying process.

Figure 2 contains a graphical analysis of a typical run and includes plots of the traces and

densities of converged and thinned MCMC output for the rate constants θ = (θ1, θ2, θ3)
′. The

marginal means and standard deviations of the posterior distribution are given in Table 1.

They clearly show that the two exact algorithms produce results within Monte Carlo error

and that there is little loss in inferential accuracy when either approximate algorithm is used.

The table also shows results for larger datasets and, in particular, the trade-off between the

numbers of intervals observed and the number of observations per interval. For example, the

posterior standard deviations determined using single observations from 200 intervals are less

than half those obtained from the same total number of observations but measured five times

more frequently (except for d, which had inflated standard errors in the case of 200 intervals).

There is also a suggestion from the tables that algorithm a outperforms d in the case of high

frequency data, and that d outperforms a in the case of large amounts of low-frequency data.

This makes intuitive sense, as the approximation used by a is likely to be very accurate in high-

frequency scenarios. The table also illustrates the relatively small gain in parameter accuracy

achieved by increasing the sampling rate per interval.

Not surprisingly, analyses of partially observed data scenarios present much more of a chal-

lenge for the MCMC algorithms due to the additional complication of having to mix over the

12
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Figure 1: Simulated observations (·) of prey and predator levels (solid and dashed lines resp.).
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Figure 2: Plots of traces and densities of converged and thinned MCMC output.
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Table 1: Posterior means (standard deviations) of rate constants using different algorithms and

based on T +1 data points, where T = n×m and n = number of unit intervals and m = number

of measurements within each interval. Data simulated using θ1 = 0.5, θ2 = 0.0025 and θ3 = 0.3.

Algorithm θ1 θ2 θ3

n = 40, m = 1 rj 0.4799 (0.0171) 0.00255 (0.000094) 0.3075 (0.0113)

bu 0.4797 (0.0170) 0.00247 (0.000094) 0.3073 (0.0113)

a 0.4840 (0.0170) 0.00307 (0.000095) 0.3104 (0.0113)

d 0.4800 (0.0163) 0.00254 (0.000091) 0.3067 (0.0110)

n = 200, m = 1 rj 0.4997 (0.0063) 0.00250 (0.000030) 0.3036 (0.0038)

bu 0.4998 (0.0062) 0.00251 (0.000031) 0.3036 (0.0038)

a 0.5071 (0.0063) 0.00254 (0.000039) 0.3082 (0.0039)

d 0.5028 (0.0104) 0.00252 (0.000051) 0.3058 (0.0065)

n = 40, m = 5 rj 0.4929 (0.0163) 0.00262 (0.000091) 0.3143 (0.0107)

bu 0.4927 (0.0163) 0.00262 (0.000090) 0.3142 (0.0108)

a 0.4929 (0.0161) 0.00262 (0.000090) 0.3142 (0.0107)

d 0.4925 (0.0160) 0.00263 (0.000088) 0.3146 (0.0104)
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uncertainty of unobserved predator levels. We illustrate the effect of data reduction on param-

eter uncertainty for three scenarios based on the data values used for the n = 40, m = 1 case

in Table 1. These scenarios are partly motivated by results from fluorescence microscopy ex-

periments which typically measure only a few biochemical species but sometimes are initialised

from known conditions. We begin by assuming that predator levels are only available at the

ends of the observation period, then only the initial level is seen and finally, that no predator

level is observed. For the first two scenarios, algorithms bu, a and d required a burn-in of 10,000

iterations and a thin of 100 iterations to obtain a posterior sample with tolerable autocorrela-

tions. In contrast, the reversible jump algorithm needed a far longer burn-in than before and

mixing was significantly worse for the same level of thinning. The third scenario we have posed

is particularly testing for the algorithm because no predator values are observed and we only

assume a very diffuse prior on their initial number. Specifically we take π{y2(0)} to have an

improper uniform distribution on 1, 2, . . .. Not surprisingly, this analysis required considerably

more computational effort and the algorithms suffered very significant mixing problems. Indeed,

CPU time constraints prevented us from obtaining satisfactory results for the rj algorithm in

this case. Table 2 shows the summaries for a posterior sample of 20,000 values. The results

for the reversible jump algorithm are within Monte Carlo error of those of exact block updates.

The table shows that, apart from the case where no predator values are observed, the posterior

means are not particularly sensitive to the reduction in information and that there is only a

modest corresponding increase in parameter uncertainty. However, removing the final remain-

ing predator value had a considerable effect on both the posterior mean and standard deviation.

Clearly a wider range of parameter values are consistent with the observed prey levels. The

table also includes summaries for the first and middle unobserved predator levels. The large

standard deviations (particularly for the unobserved predator case) indicate the very wide range

of predator values that are consistent with the observed data and explain the additional mixing

problems incurred within the MCMC algorithms. Note that, for all data scenarios, the posterior

distributions are consistent with the parameter values from which the data were simulated and

the observed predator values in the “full” dataset and are therefore strongly suggestive that the

model remains “identifiable” even in the case of no predator observations. Also note that the

discrepancies between the algorithms in the final scenario are not within Monte Carlo error and

are not due to convergence problems of the MCMC algorithms. Therefore, there is an indica-

tion (perhaps unsurprising) that the accuracy of both of the approximate algorithms declines

as the proportion of missing data increases. Overall, the table highlights the benefit of using

the approximate algorithm (a) in that little inferential power is lost and there is a much needed

reduction in computational overhead.

15



Table 2: Posterior means (standard deviations) of rate constants and two unobserved predator

levels using partially observed data. Data simulated using θ1 = 0.5, θ2 = 0.0025 and θ3 = 0.3.

Data Algorithm θ1 θ2 θ3 y2(1) y2(20)

y1 ∪ y2 rj 0.4799 (0.0171) 0.00255 (0.000094) 0.3075 (0.0113) 78 (0) 63 (0)

bu 0.4797 (0.0170) 0.00247 (0.000094) 0.3073 (0.0113) 78 (0) 63 (0)

a 0.4840 (0.0170) 0.00307 (0.000095) 0.3104 (0.0113) 78 (0) 63 (0)

d 0.4800 (0.0163) 0.00254 (0.000091) 0.3067 (0.0110) 78 (0) 63 (0)

y1 ∪ y2(0) ∪ y2(40) rj 0.4715 (0.0236) 0.00242 (0.000133) 0.2831 (0.0172) 72.87 (5.24) 81.35 (12.52)

bu 0.4715 (0.0237) 0.00242 (0.000134) 0.2827 (0.0172) 72.94 (5.32) 81.40 (12.56)

a 0.4743 (0.0238) 0.00244 (0.000138) 0.2862 (0.0178) 72.62 (5.36) 80.24 (12.73)

d 0.4762 (0.0238) 0.00240 (0.000133) 0.2801 (0.0170) 73.40 (5.37) 83.86 (12.36)

y1 ∪ y2(0) rj 0.4688 (0.0308) 0.00244 (0.000192) 0.2870 (0.0272) 72.47 (5.82) 80.25 (18.77)

bu 0.4693 (0.0311) 0.00244 (0.000193) 0.2868 (0.0273) 72.50 (5.88) 80.27 (18.80)

a 0.4898 (0.0331) 0.00236 (0.000190) 0.2728 (0.0268) 74.30 (5.87) 91.82 (21.30)

d 0.4729 (0.0283) 0.00256 (0.000188) 0.3036 (0.0270) 71.91 (5.40) 75.47 (16.47)

y1 bu 0.5718 (0.1088) 0.00201 (0.000417) 0.2357 (0.0504) 159.11 (97.84) 166.05 (102.62)

a 0.7522 (0.1735) 0.00151 (0.000389) 0.1760 (0.0458) 236.98 (227.10) 369.75 (239.00)

d 0.4318 (0.0608) 0.00291 (0.000417) 0.3471 (0.0593) 30.76 (39.50) 58.45 (37.49)
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6 Conclusions

Although there has been some previous work on inferring rate constants in deterministic net-

works, we believe this is the first systematic attempt to conduct rigorous “exact” inference for

partially and discretely observed stochastic kinetic models. Inferences for the rate constants in

the Lotka-Volterra model can be made using MCMC methods in various data-poor scenarios.

The model parameters are identifiable even when no measurements are available on one of the

species, though parameter uncertainty is considerably reduced when measurements are available

on both species. Block updating algorithms are much more efficient than more naive reversible

jump methods, and an algorithm based on an approximating process has been shown to perform

particularly well. These algorithms readily extend to larger more complex networks but their

computational efficiency relative to competing algorithms which exploit other approximations

(such as a diffusion approximation) is the subject of on-going work.
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