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IN RANDOMIZED EXPERIMENTS

WITH NONCOMPLIANCE1
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For most of this century, randomization has been a cornerstone of
scientific experimentation, especially when dealing with humans as exper-
imental units. In practice, however, noncompliance is relatively common
with human subjects, complicating traditional theories of inference that
require adherence to the random treatment assignment. In this paper we
present Bayesian inferential methods for causal estimands in the pres-
ence of noncompliance, when the binary treatment assignment is random
and hence ignorable, but the binary treatment received is not ignorable.
We assume that both the treatment assigned and the treatment received
are observed. We describe posterior estimation using EM and data aug-
mentation algorithms. Also, we investigate the role of two assumptions
often made in econometric instrumental variables analyses, the exclusion
restriction and the monotonicity assumption, without which the likelihood
functions generally have substantial regions of maxima. We apply our pro-
cedures to real and artificial data, thereby demonstrating the technology
and showing that our new methods can yield valid inferences that differ in
practically important ways from those based on previous methods for anal-
ysis in the presence of noncompliance, including intention-to-treat analyses
and analyses based on econometric instrumental variables techniques. Fi-
nally, we perform a simulation to investigate the operating characteristics
of the competing procedures in a simple setting, which indicates relatively
dramatic improvements in frequency operating characteristics attainable
using our Bayesian procedures.

1. Introduction. For most of this century, randomization has been a cor-
nerstone of scientific experiments, especially those dealing with humans as
experimental units. The theories of inference based on randomization, due to
Fisher (1925) and Neyman (1923), reviewed and compared in Rubin (1990a)
and extended to general observational studies in Rubin (1977), Rosenbaum
and Rubin (1983) and Rosenbaum (1995), formally require that all experimen-
tal units adhere to their treatment assignments. In practice, however, noncom-
pliance is relatively common in randomized experiments with human subjects.
The standard approach to noncompliance, although sometimes sharply criti-
cized [e.g., Salsburg (1994) and Sheiner and Rubin (1994)] is to rely on the
same randomization distributions as if compliance had been perfect, and thus
to compare average outcomes by assignment, ignoring information on com-
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pliance behavior [Breslow (1982), Fisher, Dixon, Herson et al. (1990), Lee,
Ellenberg, Hirtz and Nelson (1991) and Meier (1991)]; this is often referred to
as an intention-to-treat analysis.

Here we use the “phenomenological Bayesian” approach of Rubin (1978a,
b) to address the problem of noncompliance in randomized experiments. In
the general approach, labeled the Rubin causal model (RCM) by Holland
(1986) for work starting with Rubin (1974, 1975), causal inference problems
are framed in terms of potentially observable outcomes, which are the re-
sponses of all units to all treatments. For the Bayesian, parametric mod-
els then serve as technical tools to generate posterior inferences for unob-
served potential outcomes. Thus, Bayesian inference for causal effects involves
the calculation of the posterior predictive distribution for responses to treat-
ments not received, conditionally given responses to treatments received (and
other observed quantities), which generates the posterior distribution of causal
estimands—comparisons of these responses. Inferences across models with
different parametric structures can be compared directly because these infer-
ences are all driven by the posterior predictive distribution of the same causal
estimands defined by the potentially observable outcomes.

Using this framework, the Bayesian is formally clear about the role played
by the randomization of treatment assignment and the complications that
arise from the nonrandom receipt of treatment due to noncompliance. Al-
though the Bayesian never computes randomization distributions or design-
based standard errors, the random assignment of treatment plays a critical
role (Rubin, 1978a, 1990b), as does the compliance behavior of the units. The
Bayesian approach also clarifies what can be learned in the noncompliance
problem when causal estimands are intrinsically not fully “identified.” In par-
ticular, issues of identification are quite different from those in the frequen-
tist perspective because with proper prior distributions, posterior distribu-
tions are always proper. The effect of adding or dropping assumptions, such
as those that are used in the instrumental variables literature [Bowden and
Turkington (1984), Heckman and Robb (1984), Imbens and Angrist (1994) and
Angrist, Imbens and Rubin (1996)], is directly addressed in the phenomeno-
logical Bayesian approach by examining how the posterior predictive distri-
butions for causal estimands change.

This article is organized as follows. Section 2 defines the estimands of in-
terest, and Section 3 describes the structure of Bayesian inference for these
estimands in the presence of noncompliance. In Section 4 we present meth-
ods for posterior inference, both maximum likelihood estimation through EM
[Dempster, Laird and Rubin (1977)] and simulation inference through data
augmentation [Tanner and Wong (1987)]. In Section 5 we discuss the possi-
ble incorporation of two assumptions commonly invoked in econometric in-
strumental variables analyses, the exclusion restriction and the monotonicity
assumption. Section 6 presents an analysis of a data set from Sommer and
Zeger (1991) with a binary outcome, and in Section 7 we illustrate with ar-
tificial data how the analysis proceeds with continuous outcomes. Section 8
concludes with some discussion of extensions.



RANDOMIZED EXPERIMENTS WITH NONCOMPLIANCE 307

2. Causal estimands when confronted with noncompliance. Con-
sider a hypothetical evaluation of the effect of a new drug (D) on some health
outcome (Y) in a population of N units. Our objective is to estimate the ef-
fect of D (drug versus no drug) on Y, where we assume that the drug is
either taken or not, thereby disallowing partial doses. The actual taking of
the drug D is assumed to be beyond the control of the researcher. Instead, the
researcher controls the assignment (i.e., the intention to treat), indicated by
the variable Z; Zi = 1 indicates that patient i is assigned to the treatment
group, which is to receive the drug, whereas Zi = 0 indicates that patient i is
assigned to the control group, which is not to receive the drug. Let Z be the
N component column vector of assignments with ith element Zi. We make
the stable unit treatment value assumption [SUTVA; Rubin (1980, 1990a)],
which allows us to write the potential outcomes for unit i as a function of Zi

rather than the entire vector Z. Thus, we let Di�z� be the binary indicator for
the treatment that unit i actually would receive given the assignment z for
z = 0;1; Di�z� = 1 indicates that unit i would take the drug if assigned z,
and Di�z� = 0 indicates that unit i would not take the drug if assigned z. In
an ideal research environment, Di�z� would equal z for all i and z; that is,
the treatment assigned would equal the treatment received for all units. In
practice, Di�z� can differ from z for various reasons: individuals might acci-
dentally receive the incorrect drug, or they might obtain the new drug despite
being assigned to the control group [e.g., in AIDS trials; Robins (1989)], or in-
dividuals in the treatment group might fail to take the assigned drug because
of disinterest or fear of potential side effects. Define Di = �Di�0�;Di�1�� to
be the row vector of potential treatment outcomes for unit i and D to be the
N × 2 matrix with ith row equal to Di. We assume throughout that Di�Zi�,
the treatment actually received, is observed.

Similar to the definition of Di�z�, we define Yi�z;Di�z�� to be the out-
come for unit i if exposed to treatment Di�z� after being assigned treatment
z. The double-argument notation is, in principle, redundant because Yi is
actually a function of z alone, but is useful as will become apparent later. De-
fine Yi = �Yi�0;Di�0��;Yi�1;Di�1��� to be the row vector with the potential
health outcomes for unit i under assignment to control and drug, and define
Y to be the N× 2 matrix with ith row equal to Yi. We refer to Di and Yi as
“potential outcomes,” similar to Neyman’s (1923) notion of “potential yields”
in randomized agricultural experiments as discussed in Rubin (1990a).

The ITT (intention-to-treat) causal effect of Z on D for unit i is defined to
be the difference Di�1�−Di�0�, and the ITT causal effect of Z on Y for unit i
is Yi�1;Di�1��−Yi�0;Di�0��. The average ITT causal effects are the averages
of these unit-level causal effects over the population. The average effect of Z
on D is ITTD =

∑N
i=1�Di�1� −Di�0��/N, and the average effect of Z on Y is

ITTY =
∑N
i=1�Yi�1;Di�1�� −Yi�0;Di�0���/N.

For unit i, Di describes the compliance behavior. Because this is critical in
our analysis, we use an indicator to partition the population of units into four
types—compliers, never-takers, always-takers and defiers—based on their
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compliance behavior. For unit i,

Ci =





c (i.e., unit i is a complier); if Di�z� = z; for z = 0;1;
n (i.e., unit i is a never-taker); if Di�z� = 0; for z = 0;1;
a (i.e., unit i is an always-taker); if Di�z� = 1; for z = 0;1;
d (i.e., unit i is a defier); if Di�z� = 1− z; for z = 0;1:

We let C �t� = �i�Ci = t� for t ∈ �c; n; a;d�; C is the N component vector with
ith element Ci, and Nt is the number of units of type t.

The population average ITT effects can therefore be decomposed as

ITTD =
(
Nc1+Nn0+Na0+Nd�−1�

)
/N =

(
Nc −Nd

)
/N

and

ITTY =
∑

t∈�c; n; a;d�
Nt ITT�t�Y /N;

where, for t ∈ �c; n; a;d�,

ITT�t�Y =
∑

i∈C �t�
�Yi�1;Di�1�� −Yi�0;Di�0���/Nt

is the average ITT effect of Z on Y for each of the four subpopulations defined
by compliance behavior.

Of the four subpopulation ITT effects, two, ITT�n�Y and ITT�a�Y , clearly do
not address causal effects of the receipt of treatment because the former com-
pares outcomes both with no drug, and the latter compares outcomes both
with drug; neither never-takers nor always-takers can, at least in the context
of this experiment, be induced to switch treatments. For compliers, assignment
of treatment agrees with receipt of treatment, and ITT�c�Y compares outcomes
with drug to outcomes without drug. For such units it can, at least in some
situations, be reasonable to attribute the effect on Y of assignment of treat-
ment to the effect of receipt of treatment. This attribution is, in fact, what
is typically done in randomized trials with full compliance. Even in that con-
text, however, this attribution is not innocuous, and attempts to make it more
plausible include the use of placebos and practices such as blinding and dou-
ble blinding. For defiers, assignment to control leads to receipt of treatment
and vice versa, and so ITT�d�Y also compares outcomes with no drug to out-
comes with drug. In some cases it may therefore be reasonable to attribute
the effect of assignment to control versus treatment to the receipt of treat-
ment versus control, although this may, in general, be less compelling than
the attribution to receipt of treatment for compliers. To capture these attri-
butions, we define the “attributed” causal effect of D on Y for a complier to
be Yi�1;Di�1�� − Yi�0;Di�0�� = Yi�1;1� − Yi�0;0�, and for a defier to be
−�Yi�1;Di�1�� −Yi�0;Di�0��� = Yi�0;1� −Yi�1;0�, with the “complier aver-
age causal effect” of D on Y denoted by CACE= ITT�c�Y , and the “defier average
causal effect” denoted by DACE= −ITT�d�Y .
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Table 1
Unit-level causal effects of assignment and treatment

Potential
treatment outcomes

Type
of unit

Ci Di�0� Di�1�

ITT
causal effect

of Z on D

ITT
causal effect

of Z on Y

“Attributed”
causal effect

of D on Y

c 0 1 1 Yi�1;1� −Yi�0;0� Yi�1;1� −Yi�0;0�
n 0 0 0 Yi�1;0� −Yi�0;0� —
a 1 1 0 Yi�1;1� −Yi�0;1� —
d 1 0 −1 Yi�1;0� −Yi�0;1� Yi�0;1� −Yi�1;0�

For an alternative motivation for the focus on complier and defier average
causal effects, consider the analysis if full data on compliance behavior were
actually available; that is, suppose that for all units Ci were observed. In
that case, treating Ci as a covariate or pretreatment variable, the standard
analysis of causal effects with strongly ignorable assignment given Ci [Rubin
(1977) and Rosenbaum and Rubin (1983)] suggests discarding all units with
either zero probability of receiving treatment (never-takers with Ci = n) or
zero probability of receiving control (always-takers with Ci = a) and focusing
solely on average effects for compliers and defiers.

We stress that although these arguments help to motivate interest in the
ITT effects for compliers and defiers, they are not necessary for the statistical
analyses that we present for the causal estimands ITT�t�Y for t = c; n; a;d.

Table 1 summarizes the definitions of the unit-level ITT effects and the
attributed causal effects of treatment on the outcome for each type of unit
defined by compliance behavior.

3. The structure of Bayesian inference for causal estimands. Five
quantities are associated with each individual: Zi, Di�0�, Di�1�, Yi�0;Di�0��
and Yi�1;Di�1��; a sixth quantity, the type Ci, is a function of Di�0� and
Di�1�. Three of these five quantities are observed: the treatment assigned,
Zobs; i = Zi; the treatment received given the assigned treatment, Dobs; i =
Di�Zobs; i�; and the outcome under the assigned and received treatments,
Yobs; i = Yi�Zobs; i;Dobs; i�. The two missing quantities are the treatment re-
ceived under the other treatment assignment, Di�1−Zobs; i�, and the outcome
under the other treatment assignment and the associated treatment received,
Yi�1−Zobs; i;Di�1−Zobs; i��.

Bayesian inference considers the observed values of these quantities to be
realizations of random variables and the unobserved values to be unobserved
random variables. For the N units, the random variables in Bayesian infer-
ence are thus the N-vector Z and the two N × 2 matrices D and Y. Letting
f�Z;D;Y� be the joint probability (density) function of these random variables,
we can write

f�Z;D;Y� = f�D;Y�Z�f�Z� = f�D;Y�f�Z�;(1)
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where the second equality follows from the assumption of random assign-
ment of Z. Bayesian inference for the causal estimands, functions of Y and D,
follows from their joint posterior distribution, that is, their conditional distri-
bution given observed values as derived from (1), as outlined in Rubin (1978a).

Assuming that all the potentially observable information about the units
that will be modeled in this investigation is contained in the variables
�Z;D;Y�, the distribution of �D;Y� is unit exchangeable, that is, invariant
under a permutation of the unit indices. Therefore, appealing to deFinetti’s
theorem, we can assume, with essentially no loss of generality, that the rows
of �D;Y� are independent and identically distributed random variables given
a parameter vector π with prior distribution p�π�. Thus, we write

f�D;Y� =
∫ N∏
i=1

f�Di;Yi�π�p�π�dπ;(2)

and the posterior distribution of π can be written as

p�π�Zobs;Dobs;Yobs� ∝ p�π�
∫ ∫ [ N∏

i=1

f�Di;Yi�π�
]
dYmis dDmis

= p�π�
[ N∏
i=1

∫ ∫
f�Di;Yi�π�dYmis; i dDmis; i

]
;

(3)

where Dmis and Ymis are the missing, or unobserved, components of D and Y,
respectively, and (3) is evaluated at the observed values Zobs, Dobs and Yobs;
the constant of proportionality in (3) is the integral of the right-hand side
over π.

For notational convenience, we factor the distribution f�Di;Yi�π� into
(i) the distribution of Di given π, where the population probability of type t
units is ωt�π�, and (ii) the conditional distribution of Yi given �Di; π�, where
we let gtz�y�ηtz�π�� be the distribution of Yi�z;Di�z�� for units of type t
for z = 0;1 and t = c; n; a;d; this distribution depends on the parameter
vector π through ηtz�π�. The complete parameter vector is π = �ωc;ωn;ωa;
ωd; ηc0; ηc1; ηn0; ηn1; ηa0; ηa1; ηd0; ηd1; ηc01; ηn01; ηa01; ηd01�, where the final
four parameters, πassoc = �ηc01; ηn01; ηa01; ηd01�, refer to the association pa-
rameters in the joint distribution of outcomes for never-takers, always-takers,
compliers and defiers, respectively. Letting δ�t;Di� equal 1 if Di implies type
t and 0 otherwise, we can write

f�Di;Yi�π� =
∑

t∈�c; n; a;d�
δ�t;Di�ωt

×
∑

t∈�c; n; a;d�
δ�t;Di�gt0�Yi�0;Di�0���ηt0�

× gt1�Yi�1;Di�1���ηt1�ht�Yi�ηt01�;

(4)

where ht�Yi�ηt01� is defined such that the product of the last three factors is
the joint distribution of Yi given Di and π.
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To perform the integration in (3), we need to consider the structure of
the missing data. There are four possible patterns of missing and observed
data in �Di;Yi�, corresponding to the four possible values for �Zobs; i;Dobs; i�:
�0;0�; �0;1�; �1;0�; �1;1�. Indicate the subsets of units exhibiting each pattern
by S �0;0�, S �0;1�, S �1;0� and S �1;1� with cardinality N00, N01, N10 and
N11, respectively. In addition, let S �z; ·� = S �z;0�∪S �z;1� be the set of units
i with Zobs; i = z for z = 0;1. For i ∈ S �0;0�, both Di�1� and Yi�1;Di�1�� are
missing; the integration over Di�1� eliminates terms in (4) with t = a or t = d,
and the integration over Yi�1;Di�1�� eliminates the factors in the remaining
terms in (4) involving gt1 and ht with t = c or n. That is, for i ∈ S �0;0�,
the units are generally a mixture of compliers and never-takers, and the ob-
servations Yobs; i are either from gn0 or from gc0. Hence, for i ∈ S �0;0� we
obtain
∫ ∫

f�Di;Yi�π�dYmis; i dDmis; i = ωcgc0�Yobs; i�ηc0� +ωngn0�Yobs; i�ηn0�:

Analogous expressions hold for units in S �0;1�, S �0;1� and S �1;1�.
Letting gitz = gtz�Yobs; i�ηtz�π�� for t = c; n; a;d and z = 0;1, from (3) and

(4) the posterior distribution of π is thus

p�π�Zobs;Dobs;Yobs�
∝ p�π�

(5)

×
∏

i∈S �0;0�
�ωcgic0 +ωngin0�

∏

i∈S �0;1�
�ωagia0 +ωdgid0�(6)

×
∏

i∈S �1;0�
�ωngin1 +ωdgid1�

∏

i∈S �1;1�
�ωcgic1 +ωagia1�:(7)

Because the association parameter πassoc does not enter the likelihood func-
tion, specified by the four products (6)–(7), the posterior distribution of πassoc
equals its prior distribution if πassoc is a priori independent of the other com-
ponents of π, as we assume in the remainder of this article.

One function of π that is free of πassoc and is particularly relevant is the
superpopulation CACE

∫
ygc1�y�ηc1�dy−

∫
ygc0�y�ηc0�dy;(8)

which is the average causal effect of D on Y in the hypothetical superpopu-
lation of compliers from which the Nc complying units in the current experi-
ment can be conceptualized as having been drawn. Analogously, we can define
the superpopulation DACE and other superpopulation causal estimands such
as the ITT effects of Z on Y for never-takers and always-takers, ITT�n�Y and
ITT�a�Y ; none of these involves πassoc. Inference for the finite population causal
estimands for the units in the study (e.g., CACE) follows from the posterior
distribution of π by predictive Bayesian inference; these generally do involve
πassoc [see Rubin (1990a), Section 7, for a specific example]. Henceforth, we
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focus on the superpopulation estimands and so ignore πassoc and let π denote
the remaining parameters.

4. Computation of the posterior distribution of causal estimands.
The superpopulation causal estimands CACE, ITT�n�Y , ITT�a�Y and DACE are
functions of pairs of parameters �ηc0; ηc1�, �ηn0; ηn1�, �ηa0; ηa1� and �ηd0; ηd1�,
respectively, whose estimation is complicated by the fact that they can only be
indirectly estimated through the observation of mixtures of the distributions
[cf. expressions (6) and (7)], which involve four proportions, ωc, ωn, ωa and
ωd, and eight distributions of Yix gtz�y�ηtz� for t = c; n; a;d and z = 0;1.
Modern methods of computational statistics, however, including methods for
iterative maximization such as the EM [Dempster, Laird and Rubin (1977)],
ECM [Meng and Rubin (1991, 1993)] and ECME [Liu and Rubin (1994)] al-
gorithms and methods for iterative simulation including Markov chain Monte
Carlo methods such as data augmentation [DA; Tanner and Wong (1987)] and
the Gibbs sampler [e.g., Geman and Geman (1984), Gelfand, Hills, Racine-
Poon and Smith (1990) and Gelman and Rubin (1992)], can make inference
relatively straightforward. These methods are advantageous because they ex-
ploit the fact that with Ci known for all units, inference for each of the four
causal estimands would involve only the data from its associated subpopula-
tion with no mixture components.

We now outline the general structure of the EM and DA algorithms for our
problem, by first considering the imputation of C and second discussing the
“complete-data” analysis, where “complete-data” means complete compliance
data, that is, �C;Zobs;Dobs;Yobs�, or, equivalently, �Zobs;D;Yobs�, but not the
full set of potential outcomes �Zobs;D;Y�.

The first step of both an EM and a DA iteration involves imputation of C,
either its conditional expectation with EM or a draw from its conditional dis-
tribution with DA, both given observed values and a current value of π. Given
�Zobs;Dobs;Yobs; π�, the Ci are independent indicators of type t dependent on
the data only through �Zobs; i;Dobs; i;Yobs; i�. Table 2 presents the conditional
probabilities for each type t = c; n; a;d given π and the observed data. Sam-

Table 2

Pr�Ci = t�Zobs; i;Dobs; i;Yobs; i; π�, conditional probability of subject i being type t given ob-
served data Zobs; i, Dobs; i, Yobs; i, and parameters π: numerator is table entry and denominator

is row total

Subject type t

Zobs; i Dobs; i t 5 c t 5 n t 5 a t 5 d Row total

0 0 ωcg
i
c0 ωng

i
n0 0 0 ωcg

i
c0 +ωngin0

0 1 0 0 ωag
i
a0 ωdg

i
d0 ωag

i
a0 +ωdgid0

1 0 0 ωng
i
n1 0 ωdg

i
d1 ωng

i
n1 +ωdgid1

1 1 ωcg
i
c1 0 ωag

i
a1 0 ωcg

i
c1 +ωagia1
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pling from the distribution of C given �Zobs;Dobs;Yobs; π� for DA therefore
only involves independent drawing from binomial distributions. Similarly, the
E-step in EM simply replaces each Ci by its expectation represented as a
four-component indicator of probabilities.

The second step of both an EM and a DA iteration involves an analysis of
the complete-data posterior distribution of π. The conditional posterior distri-
bution of π given �C;Zobs;Dobs;Yobs� has a much simpler structure than the
actual posterior distribution of π given �Zobs;Dobs;Yobs�, because the param-
eters of the eight outcome distributions, �ηc0; ηc1; ηn0; ηn1; ηa0; ηa1; ηd0; ηd1�,
all appear in separate factors of the likelihood, each with an i.i.d. structure:

p�π�C;Zobs;Dobs;Yobs� ∝ p�π�
∏

z=0;1

∏

t∈�c; n; a;d�

[ ∏

i∈�C �t�∩S �z;·��
ωtg

i
tz

]
;(9)

where, as before, gitz = gtz�Yobs; i�ηtz�. To capitalize on this structure, assume
prior joint independence of �ωc;ωn;ωa;ωd�, ηc0, ηc1; ηn0, ηn1, ηa0, ηa1, ηd0,
ηd1, so that the prior distribution of π and the posterior distribution of π given
C both factor into the nine components, one for the quadrinomial probabilities
of type:

p�ωc;ωn;ωa;ωd�C;Zobs;Dobs;Yobs� ∝ p�ωc;ωn;ωa;ωd�ωNc
c ω

Nn
n ωNa

a ω
Nd

d ;

and one for each of the eight outcome distributions, defined by assignment
and compliance status;

p�ηtz�C;Zobs;Dobs;Yobs� ∝ p�ηtz�
∏

i∈�C �t�∩S �z;·��
gitz(10)

for z = 0;1 and t = c; n; a;d. Evaluating the complete-data posterior distribu-
tion for ηtz at most involves integrals with dimension equal to the dimension
of ηtz. For common choices of gtz�·�, such as the binomial distribution for bi-
nary outcomes used in the example in Section 6 or the normal distribution
for continuous outcomes used in the example in Section 7, analysis of these
complete-data posterior distributions is direct for conventional choices of prior
distributions. The analysis of the posterior distribution of �ωn;ωa;ωc;ωd� is
straightforward when either finding its mode or drawing from it with the
conventional conjugate Dirichlet prior distribution.

5. Two commonly invoked assumptions. Here we formulate two as-
sumptions that, although not necessary to apply our analysis, are often plau-
sible and facilitate inference for CACE. These assumptions, discussed in detail
in Angrist, Imbens and Rubin (1996), connect our work to that on instrumen-
tal variables (with the random assignment indicator interpreted as the instru-
mental variable), which has a long tradition in econometrics, dating back to
Wright (1928, 1934) and Reiersol (1941), reviewed in Bowden and Turkington
(1984) and applied to treatment evaluations in Heckman and Robb (1985). A
recent influential application where the posited instrument is explicitly ran-
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domized is given in Angrist (1990). In the last two decades, empirical studies
using similar assumptions have also appeared in other literatures, often in the
context of randomized experiments with noncompliance [Zelen (1979, 1990),
Bloom (1984), Holland (1988), Hearst, Newman and Hulley (1986), Permutt
and Hebel (1989), Robins (1989), Sommer and Zeger (1991), Balke and Pearl
(1994), Baker and Lindeman (1994) and McClellan and Newhouse (1994)].

The first assumption, the weak exclusion restriction, requires that the treat-
ment assignment is unrelated to potential outcomes for never-takers and
always-takers: for all i such that Di�0� = Di�1�, Yi�0;Di�0�� = Yi�1;Di�1��;
that is, if for unit i, treatment assignmentZi has no effect on treatment status
Di, it has no effect on outcome Yi either, so that ITT�n�Y = ITT�a�Y = 0. In our
distributional notation, gn0�y�ηn0� = gn1�y�ηn1� and ηn0 = ηn1, and similarly
ga0�y�ηa0� = ga1�y�ηa1� and ηa0 = ηa1, implying gin0 = gin1 and gia0 = gia1.
The only part of EM or the Gibbs sampler that is affected is the complete-data
analysis, where the parameters of the two always-taker and the two never-
taker distributions are now the same, respectively; the product in (10) then
becomes

∏
i∈C �t� g

i
t. A stronger version of the exclusion restriction appearing in

Imbens and Rubin (1994) and Angrist, Imbens and Rubin (1996) also asserts
that the unit-level effect of Z = 1 versus Z = 0 for compliers is solely due to
the exposure to D = 1 versus D = 0, and asserts that for defiers the unit-level
effect of Z = 1 versus Z = 0 is solely due to the exposure to D = 0 versus
D = 1. This restriction therefore combines the causal attribution in the last
column of Table 1 with the weak exclusion restriction for never-takers and
always-takers. Versions of the exclusion restriction underlie all instrumental
variables inferences in econometrics, although typically stated using formula-
tions involving regression function disturbances that link the basic exclusion
restriction with functional form and independence assumptions [e.g., Heck-
man and Robb (1985)].

The second assumption, strict monotonicity, restricts the patterns of compli-
ance behavior in the population. Strict monotonicity of treatment assignment
on treatment received requires Di�1� ≥ Di�0� for all i = 1; : : : ;N, with in-
equality for at least one unit i. This assumption rules out the presence of
defiers and requires the presence of compliers; that is, ignoring measure the-
oretic details, it requires ωd = 0 and ωc > 0. It is called strict monotonicity as
it combines Assumptions 4 and 5 of Angrist, Imbens and Rubin (1996), which
separate the basic monotonicity assumption Di�1� ≥ Di�0� from the condi-
tion that Di�1� 6= Di�0� for at least one unit. Balke and Pearl (1994) call this
the no-defiance assumption, as it rules out the existence of defiers. Although
more widely applicable [see, e.g., the discussion in Angrist, Imbens and Rubin
(1996)], monotonicity is especially plausible in the context of a randomized
trial of a drug whose access is restricted to units assigned to take it, implying
Di�0� = 0 for all i, as in the application in Section 6 and in Zelen (1979) and
Bloom (1984). Given monotonicity, there are no defiers, C �d� is empty, and
consequently the two distributions gd0 and gd1 are irrelevant, and DACE is
not defined. The correct Bayesian analysis follows from (5)–(10) with ωd = 0
and C �d� empty.
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Given the four assumptions (SUTVA, random assignment, the weak exclu-
sion restriction and strict monotonicity), the assignment indicator is called
an instrumental variable in the econometric literature, and in this case
there is a simple relation between CACE and the two simple ITT effects:
CACE=ITTY/ITTD. This relation between the population ITT estimands and
CACE under the four assumptions, and its role in econometric instrumental
variables procedures, is the focus of Angrist, Imbens and Rubin (1996), which
also discusses alterations in this relation due to violations of these assump-
tions. An important advantage of our Bayesian analysis is that neither the
exclusion restriction nor the monotonicity assumption is essential, and con-
sequently violations of these assumptions are easily addressed, as illustrated
in the next section.

6. An application with real data and binary outcomes. In this sec-
tion we apply our analysis to data from a randomized community trial of the
impact of vitamin A supplements on children’s survival. The data set is the
same as in Sommer and Zeger (1991) and is displayed in Table 3. In this
trial, villages in Indonesia were randomly assigned to receive or not to re-
ceive vitamin supplements. Although no subjects from the villages assigned
not to receive the supplements in fact received them, a number of subjects
from villages assigned to receive the supplements did not receive them. In
our notation, Di�0� = 0 but Di�1� = 0 or 1. Monotonicity is therefore satisfied
and there are only compliers and never-takers. Although taking account of the
clustering resulting from randomization at the village rather than the individ-
ual level is straightforward using hierarchical extensions of our basic model,
because indicators for the village are not available to us we do not model
the dependence between individuals from the same village. The outcome is
binary—death is 0 and survival is 1.

With binary outcomes and no defiers or always-takers, there are five
relevant scalar parameters in total (ignoring, as discussed in Section 3,
the association parameters): four probabilities for the outcome distributions
(ηc0; ηc1; ηn0; ηn1� and one probability for the distribution of the type indi-
cator, ω = ωc = Pr�Ci = c�π�; the probability of never-takers is ωn = 1 − ω.

Table 3
Sommer–Zeger vitamin supplement data

Vitamin
Assignment supplements Survival Number of units

Type Zobs; i Dobs; i Yobs; i (Total 23,682)

Complier or never-taker 0 0 0 74
Complier or never-taker 0 0 1 11,514
Never-taker 1 0 0 34
Never-taker 1 0 1 2,385
Complier 1 1 0 12
Complier 1 1 1 9,663
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The estimand of primary interest is the superpopulation complier average
causal effect ηc1 − ηc0, but we shall also be interested in the superpopulation
analogue of ITT�n�Y , ηn1 − ηn0.

BecauseDi�0� = 0 for all i, implying ωd = ωa = 0, the posterior distribution
of π in (5)–(7) becomes

p�π�Zobs;Dobs;Yobs�
∝ p�π�

∏

i∈S �1;0�
ωng

i
n1

∏

i∈S �1;1�
ωcg

i
c1

∏

i∈S �0;0�

(
ωcg

i
c0 +ωngin0

)
:(11)

Assuming prior independence of the parameters, the complete-data posterior
distribution of π, given in (9) for the general case, can be written as the product
of five distributions, one for ω,

p�ω�C;Zobs;Dobs;Yobs� ∝ p�ω�ωNc�1−ω�Nn;(12)

and four for the distributions indexed by t = n; c and z = 0;1,

p�ηtz�C;Zobs;Dobs;Yobs� ∝ p�ηtz�
∏

�C �t�∩S �z; ·��
η
Yobs; i
tz �1− ηtz��1−Yobs; i�;(13)

where we substituted η
Yobs; i
tz �1−ηtz��1−Yobs; i� for gitz. All five conditional poste-

rior distributions are easy to draw from for conjugate Beta prior distributions.
The conditional type probabilities given observed variables are, simplifying
the results in Table 2 to reflect the absence of both defiers and always-takers,

Pr�Ci = c�Zobs; i;Dobs; i;Yobs; i; π�

=





0; if i ∈ S �1;0�;
1; if i ∈ S �1;1�;
ωcg

i
c0/�ωcgic0 +ωngin0�; if i ∈ S �0;0�;

and Pr�Ci = n�Zobs; i;Dobs; i;Yobs; i; π� = 1−Pr�Ci = c�Zobs; i;Dobs; i;Yobs; i; π�.
First, we calculate the maximum likelihood estimate (MLE) of π and

CACE = ηc1 − ηc0 for the data in Table 1 without imposing the exclusion re-
striction. The likelihood function is maximized at ω = �9663+12�/�9663+12+
2385+34� = 0:800, ηn1 = 2385/�34+2385� = 0:986, ηc1 = 9663/�12+9663� =
0:999, ηc0 ∈ �0:800×11514−0:200×74�/�0:800×�74+11514��;1� = �0:992;1�
and ηn0 ∈ ��0:200×11514−0:800×74�/�0:200×�74+11514��;1� = �0:968;1�.
There is no unique solution for ηn0 and ηc0, but rather a region of values
at which the likelihood function is maximized. The MLE for ηc1 − ηc0 =
�−0:001;0:007�.

Second, in Figure 1 we approximate the posterior distribution for the CACE,
with uniform prior distributions over the legitimate parameter spaces. The
vertical lines in this figure indicate the 90% interval �−0:0009;0:0070� based
on the histogram estimate of the exact posterior distribution obtained using
1000 iterations from each of 20 independent runs of the DA algorithm, with
the first 500 iterations discarded. The starting values for all parameters for
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Fig. 1. Histogram of CACE without exclusion restriction �data from Table 3�.

each run were drawn from uniform distributions over the appropriate pa-
rameter space. The analysis and inspection of the iterations were based on
the Gelman–Rubin (1992) criteria for convergence. The shape of the posterior
distribution suggests that the CACE is likely to be in the range −0:0012 to
0:0071, but that the data are not informative about the relative likelihood
of values within that range, which is expected because the MLE of CACE is
the interval �−0:001;0:007�. In Figure 2 we also approximate the posterior
distribution for ITT�n�Y .

Third, we impose the exclusion restriction, which requires that ηn = ηn0 =
ηn1. The only part of the Gibbs sampler that is affected is the replacement of
the two conditional distributions for never-takers by the single distribution

p�ηn�C;Zobs;Dobs;Yobs� ∝ p�ηn�
∏

i∈C �n�
η
Yobs; i
n �1− ηn��1−Yobs; i�:(14)

The posterior distribution given the exclusion restriction is approximated by
the histogram in Figure 3. Now the posterior distribution is not only much
tighter but also well approximated by a normal distribution. In this case
the unique MLE for CACE is 0.0032 (3.2 per 1000), and the 90% interval
is �0:0012;0:0051�. For comparison purposes, mortality in the entire sample
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Fig. 2. Histogram of ITT�n�Y without exclusion restriction �data from Table 3�.

is 5.1 per 1000, and the posterior mean of mortality for compliers with and
without vitamin A is 1.2 and 4.5 per 1000, respectively, implying that the
point estimates under the exclusion restriction suggest a reduction in mortal-
ity of 65%. The solid line in this figure represents the normal approximation
to the posterior distribution around the MLE using the information matrix as
the basis of the variance. Sommer and Zeger call CACE in this example the
“attributable risk.”

Table 4 summarizes the results for CACE with and without the exclusion
restriction. We also present the posterior distribution for the superpopulation
ITT�n�Y , the average ITT effect of Z on Y for never-takers. Under the exclusion
restriction, ITT�n�Y is forced to be equal to 0, but without the exclusion restric-
tion, ITT�n�Y has a nondegenerate posterior distribution, which turns out to be
centered around 0 for these data, lending credibility to the exclusion restric-
tion. Moreover, ITT�n�Y has a joint posterior distribution with CACE, displayed
in Figure 4, which suggests that, even without the exclusion restriction, in
order to believe that receipt of vitamin A has a negative effect on survival
for compliers, we must believe that assignment to receive vitamin A must
have a strong positive effect for never-takers. This combination of hypotheses
appears implausible, suggesting that even without making the exclusion re-
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Fig. 3. Histogram of CACE with exclusion restriction �data from Table 3�.

striction, one can be confident that receipt of vitamin A has a positive effect on
survival.

Following a suggestion by a referee, we calculated for comparison purposes
the bounds on the population average causal effect of receipt of treatment
proposed by Robins (1989), Manski (1990) and Balke and Pearl (1994), which
are obtained by letting the outcomes for never-takers given receipt of vitamin
A range from “all survived” to “all died.” For the Sommer–Zeger data, given

Table 4

Posterior distribution for superpopulation CACE and ITT�n�Y for Sommer–Zeger data set: increase
in survival rates per 1000 units �overall survival rate in sample is 994:9 per 1000; i.e.; mortality

rate is 5:1 per 1000�

Exclusion Standard 5th 95th
Estimand restriction Mean deviation Median percentile percentile

CACE No 3.1 2.5 3.2 −0.9 7.0

ITT�n�Y No 0.5 10.1 0.2 −14.1 17.5

CACE Yes 3.1 1.2 3.1 1.2 5.1
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Fig. 4. Joint posterior distribution of CACE and ITT�n�Y �data from Table 3�.

SUTVA, random assignment, the exclusion restriction and monotonicity, point
estimates of the Robins–Manski–Balke–Pearl lower and upper bounds on the
effect of vitamin A on survival rates are −0.1946 and 0.0054, respectively,
implying that administering vitamin A to the entire population could reduce
mortality by 5.4 per 1000 or increase it by as much as 194.6 per 1000. Under
exactly the same assumptions, our point estimate for the average effect for
compliers, given in Table 4, is a 3.1 per 1000 reduction in mortality, with a 90%
posterior interval of �1:2;5:1�. The reason for the enormous width of the range
encompassed by these bounds, and for its centering at an extremely high level
of mortality, is the focus on the population rather than the complier average
combined with the lack of restrictions on mortality for the approximate 20%
of the population who are estimated to be never-takers in this experiment.

7. An artificial example with continuous outcomes. We now consider
the case with continuous outcomes, assuming normal distributions with den-
sity indicated by φ�·�. The approach, however, is as described in Section 4: we
use EM and DA to capitalize on the straightforward complete-data analysis.
In this section we focus on the properties of the posterior distribution under
both monotonicity and the exclusion restriction, thereby assuming ωd = 0 and
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gin = gin0 = gin1 and gia = gia0 = gia1. These assumptions, as well as normal-
ity, are assumed to hold in the population as well as in the model used for
analyzing the sample.

The parameter π is, given monotonicity and the exclusion restriction,
�ωc;ωn;ωa, ηc0µ; ηc0σ ; ηc1µ, ηc1σ ; ηnµ; ηnσ ; ηaµ, ηaσ�, where the subscripts µ
and σ indicate the mean and standard deviation, respectively. The posterior
distribution of π is as in (5)–(7) with gicz = φ��Yobs; i − ηczµ�/ηczσ�/ηczσ for
z = 0;1, and git = φ��Yobs; i − ηtµ�/ηtσ�/ηtσ for t = n;a; and ωd = 0. For
computation, we turn to the complete-data posterior distribution of π, which,
assuming appropriate prior independence of the parameters, can be written
as the product of five factors:

p�ωc;ωn;ωa�C;Zobs;Dobs;Yobs� ∝ p�ωc;ωn;ωa�ωNc
c ω

Nn
n ωNa

a ;

p�ηcz�C;Zobs;Dobs;Yobs� ∝ p�ηcz�
∏

i∈C �c�∩S �z;·�
gicz for z = 0;1;

p�ηt�C;Zobs;Dobs;Yobs� ∝ p�ηt�
∏

i∈C �t�
git for t = n;a:

All five posterior distributions are easy to draw from for conventional conju-
gate prior distributions because they involve only Dirichlet, normal and in-
verse chi-squared posterior distributions. Also in this normally distributed
outcome case, the components of the conditional distribution of C given Zobs,
Dobs and Yobs are easy to draw from.

We illustrate this analysis in two ways. First, we analyze a specific data
set from a known population. In Table 5 we give the underlying parameters
of a hypothetical infinite population where CACE is the difference in means
of the two complier distributions, 0:9 − 0:1 = 0:8. We drew a single data
set containing 100 observations, generated according to the joint distribution
in Table 5, subject to a completely randomized design, 50 observations with
Zi = 1 and 50 with Zi = 0. Table 6 presents the global joint MLE’s of the
parameters, which imply ĈACE = η̂c1µ − η̂c0µ = 0:955− �−0:054� = 1:009.

In Figure 5 we present a histogram estimate of the posterior distribution of
CACE for this artificial data set; also presented are two alternative estimates
of this posterior distribution. The solid line represents the normal approxima-
tion to the posterior distribution based on the information matrix calculated
using second derivatives of the logarithm of the likelihood function at the

Table 5
Hypothetical population distribution

t P�Ci 5 t���p� Di�0� Di�1� Yi ���Ci 5 t; Zi 5 0;p Yi ���Ci 5 t; Zi 5 1;p

c ωc = 0:25 0 1 N�0:1;0:16� N�0:9;0:49�
n ωn = 0:45 0 0 N�1:0;0:25� N�1:0;0:25�
a ωa = 0:30 1 1 N�0:0;0:36� N�0:0;0:36�
d ωd = 0:00 1 0 — —
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Table 6

Maximum likelihood estimates for a data set from the population distribution in Table 5 with
50 units assigned Zi = 0 and 50 assigned Zi = 1 under the monotonicity condition and the ex-

clusion restriction

Ci P�Ci ���p� Di�0� Di�1� Yi�0����Ci;p Yi�1����Ci;p

c ωc = 0:264 0 1 N�−0:054;0:007� N�0:955;0:124�
n ωn = 0:482 0 0 N�0:752;0:395� —
a ωa = 0:254 1 1 — N�−0:054;0:357�

global MLE: N�1:009;0:144�. The dashed line represents the normal approx-
imation of the posterior distribution of the ratio ITTY/ITTD around the ratio
of the ITT estimates based on treatment–control average differences. More
formally, define Y1 =

∑
Yobs; iZobs; i/N1 and Y0 =

∑
Yobs; i�1 − Zobs; i�/N0

with estimated variances Var�Y1� =
∑
Zobs; i�Yobs; i −Y1�2/N2

1 and Var�Y0� =∑ �1−Zobs; i��Yobs; i −Y0�2/N2
0, and analogously for D1 and D0, where N1 =∑

Zobs;i and N0 =
∑�1 −Zobs; i� are the number of observations assigned to

treatment and control, respectively. Then ÎVE = ÎTTY/ÎTTD, where the two

Fig. 5. Estimates of the posterior distribution of CACE under exclusion restriction and monotonic-
ity condition �data analyzed in Table 6�: histogram is based on simulation, solid line is normal
approximation based on mle, dashed line is normal approximation based on ÎVE.
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intention-to-treat estimates are ÎTTY = Y1 −Y0 and ÎTTD = D1 −D0, with
estimated variance for the large-sample approximation to the distribution of
ÎVE equal to

Var�ÎVE� =
(
Var�ÎTTY�ÎTT

2
D + Var�ÎTTD�ÎTT

2
Y

− 2 Cov�ÎTTY; ÎTTD�ÎTTYÎTTD
)/

ÎTT
4
D;

where

Var�ÎTTY� = Var�Y1� + Var�Y0�;
Var�ÎTTD� = Var�D1� + Var�D0�

and

Cov�ÎTTY; ÎTTD� =
∑
Zobs; i�Yobs; i −Y1��Dobs; i −D1�/N2

1

+
∑
�1−Zobs; i��Yobs; i −Y0��Dobs; i −D0�/N2

0:

The ÎVE with its associated standard error is widely used in the econometric
literature where it is known there as the instrumental variables estimate [e.g.,
Bowden and Turkington (1984)].

The two normal approximations presented in Figure 5, and in fact any such
normal approximations to the posterior distribution of CACE, are poor. The
normal approximation around the MLE fits the local region around the mode
of the posterior distribution well, but cannot cope with the thick left tail of
the actual posterior distribution. The 90% interval based on the normal ap-
proximation is �0:77;1:25�, including considerably less than 90% of the actual
posterior distribution. The 90% interval based on the normal approximation
to the posterior distribution of ITTY/ITTD is much wider �−0:12;1:72�, but
also fails to correspond accurately to the central 90% posterior interval.

We illustrate our analysis in a second way by presenting an evaluation
of the repeated sampling operating characteristics of our proposed Bayesian
procedures, including a comparison with the two alternatives from Figure 5.
Repeatedly, we drew a sample of size 100 from the population distribution of
Table 5, with 50 units randomly assigned Zi = 1 and 50 assigned Zi = 0.
For each sample we also calculated the MLE and constructed a large-sample
90% confidence interval based on the normal approximation to the sampling
distribution already used in constructing the solid line in Figure 3, as well
as the econometric instrumental variables estimator and a 90% confidence
interval based on the normal approximation to its sampling distribution using
the same procedure as used in constructing the dashed line in Figure 3. For
each sample we also calculated the posterior mean, median and the central
90% probability interval, based on a single Gibbs run of length 5000, started at
the MLE’s (earlier work based on multiple runs supported the propriety of the
single-run approach in this case). For each estimator we then calculated over
the repeated samples, its average, its median, its root mean squared error,
its median absolute error and the coverage rate of its associated central 90%
probability interval. Table 7 presents the results for 1000 replications.
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Table 7

Operating characteristics of various procedures under the monotonicity condition and the
exclusion restriction for replications from the population of Table 5 with 50 units assigned Zi = 0

and 50 assigned Zi = 1

90% interval

Mean Median Root mean Median Coverage Median
Estimator bias bias squared error absolute error rate width

Posterior mean −0.10 −0.07 0.48 0.30
Posterior median −0.08 −0.06 0.51 0.32

0.91 1.61

MLE −0.14 −0.12 0.51 0.31 0.74 1.11
IVE 0.55 0.13 2.31 0.54 0.91 2.78

The posterior mean and median are clearly superior to the standard IV
estimator in terms of accuracy and width of their associated 90% interval
estimates. Compared to the MLE, the posterior mean and median are both
slightly more accurate, but a more substantial advantage is the dramatically
superior frequency coverage rate of their associated nominal 90% interval.

8. Conclusions. In this paper we apply the phenomenological Bayesian
approach of Rubin (1978a) to develop a framework for obtaining Bayesian
causal inferences in a randomized experiment with noncompliance. We demon-
strate that our proposed method for inference for causal effects can proceed
with and without additional assumptions on the compliance behavior (the
monotonicity assumption) or on the effect of assignment on outcome for those
whose treatment status is not affected by assignment (the exclusion restric-
tion). Without these assumptions, inference, although straightforward in our
approach, can be imprecise even in large samples. With these assumptions,
one can estimate the complier average causal effect more accurately using
our approach than using the standard econometric instrumental variables ap-
proach or other methods previously presented, as illustrated by our simulation
experiment.

Although the illustrations provided are necessarily limited, the general de-
velopments are more widely applicable, as we view randomized trials with
noncompliance as a bridge between randomized trials and observational stud-
ies. This view appears to be shared by Breslow, who writes “: : : the most im-
portant use of causal analysis may lie in the interpretation of results from
randomized intervention trials that have substantial noncompliance” [Bres-
low (1996), page 26]. A number of extensions to the basic model are likely to
be particularly relevant in practice.

First, typically researchers will have observations on covariates in addition
to the outcome of interest, the treatment and the assignment. Covariates are
incorporated into our model by making the outcome distributions gtz�y�ηtz�
and the probabilities ωt depend on these covariates, thereby serving three pur-
poses. First, covariates make inference conditional and therefore more precise
as in any setting. Second, they make inferences more specific by estimating dif-
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ferent average treatment effects for subpopulations indexed by the covariates.
Third, they allow a more precise partitioning of the sample into compliers,
always-takers, never-takers and defiers; when covariates are good predictors
of compliance status, assignment is highly correlated with treatment status,
conditional on this covariate, and sharper statements are possible concerning
treatment effects in the subpopulation of compliers.

A second group of extensions involves modeling the clustering of units,
which is often present because commonly the randomization takes place at
a level different from the unit of observation. For example, McDonald, Hiu
and Tierney (1992) consider a study where randomly selected doctors were en-
couraged to vaccinate at-risk patients against influenza. Clustering is modeled
using common parameters for units in the same clusters, where the across-
cluster parameters are linked together in a hierarchical model. Such an anal-
ysis would have been employed for the Sommer–Zeger data in Section 6 if
clustering indicators had been available.

Third, the treatment received need not be binary: it is often the case that
units take different dosages of the treatment, and so even if Zi is binary, Di

is not. Efron and Feldman (1991) discuss such a case with both partial com-
pliance and a binary assignment measured, but they assume that compliance
under assignment to placebo reveals what compliance under assignment to
the active treatment would have been. Avoiding this assumption, one can ex-
tend the basic model in Angrist, Imbens and Rubin (1996) along the lines of
Angrist and Imbens (1995) and Angrist, Graddy and Imbens (1995) to allow
for variable levels of the treatment while still maintaining or relaxing the
assumption that, at the unit level, the only way the assignment affects the
outcome of interest is through the level of the treatment. Such models will
lead to more complex mixture structures than the one discussed in this paper,
but ones where the payoff to using the phenomenological Bayesian approach
could be even more substantial.
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