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Growth mixture models (GMMs) with nonignorable missing data have drawn

increasing attention in research communities but have not been fully studied. The

goal of this article is to propose and to evaluate a Bayesian method to estimate the

GMMs with latent class dependent missing data. An extended GMM is first pre-

sented in which class probabilities depend on some observed explanatory variables

and data missingness depends on both the explanatory variables and a latent class

variable. A full Bayesian method is then proposed to estimate the model. Through

the data augmentation method, conditional posterior distributions for all model

parameters and missing data are obtained. A Gibbs sampling procedure is then

used to generate Markov chains of model parameters for statistical inference. The

application of the model and the method is first demonstrated through the analysis

of mathematical ability growth data from the National Longitudinal Survey of

Youth 1997 (Bureau of Labor Statistics, U.S. Department of Labor, 1997). A

simulation study considering 3 main factors (the sample size, the class probability,

and the missing data mechanism) is then conducted and the results show that

the proposed Bayesian estimation approach performs very well under the studied

conditions. Finally, some implications of this study, including the misspecified

missingness mechanism, the sample size, the sensitivity of the model, the number

of latent classes, the model comparison, and the future directions of the approach,

are discussed.

Longitudinal data analysis (LDA) has become widely used in medical, so-

cial, psychological, and educational research to investigate both intraindividual
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568 LU, ZHANG, LUBKE

changes over time and interindividual differences in changes (e.g., Demidenko,

2004; Fitzmaurice, Laird, & Ware, 2004; Hedeker & Gibbons, 2006; Singer &

Willett, 2003). LDA involves data collection on the same participants through

multiple wave surveys or questionnaires (e.g., Baltes & Nesselroade, 1979), so

heterogeneous data are very common in practical research in these fields (e.g.,

McLachlan & Peel, 2000). In other words, the data collected often come from

more than one distribution with different population parameters. Furthermore,

during longitudinal data collection, missing data are almost inevitable because

of dropout, fatigue, and other factors (e.g., Little & Rubin, 2002; Schafer,

1997).

Growth mixture models (GMMs) have been developed to provide a flex-

ible approach to analyzing longitudinal data with mixture distributions (e.g.,

Bartholomew & Knott, 1999) and received a lot of attention in the literature.

GMMs are combinations of finite mixture models (e.g., Bartholomew & Knott,

1999; Luke, 2004; McLachlan & Peel, 2000; Yung, 1997) and latent growth

curve models (LGCs; e.g., Preacher, Wichman, MacCallum, & Briggs, 2008;

Singer & Willett, 2003; Willett & Sayer, 1994). They can also be viewed as

special cases of latent variable mixture models (Lubke & Neale, 2006) that allow

patterns in the repeated measures to reflect a finite number of trajectory types,

each of which corresponds to an unobserved or latent class in the population

(e.g., Elliott, Gallo, Have, Bogner, & Katz, 2005; Muthén & Shedden, 1999).

For a comprehensive introduction to finite mixture model theory and recent

advances, see McLachlan and Peel (2000).

An important issue in the analysis of GMMs is the presence of missing

data (e.g., Little & Rubin, 2002; Schafer, 1997). Little and Rubin (2002) dis-

tinguished three different missing data mechanisms: (1) missing completely at

random (MCAR), (2) missing at random (MAR), and (3) missing not at random

(MNAR). MCAR is a process in which data missingness is independent of both

observed and unobserved outcomes. For MAR, data missingness may depend on

observed outcomes but not on unobserved outcomes. If missingness depends on

unobserved outcomes or some unobserved latent variables in the fitted model,

then the missingness mechanism is MNAR.

For example, in a pretest-posttest study, some students may drop out of

the study after taking the pretest, and thus there are missing data due to their

withdrawals. For these students, the pretest scores are observed outcomes and

the posttest scores are unobserved potential outcomes. If the dropout is due to

a family’s move, then the missing mechanism is independent of both pretest

and posttest scores; therefore it can be viewed as MCAR. If the dropout is

due to a low pretest score, then the missingness depends on the pretest score

but not on the posttest score and therefore it is MAR. If the dropout is due to

poor performance on the posttest, then the dropout depends on the unobserved

posttest score and therefore it is MNAR. If there are several latent classes in the
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BAYESIAN GMMS WITH LATENT CLASS DEPENDENT MISSINGNESS 569

study and the dropout is due to the latent class membership, then the dropout

should also be MNAR.

The MCAR and MAR mechanisms are often referred to as ignorable miss-

ingness mechanisms because either the parameters that govern the missing

process are distinct from the parameters that govern the model outcomes or the

missingness depends on some observed variables, and therefore the likelihood-

based estimates are generally consistent if the missing data mechanism is ignored

(Little & Rubin, 2002).

The MNAR mechanism, on the contrary, is a nonignorable missingness

mechanism (Little & Rubin, 2002). When the assumption of ignorable miss-

ingness mechanisms is untenable, it becomes necessary to model missingness

mechanisms that contain information about the parameters of the complete data

population.

Focusing on the nonignorable missingness mechanism, methods and models

are available in dealing with missing data. When data come from a single

population, there are two possible types of nonignorable missingness: outcome

dependant (OD) missingness and latent variable dependent (LVD) missingness.

OD missingness occurs when data missingness depends on the unobserved out-

comes. For example, Diggle and Kenward (1994) proposed a selection model for

continuous longitudinal data subject to nonignorable dropout where missingness

on the current occasion is dependent on the historical observations and the

current outcome that would be observed if the participant did not drop out. LVD

missingness occurs when data missingness depends on some latent variables

within the population, such as latent factors, latent slopes, or other latent random

effects. For example, Wu and Carroll (1988) and Wu and Bailey (1989) modeled

the informative right censoring process where the missingness depends on the

latent rate of change. OD and LVD missingness may occur simultaneously when

missingness depends on both unobserved outcomes and some latent variables.

For example, Lee and Tang (2006) and Song and Lee (2007) proposed a Bayesian

method for structural equation models (SEMs; e.g., Bollen, 1989; Lee, 2007)

with nonignorable missingness in which the missingness may depend on the

potential outcomes and the related latent variables.

When data come from mixture models, the nonignorable missingness could

be OD or/and LVD missingness within mixture components and latent class

dependent (LCD) missingness in which data missingness depends on latent

random class membership. Studies that have contributed greatly to combining

finite mixture models and different types of nonignorable missingness include

Cai and Song (2010) and Cai, Song, and Hser (2010). Cai & Song extended

Lee and Tang’s (2006) single SEM with nonignorable missingness to mixture

SEMs with nonignorable missingness. Cai et al. further extended the mixture

SEMs to allow for missing responses in both missing outcomes and missing

covariates.
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570 LU, ZHANG, LUBKE

The LCD missingness is an important issue in both theoretical and practical

research. For example, Roy (2003) proposed a pattern mixture method to study

nonignorable dropout where dropout time is related to the latent class member-

ship. Frangakis and Rubin (1999) studied nonignorable nonresponses in a broken

randomized pretest-posttest experiment by introducing a partial observed class

variable, compliance, and obtained normal approximations of estimators under a

series of assumptions. Using the compliance variable, Barnard, Frangakis, Hill,

and Rubin (2003) studied a real data case by adopting a partial pattern mixture

model to deal with missingness through Bayesian methods. Note that the LCD

missingness is nonignorable because the class membership in mixture models

is a latent variable, so LCD can be viewed as a special LVD missingness in

mixture models.

Attrition in GMMs is very common for real data and therefore it is very

important to evaluate missing data methods for GMMs. However, in the frame-

work of GMMs, there is rare work discussing how to deal with nonignorable

missingness and even less how to model the LCD missingness in GMMs.

In an unpublished webnote, Muthén and Brown (2001) extended the GMMs

introduced by Muthén and Shedden (1999) to deal with missing data. As a

reaction to Barnard et al.’s (2003) paper, Muthén, Jo, and Brown (2003) switched

from pretest-posttest models to GMMs and discussed possible approaches to

bring together GMMs with missing data with latent variables.

In addition, most of previous studies rely on maximum likelihood methods

for parameter estimation and carry out inferences through conventional likeli-

hood procedures. Bayesian methods provide great advantages in the analysis of

complex models with complicated data structure (e.g., Ansari, Jedidi, & Jagpal,

2000; Dunson, 2000; Scheines, Hoijtink, & Boomsma, 1999), and the application

of Bayesian methods in psychological research has recently become popular

through its usage by Lee and colleagues (e.g., Lee, 2007; Lee & Shi, 2000; Lee

& Tang, 2006; Song & Lee, 2007; Zhu & Lee, 2001).

The goal of this article is to propose and evaluate a Bayesian approach

to estimating GMMs with nonignorable missingness with a focus on LCD

missingness in GMMs. Specifically, the model evaluated in this study allows

(a) observed covariates to predict the class probability and (b) the latent class

membership and observed covariates to predict missingness on each occasion.

This model implies that on each occasion, conditional on the class mem-

bership, the missingness given observed covariates is independent of potential

outcomes. The missingness represents a form of latent ignorability (LI; Frangakis

& Rubin, 1999), which states that, within each latent class, potential outcomes

and associated potential response indicators are independent. LI is widely used

in the analysis of broken randomized experiment for intent-to-treatment (ITT)

effect and complier average causal effect (CACE; e.g., Barnard et al., 2003;

Coronary Drug Project Research Group, 1980; Taylor & Zhou, 2009).
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BAYESIAN GMMS WITH LATENT CLASS DEPENDENT MISSINGNESS 571

The rest of the article consists of five sections. The first describes an extended

GMM where class probabilities and nonignorable missingness are modeled.

The second presents the estimation of such a GMM through a full Bayesian

estimation method utilizing data augmentation and Gibbs sampling algorithms.

The third illustrates the application of the model and method through the analysis

of mathematical ability growth data from the National Longitudinal Survey of

Youth 1997 (NLSY97; Bureau of Labor Statistics, U.S. Department of Labor,

1997). The fourth presents a simulation study to evaluate the performance of

the model and the Bayesian estimation method. The last section discusses the

implications and future directions of this study. In addition, the Appendices

present some technical details.

EXTENDED GMMS WITH LCD MISSING DATA

In this section, we present the proposed extended GMM with LCD missing data.

Although focusing on the LCD missingness in this article, the model is very

flexible and can be easily modified to cover a variety of missing mechanisms. The

path diagram of the model is illustrated in Figure 1. In the diagram, each small

square represents an observed variable, each circle represents a latent variable,

a circle inside of a square represents an outcome variable with possible missing

values, and the triangle represents a constant. The details of the proposed model

are given as follows.

Latent Growth Curve Models (LGCs)

In Figure 1, the path diagram inside each component, the big square, illustrates

an LGC model. Suppose that in a longitudinal study there are N subjects and

T measurement occasions or time points. For individual i (i D 1; 2; : : : ; N ),

let yi be a T � 1 random vector yi D .yi1; yi2; : : : ; yiT /0 where yi t stands for

the outcome or observation on occasion t (t D 1; 2; : : : ; T ), and let ˜i be a

q � 1 random vector containing q continuous latent variables. An LGC of the

outcome yi related to the latent ˜i can be expressed as

yi D ƒ˜i C ei ; (1)

where ƒ is a T � q matrix consisting of factor loadings and ei is a T � 1 vector

of residuals or measurement errors that are assumed to follow a multivariate

normal distribution ei � MNT .0; ‚/.1 If we assume residual variances are

1Throughout the article, MNn denotes an n-dimensional multivariate normal distribution.
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572 LU, ZHANG, LUBKE

FIGURE 1 Path diagram of a growth mixture model with latent class dependent missing

data. mt indicates the missingness status of the corresponding yt . mt D 1 implies yt is

missing and mt D 0 implies yt is observed. xr s are covariates. p.mt / depends on xr s and

the class membership c, and c is predicted by covariates xr s. The growth mixture model

takes the k th component with a probability of  k .

invariant over time, then the covariance matrix ‚ D I
T
¥, where ¥ is a scalar

and I
T

is a T � T identity matrix. The matrix ƒ and the vector ˜i determine

the growth trajectory of the model. For instance, when q D 2, ˜i D .li ; si/
0,

and ƒ is a T � 2 matrix with the first column full of 1s and the second column

being .0; 1; : : : ; .T � 1//, the corresponding model represents a linear growth

model in which li is the latent random level (or intercept) and si is the latent

random slope for individual i . Furthermore, when q D 3, ˜i D .li ; si ; qi/
0,

and ƒ is a T � 3 matrix with the first column full of 1s, the second column

being .0; 1; : : : ; .T � 1//, and the third column being .0; 1; : : : ; .T � 1/2/, the

corresponding model represents a quadratic growth curve model in which li is

the latent random level (or intercept), si is the latent random slope, and qi is a

latent random quadratic coefficient for individual i .

We further assume

˜i D “ C Ÿi ; (2)
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BAYESIAN GMMS WITH LATENT CLASS DEPENDENT MISSINGNESS 573

where Ÿi are q � 1 vectors following a multivariate normal distribution Ÿi �

MNq.0; ‰/. “ is called fixed effect and Ÿi is called random effect (e.g., Fitzmau-

rice et al., 2004; Hedges, 1994; Luke, 2004; Singer & Willett, 2003).

By combining Equation (1) and Equation (2), under the normality assump-

tions of both ei and Ÿi and the independence assumption between ei and Ÿi , we

have

yi � MN
T
.�; †/;

where � D ƒ“ and † D ƒ‰ƒ0 C ‚.

Growth Mixture Models (GMMs)

In Figure 1, a GMM is illustrated by the LGC components and a latent cate-

gorical variable c, which stands for the latent class membership. GMMs assume

that yi follows a mixture of K distributions with each component distribution

being a trajectory class (but see Lubke & Neale, 2008, for a discussion). The

mixing proportions are also called class probabilities or weights. The density

function of yi is

p.yi / D

K
X

kD1

 k pk.yi /; (3)

where p
k
.yi /.k D 1; : : : ; K/ are component LGC densities, and  k are class

probabilities satisfying 0 �  k � 1 and
PK

kD1  k D 1 (McLachlan & Peel,

2000).

If each mixture component p
k
.yi / is further assumed a multivariate normal

distribution MNT .�k ; †k/ where �k D ƒk“k and †k D ƒk‰kƒ0
k C ‚k , then

Equation (3) can be further expressed as a parametric finite normal GMM (e.g.,

Jordan & Xu, 1995),

p.yi/ D

K
X

kD1

 k MNT .yi I “k ; ‰k; ‚k ; ƒk/: (4)

For different trajectory classes, “k , ƒk , ‰k , and ‚k may be different. The

class-specific parameters reflect different fixed-effects and different random-

effects in GMMs. For example, the overall sample can be a mixture of one

subsample with low initial level and little growth and another subsample with

high initial level and big growth.

Note that the class membership is unknown in mixture models. But this

variable is very important to interpret mixture models. For individual i , the class

membership can be expressed by a single categorical variable ci with ci D k
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574 LU, ZHANG, LUBKE

(k D 1; : : : ; K) when yi comes from the kth mixture component or class. But

in later work, it is convenient to work with a K-dimensional component label

vector zi D .zi1; zi2; : : : ; ziK/0 in place of ci , where zik , the kth element of zi ,

is defined to be one or zero, according to whether or not yi comes from the kth

class. When ci D k, we have zik D 1 and zij D 0 .8j ¤ k/. The vector zi is

distributed according to a multinomial distribution consisting of one draw from

K categories with a probability  k in the kth category,

zi � MultiNomial.1;  1;  2; :::;  K/: (5)

The density function for zi is p.zi / D
QK

kD1  
zik

k .

Extended GMMs

Now we consider extended GMMs in which class probabilities depend on

observed covariates. Notice that the GMM in Equation (4) assumes that the

class probability  k is a constant for each class, although the post hoc posterior

probability can vary for each individual.2 It is interesting to see how  k is related

to some external covariates in the mixture data analysis. For example, in addition

to determining the class membership of each individual, it would be useful to see

how the class membership is related to individuals’ background variables such

as gender and income. Note that if we include the individual variant covariates

into class probability, the model is not a finite mixture anymore because the

class probability is not a constant.

Let  ik (i D 1; 2; : : : ; N I k D 1; 2; : : : ; K) be the probability that individual

i falls into the kth class, and let

•ik D

k
X

j D1

 ij

be the cumulative class probability for individual i falling into the first k classes.

Note that •iK � 1, meaning the total class probability summing up over all K

class probabilities for individual i is 1. With the definition of  ik and •ik , it

is easy to see that when k D 1,  i1 D •i1; when k D 2; 3; : : : ; or; K � 1,

 ik D •ik � •i;k�1 ; and when k D K,  iK D 1 � •i;K�1. In this way, we order

the class probabilities  ik from k D 1 to k D K.

Now we build a categorical regression model (e.g., Agresti, 2002; Long, 1997)

of •ik on covariates by using a probit link function3 (e.g., McCullagh & Nelder,

2Here we have two probabilities that need to be distinguished. The class probability  k is a

class-specific population parameter in the model, whereas the posthoc posterior probability is an

individual variable that is computed for each individual once model parameters have been estimated.
3Note that this is only one way to specify a regression model for categorical variables.
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BAYESIAN GMMS WITH LATENT CLASS DEPENDENT MISSINGNESS 575

1989). Let xi D .xi1; xi2; :::; xir/
0 be a r � 1 vector of observed covariates that

may be related to the class membership; then the probit regression4 is built as

•ik D ˆ.®k0 C x0
i ®k1/ D ˆŒ.1; x0

i/ � .®k0; ®0
k1/0� D ˆ.X 0

i ®k/; (6)

where the scalar ®k0 is an intercept, ®k1 is a r �1 vector representing coefficients

for covariates xi , both Xi D .1; x0
i/

0 and ®k D .®k0; ®0
k1/0 are .1Cr/�1 vectors,

and ˆ.�/ is the cumulative distribution function (CDF) of the standard normal

distribution. Then the class probabilities are

8

ˆ

<

ˆ

:

 i1 D ˆ.X 0
i ®1/;

 ik D ˆ.X 0
i ®k/ � ˆ.X 0

i ®k�1/; .k D 2; 3; : : : ; K � 1/

 iK D 1 � ˆ.X 0
i ®K�1/:

(7)

For convenience, we express Equation (7) as a function  ik D  .®k ; ®k�1; xi/

in the remainder of this article. As a special case, if the model has two classes,

then Equation (7) is simplified as  i1 D ˆ.X 0
i ®1/ and  i2 D 1 � ˆ.X 0

i ®1/.

Extended GMMs With LCD Missing Data

In this subsection, we model the missingness in extended GMMs. We focus

on the LCD missingness. Specifically, the missing data rate on each occasion

depends on both the latent class membership zi and some observed covariates

xi . To make the model more general, we also assume that (a) the missing

pattern is intermittent, namely, participants may return for later assessments

after missing earlier assessments, and (b) the missing data rates are independent

across different occasions.

Let mi D .mi1; mi2; : : : ; miT /0 indicate the missingness status of yi . If yi t

is missing, then mi t D 1. Otherwise, mi t D 0. Let £i t D p.mi t D 1/ be the

probability that yi t is missing. Then, mi t follows a Bernoulli distribution,

mi t � Bernoulli.£i t/: (8)

4Specifically, suppose for each k (k D 1; 2; : : : ; K) there exists an underlying continuous random

variable c�

ik , which follows a normal distribution with mean ®k0 C x
0

i ®k1 and variance 1,

c�

ik D ®k0 C x
0

i ®k1 C ei ;

where ei � N.0; 1/. The outcome yi comes from the first k classes when c�

ik is positive. In other

words,

•ik D P.c�

ik > 0/ D P.ei < ®k0 C x
0

i ®k1/:
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576 LU, ZHANG, LUBKE

With the class membership indicating variable zi , the missing probability £i t

can be expressed as a probit link function of zi and xi ,

£i t D ˆ.z0
i ”zt C x0

i ”xt/ D ˆŒ.z0
i ; x0

i/ � .”0
zt ; ”0

xt /
0� D ˆ.¨0

i ”t /; (9)

where ¨i D .z0
i ; x0

i/
0 and ”t D .”0

zt ; ”0
xt /

0 in which ”zt is a K � 1 vector ”zt D

.”zt1 ; ”zt2 ; : : : ; ”ztK /0 and ”xt is an r � 1 vector ”xt D .”xt1 ; ”xt2 ; : : : ; ”xtr /
0.

From the distribution Equation (8) and Equation (9), we have the density function

of mi t as a function of the class membership zi and observed covariates xi ,

p.mi t / D Œˆ.¨0
i ”t /�

mit Œ1 � ˆ.¨0
i ”t /�

1�mit

D

K
Y

kD1

˚

Œˆ.”ztk C x0
i ”xt/�

mit Œ1 � ˆ.”ztk C x0
i ”xt/�

1�mit

	zik

; (10)

where ”ztk D z0
i ”zt for zik D 1 or ci D k.

For convenience, in the remainder of this article the parameters “, ‰ and ¥

are referred to as the growth curve parameters, and the parameters ® and ” are

referred to as the probit parameters.

BAYESIAN ESTIMATION OF THE PROPOSED MODEL

In this section, we present a full Bayesian estimation approach to the proposed

extended GMMs with LCD missing data. To obtain parameter estimates through

Bayesian inference, we need to calculate the probability of parameters condi-

tionally on the data. As Bayes’s theorem states that the posterior distribution of

the parameters equals the product of the likelihood function of the sample data

and the prior distribution of the parameters divided by the marginal distribution

of the data, which is a constant and does not involve any parameter, the posterior

is proportional to the likelihood times the prior.

Data Augmentation and Likelihood Function

For multidimensional models with missing data, we utilize the data augmentation

method (Tanner & Wong, 1987) to obtain the likelihood function. Data aug-

mentation refers to methods for constructing iterative optimization or sampling

algorithms by introducing unobserved data or latent variables (van Dyk & Meng,

2001), and the idea of adding auxiliary variables is a useful conceptual and

computational tool for many problems (Gelman, Carlin, Stern, & Rubin, 2003).
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BAYESIAN GMMS WITH LATENT CLASS DEPENDENT MISSINGNESS 577

Let yi D .yobs0

i ; ymis0

i /0 where yobs
i and ymis

i denote observed and missing data

for individual i , respectively. The direct observed-data likelihood function of yi

and mi for the i th individual is

Li .™jyi ; mi ; xi/ D

Z

y
mis

i

K
X

kD1

Œ ik pk.yi /p.mi /� dymis
i ;

which is very difficult to evaluate due to the high dimensional integral over an

unspecified mixture structure. So data augmentation method is used by adding

the auxiliary variables, the missing data ymis
i , the class membership vector zi D

.zi1; zi2; :::; ziK/0, and the latent random effects ˜i , to the model. With the help

of auxiliary variables, the joint likelihood function of yi , mi , zi , and ˜i for the

i th individual can be expressed as

Li .™jyi ; mi ; xi ; zi ; ˜i / D

K
Y

kD1

�

 ik p.yi j˜i / p
k
.˜i /p.mi /

�zik :

By combining Equations (1), (2), and (10), the likelihood function for the

whole sample is

L D

N
Y

iD1

Li D

N
Y

iD1

(

K
Y

kD1

"

 ik p.yi j˜i / p
k
.˜i /

T
Y

tD1

p.mi t/

#zik
)

/

N
Y

iD1

K
Y

kD1

f .®k ; ®k�1; xi/

� jIT ¥k j�1=2 exp

�

�
1

2
.yi � ƒk˜i /

0.IT ¥k/�1.yi � ƒk˜i /

�

� j‰kj�1=2 exp

�

�
1

2
.˜i � “k/0‰�1

k .˜i � “k/

�

�

T
Y

tD1

�

ˆ.”ztk C x0
i ”xt/

�mit
�

1 � ˆ.”ztk C x0
i ”xt/

�1�mit

) zik

,

N
Y

iD1

K
Y

kD1

.vik/zik ;

(11)

where “,” means “is defined as.”
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578 LU, ZHANG, LUBKE

Prior and Posterior Distributions

To use Bayesian methods, we need to specify priors for the model parameters.

Lee and Song (2003) found that Bayesian estimation is not sensitive to the prior,

especially for large sample size. In this study, we adopted the conjugate priors

because they are commonly used in the literature of Bayesian analysis (e.g., Lee,

1981; Roeder & Wasserman, 1997; Zhu & Lee, 2001). The model parameters

in this study include the growth curve parameters “k , ‰k , ¥k (k D 1; 2; : : : ; K),

and the probit parameters ®k (k D 1; 2; : : : ; K � 1), ”t (t D 1; 2; : : : ; T ), so

“k and ‰k can use a multivariate normal-inverse Wishart distribution prior, ¥k

can use an inverse Gamma distribution prior, ®k can use a multivariate normal

distribution prior, and ”t can use a multivariate normal distribution prior. In a

simpler manner, we can also directly specify the prior precision of “k instead

of setting it proportional to ‰k. Appendix A lists the details of these prior

distributions.

With the likelihood function and the priors, the joint posterior distribution of

the unknown parameters is readily available. However, the marginal posterior

distributions (Gelman et al., 2003) of the parameters are very hard to obtain

explicitly because of the requirement of high-dimensional integration. Instead,

we first obtain the conditional distributions for the parameters and then utilize

the Gibbs sampling method (Casella & George, 1992; Geman & Geman, 1984)

to generate Markov chains for the parameters and conduct Bayesian inference.

The full conditional posterior distributions for the mixture model parame-

ters are provided by Equation (12)–Equation (18) in Appendix B. In addition,

the conditional posterior distributions for the augmented variable zi , the latent

variable ˜i , and the missing data ymis
i (i D 1; 2; : : : ; N ) are also provided by

Equation (19)–Equation (21), respectively, in Appendix B.

Gibbs Sampling and Statistical Inference

With the conditional posterior distributions obtained earlier, we can generate

Markov chains for the unknown model parameters by implementing a Gibbs

sampling algorithm (Casella & George, 1992; Geman & Geman, 1984). The

Gibbs sampling is a Markov chain Monte Carlo algorithm to obtain a sequence of

samples from a joint probability distribution. Starting with a set of initial guesses

of all these unknown variables, it generates instances from the conditional

distribution of each variable in turn, conditionally on the current values of the

other variables (Geman & Geman, 1984). The sequence of samples constructs

a Markov chain that can be shown ergodic (Geman & Geman, 1984), and thus

after convergence the generated value is actually from the joint distribution of all

parameters. It can also be shown that each variable is also a Markov chain and

converges to the marginal distribution of that variable (Robert & Casella, 2004).
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BAYESIAN GMMS WITH LATENT CLASS DEPENDENT MISSINGNESS 579

Gibbs sampling is especially useful when the joint distribution is complex or

unknown but the conditional distribution of each variable is available.

Specifically in our model, the unknown variables include the model parame-

ters ¥, ‰, “, ®, ”, the augmented variables z, ˜, and missing values ymis . The

following algorithm can be used.

1. Start with a set of initial values for model parameters ¥.0/, ‰.0/, “.0/, ®.0/,

”.0/, z.0/, ˜.0/, and ymis.0/.

2. At the sth iteration, the following parameters are generated: ¥.s/, ‰.s/,

“.s/, ®.s/, ”.s/, z.s/, ˜.s/, and ymis.s/. To generate ¥.sC1/, ‰.sC1/, “.sC1/,

®.sC1/, ”.sC1/, z.sC1/, ˜.sC1/, and ymis.sC1/, the following procedure is

implemented:

i. Generate ¥.sC1/ from the inverse Gamma distribution in Equation (12).

ii. Generate ‰.sC1/ from the inverse Wishart distribution in Equation (13).

iii. Generate “.sC1/ from the multivariate normal distribution in Equa-

tion (14).

iv. Generate ®.sC1/ from the distributions in Equations (15)–(17).

v. Generate ”.sC1/ from the distribution in Equation (18).

vi. Generate z.sC1/ from the multinomial distribution in Equation (19).

vii. Generate ˜.sC1/ from the multivariate normal distribution in Equa-

tion (20).

viii. Generate ymis.sC1/ from the normal distribution in Equation (21).

After convergence, the statistical inference can be conducted based on the

generated Markov chains. Let ™ D .™1; ™2; : : : ; ™p/0 denote a vector of all the

unknown variables in the model. The converged Markov chains can be recorded

as ™.s/; s D 1; 2; : : : ; S , and each parameter estimate O™j .j D 1; 2; : : : ; p/ can

be calculated as O™j D
PS

sD1 ™
.s/
j =S with standard error (SE) obtained as the

standard deviation (SD) of ™j , s:e:. O™j / D

q

PS
sD1.™

.s/
j � O™j /2=.S � 1/. To get

the credible (confidence) intervals, the percentiles of the Markov chains can be

used.

REAL DATA ANALYSIS

In this section, we illustrate the application of the Bayesian GMM model with

missing data through the analysis of mathematical ability growth data from

the NLSY97 survey (Bureau of Labor Statistics, U.S. Department of Labor,

1997). Specifically, data used in the current analysis were collected yearly from

1997 to 2001 on N D 1,510 adolescents. Starting in 1997 when they were 12

years old and in the 7th grade, each adolescent was administered the Peabody
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580 LU, ZHANG, LUBKE

Individual Achievement Test (PIAT) Mathematics Assessment to measure their

mathematical ability. The same adolescents were then measured annually till

2001 when they were 16 years old and in the 11th grade.

Table 1 shows the summary statistics for the data. Overall, the means of

mathematical ability increased over time with a roughly linear trend. The missing

data rates range from 4.57% to 9.47%, and the raw data show the missing pattern

is intermittent. About half of the sample are male (763/1,510 D 50.5%). In order

to investigate the possible number of latent classes, we draw a histogram with

its smoothing density estimate for mathematical ability data at each wave. The

histograms are shown in Figure 2 and clearly show the bi-modes of mathematical

ability for the current sample of adolescents. Therefore, a Bayesian linear GMM

with two latent classes is fitted to the data in the current analysis.

For the sake of comparison, we fit two models to the data. The first one

is the Bayesian GMM model we proposed and assumes that the missing data

are nonignorable, and the second one assumes that the missing data are ignor-

able. For the first model, we evaluate whether missingness is related to class

membership and the covariate sex. Because the purpose of the current analysis

is to demonstrate the application of the proposed Bayesian GMM model, we

adopt the priors discussed earlier with hyperparameters chosen to carry little

prior information for our model parameters (Congdon, 2003; Gill, 2002; Zhang,

Hamagami, Wang, Grimm, & Nesselroade, 2007). Specifically, for ®1, we set

�®1
D 02 and †®1

D 106I2. For ¥k .k D 1; 2/, we set v0k D s0k D 0:002. For

“k , it is assumed that “k0 D 02 and †k0 D 106I2. For ‰k , we define mk0 D 2

and Vk0 D I2. Finally, for ”�
t , we let ”�

t0 D 03 and D�
t0 D 106I3. The starting

values are then set at ®1 D 0, ¥k D 1, “k D 1, ‰k D I2, and ”�
t D 03. In both

prior and starting value specifications, 0d and Id denote a d -dimensional zero

vector and a d -dimensional identity matrix, respectively. For the second model,

the missingness is assumed to be ignorable and therefore there is no estimate for

the missingness parameters. For other model parameters, the same priors and

starting values as those in the first model are used.

TABLE 1

Summary Statistics for PIAT Math Data Set

Grade 7 Grade 8 Grade 9 Grade 10 Grade 11

M 18.147 20.041 21.178 22.465 23.110

SD 6.219 6.526 6.601 6.435 6.643

Missing data (count) 83 69 120 115 143

Missing data (percentage) 5.497 4.570 7.947 7.616 9.470

Male N D 763 Female N D 747
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BAYESIAN GMMS WITH LATENT CLASS DEPENDENT MISSINGNESS 581

FIGURE 2 Histograms of PIAT math scores for five grades.

In generating Markov chains through Gibbs sampling, we use a burn-in period

of 10; 000 iterations.5 For testing convergence, we examine the history plot and

the Geweke’s z statistic (Geweke, 1992)6 for each unknown model parameter. To

make sure all the parameters are estimated accurately, the next 70; 000 iterations7

are then saved for data analysis.

The results for our real data analysis are given in Tables 2 and 3. First, based

on the history plots (two selected history plots are presented in Figure 3), it

seems that each Markov chain converges to its stationary distribution. Second,

the Geweke test statistics for all model parameters are smaller than 1:96, which

also indicates the convergence of Markov chains (Geweke, 1992). Third, the ratio

of Monte Carlo error and standard deviation for each parameter is smaller than

0.05, which indicates parameter estimates are accurate (Spiegelhalter, Thomas,

5With 10,000 burn-ins, the Markov chains for all parameters converged.
6This method tests the convergence of Markov chain by comparing the means of two subsets of

the chain.
7With 70,000 iterations, the ratio of MCse/sd is less than 0.05 for all parameters, which indicates

that the estimates are accurate. An example of inaccurate estimates obtained with 2,000 burn-ins and

5,000 iterations can be found on our website: (http://nd.psychstat.org/research/luzhanglubke2010) for

comparison.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

ot
re

 D
am

e]
 a

t 1
0:

19
 1

3 
Se

pt
em

be
r 

20
11

 



582 LU, ZHANG, LUBKE

TABLE 2

Real Data Analysis Under an Assumption of Latent Class Dependent Missingness

Parameter M SD MCse
MCs:e:

S:D:
CI.La CI.U Geweke t

Growth Curve Parameters

Class 1b

“1Œ1� 25.140 0.176 0.003 0.017 24.790 25.480 0.564

“1Œ2� 1.130 0.039 0.001 0.026 1.055 1.206 �0.307

‰1 Œ11� 5.501 0.687 0.010 0.015 4.265 6.944 0.126

‰1 Œ22� 0.187 0.031 0.000 0.000 0.131 0.253 �0.120

‰1 Œ12� �0.843 0.136 0.002 0.015 �1.127 �0.596 �0.092

¥1 1.904 0.107 0.002 0.019 1.701 2.121 �0.457

Class 2c

“2Œ1� 15.920 0.164 0.002 0.012 15.600 16.250 1.923

“2Œ2� 1.253 0.042 0.001 0.024 1.169 1.335 �0.919

‰2 Œ11� 15.850 1.141 0.019 0.017 13.720 18.170 1.566

‰2 Œ22� 0.402 0.084 0.003 0.036 0.250 0.574 �0.497

‰2 Œ12� 0.805 0.224 0.006 0.027 0.349 1.229 �0.476

¥2 13.310 0.364 0.006 0.016 12.610 14.040 �0.750

Probit Parameters

Class 6

®10
d �0.249 0.115 0.005 0.043 �0.471 �0.024 �0.591

®11 �0.238 0.074 0.003 0.041 �0.387 �0.094 0.463

Grade 7

”�

01
e �1.470 0.181 0.007 0.039 �1.835 �1.116 �0.895

”�

11
0.116 0.134 0.003 0.022 �0.135 0.397 0.344

”x1 �0.150 0.107 0.004 0.037 �0.360 0.065 1.067

Grade 8

”�

02
�2.199 0.229 0.011 0.048 �2.662 �1.771 �1.407

”�

12
0.442 0.190 0.008 0.042 0.093 0.853 1.299

”x2 0.101 0.107 0.004 0.037 �0.113 0.309 1.146

Grade 9

”�

03
�1.346 0.171 0.007 0.041 �1.680 �1.013 �0.835

”�

13
0.199 0.131 0.004 0.031 �0.050 0.466 1.034

”x3 �0.147 0.096 0.004 0.042 �0.333 0.038 0.655

Grade 10

”�

04
�1.662 0.174 0.007 0.040 �2.016 �1.333 0.452

”�

14
0.192 0.131 0.004 0.031 �0.062 0.456 �0.038

”x4 0.054 0.096 0.004 0.042 �0.134 0.244 �0.577

Grade 11

”�

05
�1.507 0.170 0.008 0.047 �1.848 �1.178 �0.854

”�

15
0.417 0.133 0.005 0.038 0.166 0.685 1.389

”x5 �0.089 0.092 0.004 0.043 �0.273 0.088 0.134

aThe significance of parameter estimates can be judged based on the confidence intervals. If zero is included

in the interval, then the parameter estimate is not significantly different from zero. b The growth curve parameters

for Class 1. Specifically, “Œ1�: initial level; “Œ2�: slope; ‰Œ11�: variance of initial level; ‰Œ22�: variance of slope;

‰Œ12�: covariance of initial level and slope; ¥: variance of error. cThe growth curve parameters for Class 2.
d The probit parameters of class proportion as in Equation (6). eThe probit parameters of missing data rate. Note

that although the ”�

0t
and ”�

1t
here are different with the ”zt1

and ”zt2
in Equation (9), they are equivalent after

reparameterizing ”�

0t
D ”zt1

and ”�

1t
D ”zt2

� ”zt1
.

Best, & Lunn, 2003). Overall, we can conclude that the results from our real data

analysis can be used for further inference. For example, the distance between

the two populations with different covariance matrices (Anderson & Bahadur,

1962) can be calculated and it is 2.7.
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BAYESIAN GMMS WITH LATENT CLASS DEPENDENT MISSINGNESS 583

TABLE 3

Real Data Analysis Under an Assumption of Ignorable Missingness

Parameter M SD MCse MCs:e:
S:D:

CI.L CI.U Geweke t

Growth Curve Parameters

Class 1

“1Œ1� 25.140 0.176 0.004 0.023 24.790 25.480 �0.239

“1Œ2� 1.131 0.039 0.001 0.026 1.055 1.208 0.267

‰1Œ11� 5.471 0.692 0.011 0.016 4.220 6.935 �0.684

‰1Œ22� 0.187 0.031 0.000 0.000 0.130 0.252 �0.756

‰1Œ12� �0.839 0.138 0.002 0.014 �1.127 �0.586 0.927

¥1 1.905 0.106 0.002 0.019 1.706 2.121 0.206

Class 2

“2Œ1� 15.890 0.164 0.002 0.012 15.570 16.210 0.760

“2Œ2� 1.253 0.042 0.001 0.024 1.171 1.336 �0.578

‰2Œ11� 15.640 1.116 0.018 0.016 13.550 17.920 �0.445

‰2Œ22� 0.398 0.081 0.003 0.037 0.248 0.564 �0.841

‰2Œ12� 0.815 0.220 0.006 0.027 0.369 1.230 0.971

¥2 13.320 0.363 0.006 0.017 12.620 14.050 0.906

Class 3

®10 �0.240 0.111 0.005 0.045 �0.460 �0.033 0.262

®11 �0.238 0.072 0.003 0.042 �0.375 �0.098 �0.249

Note. With the same notations as those in Table 2.

A quick comparison of results from both analyses shows that the estimates

for growth curve parameters are very close. For both models, the differences

between Class 1 and Class 2 include (a) Class 1 has a higher initial level and

lower slope, (b) Class 2 has larger variations for initial level and slope, (c) the

residual variance is much larger for the second class, and (d) for Class 1, the

initial level and slope are negatively correlated but for Class 2 they are positively

correlated.

A closer look at the results from the analysis with LCD missingness in

Table 2 further reveals that none of ”xts, the coefficients for the covariate sex,

FIGURE 3 Selected history plots. History plots for all parameters can be found on our

web page. (a) Parameter “2Œ1�. (b) Parameter ”�

15.
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584 LU, ZHANG, LUBKE

are significant at the ’ level of 0:05, which implies that the missingness may

not be related to sex. However, it can be seen that the coefficients for class

membership for Grades 8 and 11 are positive and significant. This indicates that

Class 2 has higher missing data rates for Grades 8 and 11 than Class 1, which

implies that in these two grades adolescents in Class 2 are more likely to have

missing data than those in Class 1.

A SIMULATION STUDY

In this section, a simulation study is presented to evaluate the performance of

the proposed Bayesian GMMs with missing data. To simplify the presentation,

we focus on a linear GMM with two latent trajectory classes resembling our

real data analysis. Five occasions of data are generated, and missing data are

created on each occasion according to different predesigned missing data rates.

It is also assumed there is only one covariate in the simulation study.

Simulation Design

In the simulation, we consider three main factors: the sample size, the class

probability, and the missing data mechanism. First, the sample sizes of 1,500,

1,000, and 500 are considered. Second, both equal and unequal class prob-

abilities are considered. For the equal class probabilities, each class contains

around 50% of participants. For the unequal class probabilities, around 30% of

participants are in the first class and the other 70% are in the second class.

Third, both nonignorable and ignorable missing mechanisms are considered. In

the simulation, we apply our model to both MCAR and MNAR data. For MCAR

data, a uniform missing data rate, around 16%, is set across all five occasions

for both classes. For MNAR data, the missing data rates for the first class are set

around .2%; 4%; 6%; 8%; 10%/ across Occasions 1 to 5, respectively, and for

the second class around .4%; 8%; 12%; 16%; 20%/. Different missing data rates

are realized by setting different values of the corresponding probit parameters

”�
0t , ”�

1t ,
8 and ”xt . The covariate x follows a normal distribution with mean 1

and standard deviation 1. In total, we evaluate the performance of the model in

3 � 2 � 2 D 12 different cells.

Simulation Implementation

In the simulation, the following procedure is operated automatically.

8To be consistent with the real data analysis, ”zt1 and ”zt2 are reparameterized as ”�

0t and ”�

1t

with ”�

0t D ”zt1 and ”�

1t D ”zt2 � ”zt1 .
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BAYESIAN GMMS WITH LATENT CLASS DEPENDENT MISSINGNESS 585

1. Set the counter R D 0.

2. Generate complete GMM data according to predefined model parameters.

3. Create missing data according to missing data mechanisms and missing

data rates.

4. Generate Markov chains for model parameters through the Gibbs sampling

procedure.

5. Test the convergence of generated Markov chains using the Geweke statis-

tics (Geweke, 1992).

6. If the Markov chains pass the convergence test, then set R D R C 1 and

calculate and save the parameter estimates. Otherwise, set R D R and

discard the current replication of the simulation.

7. Repeat the aforementioned process till R D 100 to obtain 100 replications

of valid simulation.

Researchers have found that there exists a label-switching problem in mixture

models (e.g., Fruhwirth-Schnatter, 2001; Tueller, Drotar, & Lubke, 2011). In our

analysis, we imposed some constraints on the priors to avoid the problem; for

example, the intercept of the first class is constrained to be larger than that of

the second class.

Because the simulation design is based on the real data analysis, the same

set of uninformative priors and starting values as in the previous section (see

Real Data Analysis section) are used for all simulation conditions. In generating

Markov chains through the Gibbs sampling method, the burn-in period is set

from 1 to 10; 000 iterations and the Markov chains with a length of 40; 000

iterations are saved for data analysis.

In this study, the Gibbs sampling algorithm is implemented in open-source

software OpenBUGS (Thomas, O’Hara, Ligges, & Sturtz, 2006). OpenBUGS is

flexible in estimating both simple and complex statistical modeling with a lan-

guage similar to the R programming language. Lunn, Spiegelhalter, Thomas, and

Best (2009), Zhang et al. (2007), and Zhang, McArdle, Wang, and Hamagami

(2008) offer an overview of the use of OpenBUGS. For an in-depth account of

it, see Congdon (2003) and Ntzoufras (2009). Sample OpenBUGS codes for our

current models are available on our website.

Results

For the purpose of presentation, let ™j represent the j th parameter as well as

its true value in the simulation. Let O™ij denote the estimate of ™j in the i th

simulation replication. Let Osij denote the estimated standard error of O™ij . And

let O™l
ij and O™u

ij denote the lower and upper limits of the 95% highest posterior

density credible interval (HPD; Box & Tiao, 1973), respectively. For each of
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586 LU, ZHANG, LUBKE

12 conditions in the simulation design, we calculate five statistics defined here

based on 100 sets of converged simulation replications.

First, the average estimate (Est.avgj ) across the 100 converged simulation

replications of each parameter is obtained as Est.avgj D
NO™j D

P100
iD1

O™ij =100.

Second, the relative bias (Bias.relj ) of each parameter is calculated using .
NO™j �

™j /=™j when ™j ¤ 0 and .
NO™j � ™j / when ™j D 0. Third, the empirical standard

deviation (SD.empj ) of each parameter is obtained as SD.empj D
q

P100
iD1.O™ij �

NO™j /2=99, and fourth, the average standard deviation (SD.avgj )

of the same parameter is calculated by SD.avgj D
P100

iD1 Osij =100. Fifth, the

coverage probability of the 0.95 HPD credible interval (HPD.cvrj ) of each

parameter is obtained using HPD.cvrj D Œ#.O™l
ij � ™j and ™j � O™u

ij /�=100.

For the sake of saving space and facilitating comparison, instead of presenting

full results for each condition, we further calculate four summary statistics

across all model parameters for each condition of simulation. The detailed

results for each condition can be found at our web page. First, we define

the average absolute relative biases (jBias.relj) across all model parameters as

jBias.relj D
Pp

j D1 jBias.relj j=p. Second, we obtain the average absolute differ-

ences between the empirical SDs and the average Bayesian SDs (jSD.diffj) across

all model parameters by using jSD.diffj D
Pp

j D1 jSD.empj �SD.avgj j=p. Third,

we calculate the average coverage probabilities (HPD.cvr) across all model

parameters by using HPD.cvr D
Pp

j D1 HPD.cvrj =p. In the aforementioned

equations, p is the total number parameters in a model. These three statistics

from all 12 simulation conditions are given in Table 4.

Based on the results in Table 4, we can conclude the following. First, the

proposed Bayesian method can recover model parameters very well because

(a) the relative biases are all small (e.g., the maximum bias is about 6.8%, which

occurs when the sample size is 500, the class probability is unequal, and the

missingness is MNAR) and (b) the average coverage probabilities are all close

to the nominal value 95%. The correct coverage probabilities also indicate that

we can use the estimated confidence intervals to conduct statistical inference.

Second, with the increase of the sample size, (a) the relative biases get smaller,

which shows that estimates get closer to their true values, and (b) the average

Bayesian SDs get closer to the empirical SDs, which shows that standard errors

become more accurate. Third, the small difference between the empirical SD

and the average Bayesian SD in all conditions not only demonstrates that the

Bayesian method used in the study can estimate the standard errors very well

but also indicates that throwing away the nonconverged cases in our simulation

does not influence the simulation results. Fourth, this model works equally well

for both the MNAR missingness and the MCAR missingness. In both cases, the

parameter estimate biases are small, the differences between empirical SDs and
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TABLE 4

Summary and Comparison of Simulation Results.

The Results Are Based on the Converged Replications.

Equal Classes Unequal Classes

MNAR MCAR MNAR MCAR

Sample Size

1,500 jBias.relja 0.022 0.009 0.026 0.011

jSD.diffjb 0.011 0.008 0.011 0.008

HPD.cvrc 0.956 0.941 0.949 0.954

1,000 jBias.relj 0.023 0.012 0.032 0.016

jSD.diffj 0.012 0.010 0.012 0.015

HPD.cvr 0.950 0.951 0.952 0.948

500d jBias.relj 0.030 0.012 0.068 0.016

jSD.diffj 0.015 0.020 0.042 0.021

HPD.cvr 0.952 0.945 0.954 0.952

aThe average absolute relative bias across all model parameters, defined by jBias.relj D
Pp

j D1 jBias.relj j=p. bThe average absolute difference between the empirical SDs and the av-

erage Bayesian SDs across all model parameters, defined by jSD.diffj D
Pp

j D1 jSD.empj �

SD.avgj j=p. c The average coverage probability across all model parameters, defined by HPD.cvr D
Pp

j D1 HPD.cvrj =p. d With a sample size of 500, the convergence rate under unequal classes and

MNAR missingness is 100=147 � 67%. MNAR D missing not at random; MCAR D missing

completely at random.

average Bayesian SDs are tiny, and the coverage probabilities are close to the

nominal level 95%.

DISCUSSION

This article presents a Bayesian method to estimate an extended GMM with

LCD missingness. This model is a further extension of the finite mixture model

proposed by Muthén and Shedden (1999). Instead of using the maximum like-

lihood estimation method, we employ a full Bayesian method. The simulation

study shows that the Bayesian approach performs well, especially when the

sample size is large. In the following paragraphs, we discuss six specific aspects

of our study in more detail.

Misspecified Missingness Mechanism

It might be expected that mispecification of the missingness mechanism may

cause a substantial misclassification of participants. For the purpose of illustra-

tion we conducted a small additional simulation. In this additional simulation,
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588 LU, ZHANG, LUBKE

TABLE 5

Classification Under Ignorable and Nonignorable Missingness Mechanism Assumptions

Missingness Mechanism Assumption

Nonignorablea Ignorableb

Class 1 Class 2 Class 1 Class 2

True Modelc

Class 1 506 437 69 502 4

Class 2 994 81 913 991 3

Total 1,500 518 982 1,493 7

aModeling GMM and latent class dependent missingness. bModeling GMM only, ignore the

missingness mechanism. cGMM with latent class dependent missing data.

the sample size is 1,500; the class proportion is (30%, 70%); and “1 D 0,

‰11 D ‰22 D 0:5, ‰12 D ‰21 D 0, ¥ D 1 for both classes, “2Œ1� D 0 for

Class 1 and “2Œ2� D 1:3 for Class 2. The distance between the two populations

(Anderson & Bahadur, 1962) is 1.73. LCD missing data are then generated

with different missing data proportions for different classes. The generated data

are analyzed using two models. The first one uses the proposed method with

missingness mechanism. For the second one, the settings are kept the same

except that the missingness mechanism is ignored. To keep this article to a

reasonable length, the simulation results are uploaded to our website. Table 5

gives the number of misclassified participants under ignorable and nonignorable

missingness assumptions. The results clearly show that modeling nonignorable

missingness as ignorable missingness can cause severe misclassification. This

topic will be further investigated in our future work.

Sample Size

Generally speaking, it is difficult to provide a rule of thumb for the requirements

of the sample size to distinguish between latent classes for GMM because it

depends on class separation, model complexity, and other properties of the model

(Lubke & Neale, 2006, 2008). It becomes more complex if we consider the

missingness mechanism in addition to GMM. It is required that the outcome

variables provide enough information to estimate the probit regression model

parameters well. With respect to the factors examined in this study, the model

and estimation method can perform very well with a sample size of 1,500,

1,000, or 500 with small missing data rates (with the lowest one around 2% in

our simulation). And our experience shows that if the lowest missing data rate
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BAYESIAN GMMS WITH LATENT CLASS DEPENDENT MISSINGNESS 589

is relatively large (e.g., around 5%), the proposed model and estimation method

can still provide useful information with a small sample size of 200.

Sensitivity of the Model

The model discussed in this study can be viewed as an example of the selection

models (e.g., Heckman, 1976; Heckman & Robb, 1986; Little & Rubin, 2002)

but with a more complex form. The missing mechanism is modeled explicitly by

including the latent class membership as a covariate. However, our model suffers

the same sensitivity problem as any other selection model. If the missingness

does not depend on the class membership but some other latent or unobserved

variables, our model then becomes misspecified and thus may not get valid

parameter estimates. Fortunately, as we have shown, the Bayesian method can

be very flexible in modeling the missing mechanism because the conditional

posteriors can be obtained relatively easily through the data augmentation algo-

rithm. Therefore, once the missing mechanism is understood, it can be modeled

following the procedure outlined in this study.

Number of Latent Classes

The model and method proposed in this study is based on GMMs with a fixed

number of components. For mixture models with unknown number of compo-

nents, Richardson and Green (1997) used the jump Markov chain Monte Carlo

(Green, 1995) in a full Bayesian analysis. Mclachlan (1987) proposed bootstrap

methods (e.g., Efron & Tibshirani, 1993) to deal with problems involved in

the likelihood ratios. Lee and Song (2003) employed the Bayesian factor (e.g.,

Berger, 1985; Kass & Raftery, 1995) and path sampling (Gelman & Meng,

1998) in Bayesian procedures of model selection for mixtures of SEMs. These

techniques can be applied to our model for the determination of the number of

latent classes.

Model Comparison

There are several criteria for model comparison. The deviance information

criterion (DIC; Spiegelhalter, Best, Carlin, & Linde, 2002) is a recently de-

veloped model comparison criterion designed for complex hierarchical models.

DIC can be viewed as a Bayesian version or generalization of the Akaike’s

information criterion (AIC; Akaike, 1974) and Bayesian information criterion

(BIC, or Schwarz criterion; Schwarz, 1978). It is particularly useful in Bayesian

model selection problems where the posterior distributions of the models have

been obtained by Markov chain Monte Carlo (MCMC) simulation. However,
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590 LU, ZHANG, LUBKE

currently there is no exact definition for DIC in GMM with Missing Data.

The problem mainly comes from at least two areas: the mixture structure and

the posterior class membership. First, for mixture models or random effects

models, the log-likelihood function for p.yj™/ can be an observed-data log-

likelihood function, a complete-data log-likelihood function, or a conditional log-

likelihood function (see Celeux, Forbes, Robert, & Titterington, 2006). Second,

when calculating the deviance for the final estimated parameters, it is not clear

which posterior estimate of the class membership should be plugged in each

individual’s likelihood function. It could be a posterior mode or a posterior

mean. For GMM with Missing Data, designing an effective model comparison

criterion is an interesting topic for future work.

Future Directions

The models proposed in our article can be further developed in various ways.

First, the missingness can be predicted by both latent random effects and the

latent class membership. Also, the outcome variables, some other covariates that

could explain the missingness, and any combination of these variables can be

included in the model. Although such models can be in much more complex

forms, the same Bayesian estimation procedure proposed in this study can be

implemented. Second, in this study, a hybrid Gibbs sampling procedure is used.

When the posterior does not have an explicit form, such as the probit param-

eters ® and ”, the Metropolis-Hastings algorithm (Hastings, 1970; Metropolis,

Rosenbluth, Rosenbluth, Teller, & Teller, 1953) is used to generate random

numbers from the posterior. And for each missing datum a Markov chain

is produced, which is not very efficient for large missing data. Thus, future

research must develop a more efficient way to deal with missing data. Third, as

mentioned earlier, this model may be sensitive to the missing mechanism and

model specification. Therefore, a study can be conducted to evaluate how the

model responds to model misspecification.

ACKNOWLEDGMENTS

Dr. Gitta H. Lubke was supported by DA 018673 by NIDA. Dr. Zhiyong Zhang

was partially supported by the Faculty Research Program at the University of

Notre Dame. We thank Dr. Joseph L. Rodgers and the other three anonymous

reviewers for their helpful comments and suggestions.

REFERENCES

Agresti, A. (2002). Categorical data analysis (2nd ed.). Hoboken, NJ: Wiley.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

ot
re

 D
am

e]
 a

t 1
0:

19
 1

3 
Se

pt
em

be
r 

20
11

 



BAYESIAN GMMS WITH LATENT CLASS DEPENDENT MISSINGNESS 591

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic

Control, 1919, 716–723.

Anderson, T. W., & Bahadur, R. R. (1962). Classification into two multivariate normal distributions

with different covariance matrices. The Annals of Mathematical Statistics, 33, 420–431.

Ansari, A., Jedidi, K., & Jagpal, S. (2000). A hierarchical bayesian methodology for treating

heterogeneity in structural equation models. Marketing Science, 19, 328–347.

Baltes, P. B., & Nesselroade, J. R. (1979). History and rationale of longitudinal research. In

J. R. Nesselroade & P. B. Baltes (Eds.), Longitudinal research in the study of behavior and

development (pp. 1–39). New York, NY: Academic Press.

Barnard, J., Frangakis, C. E., Hill, J. L., & Rubin, D. B. (2003). Principal stratification approach

to broken randomized experiments: A case study of school choice vouchers in New York City.

Journal of the American Statistical Association, 98.

Bartholomew, D. J., & Knott, M. (1999). Latent variable models and factor analysis: Kendall’s

library of statistics 7. New York, NY: Edward Arnold.

Berger, J. O. (1985). Statistical decision theory and Bayesian analysis (2nd ed.). New York, NY:

Springer-Verlag.

Bollen, K. A. (1989). Structural equations with latent variables. New York, NY: Wiley

Box, G. E. P., & Tiao, G. C. (1973). Bayesian inference in statistical analysis. Hoboken, NJ: John

Wiley & Sons.

Bureau of Labor Statistics, U.S. Department of Labor. (1997). National longitudinal survey of youth

1997 cohort, 1997–2003 (Rounds 1–7) [Computer file]. Produced by the National Opinion

Research Center, the University of Chicago, and distributed by the Center for Human Resource

Research, The Ohio State University, Columbus, OH, 2005. Retrieved from http://www.bls.gov/

nls/nlsy97.htm

Cai, J. H., & Song, X. Y. (2010). A Bayesian analysis of mixtures in structural equation models

with nonignorable missing data. British Journal of Mathematical and Statistical Psychology,

63, 491–508.

Cai, J. H., Song, X. Y., & Hser, Y. I. (2010). A Bayesian analysis of mixture structural equation

models with non-ignorable missing responses and covariates. Statistic in Medicine, 29, 1861–

1874.

Casella, G., & George, E. I. (1992). Explaining the Gibbs sampler. The American Statistican, 46(3),

167–174.

Celeux, G., Forbes, F., Robert, C., & Titterington, D. (2006). Deviance information criteria for

missing data models. Bayesian Analysis, 4, 651–674.

Congdon, P. (2003). Applied Bayesian modelling. New York, NY: Wiley.

Coronary Drug Project Research Group. (1980). Influence of adherence to treatment and response

of cholesterol on mortality in the coronary drug project. New England Journal of Medicine,

303, 1038–1041.

Demidenko, E. (2004). Mixed models: Theory and applications. New York, NY: Wiley.

Diggle, P., & Kenward, M. G. (1994). Informative drop-out in longitudinal data analysis. Journal

of the Royal Statistical Society, Series C (Applied Statistics), 43, 49–93.

Dunson, D. B. (2000). Bayesian latent variable models for clustered mixed outcomes. Journal of

the Royal Statistical Society, B, 62, 355–366.

Efron, B., & Tibshirani, R. (1993). An introduction to the bootstrap. New York, NY: CRC

Press.

Elliott, M. R., Gallo, J. J., Have, T. R. T., Bogner, H. R., & Katz, I. R. (2005). Using a Bayesian

latent growth curve model to identify trajectories of positive affect and negative events following

myocardial infarction. Biostatistics, 6, 119–143.

Fitzmaurice, G. M., Laird, N. M., & Ware, J. H. (2004). Applied longitudinal analysis. Hoboken,

NJ: Wiley.

Frangakis, C. E., & Rubin, D. B. (1999). Addressing complications of intention-to-treat analysis

in the combined presence of all-or-none treatment-noncompliance and subsequent missing

outcomes. Biometrika, 86, 365–379.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

ot
re

 D
am

e]
 a

t 1
0:

19
 1

3 
Se

pt
em

be
r 

20
11

 



592 LU, ZHANG, LUBKE

Fruhwirth-Schnatter, S. (2001). MCMC estimation of classical and dynamic switching and mixture

models. Journal of the American Statistical Association, 96, 194–209.

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2003). Bayesian data analysis (2nd ed.).

Boca Raton, FL: Chapman & Hall/CRC.

Gelman, A., & Meng, X.-L. (1998). Simulating normalizing constants: From importance sampling

to bridge sampling to path sampling. Statistical Science, 13, 163–185.

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian

restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6,

721–741.

Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to calculating posterior

moments. In J. M. Bernado, J. O. Berger, A. P. Dawid, & A. F. M. Smith (Eds.), Bayesian

statistics 4 (pp. 169–193). Oxford, UK: Clarendon Press.

Gill, J. (2002). Bayesian methods: A social and behavioral sciences approach. Boca Raton, FL:

CRC Press.

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model

determination. Biometrika, 82, 711–732.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications.

Biometrika, 57, 97–109.

Heckman, J. (1976). The common structure of statistical models of truncation, sample selection and

limited dependent variables and a simple estimator for such models. Annals of Economic and

Social Measurement, 5, 475–492.

Heckman, J., & Robb, R. (1986). Alternative methods for solving the problem of selection bias in

evaluating the impact of treatments on outcomes. In H. Wainer (Ed.), Drawing inferences from

self-selected samples (pp. 63–107). New York, NY: Springer.

Hedeker, D., & Gibbons, R. D. (2006). Longitudinal data analysis. Hoboken, NJ: Wiley.

Hedges, L. V. (1994). Fixed effects models. In H. Cooper & L. V. Hedges (Eds.), The handbook of

research synthesis (pp. 285–299). New York, NY: Russell Sage Foundation.

Jordan, M. I., & Xu, L. (1995). Convergence results for the em approach to mixtures of experts

architectures. Neural Networks, 8, 1409–1431.

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association,

90, 773–795.

Lee, S. Y. (1981). A Bayesian approach to confirmatory factor analysis. Psychometrika, 46, 153–160.

Lee, S. Y. (2007). Structural equation modeling: A Bayesian approach. Chinchester, UK: John Wiley

& Sons.

Lee, S. Y., & Shi, J. Q. (2000). Joint Bayesian analysis of factor scores and structural parameters

in the factor analysis model. Annals of the Institute of Statistical Mathematics, 52, 722–736.

Lee, S. Y., & Song, X. Y. (2003). Bayesian model selection for mixtures of structural equation

models with an unknown number of components. British Journal of Mathematical and Statistical

Psychology, 56, 145–165.

Lee, S. Y., & Tang, N. S. (2006). Bayesian analysis of nonlinear structural equation models with

nonignorable missing data. Psychometrika, 71, 541–564.

Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data (2nd ed.). New York,

NY: Wiley-Interscience.

Long, J. S. (1997). Regression models for categorical and limited dependent variables. Thousand

Oaks, CA: Sage.

Lubke, G. H., & Neale, M. C. (2006). Distinguishing between latent classes and continuous factors:

Resolution by maximum likelihood? Multivariate Behavioral Research, 41, 499–532.

Lubke, G. H., & Neale, M. C. (2008). Distinguishing between latent classes and continuous factors

with categorical outcomes: Class invariance of parameters of factor mixture models. Multivariate

Behavioral Research, 43, 592–620.

Luke, D. A. (2004). Multilevel modeling (quantitative applications in the social sciences). Thousand

Oaks, CA: Sage Publication, Inc.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

ot
re

 D
am

e]
 a

t 1
0:

19
 1

3 
Se

pt
em

be
r 

20
11

 



BAYESIAN GMMS WITH LATENT CLASS DEPENDENT MISSINGNESS 593

Lunn, D., Spiegelhalter, D., Thomas, A., & Best, N. (2009). The BUGS project: Evolution, critique

and future directions (with discussion). Statistics in Medicine, 28, 3049–3082.

McCullagh, P., & Nelder, J. (1989). Generalized linear models (2nd ed.). Boca Raton, FL: Chapman

& Hall/CRC.

McLachlan, G., & Peel, D. (2000). Finite mixture models. New York, NY: John Wiley & Sons.

McLachlan, G. J. (1987). On bootstrapping the likelihood ratio test statistic for the number of

components in a normal mixture. Applied Statistics, 36, 318–324.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., & Teller, E. (1953). Equations of state

calculations by fast computing machines. Journal of Chemical Physics, 21, 1087–1092.

Muthén, B., & Brown, C. H. (2001). Non-ignorable missing data in a general latent variable

modeling framework. Unpublished draft.

Muthén, B., Jo, B., & Brown, C. H. (2003). Principal stratification approach to broken randomized

experiments: A case study of school choice vouchers in New York City (with comment). Journal

of the American Statistical Association, 98, 311–314.

Muthén, B., & Shedden, K. (1999). Finite mixture modeling with mixture outcomes using the EM

algorithm. Biometrics, 55, 463–469.

Ntzoufras, I. (2009). Bayesian modeling using WinBUGS. Hoboken, NJ: John Wiley & Sons.

Preacher, K. J., Wichman, A. L., MacCallum, R. C., & Briggs, N. E. (2008). Latent growth curve

modeling. Thousand Oaks, CA: Sage.

Richardson, S., & Green, P. J. (1997). On Bayesian analysis of mixtures with unknown number

of components (with discussion). Journal of the Royal Statistical Society, Series B, 59, 731–

792.

Robert, C. P., & Casella, G. (2004). Monte Carlo statistical methods. New York, NY: Springer

Science & Business Media Inc.

Roeder, K., & Wasserman, L. (1997). Practical bayesian density estimation using mixtures of

mormals. Journal of the American Statistical Association, 92, 894–902.

Roy, J. (2003). Modeling longitudinal data with nonignorable dropouts using a latent dropout class

model. Biometrics, 59, 829–836.

Schafer, J. L. (1997). Analysis of incomplete multivariate data. Boca Raton, FL: Chapman &

Hall/CRC.

Scheines, R., Hoijtink, H., & Boomsma, A. (1999). Bayesian estimation and testing of structural

equation models. Psychometrika, 64, 37–52.

Schwarz, G. E. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.

Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis: Modeling change and

event occurrence. New York, NY: Oxford University Press.

Song, X. Y., & Lee, S. Y. (2007). Bayesian analysis of latent variable models with nonignorable

missing outcomes from exponential family. Statistics in Medicine, 26, 681–693.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Linde, A. v. d. (2002). Bayesian measures of model

complexity and fit. Journal of the Royal Statistical Society, Series B (Statistical Methodology),

64, 583–639.

Spiegelhalter, D. J., Thomas, A., Best, N., & Lunn, D. (2003). WinBUGS manual (Version 1.4).

Cambridge, UK: MRC Biostatistics Unit, Institute of Public Health. Retrieved from http://

www.mrc-bsu.cam.ac.uk/bugs

Tanner, M. A., & Wong, W. H. (1987). The calculation of posterior distributions by data augmen-

tation. Journal of the American Statistical Association, 82, 528–540.

Taylor, L., & Zhou, X. H. (2009, February). Relaxing latent ignorability in the ITT analysis

of randomized studies with missing data and noncompliance. Seattle, WA: UW Biostatistics

Working Paper Series.

Thomas, A., O’Hara, B., Ligges, U., & Sturtz, S. (2006). Making BUGS open. R News, 6, 12–17.

Tueller, S., Drotar, S., & Lubke, G. (2011). Addressing the problem of switched class labels in latent

variable mixture model simulation studies. Structural Equation Modeling: A Multidisciplinary

Journal, 18, 110–131.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

ot
re

 D
am

e]
 a

t 1
0:

19
 1

3 
Se

pt
em

be
r 

20
11

 



594 LU, ZHANG, LUBKE

van Dyk, D. A., & Meng, X.-L. (2001). The art of data augmentation. Journal of Computational

and Graphical Statistics, 10, 1–50.

Willett, J., & Sayer, A. (1994). Using covariance structure analysis to detect correlates and predictors

of individual change over time. Psychological Bulletin, 116, 363–381.

Wu, M. C., & Bailey, K. R. (1989). Estimation and comparison of changes in the presence of

informative right censoring: Conditional linear model. Biometrics, 45, 939–955.

Wu, M. C., & Carroll, R. J. (1988). Estimation and comparison of changes in the presence of

informative right censoring by modeling the censoring process. Biometrics, 44, 175–188.

Yung, Y. F. (1997). Finite mixtures in confirmatory factor-analysis models. Psychometrika, 62, 297–

330.

Zhang, Z., Hamagami, F., Wang, L., Grimm, K. J., & Nesselroade, J. R. (2007). Bayesian analysis of

longitudinal data using growth curve models. International Journal of Behavioral Development,

31, 374–383.

Zhang, Z., McArdle, J. J., Wang, L., & Hamagami, F. (2008). An SAS interface for Bayesian analysis

with WinBUGS. Structural Equation Modeling, 15, 705–728.

Zhu, H. T., & Lee, S. Y. (2001). A Bayesian analysis of finite mixtures in the LISREL model.

Psychometrika, 66, 133–152.

APPENDIX A

Prior Distributions

For ¥k (k D 1; 2; : : : ; K), an inverse Gamma distribution is used,

¥k � IG.v0k=2; s0k=2/;

where v0k and s0k are known hyperparameters. The inverse Gamma distribution

has a density function

p.¥k/ / ¥
�v0k=2�1

k exp.�
s0k

2¥k

/:

For “k (k D 1; 2; : : : ; K), the multivariate normal prior is used,

“k � MNq.“k0; †k0/;

where the hyperparameter “k0 is a q-dimensional vector and †k0 is a q � q

matrix.

For ‰k (k D 1; 2; : : : ; K), the inverse Wishart distribution prior is used,

‰k � IW.mk0 ; Vk0/;

where the hyperparameter mk0 is a scalar and Vk0 is a q �q matrix. The inverse

Wishart distribution has a density function

p.‰k/ / j‰kj�.mk0CqC1/=2 expŒ�
1

2
tr.Vk0‰�1

k /�:
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BAYESIAN GMMS WITH LATENT CLASS DEPENDENT MISSINGNESS 595

For ®k (k D 1; 2; : : : ; K � 1), we use an .r C 1/-dimensional multivariate

normal distribution,

®k � MN.rC1/.�®k
; †®k

/;

where �®k
, an .r C 1/-dimensional vector, and †®k

, an .r C 1/� .r C 1/ matrix,

are predetermined hyperparameters.

The prior for ”t (t D 1; 2; : : : ; T ) is chosen to be a multivariate normal

distribution,

”t � MN.KCr/.”t0; Dt0/;

where ”t0, a .K C r/-dimensional vector, and Dt0, a .K C r/ � .K C r/ matrix,

are predetermined hyperparameters.

APPENDIX B

Posterior Distributions

Let nk D
PN

iD1 zik be the number of individuals who are in the kth class, and

notate the set (˜1; ˜2; : : : ; ˜N ) as ˜.

Conditional posterior distribution for ¥k, k D 1, 2, : : : , K. The condi-

tional posterior distribution for ¥k is an inverse gamma distribution,

¥kj˜; y; z � IG .ak1=2; bk1=2/ ; (12)

where

ak1 D v0k C nk T;

bk1 D s0k C

N
X

iD1

zik.yi � ƒk˜i /
0.yi � ƒk˜i /:

Conditional posterior distribution for ‰k, k D 1, 2, : : : , K. The condi-

tional posterior distribution for ‰k is an inverse Wishart distribution,

‰kj“k ; ˜; z � IW .mk1; Vk1/ ; (13)

where

mk1 D mk0 C nk ;

Vk1 D Vk0 C

N
X

iD1

zik.˜i � “k/.˜i � “k/0:
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Conditional posterior distribution for “k, k D 1, 2, : : : , K. The conditional

posterior distribution for “k is a multivariate normal distribution,

“kj‰k ; ˜; z � MN.“k1; †k1/; (14)

where

“k1 D
�

nk‰�1
k C †�1

k0

��1

 

‰�1
k

N
X

iD1

zik˜i C †�1
k0 “k0

!

;

†k1 D
�

nk‰�1
k C †�1

k0

��1
:

Conditional posterior distribution for ®k, k D 1, 2, : : : , (K � 1). When

k D 1, the conditional posterior distribution for ®1 is

p.®1j®2; z; X/ /j†®1j
�1=2 exp

�

�
1

2
.®1 � �®1

/0†�1
®1 .®1 � �®1

/

C

N
X

iD1

˚

zi1 logŒˆ.X 0
i ®1/� C zi2 logŒˆ.X 0

i ®2/ � ˆ.X 0
i ®1/�

	

�

:

(15)

When 2 � k � K � 2, the conditional posterior distribution of ®k is

p.®kj®k�1; ®kC1; z; X/ / j†®kj�1=2 exp

�

�
1

2
.®k � �®k

/0†�1
®k .®k � �®k

/

C

N
X

iD1

˚

zik logŒˆ.X 0
i ®k/ � ˆ.X 0

i ®k�1/�

Czi;kC1 logŒˆ.X 0
i ®kC1/ � ˆ.X 0

i ®k/�
	

�

: (16)

Finally, when k D K � 1, the conditional posterior distribution of ®K�1 is

p.®K�1j®K�2; z; X/ / j†®K�1
j�1=2

exp

�

�
1

2
.®K�1 � �®K�1

/0†�1
®K�1

.®K�1 � �®K�1
/

C

N
X

iD1

˚

zi;K�1 logŒˆ.X 0
i ®K�1/ � ˆ.X 0

i ®K�2/� C ziK logŒ1 � ˆ.X 0
i ®K�1/�

	

#

:

(17)

The ˆ.X 0
i ®k/ in Equations (15), (), and (17) is defined by Equation (6).
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Conditional posterior distribution for ”t, t D 1, 2, : : : , T. The conditional

posterior distribution for ”t is

p.”t jz; x; m/ / exp

�

�
1

2
.”t � ”t0/0D�1

t0 .”t � ”t0/

C

N
X

iD1

˚

mi t log ˆ.¨0
i ”t/ C .1 � mi t/ logŒ1 � ˆ.¨0

i ”t/�
	

�

;

(18)

where ¨i D .z0
i ; x0

i/
0 and ˆ.¨0

i ”t / is defined by Equation (9).

Conditional posterior distribution for zi, i D 1, 2, : : : , N. The conditional

posterior distribution for zi is a multinomial distribution,

zi j¥; ‰; “; z; ®; ˜; y; x; m � Mnomial.1;  �
i1;  �

i2; :::;  �
iK/; (19)

where  �
ik

D vik=
PK

iD1 vik with vik defined in Equation (11).

Conditional posterior distribution for ˜i, i D 1, 2, : : : , N. The conditional

posterior distribution for ˜i is a multivariate normal distribution,

˜i j¥; ‰; “; zi ; yi � MN.�˜i ; †˜i /; (20)

where

�˜i D

K
X

kD1

zik

"

�

1

¥k

ƒ0
kƒk C ‰�1

k

��1 �
1

¥k

ƒ0
kyi C ‰�1

k “k

�

#

;

†˜i D

K
X

kD1

zik

�

1

¥k

ƒ0
kƒk C ‰�1

k

��1

:

Conditional posterior distribution for missing data ymis
i

, i D 1, 2, : : : ,

N. The conditional posterior distribution for the missing data ymis
i is a normal

distribution,

ymis
i jzi ; ˜i ; ¥ � MN

"

K
X

kD1

zik.ƒk˜i /;

K
X

kD1

zik.IT ¥k/

#

; (21)

and its dimension and location depend on the corresponding mi value.
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