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Bayesian Inference for Irreducible Diffusion
Processes Using the Pseudo-Marginal Approach

Osnat Stramer∗ and Matthew Bognar†

Abstract. In this article we examine two relatively new MCMC methods which
allow for Bayesian inference in diffusion models. First, the Monte Carlo within
Metropolis (MCWM) algorithm (O’Neil et al. 2000) uses an importance sampling
approximation for the likelihood and yields a Markov chain. Our simulation study
shows that there exists a limiting stationary distribution that can be made arbi-
trarily “close” to the posterior distribution (MCWM is not a standard Metropolis-
Hastings algorithm, however). The second method, described in Beaumont (2003)
and generalized in Andrieu and Roberts (2009), introduces auxiliary variables
and utilizes a standard Metropolis-Hastings algorithm on the enlarged space; this
method preserves the original posterior distribution. When applied to diffusion
models, this pseudo-marginal (PM) approach can be viewed as a generalization of
the popular data augmentation schemes that sample jointly from the missing paths
and the parameters of the diffusion volatility. The efficacy of the PM approach is
demonstrated in a simulation study of the Cox-Ingersoll-Ross (CIR) and Heston
models, and is applied to two well known datasets. Comparisons are made with
the MCWM algorithm and the Golightly and Wilkinson (2008) approach.

Keywords: Diffusion process, Euler discretization, Markov chain Monte Carlo
(MCMC), Pseudo-Marginal (PM) Algorithm, Grouped Independence Metropolis-
Hastings (GIMH), Monte Carlo within Metropolis (MCWM)

1 Introduction

A diffusion process is described as a solution to the stochastic differential equation
(SDE)

dXt = µ(Xt, θ)dt + σ(Xt, θ)dWt, 0 ≤ t ≤ T , (1)

where Xt takes values in <d, µ and ν = σσT are drift and covariance coefficients of
dimension d and d×d respectively, θ is the parameter vector, and Wt is a d-dimensional
Brownian motion. As in Milstein et al. (2004), we assume the drift µ and covariance ν
are bounded and are infinitely differentiable with continuous and bounded derivatives
of all orders, and σ(·) is invertible with bounded inverse. This implies existence and
uniqueness of (1), and smoothness of the transition density. For ease of notation we
assume that X is time homogeneous.

We wish to perform Bayesian inference for the parameters of a continuous-time
Markov process X which is observed (possibly with noise) at discrete time points ti = i∆
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(i = 0, . . . , n) yielding observations x = (x0, . . . , xn). We denote the transition (or
conditional) density of Xt+∆ = y given Xt = x by p(∆, y|x, θ). By the Markov property,
if all components of X at time ti (i = 0, . . . , n) are observed without noise, the likelihood
function is

L(x|θ) =
n−1∏

i=0

p(∆, xi+1|xi, θ)

and the posterior distribution is given by

π(θ|x) ∝ π(θ)L(x|θ),

where π(θ) is the prior distribution on θ.

It is well known that if the data are recorded at discrete times, parametric inference
for diffusions using the likelihood of the data is difficult. This is primarily because the
corresponding likelihood function is not available in closed form. See Sørensen (2004)
for a review of inferential methods for diffusions. We focus on Bayesian inference in this
paper.

Many methods have been proposed and studied for diffusions which can be trans-
formed to have unit diffusion coefficient (the so-called reducible diffusions). Methods
that rely on introducing missing (latent) data are in Elerian et al. (2001); Roberts and
Stramer (2001); Eraker (2001). It has been well documented that näıve data augmenta-
tion techniques lead to problems of high dependency between the covariance parameters
and the diffusion paths (see Elerian et al. 2001; Roberts and Stramer 2001). The depen-
dency problems can largely be solved by an appropriate re-parametrization for reducible
diffusions (see Roberts and Stramer 2001; Kalogeropoulos 2007). A different approach
for reducible diffusions, built upon exact simulation, has been developed in Beskos et al.
(2006, 2009).

Inference for irreducible diffusions is much harder. This class of models, which in-
cludes most interesting multi-dimensional diffusion models, is not thoroughly covered
or understood in the literature. One approach for Bayesian inference is to use a stan-
dard Metropolis-Hastings (MH) algorithm with an approximation for the likelihood.
One such method, described in Stramer, Bognar, and Schneider (2010), is to use the
analytical closed-form (CF) likelihood approximations of Aı̈t-Sahalia (2002, 2008) to
approximate the likelihood. Their method also addresses the problem that the CF like-
lihood approximation does not integrate to 1 when far in the tails. This method requires
that the time interval ∆ is “small”.

Methods that rely on introducing missing (latent) data are challenging for irre-
ducible diffusions because there is not an obvious re-parametrization to break down the
dependency between the covariance parameters and the diffusion paths. We explore
the possibility of augmenting without re-parametrization techniques using the closed-
form (CF) analytical log-likelihood approximations derived in Aı̈t-Sahalia (2002, 2008).
Methods that rely on re-parametrization techniques are defined in Kalogeropoulos et al.
(2010); Golightly and Wilkinson (2008). The Kalogeropoulos et al. (2010) approach, de-
fined through time change transformations, is very efficient, although strong conditions
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on the covariance coefficient are required. The Golightly and Wilkinson (2008) (GW)
approach follows Chib et al. (2006) and provides another possible transformation to
overcome the dependency structure. While the promising GW approach can be applied
to a large class of diffusions, it is not yet rigorously justified in the literature.

The need for additional efficient algorithms for irreducible diffusions is apparent. In
this article we apply two general Bayesian algorithms to irreducible diffusions. One tech-
nique, defined in O’Neil et al. (2000), is the Monte Carlo within Metropolis (MCWM)
algorithm. Because MCWM replaces the likelihood with a simulation-based approxi-
mation, MCWM is not a standard MH algorithm and therefore all of the well known
properties of MH samplers do not apply. MCWM is discussed and studied in Beaumont
(2003) and Andrieu and Roberts (2009). We discuss the application of the MCWM
algorithm to diffusion models in Section 3.

Another algorithm, introduced in Andrieu and Roberts (2009), is called the pseudo-
marginal (PM) approach. The PM algorithm is a generalization of the Grouped Inde-
pendence Metropolis-Hastings (GIMH) algorithm introduced by Beaumont (2003). In
short, suppose we wish to sample from the density function p(θ), but this is not possible
because p(θ) is intractable. Suppose, however, that we can sample from the joint distri-
bution (θ,u1, . . . ,uN ) where u1, . . . ,uN are N independent auxiliary variables. Using
the samples from (θ,u1, . . . ,uN ), we can simply marginalize to obtain samples from
p(θ). In this article, we apply this general approach to diffusion models (see Section
4); in particular we discuss different updating schemes for the parameters. The PM
approach is a generalization of jointly updating the parameters and missing data in a
Metropolis-Hastings (MH) algorithm (Golightly and Wilkinson 2006). It overcomes the
problem of low acceptance rate of the latter.

The remainder of this paper is organized as follows. Section 2 discusses data aug-
mentation techniques. Sections 3, 4, and 5 detail the MCWM and PM algorithms,
while Section 6 applies these techniques to general stochastic volatility models. Section
7 provides a detailed simulation study for the Cox Ingersoll Ross (CIR) and Heston
models. Section 8 uses these aforementioned models to analyze two real-world datasets,
and the competing Golightly and Wilkinson (2008) algorithm is briefly compared to the
PM and MCWM approaches. Section 9 contains concluding remarks.

2 Data Augmentation

One common approach in the literature for Bayesian estimation of diffusion models,
studied independently by Jones (1999), Eraker (2001), and Elerian et al. (2001), is to
consider estimating diffusion models on the basis of discrete measurements as a classic
missing-data problem. The idea is to introduce augmented data points between every
two consecutive (observed) data points so that the likelihood can be well approximated.
The time-step interval [0,∆] is partitioned into M sub-intervals via grid points 0 =
τ0 < τ1 < . . . < τM = ∆ (each sub-interval has length h = ∆/M) such that the
resulting partition is sufficiently fine for some discrete approximation of the diffusion X
to be sufficiently accurate. The unobserved data points of the process X are treated as
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missing data. The resulting posterior distribution is

πmiss
(M) (θ,u|x) ∝ π(θ)

n−1∏

i=0

M−1∏
m=0

p(a)(h, ui,m+1|ui,m, θ), (2)

with ui,0 = xi, ui,M = xi+1, u = (u0, . . . ,un−1), where ui = (ui,1, . . . , ui,M−1) is a
discrete-time skeleton of (1) between xi and xi+1, and p(a)(h, ui,m+1|ui,m, θ) is some
approximation of the transition density p(h, ui,m+1|ui,m, θ). One such approximation is
the Euler approximation:

p(a)(h, ui,m+1|ui,m, θ) = φ (ui,m+1; ui,m + hµ(ui,m, θ), hν(ui,m, θ))

where φ(·; µ, ν) denotes the normal density with mean µ and covariance ν.

The resulting algorithm proceeds by alternating between simulation of θ conditional
on the augmented data u, and simulation of the missing data blocks conditional on θ.
Updating the augmented data ui between xi and xi+1, i = 0, . . . , n− 1, requires gener-
ating the intermediate points according to their conditional distribution given the end
points. A series of Metropolis within Gibbs steps is commonly used. Various sampling
strategies for the missing data have been proposed; see Golightly and Wilkinson (2008)
for a review. A commonly used proposal for a missing data block ui is the so called
Modified Brownian Bridge (MBB) sampler defined in Durham and Gallant (2002) as

Ui,m+1 = ui,m +
xi+1 − ui,m

M −m
+

√
h

M −m− 1
M −m

σ(ui,m, θ)Zm+1 (3)

for m = 0, . . . , M − 2 where Ui,m = ui,m, ui,0 = xi, ui,M = xi+1, and {Z1, . . . , ZM−1}
are i.i.d. standard multivariate normal variables. The MBB sampler has the desirable
property that the conditional mean of Ui,m+1|Ui,m = ui,m is a linear interpolation over
the time interval [mh,Mh = ∆] of ui,m and the final state xi+1 (= ui,M ) at time ∆. It
also has the advantage that the conditional covariance is a linear interpolation of the
covariance at time mh and the covariance (zero) at time Mh = ∆.

The problem with this approach is that there exists a perfect correlation between the
augmented data points and the covariance ν as h → 0. This was noted in a simulation
study in Elerian et al. (2001) and was justified theoretically in Roberts and Stramer
(2001). The reason for this is the property of diffusions that relates ν with the quadratic
variation of the process,

lim
h→0

M−1∑
m=0

(X(m+1)h −Xmh)(X(m+1)h −Xmh)T =
∫ ∆

0

ν(Xs, θ) ds a.s.

This translates into reducibility when h → 0. Therefore, while data augmentation
schemes can be satisfactory for small M , they can break down as M increases. The
problem may be solved if we apply a transformation so that the algorithm based on the
transformed diffusion is no longer reducible as h → 0.
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As a side project of this article, we extensively experimented with augmentation us-
ing the closed-form (CF) analytical log-likelihood approximations derived in Aı̈t-Sahalia
(2002, 2008). The posterior distribution is

πmiss
(M) (θ,u|x) ∝ π(θ)

n−1∏

i=0

M−1∏
m=0

p
(K)
CF (h, ui,m+1|ui,m, θ),

where p
(K)
CF (h, ui,m+1|ui,m, θ) denotes the Kth order closed-form approximation of sub-

density p(h, ui,m+1|ui,m, θ). The main idea behind data augmentation is to choose M
sufficiently big so that we can accurately approximate the transition density over time
intervals of length h = ∆/M . Choosing a “better” approximation (than the Euler
approximation) for the transition density may allow for fewer augmented points and
thus reduce the dependency between the diffusion function and augmented data.

We therefore employed the closed-form approximation with the MBB sampler as
the proposal distribution for the missing data. Our simulation study showed that, in
general, the transition density can be accurately estimated with a larger time step h
using the CF approximation than can be used with the Euler approximation. However,
the CF approximation is a local approximation, and the error increases as θ moves away
from the MLE (it can explode to infinity in the tails of the posterior). Although the
error may be small in absolute terms, this error tends to propagate as the amount of
data augmentation increases (i.e., as the number of CF sub-densities increases). In a
simulation study for the CIR model defined in (14), we found that the sampler would
frequently become stuck when in the tails of the posterior distribution; less data aug-
mentation (smaller M) tended to minimize the probability of the sampler becoming
stuck since there was less propagation of error. If accurate estimates of the transition
density can be obtained using the CF approximation with small M (say M ≤ 5), then
this scheme may be practical. In general, however, using the CF approximation for the
sub-densities simply can not be robustly applied to a wide range of models.

Another way to overcome the dependency structure is to update all parameters and
missing data simultaneously. However, this will typically result in a very low acceptance
rate due to the high dimensionality of the update. In fact, this is a special case of the
PM algorithm described in Section 4.

3 Monte Carlo within Metropolis (MCWM)

We use the following notation throughout the paper:

. u = (u0, u1, . . . , un−1) denotes the entire collection of samples, where

. ui = (ui,1, . . . , ui,N ) denotes the collection of samples within the ith block, i =
0, . . . , n− 1, and

. ui,k = (ui,k,1, . . . , ui,k,M−1) denotes the kth sample (path) within the ith block
where ui,k,0 = xi, ui,k,M = xi+1, k = 1, . . . , N , and i = 0, . . . , n− 1.
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Monte Carlo within Metropolis (MCWM) is based on importance sampling estimators
for the transition density. The transition density p(∆, xi+1|xi, θ) is approximated by

p(M)(∆, xi+1|xi, θ) =
∫ M−1∏

m=0

φ (um+1; um + hµ(um, θ), hν(um, θ)) du1, . . . , uM−1 (4)

where h = ∆/M , u0 = xi, uM = xi+1, and M is “big” enough so that the resulting
partition is sufficiently fine for the Euler approximation to be sufficiently accurate.

The integral in (4) is evaluated in Durham and Gallant (2002) using importance
sampling:

p(M)(∆, xi+1|xi, θ) = Eq[RM (U)] (5)

where U = (U1, . . . , UM−1),

RM (U) =
∏M−1

m=0 φ (Ui,m+1; Ui,m + hµ(Ui,m, θ), hν(Ui,m, θ))
q(U)

,

q(·) is a density function on <d×(M−1) referred to as the importance sampler (or im-
portance sampling density), and Eq is the expectation with respect to density q. Thus,
U is generated according to q and is weighted by RM (U). The posterior distribution is
therefore estimated as

π(M)(θ|x) ∝ π(θ)
n−1∏

i=0

p(M)(∆, xi+1|xi, θ). (6)

The expectation in (5) cannot be evaluated, but it can be estimated by drawing N
independent paths using the importance sampler q(·), evaluating the ratio RM for
each path, and determining the (sample) mean of RM . We denote this estimator by
p(M,N)(∆, y|x, θ) where

p(M,N)(∆, xi+1|xi, θ) =
1
N

N∑

k=1

RM (Uk) (7)

and Uk = (Uk,1, . . . , Uk,M−1) is a random sample from q, k = 1, . . . , N . Note that
p(M,N)(∆, xi+1|xi, θ)

a.s.→ p(M)(∆, xi+1|xi, θ) as N →∞.

The posterior distribution is thus stochastically (vs. analytically) approximated as

π(M,N)(θ|x) ∝ π(θ)
n−1∏

i=0

p(M,N)(∆, xi+1|xi, θ)

where p(M,N) is defined in (7). Note that nN MBB samplers are needed to evaluate
π(M,N)(θ|x) for each θ. Therefore, there is no target distribution and standard MH
algorithms cannot be automatically used.

Yet, technically the MCWM algorithm follows the same steps as a standard MH
algorithm with “target distribution” π(M,N)(θ|x). To avoid confusion, we describe one
iteration of the MCWM algorithm.
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Algorithm 1. MCWM Algorithm

1. Given the current state of the chain θ, for each block i, i = 0, . . . , n − 1, do
the following: Draw ui,k, a random sample (path) between xi and xi+1 from the
MBB sampler (3), for k = 1, . . . , N . This MBB sampler is independent of the
MBB samplers from previous iterations. Calculate the importance sampling based
approximation p(M,N)(∆, xi+1|xi, θ) of p(M)(∆, xi+1|xi, θ) as described in (7).

2. Propose a new value θ∗ from some proposal density q(θ, ·). Given θ∗, repeat step
1 to obtain the importance samples u∗i,1, . . . , u

∗
i,N in each block i, i = 0, . . . , n− 1

(again, this is independent of the MBB samplers from previous iterations). Using
these new importance samples u∗, compute p(M,N)(∆, xi+1|xi, θ

∗).

3. Accept θ∗ with probability

α(M,N)(θ, θ∗) = min

[
π(θ∗)

∏n−1
i=0 p(M,N)(∆, xi+1|xi, θ

∗)

π(θ)
∏n−1

i=0 p(M,N)(∆, xi+1|xi, θ)
q(θ∗, θ)
q(θ, θ∗)

, 1

]

As in Andrieu and Roberts (2009), we note that due to the fact that the MBBs
are independent at each iteration, it can be easily checked that the MCWM algorithm
generates a Markov chain. However, π(M)(θ|x), defined in (6), is not the invariant
distribution for the chain. Since MCWM is not a standard MH algorithm, the existence
of an invariant distribution for each N needs to be assumed (we denote it by π̃(M,N) for
each N ∈ IN+). This is not obvious, however. Convergence of π̃(M,N) to π(M) needs to
be explored.

4 The Pseudo-Marginal Approach

Following the pseudo-marginal algorithm introduced in Andrieu and Roberts (2009), we
define a target density on Θ×<nN(M−1) as follows:

πNew Target
(M,N) (θ,u|x) ∝ π(θ)

n−1∏

i=0

p(M,N)(∆, xi+1|xi, θ)
n−1∏

i=0

N∏

k=1

q(ui,k,1, . . . , ui,k,M−1|θ)

(8)
where q(·|θ) is the MBB sampler defined in (3). Note that (2) is a special case of
(8) with N = 1. Also, in contrast to π(M)(θ|x) defined in (6), πNew Target

(M,N) (θ,u|x)
can be explicitly evaluated (up to a constant of proportionality). It is easy to check
that πNew Target

(M,N) (θ,u|x) is a probability density function on <nN(M−1) with marginal
distribution π(M)(θ|x) for all N ∈ IN.

As often is the case, simulating a chain {(θt,ut)}∞t=0 with stationary density
πNew Target

(M,N) (θ,u|x) can be done in many different ways using MCMC algorithms. As-
sume that (1) can be written as

dXt = µ(Xt, θ1)dt + σ(Xt, θ2)dWt, 0 ≤ t ≤ T .
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To overcome the dependency structure between θ2 and u, we propose alternating be-
tween updating (θ2,u) and θ1. We term this the Pseudo-Marginal (PM) algorithm as
this is a special case of the general PM algorithm. Thus, under some regularity condi-
tions that guarantee irreducibility and aperiodicity, π(M)(θ|x) is the marginal ergodic
density for the PM algorithms. This is true for all N ∈ IN. The acceptance rate of the
PM algorithm as a function of N is rigorously analyzed in Andrieu and Roberts (2009).
We expect the acceptance rate to increase in N . For our applications this is supported
by noting that for large N ,

n−1∏

i=0

p(M,N)(∆, xi+1|xi, θ) ≈
n−1∏

i=0

p(M)(∆, xi+1|xi, θ) (9)

which implies that
∏n−1

i=0 p(M,N)(∆, xi+1|xi, θ) is almost independent of the latent com-
ponent u:

πNew Target
(M,N) (u|θ,x) ∝ π(θ)

n−1∏

i=0

p(M,N)(∆, xi+1|xi, θ)
n−1∏

i=0

N∏

k=1

q(ui,k,1, . . . , ui,k,M−1|θ)

≈ π(θ)
n−1∏

i=0

p(M)(∆, xi+1|xi, θ)
n−1∏

i=0

N∏

k=1

q(ui,k,1, . . . , ui,k,M−1|θ)

∝
n−1∏

i=0

N∏

k=1

q(ui,k,1, . . . , ui,k,M−1|θ).

Therefore, a small N may lead to low acceptance rates due to the discrepancy between
the proposed distribution of the latent component

∏n−1
i=0

∏N
k=1 q(ui,k,1, . . . , ui,k,M−1|θ)

and the true conditional distribution of the latent component πNew Target
(M,N) (u|θ), while a

“big” N will eliminate this problem.

We now describe one iteration of the PM algorithm.

Algorithm 2. PM Algorithm

1. For ease of notation, let (θt
1, θ

t
2,u

t) = (θ1, θ2,u). Propose a new value (θ∗2 ,u∗) for
(θt+1

2 ,ut+1) from the proposal density

q2 ((θ2,u), (θ∗2 ,u∗)) = q̃2(θ2, θ
∗
2)

n−1∏

i=0

N∏

k=1

q(u∗i,k,1, . . . , u
∗
i,k,M−1|θ∗2)

where q̃2(θ2, ·) is some proposal density and q(·|θ∗2) is the MBB sampler (3) with
covariance function ν(·, θ1, θ

∗
2). Note that unlike the MCWM algorithm, we do

not generate a “fresh” set of u values; u is simply “dragged” from the previous
iteration. Only u∗ needs to be generated.

2. Accept the proposed (θ∗2 ,u∗) (i.e. set θt+1
2 = θ∗2 and ut+1 = u∗) with probability



O. Stramer and M. Bognar 239

α(M,N)((θ2,u), (θ∗2 ,u∗)) = min
[
r(M,N)((θ2,u), (θ∗2 ,u∗)), 1

]
where

r(M,N)((θ2,u), (θ∗2 ,u∗))

=
πNew Target

(M,N) (θ1, θ
∗
2 ,u∗|x)

πNew Target
(M,N) (θ1, θ2,u|x)

∏n−1
i=0

∏N
k=1 q(ui,k,1, . . . , ui,k,M−1|θ2)∏n−1

i=0

∏N
k=1 q(u∗i,k,1, . . . , u

∗
i,k,M−1|θ∗2)

q̃2(θ∗2 , θ2)
q̃2(θ2, θ∗2)

=
π(θ1, θ

∗
2)

∏n−1
i=0 p(M,N)(∆, xi+1|xi, θ1, θ

∗
2)

∏n−1
i=0

∏N
k=1 q(ui,k,1, . . . , ui,k,M−1|θ∗2)

π(θ1, θ2)
∏n−1

i=0 p(M,N)(∆, xi+1|xi, θ1, θ2)
∏n−1

i=0

∏N
k=1 q(ui,k,1, . . . , ui,k,M−1|θ2)

×
∏n−1

i=0

∏N
k=1 q(ui,k,1, . . . , ui,k,M−1|θ2)∏n−1

i=0

∏N
k=1 q(u∗i,k,1, . . . , u

∗
i,k,M−1|θ∗2)

q̃2(θ∗2 , θ2)
q̃2(θ2, θ∗2)

=
π(θ1, θ

∗
2)

∏n−1
i=0 p(M,N)(∆, xi+1|xi, θ1, θ

∗
2)

π(θ1, θ2)
∏n−1

i=0 p(M,N)(∆, xi+1|xi, θ1, θ2)
q̃2(θ∗2 , θ2)
q̃2(θ2, θ∗2)

,

and p(M,N)(∆, xi+1|xi, θ1, θ
∗
2), p(M,N)(∆, xi+1|xi, θ1, θ2) are defined in (7) with u∗

and u respectively. Otherwise set θt+1
2 = θ2 and ut+1 = u.

3. Propose a new value θ∗1 for θt+1
1 from some proposal density q̃1(θ1, θ

∗
1).

4. Accept the proposed θ∗1 (i.e., set θt+1
1 = θ∗1 ) with probability α(M,N)(θ1, θ

∗
1) =

min
[
r(M,N)(θ1, θ

∗
1), 1

]
where

r(M,N)(θ1, θ
∗
1)

=
πNew Target

(M,N) (θ∗1 , θt+1
2 ,ut+1|x)

πNew Target
(M,N) (θ1, θ

t+1
2 ,ut+1|x)

q̃1(θ∗1 , θ1)
q̃1(θ1, θ∗1)

=
π(θ∗1 , θt+1

2 )
∏n−1

i=0 p(M,N)(∆, xi+1|xi, θ
∗
1 , θt+1

2 )

π(θ1, θ
t+1
2 )

∏n−1
i=0 p(M,N)(∆, xi+1|xi, θ1, θ

t+1
2 )

q̃1(θ∗1 , θ1)
q̃1(θ1, θ∗1)

.

It is tempting to split up the latent process into blocks ui and alternate between
updating θ = (θ1, θ2) and ui, i = 0, . . . , n−1. However, using this blocking strategy will
lead to inefficient algorithms. For N = 1 this is exactly the näıve data augmentation al-
gorithm discussed in Section 2 with the MBB used as the proposal density for the missing
data. As was mentioned before, this algorithm suffers from high dependency between θ2

and the missing data u. Increasing N does not help either as it decreases the acceptance
rate of θ. This is because, as N increases, p(M,N)(∆, xi+1|xi, θ) ≈ p(M)(∆, xi+1|xi, θ)
and therefore the acceptance rate of the auxiliary variables u0, . . . ,un−1 will be very
high. However, the acceptance rate for θ2|u will be very small when N is big; if ui,k are
the MBB proposals generated with parameter θ, then πNew Target

(M,N) (θ∗,u|x) will be signif-

icantly smaller than πNew Target
(M,N) (θ,u|x). The ineffectiveness of this blocking technique

is demonstrated at the end of Section 7.1.
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5 Choosing M and N

The transition density p(∆, y|x, θ) is approximated by the transition density of the
Euler approximation p(M)(∆, y|x, θ) with time step h = ∆/M . From Bally and Talay
(1996), the error due to discretization is of order 1/M and can be reduced by choosing a
small time step h. Choice of M will be important since it must be sufficiently large for
the likelihood to be accurately approximated. Convergence of the marginal posterior
densities may be used as an overall diagnostic that M is sufficiently big. The idea is to
choose M equal to the value M0 such that the estimated marginal posterior densities
are approximately the same for M ≥ M0.

We next consider the question of choosing the number of importance samples N .
The PM and MCWM algorithms have differing optimal values of N . The choice of N
for a special case of the pseudo-marginal (PM) algorithm is introduced in Andrieu et al.
(2010) and is applied to our PM algorithms. The speed of convergence (and rapidity
of mixing after convergence) depends heavily on N . Following Pasarica and Gelman
(2010) and Andrieu et al. (2010), N can be optimized to maximize the expected squared
jump distance (ESJD) defined as

ESJD =
T−1∑
t=0

α(M,N)

[
(θt,ut), (θ∗,u∗)

] ‖θ∗ − θt‖2

where T is the number of Monte-Carlo iterations, and θ∗ and u∗ are the proposals for
θt+1 and ut+1 respectively. As expected, our simulation study (see Section 7) shows
that ESJD increases in N . In other words, when N is relatively small, the ESJD is
low, which suggests slow mixing or convergence rate. Thus, more iterations are needed
to obtain any given degree of accuracy in posterior inferences. On the other hand,
the algorithm has a shorter execution time when N is small. Increasing N causes the
execution time to increase, but the sampler will mix more quickly. From an efficiency
standpoint, appropriate tuning of N is required to optimize this MCMC efficiency trade-
off. Similar to Andrieu et al. (2010), we seek an N that maximizes ESJD/N . Other
ways of balancing mixing rate with computational cost are possible and require more
study. An adaptive approach for updating N is in Andrieu et al. (2010) and can be
applied to our PM algorithms. It is not pursued here.

The MCWM algorithm is different. One can get good convergence rates and mix-
ing behavior regardless of N (the reader will witness this in the simulation study in
Section 7; specifically in Figures 3 and 6). However, MCWM may yield an inaccurate
estimate of π(M)(θ|x) if N isn’t large enough. This can be seen in Figure 3 where
the estimated marginal posterior density of σ, π(M)(σ|x), is poor when N = 1, 2, 5, 10
(better estimates are obtained when N = 20), and in Figure 6 where the estimated
marginal posterior densities of σ and ρ remain unsatisfactory even when N = 20. The
performance of the MCWM algorithm depends on how well the importance sampling
estimator approximates the transition density. A qualitative and asymptotic result is in
Stramer and Yan (2007) where N = M2. The heuristic reason is that the error due to
the bias of the Euler approximation is O(1/M) and the Monte Carlo error is O(1/

√
N).

Thus to match the two different sources of error, we need N = M2. We suggest letting
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N = N0 where N0 is the minimum value where the marginal posterior densities remain
relatively unchanged for N > N0.

6 Application: Stochastic Volatility Models

The MCWM and PM algorithms can be applied to stochastic volatility (SV) models
of the form [Yt, Vt] where Yt is the log-price of a stock or the short term interest rate
with volatility σY (·) which is a function of a latent diffusion V . We assume that [Yt, Vt]
follows

dYt = µY (Yt, Vt, θ)dt + ρσY (Yt, Vt, θ)dWt +
√

1− ρ2 σY (Yt, Vt, θ)dBt

dVt = µV (Yt, Vt, θ)dt + σV (Yt, Vt, θ)dWt,

where B and W are two independent standard Brownian motions, and the instantaneous
correlation between dYt and dVt is controlled by ρ. We assume the process Y is observed
(possibly with noise) at discrete time points ti = i∆ (i = 0, . . . , n) yielding observations
y = (y0, . . . , yn).

The Heston model, proposed in Heston (1993), and its variants are commonly used
SV models where the instantaneous variance process V is defined by the CIR model in
(14). The Heston model Xt = [Yt, Vt]T follows:

dYt = (µ− 0.5Vt)dt + ρ
√

VtdWt +
√

1− ρ2
√

VtdBt (10)

dVt = β(α− Vt)dt + σ
√

VtdWt (11)

Option prices being traded assets, we need to endow the time series model (10)-(11)
with risk premia for arbitrage-free pricing under the auxiliary pricing measure Q. To
keep the simulation study simple we make the assumption of risk premia such that
Wt = WQ

t and dBt = dBQt + r−µ√
(1−ρ2)Vt

dt and no adjustments in the variance drift are

necessary (α = αQ and β = βQ).

Instantaneous stochastic variance is latent, even though a time series of implied
variance is often available (for example the VIX implied volatility index published by
the CBOE). To account for the stochastic nature and mean reversion of index variance,
we use the fact that for short-maturity at-the-money options the Black-Scholes formula
is approximately linear in volatility. Affinity of the variance Q-drift (which is the same
as the drift in (11) because we assume zero risk premia) together with Fubini’s theorem
enables us to write:

1
ξ
EQt

[∫ t+ξ

t

Vs ds

]
= A(α, β, ξ) + B(β, ξ) Vt, ξ > 0 (12)

where

B(β, ξ) =
1− e−ξβ

ξβ
, A(α, β, ξ) = α(1−B(β, ξ)).
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We take average expected variance as a proxy for implied variance IVt,

IVt ≈ 1
ξ
EQt

[∫ t+ξ

t

Vs ds

]
, (13)

and choose ξ = 22/252 as in Jones (2003). This approximation has been used in Aı̈t-
Sahalia and Kimmel (2007), Johannes et al. (2009), Chernov et al. (2003), Eraker (2004),
and Jones (2003).

The likelihood function for Heston’s model is not known in closed form1, hence
the need for the PM and MCWM algorithms. To apply the PM and MCWM algo-
rithms, denote the transition density of (Yti+1 , IVti+1) = (yi+1, ivi+1) given (Yti

, IVti
) =

(yi, ivi) by p(Y,IV )(∆, (yi+1, ivi+1)|(yi, ivi), θ) and that of (Yti+1 , Vti+1) = (yi+1, vi+1)
given (Yti

, Vti
) = (yi, vi) by p(Y,V )(∆, (yi+1, vi+1)|(yi, vi), θ). Using simple transforma-

tion techniques, from (12) and (13) we have

p(Y,IV )(∆, (yi+1, ivi+1)|(yi, ivi), θ) =
p(Y,V )(∆, (yi+1, vi+1)|(yi, vi), θ)

B(β, ξ)

where vi = ivi−A(α,β,ξ)
B(β,ξ) . For ease of notation we omit (Y, V ) from p(Y,V ). The likelihood

function is

L(y, iv|θ) =
n−1∏

i=0

p (∆, (yi+1, vi+1)|(yi, vi), θ)
B(β, ξ)

.

The transition density p (∆, (yi+1, vi+1)|(yi, vi), θ) is not available, but can be estimated
as in (7) where Uik = (Ui,k,1, . . . , Ui,k,M−1), k = 1, . . . , N , is a random sample from
the two dimensional MBB defined in (3) with starting point (yi, vi)T and end point
(yi+1, vi+1)T . We denote this estimator by p(M,N) (∆, (yi+1, vi+1)|(yi, vi), θ). Similarly
to (8), we can now define

πNew Target
(M,N) (θ,u|y, iv) ∝ π(θ)

n−1∏

i=0

p(M,N) (∆, (yi+1, vi+1)|(yi, vi), θ)
B(β, ξ)

×
n−1∏

i=0

N∏

k=1

q(ui,k,1, . . . , ui,k,M−1|θ)

where v = (v0, . . . , vn), vi = Vti , and q(·|θ) is the MBB sampler defined in (3). The
MCWM and PM algorithms now proceed similarly to the algorithms in Sections 3 and
4.

1See Lamoureux and Paseka (2005) for an expression of the density of the Heston model using
a Fourier inversion of the characteristic function. This reduces the dimensionality of the required
integration to a one dimensional integral; the remaining integral is over a modified Bessel function of
non-integer order.
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7 Simulation Study

7.1 CIR Model

The CIR model (Cox et al. 1985) is characterized by the SDE

dXt = β(α−Xt)dt + σ
√

Xt dWt (14)

where α is the mean reverting level, β is the speed of the process, and σ is the volatility
parameter. Since this model has a known transition density, which is a scaled non-central
chi-squared distribution, and is frequently used in applications, it provides a convenient
means of evaluating the effectiveness of the PM and MCWM algorithms. We compare
Bayesian analyses using the exact (non-central chi-square) CIR transition density (and
likelihood) in a standard Metropolis-Hastings (MH) sampler, the PM algorithm, and
the MCWM algorithm.

For the simulation study, we generate two data sets from the true CIR transition
density with n = 500, α = 0.07, β = 0.15, and σ = 0.07. The commonly analyzed
monthly FedFunds dataset (see Section 8) yields parameter estimates close to α =
0.07, β = 0.15, and σ = 0.07. We used ∆ = 1 (yearly) and ∆ = 1/12 (monthly),
thus our simulated datasets mimic yearly as well as monthly real-world data. For more
discussion of the FedFunds dataset, see Section 8.

We apply the random scan Gibbs sampler which randomly selects a component(s)
of the parameter vector θ to update within each iteration. Our sampler randomly
selected either a joint (α, β)−move or a σ−move; the joint (α, β)−move was chosen
with probability 2/3 and a σ−move was chosen with probability 1/3. Uniform random
walk proposals were used throughout, although more optimal proposals could certainly
be envisioned. The prior is defined in (15). All simulation studies focus on σ since
convergence and mixing behavior for σ is the most problematic. All algorithms were
run for 500,000 iterations including a 100,000 iteration burn-in period (this eliminates
the effect of the initial starting point).

We wrote all computer code in the C++ language. The C-based non-central chi-
square functions used by the R software package (http://www.r-project.org) were
called from within C++ for the exact–likelihood analyses. It should be noted that
the importance samples in block i are generated independently from the importance
samples in block j, i 6= j. This lack of dependency can be exploited if multiple pro-
cessors are available. Each processor can be given the task of generating the impor-
tance samples for some subset of the blocks, decreasing the execution time (a sim-
ilar strategy can be used when evaluating the likelihood). This parallelization was
performed using the OpenMP software package (http://www.openmp.org). One diffi-
culty, however, is generating the random variates across multiple processors; specifically,
seeding the individual processors can be problematic if one is not careful. Recently,
much work has been done in this area. One option is to use the SPRNG package
(http://sprng.cs.fsu.edu), another less complex option is to use the cryptography-
based PURG package (http://bill.cochranpages.com). Although PURG lacks built-
in generators for the common statistical distributions, we simply transformed its uniform

http://www.r-project.org�
http://www.openmp.org�
http://sprng.cs.fsu.edu�
http://bill.cochranpages.com�
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Figure 1: Yearly data: Estimated marginal posterior distribution of σ for PM with
M = 2, 5, 10, 20, 40 and N = 20. The red line shows the exact sampler, and the black
line shows the PM sampler.
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Figure 2: Monthly data: Estimated marginal posterior distribution of σ for PM with
M = 2, 5, 10 and N = 20. The red line shows the exact sampler, and the black line
shows the PM sampler.

random variates into normal random variates (which are extensively used in the MBB)
using the Box–Muller method.

First, we chose the number of sub-intervals M by comparing the behavior of the PM
algorithm to the exact algorithm with different values of M . The estimated marginal
posterior densities π(σ|x) using the PM algorithm and the exact algorithm are shown
in Figure 1 for yearly data and in Figure 2 for monthly data. Clearly, the discretization
with M = 20 (M = 5) can be considered to be sufficiently fine for yearly (monthly)
data; we use M = 20 (M = 5) for the remainder of the analysis of the yearly (monthly)
dataset.

We next consider the question of choosing the number of importance samples N for
the PM and MCWM algorithms. For yearly data, the left panel of Figure 3 displays the
estimated marginal posterior distribution of σ for the PM and MCWM algorithms with
M = 20 and N = 1, 2, 5, 10, 20 (the exact algorithm is also shown). For the monthly
data, Figure 4 depicts the estimated marginal posterior densities for PM and MCWM
with M = 5 and N = 1, 2, 5. Clearly, increasing N allows the MCWM algorithm to
more accurately approximate the posterior distribution π(M)(θ|x) regardless of the time
step ∆. Although MCWM does not have π(M)(θ|x) as its limiting distribution for any
finite N , the limiting distribution is quite close to π(M)(θ|x) for sufficiently large N .
Note that increasing M will require a subsequent increase in N ; one would need N > 20
for the yearly data (where M = 20), while N = 5 or 10 would probably be sufficient for
the monthly data (where M = 5).
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Figure 3: Yearly data: Left panels depict the estimated marginal posterior distribution
of σ for PM and MCWM with M = 20 and N = 1, 2, 5, 10, 20. The solid red line shows
the exact sampler, the solid black line shows the PM sampler, and the dotted black
line shows the MCWM sampler. Second column depicts trace plots of the first 10,000
post-burn-in iterations of the PM sampler; right two panels depict the ACF (ACF plots
are based upon post-burn-in sampler output only) for the PM and MCWM samplers.
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Exact N = 1 N = 2 N = 5 N = 10 N = 20
PM Yearly 0 .375 0.020 0.072 0.167 0.233 0.280

Monthly 0 .355 0.263 0.300 0.328 0.338 0.344
MCWM Yearly 0 .375 0.403 0.392 0.377 0.372 0.370

Monthly 0 .355 0.352 0.349 0.349 0.352 0.354

Table 1: Acceptance rates for σ using the PM and MCWM algorithms. Yearly is
calculated with M = 20 and monthly with M = 5. Acceptance rates for the exact
algorithm are also included.
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Figure 4: Monthly data: Estimated marginal posterior density plots for PM and MCWM
with M = 5 and N = 1, 2, 5. The solid red line shows the exact sampler, the solid black
line shows the PM sampler, and the dotted black line shows the MCWM sampler.

Trace plots for σ using a portion of the yearly PM output is shown in the second
column of Figure 3. Trace plots for MCWM are not shown as rapidity of mixing
is largely unaffected by N . Autocorrelation function (ACF) plots for the PM and
MCWM samplers are depicted in the right two columns. For the PM algorithm, it
can be seen that N dramatically influences the rapidity of mixing. Small N deflates
the acceptance probability (and mixing rate), increases autocorrelation, and will thus
require the samplers to be run longer to obtain any given degree of accuracy in the
posterior estimates. Increasing N dramatically improves mixing behavior and usefully
decreases the ACF. We found this to be especially true for yearly data; mixing behavior
for the monthly data improved as N increased, but not nearly as dramatically (graph
not shown). The MCWM samplers mixed rapidly for both the yearly and monthly data.
Although the MCWM chain mixes rapidly when N is small, it clearly does not converge
to the desired limiting distribution.

Acceptance rates for σ when N = 1, 2, 5, 10, 20 are shown in Table 1. For the PM
algorithm, the acceptance rate for σ is strictly increasing in N , the increase being most
dramatic for the yearly data. The acceptance rates for the MCWM algorithm don’t
appreciably change with N , however. Table 2 displays the estimated ESJD for the PM
algorithm. The ESJD is strictly increasing in N ; not surprisingly the increase is most
pronounced for the yearly data. Based upon the ESJD/N metric in Table 2, it appears
that N = 1 yields the most efficient algorithm for monthly data, while N = 2 is most
efficient for yearly data.

In our simulation studies (and in the FedFunds analysis in Section 8), the PM
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Exact N = 1 N = 2 N = 5 N = 10 N = 20
ESJD×10−6 Yearly 4 .534 0.340 1.045 2.389 3.090 3.559

Monthly 4 .264 3.518 3.884 4.162 4.238 4.250
ESJD/N×10−6 Yearly 4 .534 0.340 0.523 0.478 0.309 0.178

Monthly 4 .264 3.518 1.942 0.832 0.424 0.213

Table 2: Expected squared jump distance (ESJD) for σ using the PM algorithm with
M = 20 for yearly data and M = 5 for monthly data. ESJD for the exact algorithm is
also included.

N = 1 N = 2 N = 5 N = 10 N = 20
σ Acc. Rate 0.194 0.103 0.070 0.056 0.031
ui Acc. Rate 0.047 0.122 0.243 0.490 0.986

Table 3: Acceptance rates for σ and blocks of missing ui (fixing α = 0.07 and β = 0.15)
using a blocking strategy. Simulated yearly data, calculated with M = 20 and N =
1, 2, 5, 10, 20.

algorithm was approximately 3 times faster than MCWM for any given combination of
M and N . The speed differential depends upon several factors, but it mainly depends on
the probability of choosing a σ−move. In our simulation studies, we chose a σ−move
with probability 1/3. Increasing this move probability will increase the number of
importance samples that need to be generated and thus slow down the PM algorithm.
This added computational burden will yield more rapid mixing for σ since we attempt
to update σ more often. Decreasing the σ−move probability increases the speed of
the algorithm while decreasing the rapidity of mixing of the σ parameter. Because
the MCWM algorithm generates two fresh sets of importance samples within every
iteration (i.e., for both (α, β)−moves and σ−moves), it is largely unaffected by the
move probabilities.

We now demonstrate the inefficiencies of the blocking strategy described in Section
4. Using the yearly simulated dataset, the acceptance rates for the volatility σ and
the blocks ui are shown in Table 3 (we used M = 20 and N = 1, 2, 5, 10, 20). As N
increases, it is clear that the acceptance rate for σ decreases, while the acceptance rate
for the blocks ui increase.

7.2 Heston Model: Weekly Data (∆ = 1/52)

We compare Bayesian analyses using the PM and MCWM algorithms. For the simu-
lation study, we generate one dataset from the Heston model defined in (10)-(11) with
α = 0.1, β = 3, µ = 0.05, ρ = −0.8, and σ = 0.25 using an Euler discretization of the
process. We use 100 sub-intervals per sampling interval; 99 out of every 100 observa-
tions are then discarded. We generate 1000 observations, but discard the first 500 (see
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Figure 5: Weekly simulated Heston data: Estimated marginal posterior distribution of
σ and ρ for PM with with M = 20, N = 1, 2, 20. The solid line shows sampler with
N = 20, the dashed line shows N = 2, and the dotted line shows N = 1. The ACF is
also depicted.

Aı̈t-Sahalia and Kimmel 2007).

As in Kalogeropoulos et al. (2010), we assume a flat prior for all parameters, restrict-
ing α > 0, β > 0, σ > 0, and ρ ∈ (−1, 1). Our simulation study focuses on σ and ρ since
convergence and mixing behavior for the covariance coefficient is the most problematic.
The systematic scan Gibbs algorithm used the following proposals: α∗ ∼ N(α, 0.12),
β∗ ∼ N(β, 1.02), σ∗ ∼ N(σ, 0.12), µ∗ ∼ N(µ, 0.4472), and ρ∗ ∼ N(ρ, 0.12) (the parame-
ters were updated in this order as well). All algorithms were run for 110,000 iterations
including a 10,000 iteration burn-in period (for the systematic scan algorithm, one it-
eration consists of updating all 5 parameters).

We first consider the question of choosing M . We performed a simulation study
using the PM algorithm with M = 5, 10, 20, 30 and N = 20 (graphic is not shown).
Unlike the CIR simulation study, an exact sampler is not available, and thus we have no
“reference” for comparison like we used in Figures 1 and 2 for determining an adequate
value for M . What we can do, however, is determine how large M must be for the
marginal posterior distributions to “stabilize”. We found that the estimated marginal
posterior distributions remained virtually unchanged after increasing M from 20 to 30,
thus we consider the discretization with M = 20 to be sufficiently fine. We use M = 20
in the remainder of this section.

We next consider the question of choosing the number of importance samples N .
In Figure 5 we compare the PM algorithm with M = 20 and N = 1, 2 to the PM
algorithm with M = 20 and N = 20. The estimated marginal posterior densities and
the autocorrelation function (ACF) indicate that the convergence rate when N = 1
is extremely slow, although using N = 2 offers some improvement. Figure 6 displays
the estimated marginal posterior density estimates and ACF for the PM and MCWM
algorithms with M = 20 and N = 5, 10, 20. The performance of the PM algorithm
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Figure 6: Weekly simulated Heston data: Left panels depict the estimated marginal
posterior distribution of σ and ρ. The black solid, dashed, and dotted lines show the
PM sampler with N = 20, 10, and 5, respectively. The MCWM sampler output is
shown in red. M = 20 is used throughout. The right panels depict the ACF.
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Figure 7: Monthly FedFunds Rate (in percent) from January 1963 to December 1998.

is dramatically improved compared to when N = 1, 2. In fact, N = 5 with 100,000
(post burn-in) iterations can yield sufficiently accurate posterior estimates for the PM
algorithm. Clearly, the MCWM algorithm will yield inferior posterior estimates even
when N = 20, thus a larger N is needed to provide acceptable results.

8 Real Data

8.1 CIR Model: FedFunds Dataset

We now test the PM and MCWM algorithms with the FedFunds rate data observed
monthly from January 1963 to December 1998 (n = 432) (see Figure 7). As in Di
Pietro (2001) and Aı̈t-Sahalia (1999), we chose the CIR model for the FedFunds rate
for illustrative reasons; more complex models, like regime-switching models or SDE
models with time-varying parameters, are potentially better models for the FedFunds
data (see Di Pietro 2001).

Our prior specification is similar to Di Pietro (2001). The parameter α is the mean
reverting level. We note that interest rates are non-negative, and the FedFunds rate
peaked at just over 22.36% (or 0.2236) in 1981; worldwide, however, there is no clear
upper bound for interest rates (in Zaire, the interest rate topped 10,000% in 1994). The
prior on α should be dictated by the economy being modeled. For the FedFunds rate,
we place a Unif(0, 1) prior on α. We assume that the process exhibits mean reversion
(commonly exhibited by interest rates), and thus constrain β > 0 (if β < 0, then the
process runs away from the mean α). Since σ is the scale parameter of the Brownian
motion, we specify the prior on σ in the usual way, σ−1I(0,∞)(σ), where I denotes the
indicator function. Thus, the joint prior is

π(θ) = π(α, β, σ) = I(0,1)(α) I(0,∞)(β) σ−1I(0,∞)(σ). (15)

Random walk proposals were used: the joint proposal (α∗, β∗) in the (α, β)−move was
generated by choosing α∗ ∼ Unif(α−0.05, α+0.05) and β∗ ∼ Unif(β−0.125, β+0.125),
the σ−move used σ∗ ∼ Unif(σ − 0.01, σ + 0.01).

To determine the optimal amount of discretization, we ran PM chains with M =
2, 5, 10, 20 and N = 10, and plotted the estimated marginal posterior densities π(α|x),
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Exact N = 1 N = 2 N = 5 N = 10 N = 20
ESJD× 10−6 4 .391 3.349 3.913 4.133 4.259 4.420
ESJD/N × 10−6 4 .391 3.349 1.957 0.827 0.426 0.221

Table 4: FedFunds data. Expected squared jump distance (ESJD) for σ using the PM
algorithm with M = 20 and N = 1, 2, 5, 10, 20. ESJD for the exact algorithm is also
included.
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Figure 8: FedFunds data. Estimated marginal posterior distribution of α, β, and σ for
PM and MCWM with M = 20 and N = 5. The solid red line shows the exact sampler,
the solid black line shows the PM sampler, and the dotted black line shows the MCWM
sampler.

π(β|x), and π(σ|x) (the graphic is not shown, but it is similar in flavor to Figure
1). For choosing M (and N below), all algorithms were run for 510,000 iterations
including a 10,000 iteration burn-in period. The estimated marginal posterior densities
are approximately the same for M = 10 and M = 20 (while M = 2, 5 noticeably
differed); thus, we consider the discretization with M = 20 to be sufficiently fine (using
M = 10 would probably suffice, however).

We next consider the question of choosing the number of importance samples N .
Using M = 20, we ran PM chains with N = 1, 2, 5, 10, 20 and recorded the expected
squared jump distance (ESJD) for σ. The results are in Table 4. As in the simulation
study, the ESJD increases with the number of importance samples N , however, the
algorithm is most efficient (according to the ESJD/N metric) with N = 1; this was also
the case for the simulation study with monthly data.

In Figure 8 we show the estimated marginal posterior densities constructed using
the output of PM and MCWM chains with M = 20 and N = 5 (the output from the
exact sampler is depicted for comparison). All chains were run for 500,000 iterations
(not including a 10,000 iteration burn-in period) on a Debian GNU Linux machine
utilizing an Intel i7 2.8GHz quad-core processor. Both the PM and MCWM samplers
yield excellent marginal posterior density estimates with the MCWM sampler estimates
slightly inferior to the PM results. The PM sampler is much more efficient as the
execution time for the PM sampler was approximately 50 minutes while the MCWM
sampler took 153 minutes. The estimates from the MCWM algorithm could be improved
if N was increased, albeit with a subsequent increase in execution time.
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Figure 9: FedFunds data. Estimated marginal posterior distribution of α, β, and σ using
the prior of Di Pietro (black line) and an informative prior (red line). PM sampler used
M = 20 and N = 5.
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Figure 10: Figure depicts the S&P 500 (in black) and VIX implied volatility (in red)
observed daily from January 2, 1998 to December 31, 2003. The scale for the S&P 500
is depicted on the left axis, the scale for the VIX is depicted on the right axis.

Finally, we performed a small sensitivity analysis. We compared Di Pietro’s prior
(15) with a truncated Gaussian prior

π(α, β, σ) ∝ I(0,1)(α)φ(α; 0.1, 0.22) I(0,∞)(β)φ(β; 0.1, 0.42) I(0,∞)(σ)φ(σ; 0.1, 0.12).

Figure 9 indicates that all parameters are quite robust to the choice of prior, especially
α and σ. The speed β seems a little more sensitive to the prior as the drift parameters
α and β are typically the most difficult to estimate (especially β).

8.2 Heston Model: S&P 500, VIX Bivariate Dataset

The bivariate S&P 500 and VIX implied volatility data recorded daily (∆ = 1/252)
from January 2, 1998 to December 31, 2003 is depicted in Figure 10. The VIX tends
to rise as fear and uncertainty in the market increase. The VIX, quoted in terms of
percentage points, approximates the expected movement in the S&P 500 index over the
next 30-day period on an annualized basis. If, for example, the VIX is at 40, then the
expected annualized change is 40% over the next 30 days; in other words, we can expect
the S&P 500 to move up or down 40%/

√
12 = 11.5% over the next 30-day period. Via

normality, one can assume that there is a 68% likelihood that the S&P 500 will move
less than 11.5% in the next 30 days (thus, there is a 32% chance that the S&P 500
moves more than 11.5% in the next 30 days!)
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Figure 11: S&P 500, VIX analysis: Left panels depict the estimated marginal posterior
distribution of α, β, σ, µ, and ρ for the PM and MCWM algorithms using M = 10 and
N = 5, 20 and for the GW algorithm with M = 10. The solid black (red) line shows
the PM (MCWM) sampler with N = 20, the dotted black (red) line shows the PM
(MCWM) sampler with N = 5, and the green line shows the GW sampler. The right
panels depict the corresponding ACF plots.
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We use Heston’s model, defined in (10)-(11), for this dataset. We adopt relatively
non-informative priors: α ∼ N(0.1, 102) (truncated to R+), β ∼ N(2, 102) (truncated
to R+), σ ∼ N(0.5, 102) (truncated to R+), µ ∼ N(0.1, 102), ρ ∼ N(−0.5, 102) (trun-
cated to (−1, 1)). The systematic scan Gibbs algorithm used the following propos-
als: α∗ ∼ N(α, 0.12), β∗ ∼ N(β, 1.4142), σ∗ ∼ N(σ, 0.12), µ∗ ∼ N(µ, 0.4472), and
ρ∗ ∼ N(ρ, 0.1222); the parameters were updated in this order as well. Both the PM and
MCWM algorithms used M = 10 and N = 5, 20. Each algorithm was run for 100,000 it-
erations (one iteration consists of updating all 5 parameters) following a 10,000 iteration
burn-in period.

For stochastic volatility models, the priors are much more important in analyzing
drifts than volatilities, especially for high frequency data. This is because inferences
about volatility parameters become arbitrarily accurate, at least in theory, as the sam-
pling interval shrinks to zero. This is not true for the drift parameters, however. For
stochastic volatility models, we are able to eliminate most posterior variance for (σ, ρ)
by using daily data; any reasonably diffuse prior will have little if any effect on the
posterior. However, high frequency data provide very little information about the drift
parameters. The drift estimate strongly depends on the length T of the available data.
As noted by Aı̈t-Sahalia and Kimmel (2007), “The volatility can be estimated to an
arbitrary degree of precision by sampling frequently enough, but the drift estimate is
independent of sampling frequency.” Thus, inference for the drift is robust to the choice
of the prior if we observe the data over a long enough time period. The simulation
study in Section 7.2 had 500 observations of weekly data (∆ = 1/52), and thus the
drift parameters turned out to be reasonably robust to the choice of prior. For the S&P
500 VIX dataset, we observed n = 1,508 observations of daily data which, relatively
speaking, contains much less information about the drift parameters.

Figure 11 displays the estimated marginal posterior distributions of α, β, σ, µ, and ρ
and the autocorrelation function (ACF) for each sampler. The MCWM algorithm ap-
pears to inflate the marginal posterior variance compared to the PM algorithm. Increas-
ing N in the MCWM algorithm allows the marginal posterior distributions to be more
closely approximated, but N = 20 still appears to be too small to obtain sufficiently
accurate estimates. On the other hand, the estimated marginal posterior distributions
are virtually identical for the PM algorithm when N = 5, 20. Unlike MCWM, the PM
algorithm benefits from decreased autocorrelation for σ and ρ when N is increased from
5 to 20 (this comes with additional computational expense, however). Using N > 20 in
the PM algorithm would probably yield little (if any) benefit in terms of autocorrelation,
but would be more computationally costly.

Golightly-Wilkinson Algorithm

Golightly and Wilkinson (2008) introduced a transformation and an MCMC data aug-
mentation algorithm which has been empirically shown to have good convergence rates
when M is “big”. This approach utilizes the MBB samplers. We found the Golightly-
Wilkinson (GW) approach to work quite well for the Heston model, although the up-
dates are quite computationally demanding. For a given number of imputed data points,
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the PM approach with N = 3 is roughly the same speed, iteration to iteration, as GW.

We ran the GW algorithm on the S&P500/VIX dataset using the same prior, pro-
posals, and number of imputed (M = 10) as the PM analysis. Figure 11 shows that
the estimated marginal posterior densities closely mirror those for PM. The ACFs for
the GW algorithm are comparable to PM with N = 20. To obtain comparable Monte
Carlo errors, it takes the PM algorithm (with N = 20) approximately 7 times as long to
execute as GW. However, PM appears to be more amenable to efficient parallelization
(although we haven’t parallelized GW, our experience suggests that the speed increase
will be less dramatic than parallelized PM). The time disadvantage of PM may be
minimized given appropriate resources. In addition, we believe that PM will more eas-
ily scale to higher dimensional models; because GW involves the Jacobian, it will be
computationally more intense for models with complicated covariance functions.

9 Discussion

We have proposed Monte Carlo within Metropolis (MCWM) and pseudo-marginal (PM)
algorithms for simulating from the posterior distribution of the Euler-Mayumara approx-
imation to diffusions. These algorithms can be applied to a broad class of multidimen-
sional non-reducible diffusion processes which are observed (possibly with noise) only at
discrete time points. These algorithms avoid the need for re-parametrization techniques
that are not always available and/or justified; many are computationally intense.

Our simulation study focused on the Cox-Ingersoll-Ross (CIR) and Heston models.
It demonstrated a strategy for choosing the number of sub-intervals M between observed
data points, the effect of the number of importance samples N on the mixing behavior of
the PM algorithm (and its lack of effect on mixing for MCWM), the superiority of poste-
rior inferences when using the PM algorithm (compared to MCWM), and the heightened
computational efficiency of the PM algorithm. Our analysis of the FedFunds rate using
the CIR model, and our analysis of the bivariate S&P 500/VIX dataset using Heston’s
model, demonstrated the efficacy of the PM and MCWM algorithms with real-world
data, reiterated PM’s efficiency advantage over MCWM, and demonstrated that, unlike
the PM algorithm, the MCWM algorithm has a limiting distribution close to, but not
exactly, the desired posterior distribution. A potential downside of the PM algorithm
is its dependence on the Markov property. The PM algorithm is not efficient when
some components of the diffusion process are not observed and cannot be extracted.
Finally, further work is required to investigate the relative merits of re-parametrization
approaches (see Section 2) to the PM and MCWM schemes. Our analysis of the S&P
500/VIX dataset shows that Golightly-Wilkinson (GW) algorithm, a competitor of the
PM algorithm, works very well for the Heston model. However, the efficacy of GW for
more complex models needs to be explored. With two viable approaches, practitioners
have the option to choose the algorithm with the best convergence and mixing properties
for their model.
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