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Abstract Bayesian parameter estimation and Bayesian

hypothesis testing present attractive alternatives to classi-

cal inference using confidence intervals and p values. In

part I of this series we outline ten prominent advantages

of the Bayesian approach. Many of these advantages trans-

late to concrete opportunities for pragmatic researchers. For

instance, Bayesian hypothesis testing allows researchers to

quantify evidence and monitor its progression as data come

in, without needing to know the intention with which the

data were collected. We end by countering several objec-

tions to Bayesian hypothesis testing. Part II of this series dis-

cusses JASP, a free and open source software program that

makes it easy to conduct Bayesian estimation and testing for

a range of popular statistical scenarios (Wagenmakers et al.,

this issue).
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factor · Posterior distribution

Theoretical satisfaction and practical implementation are

the twin ideals of coherent statistics. Dennis Lindley, 1980.
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The psychology literature is rife with p values. In almost

every published research article in psychology, substantive

claims are supported by p values, preferably ones smaller

than .05. For instance, the December 2014 issue of Psycho-

nomic Bulletin & Review featured 24 empirical brief reports,

all of which reported p values. The dominance of the p

value statistical framework is so complete that its presence

feels almost prescriptive (“every empirical article in psy-

chology shall feature at least one p value.”). In Part I of

this two-part series we aim to demonstrate that there exists

a valid and feasible alternative –Bayesian inference– whose

adoption brings considerable benefits, both in theory and in

practice.

Based on a superficial assessment, the continued popu-

larity of p values over Bayesian methods may be difficult

to understand. The concept of p value null hypothesis sta-

tistical testing (NHST) has been repeatedly critiqued on a

number of important points (e.g., Edwards, Lindman, &

Savage, 1963; Morrison & Henkel, 1970; Mulaik & Steiger,

1997; Wagenmakers, 2007), and few methodologists have

sought to defend the practice. One of the critiques is that

p values are often misinterpreted as Bayesian posterior

probabilities, such that it is all too easy to believe that

p < .05 warrants the rejection of the null hypothesis H0,

and consequently supports the acceptance of the alternative

hypothesis H1. This interpretation of p values is tempt-

ing but incorrect (Gigerenzer, Krauss, & Vitouch, 2004).

A p value is the probability of obtaining results at least

as extreme as those observed given that the null hypothe-

sis is true. The transition from this concept to the decision,

“I accept the alternative hypothesis”, is a leap that is log-

ically invalid. The p value does not take into account the

prior plausibility of H0, and neither does it recognize the

fact that data unusual under H0 can also be unusual under
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H1 (Wagenmakers et al., in press). Other pressing problems

with p values will be discussed shortly.

From a psychological perspective, however, a number

of arguments may help explain the continued popularity of

p values over Bayesian methods.1 First, researchers prac-

tice and preach the methodology that they were once taught

themselves; interrupting this self-perpetuating educational

cycle requires that researchers invest serious effort to learn

new methods. Second, by breaking away from the dominant

group of p value practitioners, researchers choose to move

away from the in-group and expose themselves to the asso-

ciated risks of academic exclusion. Third, just like fish form

schools to escape predation, researchers may believe that

there is security in repeating procedures that are popular;

“surely,” they may feel, “if the procedure I use is standard

in the field, then any detractors must be overstating their

case”. Fourth, many psychologists are primarily interested

in addressing substantive research questions, not in the finer

details of statistical methodology; such methodological dis-

interest feeds the desire for simple procedures that work

well enough to convince the reviewers. In this sense the cur-

rent p value fixation is similar to a statistical ritual (i.e., the

“null ritual”, Gigerenzer, 2004). Fifth, the p value frame-

work, when misinterpreted, offers a simple solution to deal

with the uncertainty inherent in noisy data: when p < .05,

reject H0 and accept H1; when p > .10, retain H0. When

misapplied in this way, p values appear to make it easy for

researcher to draw strong conclusions even when the empir-

ical results are noisy and uninformative. Sixth, researchers

may feel that by using non-standard methods (i.e., any-

thing other than the p value) they reduce their chances of

getting their work published or having it understood by

their colleagues. Seventh, researchers interested in method-

ology have often internalized their statistical education to

such an extent that they have difficulty accepting that the

method they have used all their life may have serious limi-

tations; when new information conflicts with old habits, the

resulting cognitive dissonance can be reduced by discount-

ing or ignoring the new information. Finally, it is possible

that researchers may agree with the p value critiques, yet

are unable to adopt alternative (Bayesian) inferential pro-

cedures. The reason for this inability is straightforward:

virtually all statistical software packages produce p values

easily, whereas Bayesian methods cannot count on the same

level of support. Many of these arguments hold for statistical

innovations in general, not just for p value NHST (Sharpe,

2013).

In general, then, powerful psychological and societal

forces are at play, making it nigh impossible to challenge the

1These arguments are speculative to the degree that they are based

entirely on our personal experience and common-sense; in other

words, our arguments have not been subjected to rigorous empirical

tests.

dominant methodology. Nonetheless, the edifice of NHST

appears to show subtle signs of decay. This is arguably due

to the recent trials and tribulations collectively known as

the “crisis of confidence” in psychological research, and

indeed, in empirical research more generally (e.g., Begley

& Ellis, 2012; Button et al., 2013; Ioannidis, 2005; John,

Loewenstein, & Prelec, 2012; Nosek & Bar-Anan, 2012;

Nosek, Spies, & Motyl, 2012; Pashler & Wagenmakers,

2012; Simmons, Nelson, & Simonsohn, 2011). This crisis

of confidence has stimulated a methodological reorientation

away from the current practice of p value NHST. A series of

recent articles have stressed the limitations of p values and

proposed alternative methods of analysis (e.g., Cumming,

2008, 2014; Halsey, Curran-Everett, Vowler, & Drummond,

2015; Johnson, 2013; Kruschke, 2010a, 2011; Nuzzo, 2014;

Simonsohn, 2015b). In response, flagship journals such

as Psychological Science have issued editorials warning

against the uncritical and exclusive use of p values (Lindsay,

2015); similar warnings have been presented in the Psycho-

nomic Bulletin & Review Statistical Guidelines for authors;

finally, the journal Basic And Applied Social Psychology has

banned p values altogether (Trafimow & Marks, 2015).

In order to reduce psychologists’ dependence on p val-

ues it is essential to present alternatives that are concrete

and practical. One such alternative is inference from confi-

dence intervals (i.e., the “new statistics”, Cumming, 2014;

Grant, 1962). We see two main limitations for the new statis-

tics. The first limitation is that confidence intervals are not

Bayesian, which means that they forego the benefits that

come with the Bayesian approach (a list of such benefits is

provided below); moreover, confidence intervals share the

fate of p values in the sense that they are prone to fallacies

and misinterpretations (Greenland et al., in press; Morey,

Hoekstra, Rouder, Lee, & Wagenmakers, 2016). The second

limitation is that confidence intervals presume that the effect

under consideration exists; in other words, their use implies

that every problem of inference is a problem of parame-

ter estimation rather than hypothesis testing. Although we

believe that effect size estimation is important and should

receive attention, the question of size (“how big is the

effect?”) comes into play only after the question of presence

(“is there an effect?”) has been convincingly addressed

(Morey, Rouder, Verhagen, & Wagenmakers, 2014). In

his monograph “Theory of Probability”, Bayesian pioneer

Harold Jeffreys makes a sharp distinction between estima-

tion and testing, discussing each in separate chapters: “In the

problems of the last two chapters we were concerned with

the estimation of the parameters in a law, the form of the law

itself being given. We are now concerned with the more dif-

ficult question: in what circumstances do observations sup-

port a change of the form of the law itself? This question is

really logically prior to the estimation of the parameters,

since the estimation problem presupposes that the parameters
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are relevant.” (Jeffreys, 1961, p. 245; italics ours). The same

sentiment was recently expressed by Simonsohn (2015b,

p. 559): “Only once we are past asking whether a pheno-

menon exists at all and we come to accept it as qualitatively

correct may we become concerned with estimating its mag-

nitude more precisely. Before lines of inquiry arrive at the

privileged position of having identified a phenomenon that

is generally accepted as qualitatively correct, researchers

require tools to help them distinguish between those that are

and are not likely to get there.” We believe it is a mistake

to mandate either an estimation or a testing approach across

the board; instead, the most productive mode of inference

depends on the substantive questions that researchers wish

to have answered. As illustrated below, the problems with p

values are not a reason to abandon hypothesis testing – they

are a reason to abandon p values.

As a concrete and practical alternative to hypothesis

testing using p values, we propose to conduct hypothesis

testing using Bayes factors (e.g., Berger, 2006; Jeffreys,

1935, 1961; Kass & Raftery, 1995). The Bayes factor

hypothesis test compares the predictive adequacy of two

competing statistical models, thereby grading the evidence

provided by the data on a continuous scale, and quantify-

ing the change in belief that the data bring about for the

two models under consideration. Bayes factors have many

practical advantages; for instance, they allow researchers to

quantify evidence, and they allow this evidence to be mon-

itored continually, as data accumulate, and without needing

to know the intention with which the data were collected

(Rouder, 2014; Wagenmakers, 2007).

In order to profit from the practical advantages that

Bayesian parameter estimation and Bayes factor hypothesis

tests have to offer it is vital that the procedures of interest

can be executed in accessible, user-friendly software pack-

age. In part II of this series (Wagenmakers et al., this issue)

we introduce JASP (jasp-stats.org; JASP Team, 2016), a

free and open-source program with a graphical user inter-

face familiar to users of SPSS. With JASP, users are able

to conduct classical analyses as well as Bayesian analy-

ses, without having to engage in computer programming or

mathematical derivation.

The overarching goal of Part I this series is to present

Bayesian inference as an attractive alternative to p value

NHST. To this end, a concrete example is used to highlight

ten practical advantages of Bayesian parameter estimation

and Bayesian hypothesis testing over their classical coun-

terparts. Next we briefly address a series of ten objections

against the Bayes factor hypothesis test. Our hope is that by

raising awareness about Bayesian benefits (and by simul-

taneously providing a user-friendly software program, see

Wagenmakers et al., this issue) we can help accelerate the

adoption of Bayesian statistics in psychology and other

disciplines.

Bayesian inference and its benefits

To facilitate the exposition below we focus on a concrete

example: the height advantage of candidates for the US

presidency (Stulp, Buunk, Verhulst, & Pollet, 2013). The

data from the first 46 US presidential elections can be ana-

lyzed in multiple ways, but here we are concerned with the

Pearson correlation ρ between the proportion of the pop-

ular vote and the height ratio (i.e., height of the president

divided by the height of his closest competitor). Figure 1

shows that taller candidates tend to attract more votes;

the sample correlation r equals .39 and is significantly

different from zero (p = .007, two-sided test). A classi-

cal confidence interval for ρ ranges from .12 to .61. We

now turn to a Bayesian analysis of these data, first dis-

cussing estimation, then discussing hypothesis testing of the

correlation ρ. Our exposition is necessarily brief and selec-

tive; a complete treatment of Bayesian inference requires a

monograph (e.g., Bernardo & Smith, 1994; Jeffreys, 1961;

Jaynes, 2003; Lunn, Jackson, Best, Thomas, & Spiegelhal-

ter, 2012; O’Hagan & Forster, 2004). In addition, we have

made an effort to communicate the concepts and ideas with-

out recourse to equations and derivations. Readers interested

in the mathematical underpinnings of Bayesian inference

are advised to turn to other sources (e.g., Ly, Verhagen, &

Wagenmakers, 2016b; Marin & Robert, 2007; O’Hagan &

Forster, 2004; Pratt et al., 1995; Rouder et al., 2012; an

overview and a reading list are provided in this issue, Etz,

Gronau, Dablander, Edelsbrunner, & Baribault, this issue).

Bayesian Parameter Estimation

A Bayesian analysis may proceed as follows. The model

under consideration assumes that the data are bivariate

Fig. 1 The proportion of the popular vote versus the height ratio

between a US president and his closest competitor for the first 46

elections. Data obtained from Stulp et al. (2013). Figure based on

JASP

https://jasp-stats.org/
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Fig. 2 Prior and posterior distribution for the correlation between the

proportion of the popular vote and the height ratio between a US pres-

ident and his closest competitor. The default two-sided Bayes factor

is visualized by the ratio between the prior and posterior ordinate at

ρ = 0 and equals 6.33 in favor of the alternative hypothesis over the

null hypothesis. Figure from JASP

Normal, and interest centers on the unknown correlation

coefficient ρ. In Bayesian statistics, the uncertainty about

ρ before seeing the data is quantified by a probability dis-

tribution known as the prior. Here we specify a default

prior distribution, one that stipulates that every value of ρ

is equally plausible a priori (Jeffreys, 1961); this yields a

uniform distribution ranging from −1 to 1, shown in Fig. 2

by the dotted line.2 It is possible to specify different mod-

els by changing the prior distribution. For instance, later we

will incorporate the knowledge that ρ is expected to be pos-

itive, which can be accomplished by using a uniform prior

distribution that ranges only from 0 to 1. For the moment,

we refrain from doing so here because the classical NHST

analysis is also two-sided.

Next the prior distribution is combined with the infor-

mation from the data (i.e., the likelihood; Edwards, 1992;

Myung, 2003; Royall, 1997) and the result is a posterior

distribution. This posterior distribution quantifies the uncer-

tainty about ρ after having seen the data. Figure 2 shows

that compared to the prior distribution, the posterior distri-

bution assigns relatively little mass to values lower than 0

and higher than .70. A 95% credible interval ranges from

.11 to .60, which means that one can be 95% confident that

the true value of ρ lies between .11 and .60. When the pos-

terior distribution is relatively peaked compared to the prior,

this means that the data were informative and much has been

2The prior distributions for the other parameters from the bivariate

Normal are inconsequential for inference about ρ and can be assigned

vague prior distributions (Ly et al., 2016b). A slightly different and

less transparent Bayesian model for the Pearson correlation coefficient

is presented in Wetzels and Wagenmakers (2012).

learned. Note that the area under the prior and the posterior

distribution has to equal 1; consequently, if some values of

ρ are less likely under the posterior then they were under

the prior, the reverse pattern needs to hold for at least some

other values of ρ.

Benefits of Bayesian parameter estimation

In psychology, Bayesian parameter estimation techniques

have recently been promoted by Jeff Rouder and colleagues

(e.g., Rouder, Lu, Speckman, Sun, & Jiang, 2005; Rouder,

Lu, et al., 2007; Rouder, Lu, Morey, Sun, & Speckman,

2008), by Michael Lee and colleagues (e.g., Lee, 2008,

2011; Lee, Fuss, & Navarro, 2006), and by John Kruschke

(e.g., Kruschke, 2010a, b, 2011). Because the results of clas-

sical parameter estimation techniques (i.e., confidence inter-

vals) are sometimes numerically similar to those obtained

using Bayesian methods (i.e., credible intervals), it is tempt-

ing to conclude that the difference is not of practical interest.

This is, however, a misconception. Below we indicate sev-

eral arguments in favor of Bayesian parameter estimation

using posterior distributions over classical parameter esti-

mation using confidence intervals. For more details and

examples see Morey et al. (2016). Before proceeding, it is

important to recall the definition of a classical confidence

interval: An X% confidence interval for a parameter θ is an

interval generated by a procedure that in repeated sampling

has an X% probability of containing the true value of θ

(Hoekstra, Morey, Rouder, & Wagenmakers, 2014; Neyman,

1937). Thus, the confidence in the classical confidence

interval resides in its performance in repeated use, across

hypothetical replications. In contrast, the confidence in the

Bayesian credible interval refers directly to the situation at

hand (see benefit 3 below and see Wagenmakers, Morey, &

Lee, 2016). Table 1 lists five benefits of Bayesian estimation

over classical estimation. We will discuss each in turn.

Benefit 1. Bayesian estimation can incorporate prior

knowledge

The posterior distribution is a compromise between the prior

(i.e., what was known before the data arrived), and the like-

lihood (i.e., the extent to which the data update the prior).

By selecting an appropriate prior distribution, researchers

are able to insert substantive knowledge and add useful con-

straint (Vanpaemel, 2010; Vanpaemel and Lee, 2012). This

is not a frivolous exercise that can be misused to obtain

arbitrary results (Lindley, 2004). For instance, consider the

estimation of IQ. Based on existing knowledge, it is advis-

able to use a Gaussian prior distribution with mean 100

and standard deviation 15. Another example concerns the

estimation of a participant’s latent ability to discriminate

signal from noise in a psychophysical present-absent task.
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Table 1 Select overview of advantages of Bayesian inference over classical inference

Bayesian Classical

Inference Inference References

Desiderata for Parameter Estimation

1. To incorporate prior knowledge 1,2

2. To quantify confidence that θ lies in a specific interval 3

3. To condition on what is known (i.e., the data) 4,5

4. To be coherent (i.e., not internally inconsistent) 6,7

5. To extend naturally to complicated models 8,9

Desiderata for Hypothesis Testing

1. To quantify evidence that the data provide for H0 vs. H1 10,11

2. To quantify evidence in favor of H0 12,13

3. To allow evidence to be monitored as data accumulate 14,15

4. To not depend on unknown or absent sampling plans 16,17

5. To not be “violently biased” against H0 18,19,20

See text for details. References: 1 = Dienes (2011); 2 = Vanpaemel (2010); 3 = (Pratt et al., 1995, p. 258); 4 = Berger and Wolpert (1988);

5 = Jaynes (2003); 6 = Lindley (1985); 7 = Lindley (2000); 8 = Pratte and Rouder (2012); 9 = Lunn et al. (2012); 10 = Jeffreys (1935); 11 =

Jeffreys (1961); 12 = Rouder et al. (2009); 13 = Wagenmakers (2007); 14 = Edwards et al. (1963); 15 = Rouder (2014); 16 = Berger and Berry

(1988); 17 = Lindley (1993); 18 = W. Edwards (1965); 19 = Berger and Delampady (1987); 20 = Sellke et al. (2001)

In the absence of ability, the participant still has a 50%

probability of guessing the correct answer. Hence, the latent

rate θ of correct judgements is bounded from below by

0.5 (Morey, Rouder, & Speckman, 2008; Rouder, Morey,

Speckman, & Pratte, 2007). Any statistical paradigm that

cannot incorporate such knowledge seems overly restrictive

and incomplete. The founding fathers of classical infer-

ence –including “Student” and Fisher– mentioned explicitly

that their methods apply only in the absence of any prior

knowledge (Jeffreys, 1961, pp. 380–382).

To see how easy it is to add meaningful constraints to

the prior distribution, consider again the example on the US

presidents (see also Lee & Wagenmakers, 2013; Wagen-

makers, Verhagen, & Ly, 2016). Assume that, before the

data were examined, the correlation was believed to be pos-

itive; that is, it was thought that taller candidates attract

more votes, not less. This restriction can be incorporated by

assigning ρ a uniform distribution from 0 to 1 (Hoijtink,

Klugkist, & Boelen, 2008; Hoijtink, 2011; Klugkist, Laudy,

& Hoijtink, 2005). The results are shown in Fig. 3. Note that

the area under the one-sided prior distribution needs to equal

1, which explains why it is twice as high as the two-sided

prior distribution shown in Fig. 2.

A comparison between Figs. 2 and 3 also reveals that the

restriction did not meaningfully alter the posterior distribu-

tion. This occurs because most of the posterior mass was

already consistent with the restriction, and hence the one-

sided restriction necessitated only a minor adjustment to the

posterior obtained from the two-sided prior. In contrast, the

classical one-sided 95% confidence interval ranges from .16

to 1, containing all values that would not be rejected by a

one-sided α = .05 significance test. This one-sided inter-

val is very different from the two-sided interval that ranged

from .12 to .61. In light of the data, and in light of the poste-

rior distribution, the one-sided confidence interval does not

appear to provide an intuitive or desirable summary of the

Fig. 3 One-sided prior and posterior distribution for the correlation

between the proportion of the popular vote and the height ratio between

a US president and his closest competitor. The default one-sided Bayes

factor is visualized by the ratio between the prior and posterior ordinate

at ρ = 0 and equals 12.61 in favor of the alternative hypothesis over

the null hypothesis. Figure from JASP
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uncertainty in estimating ρ.3 To further stress the difference

between the Bayesian and classical one-sided intervals, note

that for the present data the one-sided classical interval that

presumes the opposite restriction (i.e., taller candidates are

assumed to attract fewer votes) yields an interval that ranges

from −1 to 0.58, that is, covering all of the negative range

and most of the positive range. In sharp contrast, the restric-

tion to negative correlations yields a Bayesian one-sided

credible interval with negative bounds that are very close to

zero, as one would expect.

In sum, Bayesian estimation methods allow researchers

to add substantive prior knowledge. The classical frame-

work is incapable of doing so except for the simplest case

of an order-restriction, where it yields intervals that do not

provide useful information about the precision with which

parameters were estimated.

Benefit 2. Bayesian estimation can quantify confidence that

θ lies in a specific interval

The posterior distribution for a parameter θ provides a com-

plete summary of what we know about this parameter. Using

this posterior distribution, we can answer questions such

as “how much more likely is the value θ = .6 versus the

value θ = .4?” – this equals the ratio of the heights of the

posterior distribution at those values. Also, we can use the

posterior distribution to quantify how likely it is that θ falls

in a specific interval, say, between .2 and .4 – this equals

the posterior mass in that interval (Wagenmakers, Morey, &

Lee, 2016).

In contrast, the classical confidence interval procedure

can do no more than provide X% confidence intervals. It is

not possible within the classical framework to specify the

interval bounds and then ask for the probability or confi-

dence that the true value is within these bounds. This is a

serious limitation. For instance, one criterion for the diag-

nosis of an intellectual disability is an IQ below 70. Hence it

may be important to know the probability that a person’s IQ

is in the interval from 0 to 70, given a series of test scores.

With classical statistics, this question cannot be addressed.

Pratt et al. (1995, p. 258) formulate this concern as follows:

A feature of confidence regions which is particularly

disturbing is the fact that the confidence level must

be selected in advance and the region we then look

at is imposed by chance and may not be at all one

we are interested in. Imagine the plight of a manager

who exclaims, ‘I understand [does he?] the meaning

3The rationale behind the one-sided classical confidence interval is

difficult to teach. One statistics teacher remarked “one-sided classical

confidence intervals really blow students’ minds, and not in a good

way.” Another statistics teacher said that she simply refuses to cover

the concept at all, in order to prevent student riots.

that the demand for XYZ will lie in the interval 973 to

1374 with confidence .90. However, I am particularly

interested in the interval 1300 to 1500. What con-

fidence can I place on that interval?’ Unfortunately,

this question cannot be answered. Of course, however,

it is possible to give a posterior probability to that

particular interval—or any other—based on the sam-

ple data and on a codification of the manager’s prior

judgments.

Cox (1958, p. 363) expresses a similar concern (see also

Lindley, 1965, p. 23):

(...) the method of confidence intervals, as usually for-

mulated, gives only one interval at some preselected

level of probability. (...) For when we write down

the confidence interval (...) for a completely unknown

normal mean, there is certainly a sense in which the

unknown mean θ is likely to lie near the centre of the

interval, and rather unlikely to lie near the ends and

in which, in this case, even if θ does lie outside the

interval, it is probably not far outside. The usual the-

ory of confidence intervals gives no direct expression

of these facts.

Benefit 3. Bayesian estimation conditions on what is known

(i.e., the data)

The Bayesian credible interval (and Bayesian inference in

general) conditions on all that is known. This means that

inference is based on the specific data set under consider-

ation, and that performance of the methodology for other

hypothetical data sets is irrelevant. In contrast, the classical

confidence interval is based on average performance across

hypothetical data sets. To appreciate the difference, consider

a scale that works perfectly in 95% of the cases, but returns

a value of “1 kilo” in the remaining 5%. Suppose you weigh

yourself on this scale and the result is “70 kg”. Classically,

your confidence in this value should be 95%, because the

scale is accurate in 95% of all cases. However, the data tell

you that the scale has not malfunctioned, and hence you can

be 100% confident in the result. Similarly, suppose the scale

returns “1 kilo”. Classically, you can have 95% confidence

in this result. Logically, however, the value of “1 kilo” tells

you that the scale has malfunctioned, and you have learned

nothing at all about your weight (Berger & Wolpert, 1988).

Another example is the 50% confidence interval for a

binomial rate parameter θ (i.e., θ is allowed to take on val-

ues between 0 and 1). A classically valid 50% interval can

be constructed by ignoring the data and randomly reporting

either the interval (0 − 0.5) or (0.5 − 1). This random inter-

val procedure will cover the true value in 50% of the cases.

Of course, when the data are composed of 10 successes out

of 10 trials the interval (0−0.5) is nonsensical; however, the
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confidence of the classical procedure is based on average

performance, and the average performance of the random

interval is 50%.

Thus, one of the crucial differences between classi-

cal and Bayesian procedures is that classical procedures

are generally “pre-data”, whereas Bayesian procedures are

“post-data” (Jaynes, 2003).4 One final example, taken from

by Berger and Wolpert (1988), should suffice to make the

distinction clear. The situation is visualized in Fig. 4: two

balls are dropped, one by one, in the central tube located at

θ . Each ball travels down the central tube until it arrives at

the T-junction, where it takes either the left or the right tube

with equal probability, where the final outcome is registered

as θ − 1 and θ + 1, respectively.

Consider that the first ball registers as “12”. Now there

are two scenarios, both equally likely a priori, that provide

radically different information. In the first scenario, the sec-

ond ball lands in the other tube. For instance, the second ball

can register as a “14”. In this case, we know with 100% cer-

tainty that θ is 13 – the middle value. In the second scenario,

the second ball lands in the same tube as the first one, regis-

tering another “12”. This datum is wholly uninformative, as

we still do not know whether θ equals 13 (when “12” is the

left tube) or 11 (when “12” is the right tube). Hence we sim-

ply guess that the balls have traveled down the left tube and

state that θ equals 13. The first scenario always yields 100%

accuracy and the second scenario yields 50% accuracy. Both

scenarios are equally likely to occur and hence the overall

probability that the above procedure correctly infers the true

value of θ is 75%. This indicates how well the procedure

performs in repeated use, averaged across the sample space

(i.e., all possible data sets).

However, consider that two balls have been observed and

you are asked what you have learned about θ . Even classi-

cal statisticians agree that in cases such as these, one should

not report an unconditional confidence of 75%; instead, one

should take into account that the first scenario is different

from the second, and draw different conclusions depending

on the data at hand. As a technical side note, the nega-

tive consequences of averaging across hypothetical data sets

that are fundamentally different is known as the problem

of “recognizable/relevant subsets”. Ultimately, the problem

can only be overcome by conditioning on the data that were

observed, but doing so removes the conceptual basis of

classical inference. In Bayesian inference, the problem of

relevant subsets does not occur (for a more detailed discus-

sion see e.g., Brown, 1967; Cornfield, 1969; Gleser, 2002;

Morey et al., 2016; Pierce, 1973; Pratt, 1961). Relevant

4This difference was already clear to Laplace, who argued that the

post-data viewpoint is “obviously” the one that should be employed

(Gillispie, 1997, p. 82).

Fig. 4 Two balls are dropped consecutively in a tube at location θ ;

each ball lands randomly at tube location θ −1 or θ +1. When the two

balls land in different locations, θ is known with 100% certainty; when

the two balls land in the same location, θ is known with 50% certainty.

The pre-data average of 75% confidence is meaningless after the data

have been observed. The example is taken from Berger and Wolpert

(1988)

subsets are easy to detect in somewhat contrived exam-

ples such as the above; however, they also exist in standard

inference situations such as the comparison of two means

(Buehler & Fedderson, 1963).

The conceptual and practical difference between clas-

sical and Bayesian intervals is eloquently summarized by

Jaynes (1976, pp. 200–201):

Our job is not to follow blindly a rule which would

prove correct 90% of the time in the long run; there are

an infinite number of radically different rules, all with

this property. Our job is to draw the conclusions that

are most likely to be right in the specific case at hand

(...) To put it differently, the sampling distribution of

an estimator is not a measure of its reliability in the

individual case, because considerations about samples

that have not been observed, are simply not relevant

to the problem of how we should reason from the one

that has been observed. A doctor trying to diagnose

the cause of Mr. Smith’s stomachache would not be

helped by statistics about the number of patients who

complain instead of a sore arm or stiff neck. This does

not mean that there are no connections at all between

individual case and long-run performance; for if we

have found the procedure which is ‘best’ in each indi-

vidual case, it is hard to see how it could fail to be

‘best’ also in the long run (...) The point is that the

converse does not hold; having found a rule whose

long-run performance is proved to be as good as can be

obtained, it does not follow that this rule is necessar-

ily the best in any particular individual case. One can

trade off increased reliability for one class of samples

against decreased reliability or another, in a way that
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has no effect on long-run performance; but has a very

large effect on performance in the individual case.

Benefit 4. Bayesian estimation is coherent (i.e., not

internally inconsistent)

One of the defining characteristics of Bayesian inference is

that it is coherent, meaning that all inferential statements

must be mutually consistent; in other words, Bayesian infer-

ence does not depend on the way a problem is framed

(de Finetti, 1974; Lindley, 1985, 2006; Ramsey, 1926). In

Bayesian statistics, coherence is guaranteed by the laws of

probability theory: “Coherence acts like geometry in the

measurement of distance; it forces several measurements

to obey the system.” (Lindley, 2000, p. 306). For instance,

when we know that for a posterior distribution, p(0 < ρ <

0.3) = a and p(0.3 < ρ < 0.4) = b, then it has to follow

that p(0 < ρ < 0.4) = a+b. Any other conclusion violates

the laws of probability theory and is termed incoherent or

absurd (Lindley, 1985). A famous example of incoherence

is provided by (Tversky & Kahneman, 1983, p. 297), who

gave participants the following background story:

Linda is 31 years old, single, outspoken and very

bright. She majored in philosophy. As a student, she

was deeply concerned with issues of discrimination

and social justice, and also participated in anti-nuclear

demonstrations.

After reading the story, participants were asked to pro-

vide the probability of several statements, including the

following two:

1. “Linda is a bank teller. (T)”

2. “Linda is a bank teller and is active in the feminist

movement. (T&F)”

The results showed that the great majority of participants

judged the conjunction statement T&F to be more prob-

able than the constituent statement T. This conjunction

error violates the laws of probability theory, according to

which the probability of T&F can never be higher than the

probability of either of its constituents (see also Nilsson,

Winman, Juslin, & Hansson, 2009). Within the restrictions

of the normative Bayesian framework, violations of logic

and common sense can never occur.

Coherence is about fitting together different pieces of

information in a way that is internally consistent, and this

can be done in only one way: by obeying the laws of prob-

ability theory. Consider the following example. A bent coin

is tossed twice: the first toss comes up heads, and the second

toss comes up tails. Assume that, conditional on the angle

of the bent coin, the tosses are independent. Then the final

inference about the angle should not depend on the order

with the data were observed (i.e., heads-tails or tails-heads).

Similarly, the final inference should not depend on whether

the data were analyzed sequentially, one at a time, or as a

single batch. This sequential form of coherence can only

be obtained by continual updating of the prior distribution,

such that the posterior distribution after datum i becomes

the prior distribution for the analysis of datum i+1; without

a prior distribution, coherence is impossible and inferential

statements are said to be absurd. Coherence also ensures

that Bayesian inference is equally valid for all sample sizes

– there is no need for “rules of thumb” to identify sample

sizes below which inference cannot be trusted.

Coherence has been argued to be the core element of

Bayesian inference; for instance, Ramsey (1926) argued that

“the most generally accepted parts of logic, namely, for-

mal logic, mathematics and the calculus of probabilities,

are all concerned simply to ensure that our beliefs are not

self-contradictory” (see Eagle, 2011, p. 65); Jeffreys (1961,

p. ix) starts the preface to the Bayesian classic “Theory of

Probability” by stating that “The chief object of this work

is to provide a method of drawing inferences from observa-

tional data that will be self-consistent and can also be used in

practice”. Moreover, Lindley (1985) used the term “coher-

ent statistics” instead of “Bayesian statistics”, and Joyce

(1998) highlighted the importance of coherence by proving

that “any system of degrees of belief that violates the axioms

of probability can be replaced by an alternative system that

obeys the axioms and yet is more accurate in every possible

world” (see Eagle, 2011, p. 89).

In contrast to Bayesian inference, the concept of coher-

ence plays no role in the classical framework. The resulting

problems become manifest when different sources of infor-

mation need to be combined. In the classical framework,

the usual remedy against incoherence is to focus on one

source of information only. Even though this hides the prob-

lem from view, it does not eliminate it, because almost

any data set can be divided into arbitrary batches, and the

final inference should not depend on the order or method of

division.

Benefit 5. Bayesian estimation extends naturally to

complicated models

The principles of Bayesian estimation hold for simple mod-

els just as they do for complicated models (e.g., Gelman

& Hilll, 2007; Gelman et al., 2014). Regardless of model

complexity, Bayesian inference features only one estimator:

the posterior distribution. When this posterior distribution

cannot be obtained analytically, it is usually possible to

draw samples from it using numerical algorithms such as

Markov chain Monte Carlo (MCMC; Gelfand & Smith,

1990; Gilks, Richardson, & Spiegelhalter, 1996; van

Ravenzwaaij, Cassey, & Brown, in press). By increasing the

number of MCMC samples, the posterior distribution can be
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approximated to arbitrary precision. With the help of MCMC

sampling, Bayesian inference proceeds almost mechani-

cally, allowing for straightforward inference even in rela-

tively complex models (e.g., Lunn et al., 2012).

Consider the use of hierarchical nonlinear process mod-

els in cognitive psychology. Most models in cognitive psy-

chology are nonlinear in that they are more than the sum

of effects plus noise. An example of a nonlinear model is

Yonelinas’ dual process model, in which memory perfor-

mance is a mixture of recollection, modeled as a discrete

all-or-none process, and familiarity, modeled as a contin-

uous signal-detection process (e.g., Yonelinas, 2002). In

realistic settings each of several people observe each of sev-

eral items, but each person-item combination is unique. It

is reasonable to assume variation across people and items,

and once the model is expanded to include people and

item effects, it is not only nonlinear, but quite numerous in

parameters. One approach is to aggregate data across peo-

ple, items, or both. The drawback is that the fit to aggregated

data will be substantially distorted and perhaps reflect the

psychological processing of nobody (Estes, 1956; Heath-

cote, Brown, & Mewhort, 2000; Rouder et al., 2005). A

superior approach is to construct hierarchical nonlinear pro-

cess models that simultaneously account for psychological

process and nuisance variation from people and items. Pratte

and Rouder (2012), for example, fit an expanded, hierar-

chical dual process model with about 2000 parameters. It

is not obvious to us how to fit such models in a classi-

cal framework.5 Fortunately, the analysis is tractable and

relatively straightforward using Bayesian inference with

MCMC sampling.

Thus, Bayesian estimation is ideally suited for mod-

els that respect the complexity inherent in psychological

data; such realistic models can be hierarchical, involve

mixtures, contain nonlinearities, or be based on detailed

considerations of the underlying psychological process (Lee

& Wagenmakers, 2013; Shiffrin, Lee, Kim, & Wagen-

makers, 2008). Despite their surface differences, all such

models obey the same conceptual principles, and parame-

ter estimation is merely a matter of “turning the Bayesian

handle”:

“What is the principal distinction between Bayesian

and classical statistics? It is that Bayesian statistics

is fundamentally boring. There is so little to do: just

specify the model and the prior, and turn the Bayesian

handle. There is no room for clever tricks or an

alphabetic cornucopia of definitions and optimality

criteria. I have heard people who should know better

use this dullness as an argument against Bayesianism.

5Using maximum likelihood estimation, general-purpose gradient

decent algorithms in Matlab, R, and Excel often fail in nonlinear

contexts with more than just a few dozen parameters.

One might as well complain that Newton’s dynamics,

being based on three simple laws of motion and one

of gravitation, is a poor substitute for the richness of

Ptolemys epicyclic system.” (Dawid, 2000, p. 326)

Bayesian hypothesis testing

In Bayesian parameter estimation, the inferential end-goal

is the posterior distribution. In the earlier example featuring

election outcomes, the posterior distribution for ρ allowed

an answer to the question “What do we know about the cor-

relation between height and popularity in the US elections,

assuming from the outset that such a correlation exists?”

From this formulation, it is clear that we cannot use the

posterior distribution alone for the purpose of hypothesis

testing: the prior formulation ρ ∼ Uniform[−1, 1] presup-

poses that ρ is relevant, that is, it presupposes that ρ is

unequal to zero.6 To test an invariance or a general law,

this law needs to be assigned a separate prior probabil-

ity (Etz and Wagenmakers, 2016; Haldane, 1932; Jeffreys,

1961, 1973, 1980; Ly et al., 2016b; Wrinch & Jeffreys,

1921, 1923): to test H0 : ρ = 0, this hypothesis needs

to be taken serious a priori. In the election example, this

means that we should explicitly consider the hypothesis

that taller candidates do not attract a larger or smaller pro-

portion of the popular vote. This is something that the

estimation framework fails to do. Consequently, as stated by

Berger (2006, p. 383): “[...] Bayesians cannot test precise

hypotheses using confidence intervals. In classical statistics

one frequently sees testing done by forming a confidence

region for the parameter, and then rejecting a null value of

the parameter if it does not lie in the confidence region.

This is simply wrong if done in a Bayesian formulation

(and if the null value of the parameter is believable as a

hypothesis).”

Hence, when the goal is hypothesis testing, Bayesians

need to go beyond the posterior distribution. To answer

the question “To what extent do the data support the pres-

ence of a correlation?” one needs to compare two models:

a null hypothesis that states the absence of the effect (i.e.,

H0 : ρ = 0) and an alternative hypothesis that states its

presence. In Bayesian statistics, this alternative hypothe-

sis needs to be specified exactly. In our election scenario,

the alternative hypothesis we discuss first is specified as

H1 : ρ ∼ Uniform(−1, 1), that is, every value of ρ is

judged to be equally likely a priori (Jeffreys, 1961; Ly et al.,

2016b).7

6Under a continuous prior probability distribution, the probability

assigned to any single point (i.e., ρ = 0) is zero.
7Specification of prior distributions is an important component for

Bayes factor hypothesis testing, as the prior distributions define a

model’s complexity and hence exert a lasting effect on the test

outcome. We will return to this issue later.
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With the competing hypotheses H0 and H1 fully spec-

ified, the process of updating their relative plausibilities is

described by a simplification of Bayes’ rule:

p(H1 | data)

p(H0 | data)
︸ ︷︷ ︸

Posterior odds

=
p(H1)

p(H0)
︸ ︷︷ ︸

Prior odds

×
p(data | H1)

p(data | H0)
︸ ︷︷ ︸

Bayes factor BF10

. (1)

In this equation, the prior model odds p(H1)/p(H0)

indicate the relative plausibility of the two models before

seeing the data. After observing the data, the relative plau-

sibility is quantified by the posterior model odds, that is,

p(H1 | data)/p(H0 | data). The change from prior to pos-

terior odds brought about by the data is referred to as the

Bayes factor, that is, p(data | H1)/p(data | H0). Because

of the subjective nature of the prior model odds, the empha-

sis of Bayesian hypothesis testing is on the amount by which

the data shift one’s beliefs, that is, on the Bayes factor. When

the Bayes factor BF10 equals 6.33, the data are 6.33 times

more likely under H1 than under H0. When the Bayes factor

equals BF10 = 0.2, the data are 5 times more likely under

H0 than under H1. Note that the subscripts “10” in BF10

indicate that H1 is in the numerator of Eq. 1 and H0 is in

the denominator, whereas the subscripts “01” indicate the

reverse. Hence, BF10 = 1/BF01.

An alternative interpretation of the Bayes factor is

in terms of the models’ relative predictive performance

(Wagenmakers, Grünwald, & Steyvers, 2006; Wagenmakers,

Morey, & Lee, 2016). Consider two models, H0 and H1, and

two observations, y = (y1, y2). The Bayes factor BF10(y) is

given by p(y1, y2 | H1)/p(y1, y2 | H0), that is, the ratio

of the advance probability that the competing models assign

to the data. Thus, both models make a probabilistic predic-

tion about the data, and the model with the best prediction is

preferred. This predictive interpretation can also be given a

sequential slant. To see this, recall that according to the def-

inition of conditional probability, p(y1, y2) = p(y1)p(y2 |

y1). In the current example, both H0 and H1 make a pre-

diction about the first data point, yielding BF10(y1) =

p(y1 | H1)/p(y1 | H0) – the relative predictive perfor-

mance for the first data point. Next, both models incorporate

the knowledge gained from the first data point and make a

prediction for the second observation, yielding BF10(y2 |

y1) = p(y2 | y1,H1)/p(y2 | y1,H0) – the relative pre-

dictive performance for the second data point, given the

knowledge obtained from the first. These one-step-ahead

sequential forecasts can be combined –using the law of con-

ditional probability– to produce a model’s overall predictive

performance (cf. Dawid’s prequential principle; e.g., Dawid,

1984): BF10(y) = BF10(y1) × BF10(y2 | y1). The accu-

mulation of one-step-ahead sequential forecasts provides a

fair assessment of a model’s predictive adequacy, penalizing

undue model complexity and thereby implementing a form

of Occam’s razor8 (i.e., the principle of parsimony, Jefferys

& Berger, 1992; Lee & Wagenmakers, 2013; Myung & Pitt,

1997; Myung, Forster, & Browne, 2000; Vandekerckhove,

Matzke, & Wagenmakers, 2015; Wagenmakers & Waldorp,

2006). The predictive interpretation of the Bayes factor is

conceptually relevant because it means that inference can be

meaningful even without either of the models being true in

some absolute sense (Morey, Romeijn, & Rouder, 2013; but

see van Erven, Grünwald, & de Rooij, 2012).

From the Bayesian perspective, evidence is an inherently

relative concept. Therefore it makes little sense to try and

evaluate evidence for a specific hypothesis without having

specified exactly what the alternative hypothesis predicts.

In the words of Peirce (1878a), “When we adopt a cer-

tain hypothesis, it is not alone because it will explain the

observed facts, but also because the contrary hypothesis

would probably lead to results contrary to those observed.”

(as quoted in Hartshorne & Weiss, 1932, p. 377). As out-

lined below, this is one of the main differences with clas-

sical hypothesis testing, where the p value quantifies the

unusualness of the data under the null hypothesis (i.e., the

probability of obtaining data at least as extreme as those

observed, given that the null hypothesis is true), leaving

open the possibility that the data are even more likely under

a well-specified and plausible alternative hypothesis.

In sum, Bayes factors compare the predictive adequacy

of two competing statistical models. By doing so, they grade

the evidence provided by the data on a continuous scale,

and quantify the change in belief that the data bring about

for the two models under consideration. Its long history and

direct link to Bayes’ rule make the Bayes factor “the stan-

dard Bayesian solution to the hypothesis testing and model

selection problems” (Lewis and Raftery, 1997, p. 648) and

“the primary tool used in Bayesian inference for hypothesis

testing and model selection” (Berger, 2006, p. 378). We con-

sider the Bayes factor (or its logarithm) a thermometer for

the intensity of the evidence (Peirce, 1878b). In our opinion,

such a thermometer is exactly what researchers desire when

they wish to measure the extent to which their observed data

support H1 or H0.

Benefits of Bayesian hypothesis testing

In psychology, several researchers have recently proposed,

developed, and promoted Bayes factor hypothesis testing

(e.g., Dienes, 2008, 2011, 2014; Hoijtink, 2011; Klugkist

et al., 2005; Masson, 2011; Morey & Rouder, 2011; Mulder

et al., 2009; Rouder et al., 2009, 2012; Vanpaemel, 2010;

8An overly complex model mistakes noise for signal, tailoring its

parameters to data patterns that are idiosyncratic and nonrepeatable.

This predilection to “overfit” is exposed when the model is forced

to make out-of-sample predictions, because such predictions will be

based partly on noise.
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Wagenmakers, Lodewyckx, Kuriyal, & Grasman, 2010).

Table 1 provides a non-exhaustive list of five specific bene-

fits of Bayesian hypothesis testing over classical p value hy-

pothesis testing (see also Kass & Raftery, 1995, p. 773). We

now briefly discuss each of these benefits in turn. Other ben-

efits of Bayesian hypothesis testing include those already

mentioned for Bayesian parameter estimation above.

Benefit 1. The Bayes factor quantifies evidence that the

data provide for H0 vs. H1

As mentioned above, the Bayes factor is inherently com-

parative: it weighs the support for one model against that

of another. This contrasts with the p value, which is cal-

culated conditional on the null hypothesis H0 being true;

the alternative hypothesis H1 is left unspecified and hence

its predictions are irrelevant as far as the calculation of the

p value is concerned. Consequently, data that are unlikely

under H0 may lead to its rejection, even though these data

are just as unlikely under H1 – and are therefore perfectly

uninformative (Wagenmakers et al., in press). Figure 5 pro-

vides a cartoon highlighting that p value NHST considers

one side of the coin.

The practical relevance of this concern was underscored

by the infamous court case of Sally Clark (Dawid, 2005;

Hill, 2005; Nobles & Schiff, 2005). Both of Sally Clark’s

children had died at an early age, presumably from cot

death or SIDS (sudden infant death syndrome). The proba-

bility of a mother having to face such a double tragedy was

Fig. 5 A boxing analogy of the p value (Wagenmakers et al.,

in press). The referee uses null hypothesis significance testing and

therefore considers only the deplorable state of boxer H0 (i.e., the null

hypothesis). His decision to reject H0 puzzles the public. Figure avail-

able at http://www.flickr.com/photos/23868780@N00/12559689854/,

courtesy of Dirk-Jan Hoek, under CC license https://creativecommons.

org/licenses/by/2.0/

estimated to be 1 in 73 million. Such a small probability

may have influenced judge and jury, who in November 1999

decided to sentence Sally Clark to jail for murdering her

two children. In an open letter published in 2002, the presi-

dent of the Royal Statistical Society Peter Green explained

why the probability of 1 in 73 million is meaningless: “The

jury needs to weigh up two competing explanations for the

babies’ deaths: SIDS or murder. The fact that two deaths

by SIDS is quite unlikely is, taken alone, of little value.

Two deaths by murder may well be even more unlikely.

What matters is the relative likelihood of the deaths under

each explanation, not just how unlikely they are under one

explanation.” (Nobles & Schiff, 2005, p. 19). This point of

critique is not just relevant for the case of Sally Clark, but

applies to all inferences based on the p value.

Bayes factors compare two competing models or

hypotheses: H0 and H1. Moreover, Bayes factors do so

by fully conditioning on the observed data y. In contrast,

the p value is a tail-area integral that depends on hypo-

thetical outcomes more extreme than the one observed in

the sample at hand. Such a practice violates the likelihood

principle and results in paradoxical conclusions (for exam-

ples see Berger & Wolpert, 1988; Wagenmakers, 2007).

Indeed, our personal experience suggests that this is one of

the most widespread misconceptions that practitioners have

about p values: interpreting a p value as the “probability

of obtaining these results given that the null hypothesis is

true”. However, as mentioned above, the p value equals

the probability of obtaining results at least as extreme as

those observed given that the null hypothesis is true. As

remarked by Jeffreys (1980, p. 453): “I have always consid-

ered the arguments for the use of P absurd. They amount

to saying that a hypothesis that may or may not be true is

rejected because a greater departure from the trial value was

improbable; that is, that it has not predicted something that

has not happened.” Towards the end of his life, this critique

was acknowledged by one of the main protagonists of the

p value, Ronald Fisher himself.9 In discussing inference for

a binomial rate parameter based on observing 3 successes

out of 14 trials, Fisher argued for the use of likelihood,

implicitly acknowledging Jeffreys’s concern:

“Objection has sometimes been made that the method

of calculating Confidence Limits by setting an

assigned value such as 1% on the frequency of observ-

ing 3 or less (or at the other end of observing 3 or

more) is unrealistic in treating the values less than 3,

which have not been observed, in exactly the same

manner as the value 3, which is the one that has been

9The first p value was calculated by Pierre-Simon Laplace in the

1770s; the concept was formally introduced by Karl Pearson in 1900

as a central component to his Chi-squared test (http://en.wikipedia.org/

wiki/P-value#History).

http://www.flickr.com/photos/23868780@N00/12559689854/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/
http://en.wikipedia.org/wiki/P-value#History
http://en.wikipedia.org/wiki/P-value#History
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observed. This feature is indeed not very defensible

save as an approximation.” (Fisher, 1959, p. 68).

Benefit 2. The Bayes factor can quantify evidence in favor

of H0

It is evident from Equation 1 that the Bayes factor is able

to quantify evidence in favor of H0. In the Bayesian frame-

work, no special status is attached to either of the hypotheses

under test; after the models have been specified exactly, the

Bayes factor mechanically assesses each model’s one-step-

ahead predictive performance, and expresses a preference

for the model that was able to make the most accurate series

of sequential forecasts (Wagenmakers et al., 2006). When

the null hypothesis H0 predicts the observed data better

than the alternative hypothesis H1, this signifies that the

additional complexity of H1 is not warranted by the data.

The fact that the Bayes factor can quantify evidence in

favor of the null hypothesis can be of considerable substan-

tive importance (e.g., Galliset, 2009; Rouder et al., 2009).

For instance, the hypothesis of interest may predict an

invariance, that is, the absence of an effect across a varying

set of conditions. The ability to quantify evidence in favor of

the null hypothesis is also important for replication research,

and should be of interest to any researcher who wishes to

learn whether the observed data provide evidence of absence

or absence of evidence (Dienes, 2014). Specifically, the pos-

sible outcomes of the Bayes factor can be assigned to three

discrete categories: (1) evidence in favor of H1 (i.e., evi-

dence in favor of the presence of an effect); (2) evidence

in favor of H0 (i.e., evidence in favor of the absence of

an effect); (3) evidence that favors neither H1 nor H0. An

example of evidence for absence is BF01 = 15, where

the observed data are 15 times more likely to occur under

H0 than under H1. An example of absence of evidence is

BF01 = 1.5, where the observed data are only 1.5 times

more likely to occur under H0 than under H1. Evidentially

these scenarios are very different, and it is clearly useful and

informative to discriminate between the two. However, the

p value is not able to make the distinction, and in either of

the above scenarios one may obtain p = .20. In general, the

standard p value NHST is unable to provide a measure of

evidence in favor of the null hypothesis.

Benefit 3. The Bayes factor allows evidence to be

monitored as data accumulate

The Bayes factor can be thought of as a thermometer for the

intensity of the evidence. This thermometer can be read out,

interpreted, and acted on at any point during data collection

(cf. the stopping rule principle; Berger & Wolpert, 1988).

Using Bayes factors, researchers are free to monitor the evi-

dence as the data come in, and terminate data collection

whenever they like, such as when the evidence is deemed

sufficiently compelling, or when the researcher has run out

of resources (e.g., Berger, 1985, Chapter 7; Edwards et al.,

1963; Rouder, 2014; Wagenmaker, 2007). This freedom has

substantial practical ramifications, and allows experiments

to be conducted in a manner that is both efficient and ethical

(e.g., Schönbrodt, Wagenmakers, Zehetleitner, & Perugini,

in press).

Consider the hypothetical case where a memory

researcher, professor Bumbledorf, has planned to test 40

children with severe epilepsy using intracranial EEG. In sce-

nario 1, Bumbledorf tests 20 children and finds that the

data are so compelling that the conclusion hits her straight

between the eyes (i.e., Berkson’s interocular traumatic test,

Edwards et al., 1963, p. 217). Should Bumbledorf feel

forced to test 20 children more, inconveniencing the patients

and wasting resources that could be put to better use? In

scenario 2, Bumbledorf tests all 40 children and feels that,

although the data show a promising trend, the results are

not statistically significant (p = .11). Should Bumble-

dorf be disallowed from testing additional children, thereby

possibly preventing the patients’ earlier efforts from

advancing science by contributing to data that yield an

unambiguous conclusion? With Bayes factors, there are no

such conundrums (Berger & Mortera, 1999); in scenario 1,

Bumbledorf can stop after 20 patients and report the Bayes

factor; in scenario 2, Bumbledorf is free to continue testing

until the results are sufficiently compelling. This freedom

stands in sharp contrast to the standard practice of p value

NHST, where adherence to the sampling plan is critical; this

means that according to standard p value NHST dogma,

Bumbledorf is forced to test the remaining 20 patients in

scenario 1 (“why did you even look at the data after 20

patients?”), and Bumbledorf is prohibited from testing addi-

tion patients in scenario 2 (“maybe you should have planned

for more power”).

It should be acknowledged that the standard framework

of p value NHST can be adjusted so that it can accommo-

date sequential testing, either in a continual fashion, with

an undetermined number of tests (e.g., Botella, Ximénez,

Revuelta, & Suero, 2006; Fitts, 2010; Frick, 1998; Wald &

Wolfowitz, 1948) or in an interrupted fashion, with a pre-

determined number of tests (e.g., Lakens & Evers, 2014).

From a Bayesian perspective, however, corrections for

sequential monitoring are an anathema. Anscombe (1963, p.

381) summarized the conceptual point of contention:

‘Sequential analysis’ is a hoax(...) So long as all

observations are fairly reported, the sequential stop-

ping rule that may or may not have been followed

is irrelevant. The experimenter should feel entirely

uninhibited about continuing or discontinuing his trial,

changing his mind about the stopping rule in the
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middle, etc., because the interpretation of the observa-

tions will be based on what was observed, and not on

what might have been observed but wasn’t.

Benefit 4. The Bayes factor does not depend on unknown or

absent sampling plans

The Bayes factor is not affected by the sampling plan, that

is, the intention with which the data were collected. This

sampling-plan-irrelevance follows from the likelihood prin-

ciple (Berger & Wolpert, 1988), and it means that Bayes

factors may be computed and interpreted even when the

intention with which the data are collected is ambiguous,

unknown, or absent. This is particularly relevant when the

data at hand are obtained from a natural process, and the

concepts of “sampling plan” and “experiment” do not apply.

As a concrete demonstration of the practical problems

of p values when the sampling plan is undefined, consider

again the election example and the data shown in Fig. 1. We

reported that for this correlation, p = .007. However, this

p value was computed under a fixed sample size scenario;

that is, the p value was computed under the assumption that

an experimenter set out to run 46 elections and then stop.

This sampling plan is absurd and by extension, so is the p

value. But what is the correct sampling plan? It could be

something like “US elections will continue every four years

until democracy is replaced with a different system of gov-

ernment or the US ceases to exist”. But even this sampling

plan is vague – we only learn that we can expect quite a few

elections more.

In order to compute a p value, one could settle for the

fixed sample size scenario and simply not worry about the

details of the sampling plan. However, consider the fact that

new elections will continue be added to the set. How should

such future data be analyzed? One can pretend, after every

new election, that the sample size was fixed. However, this

myopic perspective induces a multiple comparison problem

– every new test has an additional non-zero probability of

falsely rejecting the null hypothesis, and the myopic perspec-

tive therefore fails to control the overall Type I error rate.10

In contrast to p value NHST, the Bayes factor can be

meaningfully interpreted even when the data at hand have

been generated by real-world processes outside of exper-

imental control. Figure 6 shows how the data from the

US elections can be analyzed as they come in over time,

an updating process that can be extended continually and

indefinitely, as long as the US electoral process exists. This

example also emphasizes the intimate connection between

the benefit of monitoring the evidence as it unfolds over

10For sequential tests the multiple comparisons are not independent;

this reduces but does not eliminate the rate with which the Type I error

increases.

Fig. 6 Forthy-six election-long evidential flow for the presence of a

correlation between the relative height of the US president and his

proportion of the popular vote. Top panel: two-sided analysis; bottom

panel: one-sided analysis. Figure based on JASP

time, and the benefit of being able to compute the evidence

from data outside of experimental control: both benefits

occur because the Bayes factor does not depend on the

intention with which the data are collected (i.e., hypothetical

data sets that are not observed).

Benefit 5. The Bayes factor is not “violently biased”

against H0

Given a complete specification of the models under test,

the Bayes factor provides a precise assessment of their rel-

ative predictive adequacy. Poor predictive adequacy of H0

alone is not a sufficient reason to prefer H1; it is the bal-

ance between predictions from H0 and H1 that is relevant

for the assessment of the evidence. As discussed under

benefit 1 above, this contrasts with the NHST p value,

which only considers the unusualness of the data under H0.

Consequently, statisticians have repeatedly pointed out that

“Classical significance tests are violently biased against the

null hypothesis.” (Edwards, 1965, p. 400; see also Johnson,

2013; Sellke et al., 2001). Based on a comparison between
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p values and Bayes factors, Berger & Delampady (1987,

p. 330) argued that “First and foremost, when testing precise

hypotheses, formal use of P-values should be abandoned.

Almost anything will give a better indication of the evi-

dence provided by the data against H0.” In a landmark

article, Edwards et al. (1963, p. 228) concluded that “Even

the utmost generosity to the alternative hypothesis cannot

make the evidence in favor of it as strong as classical sig-

nificance levels might suggest.” Finally, Lindley suggested,

somewhat cynically perhaps, that this bias is precisely the

reason for the continued popularity of p values: “There is

therefore a serious and systematic difference between the

Bayesian and Fisherian calculations, in the sense that a Fish-

erian approach much more easily casts doubt on the null

value than does Bayes. Perhaps this is why significance tests

are so popular with scientists: they make effects appear so

easily.” (Lindley, 1986, p. 502).

The p value bias against H0 is also evident from the

election example, where a correlation of .39, displayed in

Fig. 1, yields p = .007 and BF10 = 6.33. Even though

in this particular case both numbers roughly support the

same conclusion (i.e., “reject H0” versus “evidence for

H1”), the p value may suggest that the evidence is com-

pelling, whereas the Bayes factor leaves considerable room

for doubt. An extensive empirical comparison between p

values and Bayes factors can be found in Wetzels et al.

(2011). For a Bayesian interpretation of the classical p value

see Marsman and Wagenmakers (in press).

In sum, the Bayes factor conditions on the observed data

to grade the degree of evidence that the data provide for H0

versus H1. As a thermometer for the intensity of the evi-

dence –either for H0 or for H1– the Bayes factor allows

researchers to monitor the evidential flow as the data accu-

mulate, and stop whenever they feel the evidence is com-

pelling or the resources have been depleted. Bayes factors

can be computed and interpreted even when the intention

with which the data have been collected is unknown or

entirely absent, such as when the data are provided by a

natural process without an experimenter. Moreover, its pre-

dictive nature ensures that the Bayes factor does not require

either model to be true.

Ten objections to the Bayes factor hypothesis test

Up to this point we have provided a perspective on Bayesian

estimation and Bayesian hypothesis testing that may be per-

ceived as overly optimistic. Bayesian inference does not

solve all of the problems that confront the social sciences

today. Other important problems include the lack of data

sharing and the blurred distinction between exploratory

and confirmatory work (e.g., Chambers, 2013; De Groot,

1956/2014; Nosek et al., 2015; Wagenmakers, Wetzels,

Borsboom, van der Maas, & Kievit, 2012), not to mention

the institutional incentive structure to “publish or perish”

(Nosek et al., 2012). Nevertheless, as far as statistical infer-

ence is concerned, we believe that the adoption of Bayesian

procedures is a definite step in the right direction.

In addition, our enthusiasm for Bayes factor hypoth-

esis testing is shared by only a subset of modern-day

Bayesian statisticians (e.g., Albert, 2007; Berger & Pericchi,

2001; Bové & Hekd, 2011; Liang, Paulo, Molina, Clyde,

& Berger, 2008; Maruyama & George, 2011; Ntzoufras,

Dellaportas, & Forster, 2003; Ntzoufras, 2009; O’Hagan,

1995; Overstall & Forster, 2010; Raftery, 1999; for an alter-

native perspective see e.g., Robert, 2016). In fact, the topic

of Bayes factors is contentious to the extent that it provides

a dividing line between different schools of Bayesians. In

recognition of this fact, and in order to provide a more bal-

anced presentation, we now discuss a list of ten objections

against the approach we have outlined so far. A warn-

ing to the uninitiated reader: some of the objections and

counterarguments may be difficult to understand from a

superficial reading alone; trained statisticians and philoso-

phers have debated these issues for many decades, without

much resolution in sight.

Objection 1: Estimation is always superior to testing

As mentioned in the introduction, it is sometimes argued

that researchers should abandon hypothesis tests in favor of

parameter estimation (e.g., Cumming, 2014). We agree that

parameter estimation is an important and unduly neglected

part of the inductive process in current-day experimental

psychology, but we believe that ultimately both hypothe-

sis testing and parameter estimation have their place, and

a complete report features results from both approaches

(Berger, 2006).

Parameter estimation is most appropriate when the null

hypothesis is not of any substantive research interest. For

instance, in political science one may be interested in polls

that measure the relative popularity of various electoral

candidates; the hypothesis that all candidates are equally

popular is uninteresting and irrelevant. Parameter estima-

tion is also appropriate when earlier work has conclusively

ruled out the null hypothesis as a reasonable explanation of

the phenomenon under consideration. For instance, a study

of the Stroop effect need not assign prior mass to the hypoth-

esis that the effect is absent. In sum, whenever prior knowl-

edge or practical considerations rule out the null hypothesis

as a plausible or interesting explanation then a parameter

estimation approach is entirely defensible and appropriate.

Other research scenarios, however, present legitimate

testing problems. An extreme example concerns precogni-

tion: the question at hand is not “Assuming that people can

look into the future, how strong is the effect?” – rather, the
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pertinent question is “Can people look into the future?”.

The same holds for medical clinical trials, where the ques-

tion at hand is not “Assuming the new treatment works,

how strong is the effect?” but instead is “Does the new

treatment work?”. Note that in these examples, the param-

eter estimation question presupposes that the effect exists,

whereas the hypothesis testing question addresses whether

that supposition is warranted in the first place.

The relation between estimation and testing is discussed

in detail in Jeffreys’s book “Theory of Probability”. For

instance, Jeffreys provides a concrete example of the differ-

ence between estimation and testing:

“The distinction between problems of estimation and

significance arises in biological applications, though

I have naturally tended to speak mainly of physical

ones. Suppose that a Mendelian finds in a breeding

experiment 459 members of one type, 137 of the other.

The expectations on the basis of a 3 : 1 ratio would

be 447 and 149. The difference would be declared not

significant by any test. But the attitude that refuses to

attach any meaning to the statement that the simple

rule is right must apparently say that if any predic-

tions are to be made from the observations the best

that can be done is to make them on the basis of the

ratio 459/137, with allowance for the uncertainty of

sampling. I say that the best is to use the 3/1 rule, con-

sidering no uncertainty beyond the sampling errors of

the new experiments. In fact the latter is what a geneti-

cist would do. The observed result would be recorded

and might possibly be reconsidered at a later stage

if there was some question of differences of viability

after many more observations had accumulated; but

meanwhile it would be regarded as confirmation of

the theoretical value. This is a problem of what I call

significance.

But what are called significance tests in agricultural

experiments seem to me to be very largely problems of

pure estimation. When a set of varieties of a plant are

tested for productiveness, or when various treatments

are tested, it does not appear to me that the ques-

tion of presence or absence of differences comes into

consideration at all. It is already known that varieties

habitually differ and that treatments have different

effects, and the problem is to decide which is the best;

that is, to put the various members, as far as possible,

in their correct order.” (Jeffreys, 1961, p. 389).11

11Jeffreys’s statement that treatment effects are the domain of estima-

tion may appear inconsistent with our claim that medical clinical trials

are the domain of testing. However, the difference is that Jeffreys’s

treatment effects are random, whereas the treatment in a clinical trial

is targeted (see also footnote 1 in Bayarri, Benjamin, Berger, & Sellke,

2016).

Moreover, Jeffreys argues that a sole reliance on estima-

tion results in inferential chaos:

“These are all problems of pure estimation. But their

use as significance tests covers a looseness of state-

ment of what question is being asked. They give the

correct answer if the question is: If there is nothing

to require consideration of some special values of the

parameter, what is the probability distribution of that

parameter given the observations? But the question

that concerns us in significance tests is: If some spe-

cial value has to be excluded before we can assert any

other value, what is the best rule, on the data avail-

able, for deciding whether to retain it or adopt a new

one? The former is what I call a problem of estimation,

the latter of significance. Some feeling of discomfort

seems to attach itself to the assertion of the special

value as right since it may be slightly wrong but not

sufficiently to be revealed by a test on the data avail-

able; but no significance test asserts it as certainly

right. We are aiming at the best way of progress, not

at the unattainable ideal of immediate certainty. What

happens if the null hypothesis is retained after a sig-

nificance test is that the maximum likelihood solution

or a solution given by some other method of estima-

tion is rejected. The question is, When we do this, do

we expect thereby to get more or less correct infer-

ences than if we followed the rule of keeping the

estimation solution regardless of any question of sig-

nificance? I maintain that the only possible answer is

that we expect to get more. The difference as esti-

mated is interpreted as random error and irrelevant to

future observations. In the last resort, if this interpreta-

tion is rejected, there is no escape from the admission

that a new parameter may be needed for every obser-

vation, and then all combination of observations is

meaningless, and the only valid presentation of data

is a mere catalogue without any summaries at all.”

(Jeffreys, 1961, pp. 387–388)

In light of these and other remarks, Jeffreys’s maxim may

be stated as follows: “Do not try to estimate something until

you are sure there is something to be estimated.”12

Finally, in some applications the question of estima-

tion never arises. Examples include cryptography (Turing,

12This is inspired by what is known as Hyman’s maxim for ESP,

namely “Do not try to explain something until you are sure there is

something to be explained.” (Alcock, 1994, p. 189, see also http://

www.skeptic.com/insight/history-and-hymans-maxim-part-one/). For

a similar perspective see Paul Alper’s comment on what Harriet

Hall termed “Tooth fairy science” https://www.causeweb.org/wiki/

chance/index.php/Chance News 104#Tooth fairy science: “Yes, you

have learned something. But you haven’t learned what you think

you’ve learned, because you haven’t bothered to establish whether the

Tooth Fairy really exists”.

http://www.skeptic.com/insight/history-and-hymans-maxim-part-one/
http://www.skeptic.com/insight/history-and-hymans-maxim-part-one/
https://www.causeweb.org/wiki/chance/index.php/Chance_News_104#Tooth_fairy_science
https://www.causeweb.org/wiki/chance/index.php/Chance_News_104#Tooth_fairy_science
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1941/2012; Zabell, 2012), the construction of phylogenetic

trees (Huelsenbeck & Ronquist, 2001), and the comparison

of structurally different models (e.g., in the field of response

time analysis: the diffusion model versus the linear ballistic

accumulator model; in the field of categorization: proto-

type versus exemplar models; in the field of visual working

memory: discrete slot models versus continuous resource

models; in the field of long-term memory: multinomial pro-

cessing tree models versus models based on signal detection

theory).

In sum, hypothesis testing and parameter estimation are

both important. In the early stages of a research paradigm,

the focus of interest may be on whether the effect is present

or absent; in the later stages, if the presence of the effect

has been firmly established, the focus may shift towards an

estimation approach.

Objection 2: Bayesian hypothesis tests can indicate

evidence for small effects that are practically

meaningless

An objection that is often raised against NHST may also

be raised against Bayes factor hypothesis testing: with large

sample sizes, even small and practically meaningless effects

will be deemed “significant” or “strongly supported by the

data”. This is true. However, what is practically relevant

is context-dependent – in some contexts, small effects can

have large consequences. For example, Goldstein, Cialdini,

and Griskevicius (2008) reported that messages to promote

hotel towel reuse are more effective when they also attend

guests to descriptive norms (e.g., “the majority of guests

reuse their towels”). Based on a total of seven published

experiments, a Bayesian meta-analysis suggests that this

effect is present (BF10 ≈ 37) but relatively small, around

6% (Scheibehenne, Jamil, & Wagenmakers, in press). The

practical relevance of this result depends on whether or not

it changes hotel policy; the decision to change the messages

or leave them intact requires hotels to weigh the costs of

changing the messages against the expected gains from hav-

ing to wash fewer towels; for a large hotel, a 6% gain may

result in considerable savings.

Thus, from a Bayesian perspective, context-dependence

is recognized and incorporated through an analysis that

computes expected utilities for a set of possible actions

(Lindley, 1985). The best action is the one with the high-

est expected utility. In other words, the practicality of the

effects can be taken into account, if needed, by adding

an additional layer of considerations concerning utility.

Another method to address this objection is to specify the

null hypothesis not as a point but as a practically relevant

interval around zero (Morey & Rouder, 2011).13

13We plan to include this functionality in a future version of JASP.

Objection 3: Bayesian hypothesis tests promote binary

decisions

It is true that Jeffreys and other statisticians have suggested

rough descriptive guidelines for the Bayes factor (for a

more detailed discussion see Wagenmakers et al., this issue).

These guidelines facilitate a discrete verbal summary of a

quantity that is inherently continuous. More importantly,

regardless of whether it is presented in continuous numer-

ical or discrete verbal form, the Bayes factor grades the

evidence that the data provide for H0 versus H1 – thus,

the Bayes factor relates to evidence, not decisions (Ly, Ver-

hagen, & Wagenmakers, 2016a). As pointed out above,

decisions require a consideration of actions and utilities of

outcomes (Lindley, 1985). In other words, the Bayes factor

measure the change in beliefs brought about by the data, or

–alternatively– the relative predictive adequacy of two com-

peting models; in contrast, decisions involve the additional

consideration of actions and their consequences.

Objection 4: Bayesian hypothesis tests are meaningless

under misspecification

The Bayes factor is a measure of relative rather than abso-

lute performance. When the Bayes factor indicates over-

whelming support in favor of H1 over H0, for instance, this

does not imply that H1 provides an acceptable account of

the data. Instead, the Bayes factor indicates only that the

predictive performance of H1 is superior to that of H0; the

absolute performance of H1 may well be abysmal.

A simple example illustrates the point. Consider a test

for a binomial proportion parameter θ . Assume that the null

hypothesis specifies a value of interest θ0, and assume that

the alternative hypothesis postulates that θ is lower than θ0,

with each value of θ judged equally likely a priori. Hence,

the Bayes factor compares H0 : θ = θ0 against H1 : θ ∼

Uniform(0, θ0) (e.g., Haldane, 1932; Etz & Wagenmakers,

2016). Now assume that the data consist of a sequence of

length n that features only successes (e.g., items answered

correctly, coin tosses landing tails, patients being cured). In

this case the predictions of H0 are superior to those of H1.

A straightforward derivation14 shows that the Bayes factor

in favor of H0 against H1 equals n + 1, regardless of θ0.15

Thus, when n is large the Bayes factor will indicate deci-

sive relative support in favor of H0 over H1; at the same

time, however, the absolute predictive performance of H0

depends crucially on θ0, and becomes abysmal when θ0 is

low.

14See supplemental materials available at the Open Science Frame-

work, https://osf.io/m6bi8/.
15This surprising result holds as long as θ0 > 0.

https://osf.io/m6bi8/
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The critique that the Bayes factor does not quantify abso-

lute fit is therefore entirely correct, but it pertains to sta-

tistical modeling across the board. Before drawing strong

inferential conclusions, it is always wise to plot the data,

inspect residuals, and generally confirm that the model un-

der consideration is not misspecified in a major way. The

canonical example of this is Anscombe’s quartet, displayed

here in Fig. 7 (see also Andraszewics et al., 2015; Anscombe,

1973; Heathcote, Brown, & Wagenmakers, 2015; Lindsay,

2015). Each panel of the quartet displays two variables with

the same mean and variance. Moreover, for the data in each

panel the Pearson correlation coefficient equals r = 0.816.

An automatic analysis of the data from each panel yields

the same four p values, the same four confidence intervals,

the same four Bayes factors, and the same four credible

intervals. Yet a mere glance at Fig. 7 suggests that these

inferential conclusions are meaningful only for the data

from the top left panel.

Objection 5: vague priors are preferable over informed

priors

Bayes factors cannot be used with extremely vague or

“uninformative” prior distributions for the parameters under

test. For instance, a t-test on effect size δ cannot specify
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Fig. 7 “Anscombe’s quartet highlights the importance of plotting data

to confirm the validity of the model fit. In each panel, the Pearson

correlation between the x and y values is the same, r = 0.816. In fact,

the four different data sets are also equal in terms of the mean and

variance of the x and y values. Despite the equivalence of the four data

patterns in terms of popular summary measures, the graphical displays

reveal that the patterns are very different from one another, and that

the Pearson correlation (a linear measure of association) is only valid

for the data set from the top left panel.” (Heathcote et al., 2015, p. 34).

Figure available at http://tinyurl.com/zv2shlx under CC license https://

creativecommons.org/licenses/by/2.0/

H1 : δ ∼ Uniform(−∞, ∞), as this leaves the Bayes

factor undefined. The use of an almost uninformative prior

does not solve the problem; the specification H1 : δ ∼

Uniform(−10100, 10100) means that for all sets of reason-

able data, the null hypothesis will be strongly preferred.

The reason for this behavior is that with such a vague prior,

H1 predicts that effect size is virtually certain to be enor-

mous; these predictions are absurd, and H1 is punished

accordingly (Rouder & Morey, 2012).

Consequently, a reasonable comparison between H0 and

H1 requires that both models are specified in a reason-

able way (e.g., Dienes, 2011; Vanpaemel, 2010; Vanpaemel

& Lee, 2012). Vague priors for effect size are not reason-

able. In parameter estimation such unreasonableness usually

does not have negative consequences, but this is different

for Bayes factor hypothesis testing. Thus, the core prob-

lem is not with Bayes factors – the core problem is with

unreasonable prior distributions.

Objection 6: default priors are not sufficiently subjective

Jeffreys (1961) and other “objective” Bayesians have pro-

posed default priors that are intended to be used regardless

of the area of substantive application. These default priors

provide a reference result that can be refined by includ-

ing subjective knowledge. However, “subjective” Bayesians

may argue that this needs to be done always, and the

subjectivity in the specification of priors for Bayes factor

hypothesis testing does not go far enough. For instance, the

t-test involves the specification H1 : δ ∼ Cauchy(0, r). But

is it reasonable for the Cauchy distribution to be centered on

zero, such that the most likely value for effect size under H1

equals zero? Perhaps not (e.g., Johnson, 2013). In addition,

the Cauchy form itself may be questioned. Perhaps each

analysis attempt should be preceded by a detailed prior elic-

itation process, such that H1 can be specified in a manner

that incorporates all prior knowledge that can be brought to

bear on the problem at hand.

The philosophical position of the subjective Bayesian is

unassailable, and if the stakes are high enough then every

researcher would do well to turn into a subjective Bayesian.

However, the objective or consensus Bayesian methodol-

ogy affords substantial practical advantages: it requires less

effort, less knowledge, and it facilitates communication

(e.g., Berger, 2004; but see Goldstein, 2006). For more

complicated models, it is difficult to see how a subjective

specification can be achieved in finite time. Moreover, the

results of an objective analysis may be more compelling

to other researchers than those of a subjective analysis

(Morey, Wagenmakers, & Rouder, in press). Finally, in

our experience, the default priors usually yield results that

are broadly consistent with those that would be obtained

with a more subjective analysis (see also Jeffreys, 1963).

http://tinyurl.com/zv2shlx
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/
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Nevertheless, the exploration of more subjective specifica-

tions requires more attention (e.g., Dienes, 2014; Verhagen

& Wagenmakers, 2014).

Objection 7: subjective priors are not sufficiently

objective

This is an often-heard objection to Bayesian inference in

general: the priors are subjective, and in scientific com-

munication one needs to avoid subjectivity at all cost. Of

course, this objection ignores the fact that the specification

of statistical models is also subjective – the choice between

probit regression, logistic regression, and hierarchical zero-

inflated Poisson regression is motivated subjectively, by a

mix of prior knowledge and experience with the statisti-

cal model under consideration. The same holds for power

analyses that are conducted using a particular effect size,

the choice of which is based on a subjective combination

of previous experimental outcomes and prior knowledge.

Moreover, the scientific choices of what hypothesis to test,

and how to design a good experiment are all subjective.

Despite their subjectivity, the research community has been

able, by and large, to assess the reasonableness of the

choices made by individual researchers.

When the choice is between a method that is objective

but unreasonable versus a method that is subjective but

reasonable, most researchers would prefer the latter. The

default priors for the Bayes factor hypothesis tests are a

compromise solution: they attempt to be reasonable without

requiring a complete subjective specification.

Objection 8: default priors are prejudiced against small

effects

On his influential blog, Simonsohn has recently argued that

default Bayes factor hypothesis tests are prejudiced against

small effects.16 This claim raises the question “Prejudiced

compared to what?”. Small effects certainly receive more

support from a classical analysis, but, as discussed above,

this occurs mainly because the classical paradigm is biased

against the null as the predictions made by H1 are ignored

(cf. Fig. 5). Furthermore, note that for large sample sizes,

Bayes factors are guaranteed to strongly support a true H1,

even for very small true effect sizes. Moreover, the default

nested prior specification of H1 makes it difficult to col-

lect compelling evidence for H0, so the most prominent

advantage is generally with H1, not with H0.

These considerations mean that a Bayes factor analysis

may be misleading only under the following combination of

factors: a small sample size, a small true effect size, and a

16http://datacolada.org/2015/04/09/35-the-default-bayesian-test-is-

prejudiced-against-small-effects/

prior distribution that represents the expectation that effect

size is large. Even under this unfortunate combination of

circumstances, the extent to which the evidence is mislead-

ing will be modest, at least for reasonable prior distributions

and reasonable true effect sizes. The relevant comparison is

not between the default Bayes factor and some unattainable

Platonic ideal; the relevant comparison is between default

Bayes factors and p values. Here we believe that practical

experience will show that Bayes factors are more informa-

tive and have higher predictive success than that provided

by p values.

Objection 9: increasing sample size solves all statistical

problems

An increase in sample size will generally reduce the

need for statistical inference: with large samples, the

signal-to-noise ratio often becomes so high that the

data pass Berkson’s interocular traumatic test. However,

“The interocular traumatic test is simple, commands gen-

eral agreement, and is often applicable; well-conducted

experiments often come out that way. But the enthu-

siast’s interocular trauma may be the skeptic’s random

error. A little arithmetic to verify the extent of the

trauma can yield great peace of mind for little cost.”

(Edwards et al., 1963, p. 217).

Moreover, even high-powered experiments can yield

completely uninformative results (Wagenmakers, Verhagen,

& Ly, 2016). Consider Study 6 from Donnellan, Lucas,

and Cesario (2015), one of nine replication attempts on the

reported phenomenon that lonely people take hotter showers

(in order to replace the lack of social warmth with physi-

cal warmth; Bargh & Shalev, 2012). Although the overall

results provided compelling evidence in favor of the null

hypothesis (Wagenmakers, Verhagen, & Ly, 2016), three

of the nine studies by Donnellan et al. (2015) produced

only weak evidence for H0, despite relatively large sample

sizes. For instance, Study 6 featured n = 553 with r = .08,

yielding a one-sided p = 0.03. However, the default one-

sided Bayes factor equals an almost perfectly uninformative

BF0+ = 1.61. This example demonstrates that a high-

powered experiment does not need to provide diagnostic

information; power is a pre-experimental concept that is

obtained by considering all the hypothetical data sets that

can be observed. In contrast, evidence is a post-experimental

concept, taking into account only the data set that was

actually obtained (Wagenmakers et al., 2015).

Objection 10: Bayesian procedures can be hacked too

In an unpublished paper, Simonsohn has argued that Bayes

factors are not immune to the biasing effects of selec-

tive reporting, ad-hoc use of transformations and outlier

http://datacolada.org/2015/04/09/35-the-default-bayesian-test-is-prejudiced-against-small-effects/
http://datacolada.org/2015/04/09/35-the-default-bayesian-test-is-prejudiced-against-small-effects/
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removal, etc. (Simonsohn, 2015a).17 In other words, Bayes

factors can be “hacked” too, just like p values. This observa-

tion is of course entirely correct. Any reasonable statistical

method should be sensitive to selective reporting, for else

it does not draw the correct conclusions in case the data

were obtained without it. Bayes factors are elegant and often

informative, but they cannot work miracles and the value of

a Bayes factor rests on the reliability and representativeness

of the data at hand.

The following example illustrates a more subtle case

of “B-hacking” that is able to skew statistical conclusions

obtained from a series of experiments. In 2011, Bem pub-

lished an article in the Journal of Personality and Social

Psychology in which he argued that eight of nine experi-

ments provided statistical evidence for precognition (Bem,

2011), that is, the ability of people to anticipate a completely

random event (e.g., on which side of the computer screen

a picture is going to appear). A default Bayes factor analy-

sis by Wagenmakers, Wetzels, Borsboom, and van der Maas

(2011) showed that the evidence was not compelling and

in many cases even supported H0. In response, Bem, Utts,

and Johnson (2011) critiqued the default prior distribution

and re-analyzed the data using their own subjective “pre-

cognition prior”. Based on this prior distribution, Bem et al.

(2011) reported a combined Bayes factor of 13,669 in favor

of H1. The results seems to contrast starkly with those of

Wagenmakers et al. (2011); can the subjective specification

of the prior distribution exert such a huge effect?

The conflict between Bem et al. (2011) and Wagenmak-

ers et al. (2011) is more apparent than real. For each exper-

iment separately, the Bayes factors from Bem et al. (2011)

and Wagenmakers et al. (2011) are relatively similar, a result

anticipated by the sensitivity analysis reported in the online

supplement to Wagenmakers et al. (2011). The impressive

Bayes factor of 13,669 in favor of the precognition hypoth-

esis was obtained by multiplying the Bayes factors for the

individual experiments. However, this changes the focus of

inference from individual studies to the entire collection of

studies as a whole. Moreover, as explained above, multiply-

ing Bayes factors without updating the prior distribution is a

statistical mistake (Jeffreys, 1961; Rouder and Morey, 2011;

Wagenmakers et al., 2016).

In sum, the Bayes factor conclusions from Bem et al.

(2011) and Wagenmakers et al. (2011) are in qualitative

agreement about the relatively low evidential impact of the

individual studies reported in Bem (2011). The impression

of a conflict is caused by a change in inferential focus

coupled with a statistical mistake. Bayesian inference is

coherent and optimal, but it is not a magic potion that

protects against malice or statistical misunderstanding.

17The paper is available at http://papers.ssrn.com/sol3/papers.cfm?

abstract id=2374040.

Concluding comments

Substantial practical rewards await the pragmatic researcher

who decides to adopt Bayesian methods of parameter esti-

mation and hypothesis testing. Bayesian methods can incor-

porate prior information, they do not depend on the intention

with which the data were collected, and they can be used to

quantify and monitor evidence, both in favor of H0 and H1.

In depressing contrast, classical procedures apply only in

the complete absence of knowledge about the topic at hand,

they require knowledge of the intention with which the data

were collected, they are biased against the null hypothe-

sis, and they can yield conclusions that, although valid on

average, may be absurd for the case at hand.

Despite the epistemological richness and practical bene-

fits of Bayesian parameter estimation and Bayesian hypoth-

esis testing, the practice of reporting p values continues its

dominant reign. As outlined in the introduction, the reasons

for resisting statistical innovation are manyfold (Sharpe,

2013). In recent years our work has focused on overcoming

one reason for resistance: the real or perceived difficulty of

obtaining default Bayesian answers for run-of-the-mill sta-

tistical scenarios involving correlations, the t-test, ANOVA

and others. To this aim we have developed JASP, a soft-

ware program that allows the user to conduct both clas-

sical and Bayesian analyses.18 An in-depth discussion of

JASP is provided in Part II of this series (Wagenmakers

et al., this issue).
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