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Abstract Bayesian hypothesis testing presents an attrac-

tive alternative to p value hypothesis testing. Part I of this

series outlined several advantages of Bayesian hypothesis

testing, including the ability to quantify evidence and the

ability to monitor and update this evidence as data come

in, without the need to know the intention with which

the data were collected. Despite these and other practical

advantages, Bayesian hypothesis tests are still reported rel-

atively rarely. An important impediment to the widespread

adoption of Bayesian tests is arguably the lack of user-

friendly software for the run-of-the-mill statistical problems

that confront psychologists for the analysis of almost every

experiment: the t-test, ANOVA, correlation, regression, and

contingency tables. In Part II of this series we introduce

JASP (www.jasp-stats.org), an open-source, cross-platform,

user-friendly graphical software package that allows users

to carry out Bayesian hypothesis tests for standard statistical

problems. JASP is based in part on the Bayesian analyses
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implemented in Morey and Rouder’s BayesFactor pack-

age for R. Armed with JASP, the practical advantages of

Bayesian hypothesis testing are only a mouse click away.

Keywords Hypothesis test · Statistical evidence · Bayes

factor · Posterior distribution

As demonstrated in part I of this series, Bayesian inference

unlocks a series of advantages that remain unavailable to

researchers who continue to rely solely on classical infer-

ence (Wagenmakers et al., 2017). For example, Bayesian

inference allows researchers to update knowledge, to draw

conclusions about the specific case under consideration, to

quantify evidence for the null hypothesis, and to monitor

evidence until the result is sufficiently compelling or the

available resources have been depleted. Generally, Bayesian

inference yields intuitive and rational conclusions within a

flexible framework of information updating. As a method

for drawing scientific conclusions from data, we believe

that Bayesian inference is more appropriate than classical

inference.

Pragmatic researchers may have a preference that is less

pronounced. These researchers may feel it is safest to adopt

an inclusive statistical approach, one in which classical and

Bayesian results are reported together; if both results point

in the same direction this increases one’s confidence that

the overall conclusion is robust. Nevertheless, both prag-

matic researchers and hardcore Bayesian advocates have

to overcome the same hurdle, namely, the difficulty in

transitioning from Bayesian theory to Bayesian practice.

Unfortunately, for many researchers it is difficult to obtain

Bayesian answers to statistical questions for standard sce-

narios involving correlations, the t-test, analysis of variance

http://crossmark.crossref.org/dialog/?doi=10.3758/s13423-017-1323-7&domain=pdf
http://www.jasp-stats.org
mailto:EJ.Wagenmakers@gmail.com
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(ANOVA), and others. Until recently, these tests had not

been implemented in any software, let alone user-friendly

software. And in the absence of software, few researchers

feel enticed to learn about Bayesian inference and few

teachers feel enticed to teach it to their students.

To narrow the gap between Bayesian theory and

Bayesian practice we developed JASP (JASP Team, 2017),

an open-source statistical software program with an attrac-

tive graphical user interface (GUI). The JASP software

package is cross-platform and can be downloaded free of

charge from www.jasp-stats.org. Originally conceptualized

to offer only Bayesian analyses, the current program allows

its users to conduct both classical and Bayesian analyses.1

Using JASP, researchers can conduct Bayesian inference by

dragging and dropping the variables of interest into analysis

panels, whereupon the associated output becomes avail-

able for inspection. JASP comes with default priors on the

parameters that can be changed whenever this is deemed

desirable.

This article summarizes the general philosophy behind

the JASP program and then presents five concrete examples

that illustrate the most popular Bayesian tests implemented

in JASP. For each example we discuss the correct interpre-

tation of the Bayesian output. Throughout, we stress the

insights and additional possibilities that a Bayesian anal-

ysis affords, referring the reader to background literature

for statistical details. The article concludes with a brief

discussion of future developments for Bayesian analyses

with JASP.

The JASP philosophy

The JASP philosophy is based on several interrelated design

principles. First, JASP is free and open-source, reflecting

our belief that transparency is an essential element of sci-

entific practice. Second, JASP is inferentially inclusive,

featuring classical and Bayesian methods for parameter

estimation and hypothesis testing. Third, JASP focuses on

the statistical methods that researchers and students use

most often; to retain simplicity, add-on modules are used

to implement more sophisticated and specialized statisti-

cal procedures. Fourth, JASP has a graphical user interface

that was designed to optimize the user’s experience. For

instance, output is dynamically updated as the user selects

input options, and tables are in APA format for conve-

nient copy-pasting in text editors such as LibreOffice and

Microsoft Word. JASP also uses progressive disclosure,

which means that initial output is minimalist and expanded

1Bayesian advocates may consider the classical analyses a Bayesian

Trojan horse.

only when the user makes specific requests (e.g., by tick-

ing check boxes). In addition, JASP output retains its state,

meaning that the input options are not lost – clicking on

the output brings the input options back up, allowing for

convenient review, discussion, and adjustment of earlier

analyses. Finally, JASP is designed to facilitate open sci-

ence; from JASP 0.7 onward, users are able to save and

distribute data, input options, and output results together as

a .jasp file. Moreover, by storing the .jasp file on a pub-

lic repository such as the Open Science Framework (OSF),

reviewers and readers can have easy access to the data

and annotated analyses that form the basis of a substantive

claim. As illustrated in Fig. 1, the OSF has a JASP pre-

viewer that presents the output from a .jasp file regardless

of whether the user has JASP installed. In addition, users

with an OSF account can upload, download, edit, and sync

files stored in their OSF repositories from within JASP. The

examples discussed in this article each come with an anno-

tated .jasp file available on the OSF at https://osf.io/m6bi8/.

Several analyses are illustrated with videos on the JASP

YouTube channel.

The JASP GUI is familiar to users of SPSS and has

been programmed in C++, html, and javascript. The infer-

ential engine is based on R (R Development Core Team,

2004) and –for the Bayesian analyses– much use is made

of the BayesFactor package developed by Morey and

Fig. 1 The JASP previewer allows users to inspect the annotated

output of a .jasp file on the OSF, even without JASP installed and

without an OSF account. The graph shown on the cell phone displays

the Anscombosaurus (see http://www.thefunctionalart.com/2016/08/

download-datasaurus-never-trust-summary.html). Figure available at

https://osf.io/m6bi8/ under under a CC-BY license

http://www.jasp-stats.org
https://osf.io/m6bi8/
http://www.thefunctionalart.com/2016/08/download-datasaurus-never-trust-summary.html
http://www.thefunctionalart.com/2016/08/download-datasaurus-never-trust-summary.html
https://osf.io/m6bi8/
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Fig. 2 JASP screenshot for the two-sided test for the presence of a correlation between the relative height of the US president and his proportion

of the popular vote. The left panel shows the data in spreadsheet format; the middle panel shows the analysis input options; the right panel shows

the analysis output

Rouder (2015) and the conting package developed by

Overstall and King (2014b). The latest version of JASP uses

the functionality of more than 110 different R packages; a

list is available on the JASP website at https://jasp-stats.org/

r-package-list/. The JASP installer does not require that R is

installed separately.

Our long-term goals for JASP are two-fold: the primary

goal is to make Bayesian benefits more widely available

than they are now, and the secondary goal is to reduce

the field’s dependence on expensive statistical software

programs such as SPSS.

Example 1: a Bayesian correlation test
for the height advantage of US Presidents

For our first example we return to the running example

from Part I. This example concerned the height advantage of

candidates for the US presidency (Stulp, Buunk, Verhulst,

& Pollet, 2013). Specifically, we were concerned with the

Pearson correlation ρ between the proportion of the pop-

ular vote and the height ratio (i.e., height of the president

divided by the height of his closest competitor). In other

words, we wished to assess the evidence that the data pro-

vide for the hypothesis that taller presidential candidates

attract more votes. The scatter plot was shown in Figure 1 of

Part I. Recall that the sample correlation r equaled .39 and

was significantly different from zero (p = .007, two-sided

test, 95% CI [.116, .613]); under a default uniform prior, the

Bayes factor equaled 6.33 for a two-sided test and 12.61 for

a one-sided test (Wagenmakers et al., 2017).

Here we detail how the analysis is conducted in JASP.

The left panel of Fig. 2 shows a spreadsheet view of the

data that the user has just loaded from a .csv file using the

file tab.2 Each column header contains a small icon denot-

ing the variable’s measurement level: continuous, ordinal,

or nominal (Stevens, 1946). For this example, the ruler icon

signifies that the measurement level is continuous. When

loading a data set, JASP uses a “best guess” to determine the

measurement level. The user can click the icon, and change

the variable type if this guess is incorrect.

2JASP currently reads the following file formats: .jasp, .txt, .csv (i.e.,

a plain text file with fields separated by commas), .ods (i.e., OpenDoc-

ument Spreadsheet, a file format used by OpenOffice), and .sav (i.e.,

the SPSS file format).

https://jasp-stats.org/r-package-list/
https://jasp-stats.org/r-package-list/
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After loading the data, the user can select one of several

analyses. Presently the functionality of JASP (version 0.8.1)

encompasses the following procedures and tests:

• Descriptives (with the option to display a matrix plot for

selected variables).

• Reliability analysis (e.g., Cronbach’s α, Gutmann’s λ6,

and McDonald’s ω).

• Independent samples t-test, paired samples t-test, and

one sample t-test. Key references for the Bayesian

implementation include Jeffreys (1961), Ly, Verhagen,

and Wagenmakers (2016a, b), Rouder, Speckman, Sun,

Morey, and Iverson (2009) and Wetzels, Raaijmakers,

Jakab, and Wagenmakers (2009).

• ANOVA, repeated measures ANOVA, and ANCOVA.

Key references for the Bayesian implementation include

Rouder, Morey, Speckman, and Province (2012), Rouder,

Morey, Verhagen, Swagman, and Wagenmakers

(in press), and Rouder, Engelhardt, Mc-Cabe, and

Morey (in press).

• Correlation. Key references for the Bayesian implemen-

tation include Jeffreys (1961), Ly et al. (2016b), and Ly,

Marsman, and Wagenmakers (in press) for Pearson’s

ρ, and van Doorn, Ly, Marsman, and Wagenmakers

(in press) for Kendall’s tau.

• Linear regression. Key references for the Bayesian

implementation include Liang, Paulo, Molina, Clyde,

and Berger (2008), Rouder and Morey (2012), and

Zellner and Siow (1980).

• Binomial test. Key references for the Bayesian imple-

mentation include Jeffreys (1961) and O’Hagan and

Forster (2004).

• Contingency tables. Key references for the Bayesian

implementation include Gunel and Dickey (1974) and

Jamil et al. (in press).

• Log-linear regression. Key references for the Bayesian

implementation include Overstall and King (2014a) and

(2014b).

• Principal component analysis and exploratory factor

analysis.

Except for reliability analysis and factor analysis, the above

procedures are available both in their classical and Bayesian

form. Future JASP releases will expand this core function-

ality and add logistic regression, multinomial tests, and a

series of nonparametric techniques. More specialized statis-

tical procedures will be provided through add-on packages

so that the main JASP interface retains its simplicity.

The middle panel of Fig. 2 shows that the user selected a

Bayesian Pearson correlation analysis. The two variables to

be correlated were selected through dragging and dropping.

The middle panel also shows that the user has not speci-

fied the sign of the expected correlation under H1 – hence,

JASP will conduct a two-sided test. The right panel of Fig. 2

shows the JASP output; in this case, the user requested and

received:

1. The Bayes factor expressed as BF10 (and its inverse

BF01 = 1/BF10), grading the intensity of the evidence

that the data provide for H1 versus H0 (for details see

Part I).

2. A proportion wheel that provides a visual representation

of the Bayes factor.

3. The posterior median and a 95% credible interval, sum-

marizing what has been learned about the size of the

correlation coefficient ρ assuming that H1 holds true.

4. A figure showing (a) the prior distribution for ρ under

H1 (i.e., the uniform distribution, which is the default

prior proposed by Jeffreys (1961) for this analysis; the

user can adjust this default specification if desired),

(b) the posterior distribution for ρ under H1, (c) the

95% posterior credible interval for ρ under H1, and

(d) a visual representation of the Savage-Dickey den-

sity ratio, that is, grey dots that indicate the height of

the prior and the posterior distribution at ρ = 0 under

H1; the ratio of these heights equals the Bayes factor for

H1 versus H0 (Dickey & Lientz, 1970; Wagenmakers,

Lodewyckx, Kuriyal, & Grasman, 2010).

Thus, in its current state JASP provides a relatively com-

prehensive overview of Bayesian inference for ρ, featuring

both estimation and hypothesis testing methods.

Before proceeding we wish to clarify the meaning of the

proportion wheel or “pizza plot”. The wheel was added to

assist researchers who are unfamiliar with the odds formula-

tion of evidence – the wheel provides a visual impression of

the continuous strength of evidence that a given Bayes fac-

tor provides. In the presidents example BF10 = 6.33, such

that the observed data are 6.33 times more likely under H1

than under H0. To visualize this ratio, we transform it to

the 0-1 interval and plot the resulting magnitude as the pro-

portion of a circle (e.g., Tversky, 1969, Figure 1; Lipkus &

Hollands, 1999). For instance, the presidents example has

a ratio of BF10 = 6.33 and a corresponding proportion of

6.33/7.33 ≈ 0.86;3 consequently, the red area (representing

the support in favor of H1) covers 86% of the circle and the

white area (representing the support in favor of H0) covers

the remaining 14%.

Figure 3 gives three further examples of proportion

wheels. In each panel, the red area represents the support

that the data y provide for H1, and the white area repre-

sents the complementary support for H0. Figure 3 shows

3With equal prior odds, a ratio of x corresponds to a proportion of

x/(x + 1).
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Fig. 3 Proportion wheels visualize the strength of evidence that a

Bayes factor provides. Ratios are transformed to a magnitude between

0 and 1 and plotted as the proportion of a circular area. Imagine the

wheel is a dartboard; you put on a blindfold, the wheel is attached to

the wall in random orientation, and you throw darts until you hit the

board. You then remove the blindfold and find that the dart has hit the

smaller area. How surprised are you? The level of imagined surprise

provides an intuition for the strength of a Bayes factor. The analogy is

visualized in the Appendix

that when BF10 = 3, the null hypothesis still occupies a

non-negligible 25% of the circle’s area. The wheel can be

used to intuit the strength of evidence even more concretely,

as follows. Imagine the wheel is a dart board. You put on

a blindfold and the board is attached to a wall in a random

orientation. You then throw a series of darts until the first

one hits the board. You remove the blindfold and observe

that the dart has landed in the smaller area. How surprised

are you? We propose that this measure of imagined surprise

provides a good intuition for degree of evidence that a par-

ticular Bayes factor conveys (Jamil, Marsman, Ly, Morey,

& Wagenmakers, in press). The top panel of Fig. 3, for

instance, represents BF10 = 3. Having the imaginary dart

land in the white area would be somewhat surprising, but

in most scenarios not sufficiently surprising to warrant a

strong claim such as the one that usually accompanies a

published article. Yet many p-values near the .05 boundary

(“reject the null hypothesis”) yield evidence that is weaker

than BF10 = 3 (e.g., Berger & Delampady 1987; Edwards,

Lindman, & Savage 1963; Johnson, 2013; Wagenmakers

et al., 2017; Wetzels et al., 2011). The dart board analogy is

elaborated upon in the Appendix.

The proportion wheel underscores the fact that the Bayes

factor provides a graded, continuous measure of evidence.

Nevertheless, for historical reasons it may happen that a dis-

crete judgment is desired (i.e., an all-or-none preference for

H0 or H1). When the competing models are equally likely

a priori, then the probability of making an error equals the

size of the smaller area. Note that this kind of “error con-

trol” differs from that which is sought by classical statistics.

In the Bayesian formulation the probability of making an

error refers to the individual case, whereas in classical pro-

cedures it is obtained as an average across all possible data

sets that could have been observed. Note that the long-run

average need not reflect the probability of making an error

for a particular case (Wagenmakers et al., 2017).

JASP offers several ways in which the present analysis

may be refined. In Part I we already showed the results of

a one-sided analysis in which the alternative hypothesis H+
stipulated the correlation to be positive; this one-sided anal-

ysis can be obtained by ticking the check box “correlated

positively” in the input panel. In addition, the two-sided

alternative hypothesis has a default prior distribution which

is uniform from −1 to 1; a user-defined prior distribution

can be set through the input field “Stretched beta prior

width”. For instance, by setting this input field to 0.5 the

user creates a prior distribution with smaller width, that is,

a distribution which assigns more mass to values of ρ near

zero.4 Additional check boxes create sequential analyses

and robustness checks, topics that will be discussed in the

next example.

Example 2: a Bayesian t-test for a kitchen roll
rotation replication experiment

Across a series of four experiments, the data reported in

Topolinski and Sparenberg (2012) provided support for the

hypothesis that clockwise movements induce psychologi-

cal states of temporal progression and an orientation toward

the future and novelty. Concretely, in their Experiment 2,

one group of participants rotated kitchen rolls clockwise,

whereas the other group rotated them counterclockwise.

While rotating the rolls, participants completed a ques-

tionnaire assessing openness to experience. The data from

Topolinski and Sparenberg (2012) showed that, in line with

their main hypothesis, participants who rotated the kitchen

rolls clockwise reported more openness to experience than

participants who rotated them counterclockwise (but see

Francis, 2013).

4Statistical detail: the stretched beta prior is a beta(a, a) distribution

transformed to cover the interval from −1 to 1. The prior width is

defined as 1/a. For instance, setting the stretched beta prior width

equal to 0.5 is conceptually the same as using a beta(2, 2) distribution

on the 0-1 interval and then transforming it to cover the interval from

−1 to 1, such that it is then symmetric around ρ = 0.
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Fig. 4 The experimental setting from Wagenmakers et al. (2015): (a) the set-up; (b) the instructions; (c) a close-up of one of the sealed paper

towels; (d) the schematic instructions; Photos (e) and (f) give an idea of how a participant performs the experiment. Figure available at https://

www.flickr.com/photos/130759277@N05/, under CC license https://creativecommons.org/licenses/by/2.0/

We recently attempted to replicate the kitchen roll exper-

iment from Topolinski and Sparenberg (2012), using a

preregistered analysis plan and a series of Bayesian analyses

(Wagenmakers et al., 2015, https://osf.io/uszvx/). Thanks

to the assistance of the original authors, we were able to

closely mimic the setup of the original study. The apparatus

and setup for the replication experiment are shown in Fig. 4.

Before turning to a JASP analysis of the data, it is infor-

mative to recall the stopping rule procedure specified in the

online preregistration form (https://osf.io/p3isc/):

“We will collect a minimum of 20 participants in

each between-subject condition (i.e., the clockwise

and counterclockwise condition, for a minimum of 40

participants in total). We will then monitor the Bayes

factor and stop the experiment whenever the critical

hypothesis test (detailed below) reach a Bayes factor

that can be considered “strong” evidence (Jeffreys,

1961); this means that the Bayes factor is either 10

in favor of the null hypothesis, or 10 in favor of the

alternative hypothesis. The experiment will also stop

whenever we reach the maximum number of partici-

pants, which we set to 50 participants per condition

(i.e., a maximum of 100 participants in total). Finally,

the experiment will also stop on October 1st, 2013.

https://www.flickr.com/photos/130759277@N05/
https://www.flickr.com/photos/130759277@N05/
https://creativecommons.org/licenses/by/2.0/
https://osf.io/uszvx/
https://osf.io/p3isc/
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From a Bayesian perspective the specification of this

sampling plan is needlessly precise; we nevertheless

felt the urge to be as complete as possible.”

In addition, the preregistration form indicated that the

Bayes factor of interest is the default one-sided t-test as

specified in Rouder et al. (2009) and Wetzels et al. (2009).

The two-sided version of this test was originally proposed

by Jeffreys (1961), and it involves a comparison of two

hypothesis for effect size δ: the null hypothesis H0 postu-

lates that effect size is absent (i.e., δ = 0), whereas the

alternative hypothesis H1 assigns δ a Cauchy prior centered

on 0 with interquartile range r = 1 (i.e., δ ∼ Cauchy(0, 1)).

The Cauchy distribution is similar to the normal distribution

but has fatter tails; it is a t-distribution with a single degree

of freedom. Jeffreys chose the Cauchy because it makes the

test “information consistent”: with two observations mea-

sured without noise (i.e., y1 = y2) the Bayes factor in favor

of H1 is infinitely large. The one-sided version of Jeffreys’s

test uses a folded Cauchy with positive effect size only, that

is, H+ : δ ∼ Cauchy+(0, 1).

The specification H+ : δ ∼ Cauchy+(0, 1) is open to

critique. Some people feel that this distribution is unrealis-

tic because it assigns too much mass to large effect sizes

(i.e., 50% of the posterior mass is on values for effect size

larger than 1); in contrast, others feel that this distribution

is unrealistic because it assigns most mass to values near

zero (i.e., δ = 0 is the most likely value). It is possible

to reduce the value of r , and, indeed, the BayesFactor

package uses a default value of r = 1
2

√
2 ≈ 0.707, a value

that JASP has adopted as well. Nevertheless, the use of a

very small value of r implies that H1 and H0 closely resem-

ble one another in the sense that both models make similar

predictions about to-be-observed data; this setting therefore

makes it difficult to obtain compelling evidence, especially

in favor of a true H0 (Schönbrodt, Wagenmakers, Zehetleit-

ner, & Perugini, in press). In general, we feel that reducing

the value of r is recommended if the location of the prior

distribution is also shifted away from δ = 0. Currently JASP

fixes the prior distribution under H1 to the location δ = 0,

and consequently we recommend that users deviate from

the default setting only when they realize the consequences

of their choice.5 Note that Gronau, Ly, and Wagenmak-

ers (2017) recently extended the Bayesian t-test to include

prior distributions on effect size that are centered away from

zero. We plan to add these “informed t-tests” to JASP in

May 2017.

5For an indication of how Bayes factors can be computed under

any proper prior distribution see http://jeffrouder.blogspot.nl/2016/01/

what-priors-should-i-use-part-i.html, also available as a pdf file at the

OSF project page https://osf.io/m6bi8/.

We are now ready to analyze the data in JASP. Read-

ers who wish to confirm our results can open JASP, go to

the File tab, Select “Open”, go to “Examples”, and select

the “Kitchen Rolls” data set that is available at https://

osf.io/m6bi8/. As shown in the left panel of Fig. 5, the

data feature one row for each participant. Each column

corresponds to a variable; the dependent variable of inter-

est here is in the column “mean NEO”, which contains

the mean scores of each participant on the shortened 12-

item version of the openness to experience subscale of the

Neuroticism–Extraversion–Openness Personality Inventory

(NEO PI-R; Costa & McCrae, 1992; Hoekstra, Ormel, & de

Fruyt, 1996). The column “Rotation” includes the crucial

information about group membership, with entries either

“counter” or “clock”.

In order to conduct the analysis, selecting the “T-test”

tab reveals the option “Bayesian Independent Samples T-

test”, the dialog of which is displayed in the middle panel

of Fig. 5. We have selected “mean NEO” as the depen-

dent variable, and “Rotation” as the grouping variable. After

ticking the box “Descriptives”, the output displayed in the

right panel of Fig. 5 indicates that the mean openness-to-

experience is slightly larger in the counterclockwise group

(i.e., N = 54; M = .71) than in the clockwise group (i.e.,

N = 48; M = .64) – note that the effect goes in the

direction opposite to that hypothesized by Topolinski and

Sparenberg (2012).

For demonstration purposes, at first we refrain from spec-

ifying the direction of the test. To contrast our results with

those reported by Wagenmakers et al. (2015), we have set

the Cauchy prior width to its JASP default r = 0.707 instead

of Jeffreys’s value r = 1. We have also ticked the plotting

options “Prior and posterior” and “Additional info”. This

produces the plot shown in the right panel of Fig. 5. It is

evident that most of the posterior mass is negative. The pos-

terior median is −0.13, and a 95% credible interval ranges

from −0.50 to 0.23. The Bayes factor is 3.71 in favor of H0

over the two-sided H1. This indicates that the observed data

are 3.71 times more likely under H0 than under H1. Because

the Bayes factor favors H0, in the input panel we have

selected “BF01” under “Bayes Factor” – it is easier to inter-

pret BF01 = 3.71 than it is to interpret the mathematically

equivalent statement BF10 = 0.27.

After this initial investigation we now turn to an analysis

of the preregistered order-restricted test (with the exception

of using r = 0.707 instead of the preregistered r = 1).

The output of the “Descriptives” option has revealed that

“clock” is group 1 (because it is on top), and “counter” is

group 2. Hence, we can incorporate the order restriction in

our inference by ticking the “Group one > Group two” box

under “Hypothesis” in the input panel, as is shown in the

middle panel of Fig. 6.

http://jeffrouder.blogspot.nl/2016/01/what-priors-should-i-use-part-i.html
http://jeffrouder.blogspot.nl/2016/01/what-priors-should-i-use-part-i.html
https://osf.io/m6bi8/
https://osf.io/m6bi8/
https://osf.io/m6bi8/
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Fig. 5 JASP screenshot for the two-sided test of the kitchen roll repli-

cation experiment (Wagenmakers et al., 2015). The left panel shows

the data in spreadsheet format; the middle panel shows the analysis

input options; the right panel shows the analysis output. NB. The

“error %” indicates the size of the error in the integration routine

relative to the Bayes factor, similar to a coefficient of variation

Fig. 6 JASP screenshot for the one-sided test of the kitchen roll replication experiment (Wagenmakers et al., 2015). The left panel shows the data

in spreadsheet format; the middle panel shows the analysis input options; the right panel shows the analysis output
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The output for the order-restricted test is shown in the

right panel of Fig. 6. As expected, incorporating the knowl-

edge that the observed effect is in the direction opposite

to the one that was hypothesized increases the relative

evidence in favor of H0 (see also Matzke et al., 2015).

Specifically, the Bayes factor has risen from 3.71 to 7.74,

meaning that the observed data are 7.74 times more likely

under H0 than under H+.

As an aside, note that under H+ the posterior distribution

is concentrated near zero but does not have mass on nega-

tive values, in accordance with the order-restriction imposed

by H+. In contrast, the classical one-sided confidence inter-

val ranges from −.23 to ∞. This classical interval contrasts

sharply with its Bayesian counterpart, and, even though

the classical interval is mathematically well-defined (i.e.,

it contains all values that would not be rejected by a one-

sided α = .05 significance test, see also Wagenmakers

et al., 2017), we submit that most researchers will find the

classical result neither intuitive nor informative.

Next we turn to a robustness analysis and quantify the

evidential impact of the width r of the Cauchy prior dis-

tribution. The middle panel of Fig. 7 shows that the option

“Bayes factor robustness check” is ticked, and this pro-

duces the upper plot in the right panel of Fig. 7. When the

Cauchy prior with r equals zero, H1 is identical to H+,

and the Bayes factor equals 1. As the width r increases

and H+ starts to predict that the effect is positive, the

evidence in favor of H0 increases; for the JASP default

value r = .707, the Bayes factor BF0+ = 7.73; for Jef-

freys’s default r = 1, the Bayes factor BF0+ = 10.75;

and for the “ultrawide” prior r =
√

2 ≈ 1.41, the

Bayes factor BF0+ = 15.04. Thus, over a wide range of

plausible values for the prior width r , the data provide mod-

erate to strong evidence in favor of the null hypothesis

H0.

Finally, the middle panel of Fig. 7 also shows that the

options “Sequential analysis” and “robustness check” are

ticked, and these together produce the lower plot in the right

panel of Fig. 7. The sequential analysis is of interest here

because it was part of the experiment’s sampling plan, and

because it underscores how researchers can monitor and

visualize the evidential flow as the data accumulate. Closer

examination of the plot reveals that for the preregistered

value of r = 1, Wagenmakers et al. (2015) did not adhere to

their preregistered sampling plan to stop data collection as

soon as BF0+ > 10 or BF+0 > 10: after about 55 partici-

pants, the dotted line crosses the threshold of BF0+ > 10 but

data collection nonetheless continued. Wagenmakers et al.

Fig. 7 JASP screenshot for the one-sided test of the kitchen roll replication experiment (Wagenmakers et al., 2015). The right panel shows the

analysis output: the upper plot is a robustness analysis, and the bottom plot is a sequential analysis combined with a robustness analysis
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(2015, p. 3) explain: “This occurred because data had to be

entered into the analysis by hand and this made it more dif-

ficult to monitor the Bayes factor continually. In practice,

the Bayes factor was checked every few days. Thus, we con-

tinued data collection until we reached our predetermined

stopping criterion at the point of checking.”

One of the advantages of the sequential robustness plot is

that it provides a visual impression of when the Bayes fac-

tors for the different priors have converged, in the sense that

their difference on the log scale is constant (e.g., Gronau

& Wagenmakers, in press). For the current situation, the

convergence has occurred after testing approximately 35

participants. To understand why the difference between the

log Bayes factors becomes constant after an initial num-

ber of observations, consider data y that consists of two

batches, y1 and y2. As mentioned above, from the law of

conditional probability we have BF0+(y) = BF0+(y1) ×
BF0+(y2 | y1). Note that this expression highlights that

Bayes factors for different batches of data (e.g., partic-

ipants, experiments) may not be multiplied blindly; the

second factor, BF0+(y2 | y1), equals the relative evidence

from the second batch y2, after the prior distributions have

been properly updated using the information extracted from

the first batch y1 (Jeffreys, 1961, p. 333). Rewriting the

above expression on the log scale we obtain log BF0+(y) =
log BF0+(y1) + log BF0+(y2 | y1). Now assume y1 con-

tains sufficient data such that, regardless of the value of

prior width r under consideration, approximately the same

posterior distribution is obtained. In most situations, this

posterior convergence happens relatively quickly. This pos-

terior distribution is then responsible for generating the

Bayes factor for the second component, log BF0+(y2 | y1),

and it is therefore robust against differences in r .6 Thus,

models with different values of r will make different pre-

dictions for data from the first batch y1. However, after

observing a batch y1 that is sufficiently large, the models

have updated their prior distribution to a posterior distri-

bution that is approximately similar; consequently, these

models then start to make approximately similar predic-

tions, resulting in a change in the log Bayes factor that is

approximately similar as well.

In the first example we noted that the Bayes factor grades

the evidence provided by the data on an unambiguous and

6This also suggests that one can develop a Bayes factor that is robust

against plausible changes in r: first, sacrifice data y1 until the posterior

distributions are similar; second, monitor and report the Bayes factor

for the remaining data y2. This is reminiscent of the idea that under-

lies the so-called intrinsic Bayes factor (Berger and Pericchi, 1996), a

method that also employs a “training sample” to update the prior distribu-

tions before the test is conducted using the remaining data points.

The difference is that the intrinsic Bayes factor selects a training sample

of minimum size, being just large enough to identify the model parameters.

Table 1 A descriptive and approximate classification scheme for

the interpretation of Bayes factors BF10 (Lee & Wagenmakers 2013;

adjusted from Jeffreys 1961)

Bayes factor Evidence category

> 100 Extreme evidence for H1

30 - 100 Very strong evidence for H1

10 - 30 Strong evidence for H1

3 - 10 Moderate evidence for H1

1 - 3 Anecdotal evidence for H1

1 No evidence

1/3 - 1 Anecdotal evidence for H0

1/10 - 1/3 Moderate evidence for H0

1/30 - 1/10 Strong evidence for H0

1/100 - 1/30 Very strong evidence for H0

< 1/100 Extreme evidence for H0

continuous scale. Nevertheless, the sequential analysis plots

in JASP make reference to discrete categories of evidential

strength. These categories were inspired by Jeffreys (1961,

Appendix B). Table 1 shows the classification scheme used

by JASP. We replaced Jeffreys’s labels “worth no more than

a bare mention” with “anecdotal” (i.e., weak, inconclusive),

“decisive” with “extreme”, and “substantial” with “moder-

ate” (Lee & Wagenmakers, 2013); the moderate range may

be further subdivided by using “mild” for the 3-6 range

and retaining “moderate” for the 6-10 range.7 These labels

facilitate scientific communication but should be considered

only as an approximate descriptive articulation of differ-

ent standards of evidence. In particular, we may paraphrase

Rosnow and Rosenthal (1989) and state that, surely, God

loves the Bayes factor of 2.5 nearly as much as he loves the

Bayes factor of 3.5.

Example 3: a Bayesian one-way ANOVA to test
whether pain threshold depends on hair color

An experiment conducted at the University of Melbourne

in the 1970s suggested that pain threshold depends on hair

color (McClave & Dietrich, 1991, Exercise 10.20). In the

7The present authors are not all agreed on the usefulness of such

descriptive classifications of Bayes factors. All authors agree, however,

that the advantage of Bayes factors is that –unlike for instance p val-

ues which are dichotomized into “significant” and “non-significant”–

the numerical value of the Bayes factor can be interpreted directly. The

strength of the evidence is not dependent on any conventional verbal

description, such as “strong”.
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Fig. 8 Boxplots and jittered data points for the hair color experiment.

Figure created with JASP

experiment, a pain tolerance test was administered to 19 par-

ticipants who had been divided into four groups according to

hair color: light blond, dark blond, light brunette, and dark

brunette.8 Figure 8 shows the boxplots and the jittered data

points. There are visible differences between the conditions,

but the sample sizes are small.

The data may be analyzed with a classical one-way

ANOVA. This yields a p-value of .004, suggesting that the

null hypothesis of no condition differences may be rejected.

But how big is the evidence in favor of an effect? To

answer this question we now analyze the data in JASP using

the Bayesian ANOVA methodology proposed by Rouder

et al. (2012) (see also Rouder et al., in press). As was the

case for the t-test, we assign Cauchy priors to effect sizes.

What is new is that the Cauchy prior is now multivari-

ate, and that effect size in the ANOVA model is defined in

terms of distance to the grand mean.9 The analysis requires

that the user opens the data file containing 19 pain tol-

erance scores in one column and 19 hair colors in the

other column. As before, each row corresponds to a par-

ticipant. The user then selects “ANOVA” from the ribbon,

followed by “Bayesian ANOVA”. In the associated analy-

sis menu, the user drags the variable “Pain Tolerance” to

the input field labeled “Dependent Variable” and drags the

variable “Hair Color” to the input field “Fixed Factors”.

8The data are available at http://www.statsci.org/data/oz/blonds.html.
9The Cauchy prior width rt for the independent samples t-tests yields

the same result as a two-group one-way ANOVA with a fixed effect

scale factor rA equal to rt/
√

2. With the default setting rt = 1/2 ·
√

2,

this produces rA = 0.5. In sum, for the default prior settings in JASP

the independent samples t-test and the two-group one-way ANOVA

yield the same result. For examples see https://cran.r-project.org/web/

packages/BayesFactor/vignettes/priors.html.

Fig. 9 JASP output table for the Bayesian ANOVA of the hair color

experiment. The blue text underneath the table shows the annotation

functionality that can help communicate the outcome of a statistical

analysis

The resulting output table with Bayesian results is shown

in Fig. 9.

The first column of the output table, “Models”, lists the

models under consideration. The one-way ANOVA features

only two models: the “Null model” that contains the grand

mean, and the “Hair Color” model that adds an effect of

hair color. The next point of interest is the “BF10” column;

this column shows the Bayes factor for each row-model

against the null model. The first entry is always 1 because

the null model is compared against itself. The second entry

is 11.97, which means that the model with hair color pre-

dicts the observed data almost 12 times as well as the null

model. As was the case for the output of the t-test, the right-

most column, “% error”, indicates the size of the error in

the integration routine relative to the Bayes factor; similar

to a coefficient of variation, this means that small variability

is more important when the Bayes factor is ambiguous than

when it is extreme.

Column “P(M)” indicates prior model probabilities

(which the current version of JASP sets to be equal across all

models at hand); column “P(M|data)” indicates the updated

probabilities after having observed the data. Column “BFM”

indicates the degree to which the data have changed the

prior model odds. Here the prior model odds equals 1

(i.e., 0.5/0.5) and the posterior model odds equals almost

12 (i.e., 0.923/0.077). Hence, the Bayes factor equals the

posterior odds. JASP offers the user “Advanced Options”

that can be used to change the prior width of the Cauchy

prior for the model parameters. As the name suggest, we

recommend that the user exercises this freedom only in

the presence of substantial knowledge of the underlying

statistical framework.

Currently JASP does not offer post-hoc tests to exam-

ine pairwise differences in one-way ANOVA. Such post-hoc

tests have not yet been developed in the Bayesian ANOVA

http://www.statsci.org/data/oz/blonds.html
https://cran.r-project.org/web/packages/BayesFactor/vignettes/priors.html
https://cran.r-project.org/web/packages/BayesFactor/vignettes/priors.html
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Fig. 10 Relation between voice pitch, gender, and height (in inches)

for data from 235 singers in the New York Choral Society in 1979.

Error bars show 95% confidence intervals. Figure created with JASP

framework. In future work we will examine whether post-

hoc tests can be constructed by applying a Bayesian correc-

tion for multiple comparisons (i.e., Scott & Berger, 2006,

2010; Stephens & Balding, 2009). Discussion of this topic

would take us too far afield.

Example 4: a Bayesian two-way ANOVA
for singers’ height as a function of gender and pitch

The next data set concerns the heights in inches of the 235

singers in the New York Choral Society in 1979 (Chambers,

Cleveland, Kleiner, & Tukey, 1983).10 The singers’ voices

were classified according to voice part (e.g., soprano, alto,

tenor, bass) and recoded to voice pitch (i.e., very low, low,

high, very high). Figure 10 shows the relation between pitch

and height separately for men and women.

Our analysis concerns the extent to which the depen-

dent variable “height” is associated with gender (i.e., male,

female) and/or pitch. This question can be examined statis-

tically using a 2 × 4 ANOVA. Consistent with the visual

impression from Fig. 10, a classical analysis yields signif-

icant results for both main factors (i.e., p < .001 for both

gender and pitch) but fails to yield a significant result for

the interaction (i.e., p = .52). In order to assess the extent

to which the data support the presence and absence of these

effects we now turn to a Bayesian analysis.

In order to conduct this analysis in JASP, the user first

opens the data set and then navigates to the “Bayesian

ANOVA” input panel as was done for the one-way ANOVA.

In the associated analysis menu, the user then drags the

10Data available at https://stat.ethz.ch/R-manual/R-devel/library/lattice/

html/singer.html.

variable “Height” to the input field labeled “Dependent

Variable” and drags the variables “Gender” and “Pitch” to

the input field “Fixed Factors”. The resulting output table

with Bayesian results is shown in Fig. 11.

The first column of the output table, “Models”, lists the

five models under consideration: the “Null model” that con-

tains only the grand mean, the “Gender” model that contains

the effect of gender, the “Pitch” model that contains the

effect of Pitch, the “Gender + Pitch” model that contains

both main effects, and finally the “Gender + Pitch + Gen-

der × Pitch” model that includes both main effects and

the interaction. Consistent with the principle of marginal-

ity, JASP does not include interactions in the absence of the

component main effects; for instance, the interaction-only

model “Gender × Pitch” may not be entertained without

also adding the two main effects (for details, examples,

and rationale see Bernhardt & Jung, 1979, Griepentrog,

Ryan, & Smith 1982, McCullagh & Nelder, 1989; Nelder,

1998, 2000; Peixoto, 1987, 1990; Rouder, Engelhardt, et al.,

in press; Rouder, Morey, et al., in press; Venables, 2000).

Now consider the BF10 column. All models (except

perhaps for Pitch) receive overwhelming evidence in com-

parison to the Null model. The model that outperforms the

Null model the most is the two main effects model, Gender

+ Pitch. Adding the interaction makes the model less com-

petitive. The evidence against including the interaction is

roughly a factor of ten. This can be obtained as 8.192e+39 /

8.864e+38 ≈ 9.24. Thus, the data are 9.24 times more likely

under the two main effects model than under the model that

adds the interaction.

Column “P(M)” indicates the equal assignment of

prior model probability across the five models; column

“P(M|data)” indicates the posterior model probabilities.

Almost all posterior mass is centered on the two main

effects model and the model that also includes the inter-

action. Column “BFM” indicates the change from prior to

posterior model odds. Only the two main effects model has

received support from the data in the sense that the data have

increased its model probability.

Above we wished to obtain the Bayes factor for the main

effects only model versus the model that adds the inter-

action. We accomplished this objective by comparing the

strength of the Bayes factor against the Null model for

models that exclude or include the critical interaction term.

However, this Bayes factor can also be obtained directly. As

shown in Fig. 12, the JASP interface allows the user to spec-

ify Gender and Pitch as nuisance variables, which means

that they are included in every model, including the Null

model. The Bayes factor of interest is BF10 = 0.108; when

inverted, this yields BF01 = 1/0.108 = 9.26, confirming

the result obtained above through a simple calculation. The

https://stat.ethz.ch/R-manual/R-devel/library/lattice/html/singer.html
https://stat.ethz.ch/R-manual/R-devel/library/lattice/html/singer.html
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Fig. 11 JASP output table for the Bayesian ANOVA of the singers data. Note that JASP uses exponential notation to represent large numbers; for

instance, “3.807e +37” represents 3.807 × 1037

fact that the numbers are not identical is due to the numer-

ical approximation; the error percentage is indicated in the

right-most column.

In sum, the Bayesian ANOVA reveals that the data pro-

vide strong support for the two main effects model over any

of the simpler models. The data also provide good support

against including the interaction term.

Finally, as described in Cramer et al. (2016), the multi-

way ANOVA harbors a multiple comparison problem. As

for the one-way ANOVA, this problem can be addressed

by applying the proper Bayesian correction method (i.e.,

Scott & Berger 2006, 2010; Stephens & Balding,2009). This

correction has not yet been implemented in JASP.

Example 5: a Bayesian two-way repeated measures
ANOVA for people’s hostility towards arthropods

In an online experiment, Ryan, Wilde, and Crist (2013)

presented over 1300 participants with pictures of eight

arthropods. For each arthropod, participants were asked to

rate their hostility towards that arthropod, that is, “...the

extent to which they either wanted to kill, or at least in

some way get rid of, that particular insect” (p. 1297). The

arthropods were selected to vary along two dimensions with

two levels: disgustingness (i.e., low disgusting and high dis-

gusting) and frighteningness (i.e., low frighteningness and

high frighteningness). Figure 13 shows the arthropods and

the associated experimental conditions. For educational pur-

poses, we ignore the gender factor, we ignore the fact that

the ratings are not at all normally distributed, we analyze

data from a subset of 93 participants, and we side-step the

nontrivial question of whether to model the item-effects.

The pertinent model is a linear mixed model, and the only

difference with respect to the previous example is that we

now require a prior for the new random factor –in this case,

participants– which is set a little wider because we assume

a priori that participants are variable in the main effect (for

an in-depth discussion see Rouder et al., in press).

Our analysis asks whether and how people’s hostility

towards arthropods depends on their disgustingness and

frighteningness. As each participant’s rated all eight arthro-

pods, these data can be analyzed using a repeated mea-

sures 2 × 2 ANOVA. A classical analysis reveals that the

main effects of disgustingness and frighteningness are both

highly significant (i.e., p’s < .001) whereas the interac-

tion is not significant (p = 0.146). This is consistent with

the data as summarized in Fig. 14: arthropods appear to

be particularly unpopular when they are high rather than

low in disgustingness, and when they are high rather than

low in frighteningness. The data do not show a compelling

interaction. To assess the evidence for and against the

presence of these effects we now turn to a Bayesian analysis.

To conduct the Bayesian analysis the user first needs

to open the data set in JASP.11 Next the user selects the

“Bayesian Repeated Measures ANOVA” input panel that is

nested under the ribbon option “ANOVA”. Next the user

needs to name the factors (here “Disgust” and “Fright”) and

their levels (here “LD”, “HD”, and “LF”, “HF”). Finally

the input variables need to be dragged to the matching

“Repeated Measures Cells”.

The analysis produces the output shown in the top panel

of Fig. 15. As before, the column “Models” lists the five dif-

ferent models under consideration. The BF10 column shows

that compared to the Null model, all other models (except

perhaps the Disgust-only model) receive overwhelming sup-

port from the data. The model that receives the most support

against the Null model is the two main effects model, Dis-

gust + Fright. Adding the interaction decreases the degree

of this support by a factor of 3.240/1.245 = 2.6. This is

11The data set is available on the project OSF page and from within

JASP (i.e., File → Open → Examples → Bugs).
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Fig. 12 JASP screenshot and output table for the Bayesian ANOVA of the singers data, with Gender and Pitch added as nuisance factors

the Bayes factor in favor of the two main effects model ver-

sus the model that also includes the interaction. The same

result could have been obtained directly by adding “Dis-

gust” and “Fright” as nuisance variables, as was illustrated

in the previous example.

The “P(M)” column shows the uniform distribution of

prior model probabilities across the five candidate mod-

els, and the “P(M|data)” column shows the posterior model

probabilities. Finally, the “BFM” column shows the change

from prior model odds to posterior model odds. This Bayes

factor also favors the two main effects model, but at the

same time indicates mild support in favor of the interaction

model. The reason for this discrepancy (i.e., a Bayes factor

of 2.6 against the interaction model versus a Bayes fac-

tor of 1.5 in favor of the interaction model) is that these

Bayes factors address different questions: The Bayes fac-

tor of 2.6 compares the interaction model against the two

main effects model (which happens to be the model that

is most supported by the data), whereas the Bayes factor

of 1.5 compares the interaction model against all candidate

models, some of which receive almost no support from the

data. Both analyses are potentially of interest. Specifically,

when the two main effects model decisively outperforms

the simpler candidate models then it may be appropriate

Fig. 13 The arthropod stimuli used in Ryan and Wilde (2013). Each cell in the 2 × 2 repeated measures design contains two arthropods. The

original stimuli did not show the arthropod names. Figure adjusted from Ryan and Wilde (2013)
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Fig. 14 Hostility ratings for arthropods that differ in disgusting-

ness (i.e., LD for low disgusting and HD for high disgusting) and

frighteningness (i.e., LF for low frighteningness and HF for high

frighteningness). Error bars show 95% confidence intervals. Data

kindly provided by Ryan and Wilde (2013). Figure created with

JASP

to assess the importance of the interaction term by com-

paring the two main effects model against the model that

adds the interaction. However, it may happen that the sim-

pler candidate models outperform the two main effects

model – in other words, the two main effects model has

predicted the data relatively poorly compared to the Null

model or one of the single main effects models. In such

situations it is misleading to test the importance of the

interaction term by solely focusing on a comparion to the

poorly performing two main effects model. In general we

recommend radical transparency in statistical analysis; an

informative report may present the entire table shown in

Fig. 15. In this particular case, both Bayes factors (i.e.,

2.6 against the interaction model, and 1.5 in favor of the

interaction model) are “not worth more than a bare men-

tion” (Jeffreys, 1961, Appendix B); moreover, God loves

these Bayes factors almost an equal amount, so it may well

be argued that the discrepancy here is more apparent than

real.

As the number of factors grows, so does the number of

models. With many candidate models in play, it may be

risky to base conclusions on a comparison involving a small

subset. In Bayesian model averaging (BMA; e.g., Etz &

Wagenmakers, in press; Haldane 1932; Hoeting, Madigan,

Raftery, & Volinsky, 1999) the goal is to retain model selec-

tion uncertainty by averaging the conclusions from each

candidate model, weighted by that model’s posterior plausi-

bility. In JASP this is accomplished by ticking the “Effects”

input box, which results in an output table shown in the

bottom panel of Fig. 15.

In our example, the averaging in BMA occurs over the

models shown in the Model Comparison table (top panel

of Fig. 15). For instance, the factor “Disgust” features in

three models (i.e., Disgust only, Disgust + Fright, and Dis-

gust + Fright + Disgust * Fright). Each model has a prior

model probability of 0.2, so the summed prior probabil-

ity of the three models that include disgust equals 0.6;

this is known as the prior inclusion probability for Dis-

gust (i.e., the column P(incl)). After the data are observed

we can similarly consider the sum of the posterior model

Fig. 15 JASP screenshot for the output tables of the Bayesian ANOVA for the arthropod experiment. The top table shows the model-based

analysis, whereas the bottom panels shows the analysis of effects, averaging across the models that contain a specific factor. See text for details
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probabilities for the models that include disgust, yielding

4.497e-9 + 0.712 + 0.274 = 0.986. This is the poste-

rior inclusion probability (i.e., column P(incl|data)). The

change from prior to posterior inclusion odds is given in

the column “BFInclusion”. Averaged across all candidate

models, the data strongly support inclusion of both main

factors Disgust and Fright. The interaction only receives

weak support. In fact, the interaction term occurs only in

a single model, and therefore its posterior inclusion proba-

bility equals the posterior model probability of that model

(i.e., the one that contains the two main effects and the

interaction).

It should be acknowledged that the analysis of repeated

measures ANOVA comes with a number of challenges and

caveats. The development of Bayes factors for crossed-

random effect structures is still a topic of ongoing research.

And in general, JASP currently does not feature an exten-

sive suite of estimation routines to assess the extent to

which generic model assumptions (e.g., sphericity) are

violated.

Future directions for Bayesian analyses in JASP

The present examples provides a selective overview of

default Bayesian inference in the case of the correlation test,

t-test, one-way ANOVA, two-way ANOVA, and two-way

repeated measures ANOVA. In JASP, other analyses can

be executed in similar fashion (e.g., for contingency tables,

Jamil, Ly, et al., in press, Jamil, Marsman, et al., in press;

Scheibehenne, Jamil, & Wagenmakers, in press; or for linear

regression Rouder & Morey, 2012). A detailed discussion of

the entire functionality of JASP is beyond the scope of this

article.

In the near future, we aim to expand the Bayesian reper-

toire of JASP, both in terms of depth and breadth. In terms

of depth, our goal is to provide more and better graphing

options, more assumption tests, more nonparametric tests,

post-hoc tests, and corrections for multiplicity. In terms

of breadth, our goal is to include modules that offer the

functionality of the BAS package (i.e., Bayesian model

averaging in regression, Clyde, 2016), the informative

model comparison approach (e.g., Gu, Mulder, Decović, &

Hoijtink, 2014; Gu, 2016; Mulder, 2014, 2016), and a more

flexible and subjective prior specification approach (e.g.,

Dienes, 2011, 2014, 2016; Gronau et al., 2017). By mak-

ing the additional functionality available as add-on modules,

beginning users are shielded from the added complexity

that such options add to the interface. In the short-term

we also aim to develop educational materials that make

JASP output easier to interpret and to teach to undergradu-

ate students. This entails writing a JASP manual, developing

course materials, writing course books, and designing a

Massive Open Online Course.

Our long-term goal is for JASP to facilitate several

aspects of statistical practice. Free and user-friendly, JASP

has the potential to benefit both education and research.

By featuring both classical and Bayesian analyses, JASP

implicitly advocates a more inclusive statistical approach.

JASP also aims to assist with data preparation and aggrega-

tion; currently, this requires that JASP launches and interacts

with an external editor (see our data-editing video at https://

www.youtube.com/watch?v=1dT-iAU9Zuc&t=70s); in the

future, JASP will have its own editing functionality includ-

ing filtering and outlier exclusion. Finally, by offering the

ability to save, annotate, and share statistical output, JASP

promotes a transparent way of communicating one’s sta-

tistical results. An increase in statistical transparency and

inclusiveness will result in science that is more reliable and

more replicable.

As far as the continued development of JASP is con-

cerned, our two main software developers and several core

team members of the JASP team have tenured positions. The

Psychological Methods Group at the University of Amster-

dam is dedicated to long-term support for JASP, and in 2017

we have received four million euro to set up projects that

include the development of JASP as a key component. The

JASP code is open-source and will always remain freely

available online. In sum, JASP is here to stay.

Concluding comments

In order to promote the adoption of Bayesian procedures

in psychology, we have developed JASP, a free and open-

source statistical software program with an interface famil-

iar to users of SPSS. Using JASP, researchers can obtain

results from Bayesian techniques easily and without tears.

Dennis Lindley once said that “Inside every Non-Bayesian,

there is a Bayesian struggling to get out” (Jaynes, 2003).

We hope that software programs such as JASP will act to

strengthen the resolve of one’s inner Bayesian and pave

the road for a psychological science in which innovative

hypotheses are tested using coherent statistics.

Acknowledgements The development of JASP was supported by

the European Research Council grant “Bayes or bust: Sensible hypoth-

esis tests for social scientists”. Supplementary materials are avail-

able at https://osf.io/m6bi8/. The JASP team can be reached through

GitHub, twitter, Facebook, and the JASP Forum. Eric-Jan Wagen-

makers, University of Amsterdam, Department of Psychology, PO

Box 15906, 1001 NK Amsterdam, the Netherlands. Email address:

EJ.Wagenmakers@gmail.com.

https://www.youtube.com/watch?v=1dT-iAU9Zuc&t=70s
https://www.youtube.com/watch?v=1dT-iAU9Zuc&t=70s
https://osf.io/m6bi8/


74 Psychon Bull Rev (2018) 25:58–76

Fig. 16 A dart board analogy to intuit the strength of evidence that a Bayes factor provides. Figure available at https://osf.io/m6bi8/ under under

a CC-BY license

Appendix: Visualizing the strength of evidence

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://
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appropriate credit to the original author(s) and the source, provide a link

to the Creative Commons license, and indicate if changes were made.
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