
Psychon Bull Rev (2018) 25:77–101

https://doi.org/10.3758/s13423-017-1394-5

Bayesian inference for psychology, part III: Parameter

estimation in nonstandard models

Dora Matzke1
· Udo Boehm2

· Joachim Vandekerckhove3

Published online: 13 November 2017

© Psychonomic Society, Inc. 2017

Abstract We demonstrate the use of three popular Bayesian

software packages that enable researchers to estimate

parameters in a broad class of models that are commonly

used in psychological research. We focus on WinBUGS,

JAGS, and Stan, and show how they can be interfaced from

R and MATLAB. We illustrate the use of the packages

through two fully worked examples; the examples involve a

simple univariate linear regression and fitting a multinomial

processing tree model to data from a classic false-memory

experiment. We conclude with a comparison of the strengths

and weaknesses of the packages. Our example code, data,

and this text are available via https://osf.io/ucmaz/.

Keywords WinBUGS · JAGS · Stan · Bayesian

estimation · Bayesian inference

Introduction

In this special issue, Dienes (this issue) has argued that

Bayesian methods are to be preferred over classical meth-

ods, Kruschke (this issue) and Etz and Vandekerckhove (this

issue) have introduced the Bayesian philosophy and associ-

ated mathematics, and Love et al. (this issue; see also Love

et al. (2015)) and Wagenmakers et al. (this issue) described

software that implements standard hypothesis tests within

� Joachim Vandekerckhove

joachim@uci.edu

1 University of Amsterdam, Amsterdam, Netherlands

2 University of Groningen, Groningen, Netherlands

3 University of California, Irvine, CA, USA

the Bayesian framework. In the present paper, we demon-

strate the use of three popular software packages that enable

psychologists to estimate parameters in formal models of

varying complexity.

The mathematical foundations of Bayesian parameter

estimation are not especially difficult—all that is involved

are the elementary laws of probability theory to determine

the posterior distribution of parameters given the data. Once

the posterior distribution has been defined, the final hurdle

of Bayesian parameter estimation is to compute descriptive

statistics on the posterior. In order to obtain these descriptive

statistics, one widely applicable strategy is to draw ran-

dom samples from the posterior distribution using Markov

chain Monte Carlo methods (MCMC; van Ravenzwaaij, this

issue)—with sufficient posterior samples, descriptives on

the sample set can substitute for actual quantities of interest.

In this article, we describe the use of three popular,

general-purpose MCMC engines that facilitate the sam-

pling process. We will focus on WinBUGS, JAGS, and

Stan, and illustrate their use for parameter estimation in two

popular models in psychology. The development of these

software packages has greatly contributed to the increase in

the prevalence of Bayesian methods in psychology over the

past decade (e.g., Lee & Wagenmakers, 2013). The pack-

ages owe their popularity to their flexibility and usability;

they allow researchers to build a large number of models

of varying complexity using a relatively small set of sam-

pling statements and deterministic transformations. More-

over, the packages have a smooth learning curve, are well

documented, and are supported by a large community of

users both within and outside of psychology. Their popular-

ity notwithstanding, WinBUGS, JAGS, and Stan represent

only a subclass of the many avenues to Bayesian analy-

sis; the different avenues implement a trade–off between

flexibility and accessibility. At one end of the spectrum,

http://crossmark.crossref.org/dialog/?doi=10.3758/s13423-017-1394-5&domain=pdf
https://osf.io/ucmaz/
mailto:joachim@uci.edu

78 Psychon Bull Rev (2018) 25:77–101

researchers may use off–the–shelf Bayesian software pack-

ages, such as JASP (Love et al. this issue; see also Love et

al., 2015). JASP has an attractive and user-friendly graph-

ical user interface, but presently it only supports standard

hypothesis tests (see also Morey et al., 2015). At the other

end of the spectrum, researcher may implement their own

MCMC sampler, one that is tailored to the peculiarities of

the particular model at hand (e.g., van Ravenzwaaij, this

issue; Rouder & Lu, 2005). This approach provides tremen-

dous flexibility, but it is time-consuming, labor-intensive,

and requires expertise in computational methods. General-

purpose MCMC engines—such as WinBUGS, JAGS, and

Stan—are the middle-of-the-road alternatives to Bayesian

analysis that provide a large degree of flexibility at a

relatively low cost.

We begin with a short introduction of formal models as

generative processes using a simple linear regression as an

example. We then show how this model can be implemented

in WinBUGS, JAGS, and Stan, with special emphasis on

how the packages can be interacted with from R and MAT-

LAB. We then turn to a more complex model, and illustrate

the basic steps of Bayesian parameter estimation in a multi-

nomial processing tree model for a false-memory paradigm.

The WinBUGS, JAGS, and Stan code for all our exam-

ples is available in the Supplemental Materials at https://

osf.io/ucmaz/. The discussion presents a comparison of the

strengths and weaknesses of the packages and provides

useful references to hierarchical extensions and Bayesian

model selection methods using general-purpose MCMC

software.

An introduction with linear regression

Specification of models as generative processes

Before we continue, it is useful to consider briefly what we

mean by a formal model: A formal model is a set of for-

mal statements about how the data come about. Research

data are the realizations of some stochastic process, and

as such they are draws from some random number gen-

erator whose properties are unknown. In psychology, the

random number generator is typically a group of randomly

selected humans who participate in a study, and the proper-

ties of interest are often differences in group means between

conditions or populations (say, the difference in impulsiv-

ity between schizophrenia patients and controls) or other

invariances and systematic properties of the data genera-

tion process. A formal model is an attempt to emulate the

unknown random number generator in terms of a network

of basic distributions.

Consider, for example, simple linear regression, with

its three basic assumptions of normality, linearity, and

homoskedasticity. This common technique implies a

stochastic process: the data are assumed to be random draws

from a normal distribution (normality), whose mean is a lin-

ear function of a predictor (linearity), and whose variance is

the same (homoskedasticity) for all units, where “units” can

refer to participants, items, conditions, and so on. A regres-

sion model in which we predict y from x may be written as

a follows:

yi |μi, τ ∼ N (μi, τ) (1)

μi |β1, β2, xi = β1 + β2xi . (2)

The tilde (∼) may be read as “is a random sample from”.

These two statements encode the assumptions of normality

(1), homoskedasticity across units i (1), and linearity (2).

Usually omitted, but implied, is that these statements hold

true for all values that the subscript i can take:

∀i, i = 1, . . . , N. (3)

We use τ to indicate the precision—the inverse of the

variance—because that is how WinBUGS and JAGS param-

eterize the Gaussian distribution.

In the Bayesian framework, we must further specify our

prior assumptions regarding the model parameters β1, β2,

and τ . Let us use the following1 forms for the priors:

β1 ∼ N (0, 0.001) (4)

β2 ∼ N (0, 0.001) (5)

τ ∼ Ŵ(0.001, 0.001). (6)

This simple model also helps to introduce the types of

variables that we have at our disposal. Variables can be

stochastic, meaning that they are draws from some distribu-

tion. Stochastic variables can be either observed (i.e., data)

or unobserved (i.e., unknown parameters). In this model, y,

β1, β2, and τ are stochastic variables. Variables can also

be deterministic, which means their values are completely

determined by other variables. Here, μi is determined as

some combination of β1, β2, and xi . N is a constant.

Taken together, a Bayesian model can be thought of as

a data-generation mechanism that is conditional on param-

eters: Bayesian models make predictions. In particular, the

sampling statements— including the priors—in Eqs. 1, 4,

5, and 6 and the deterministic transformation in Eq. 2,

fully define a generative model; this set of statements fully

defines the model because they are all that is needed to

1We chose values for the parameters of the prior distributions that fit

the introductory example. In general, these values should depend on

the application at hand (see Vanpaemel & Lee, this issue; and Morey,

this issue).

https://osf.io/ucmaz/
https://osf.io/ucmaz/

Psychon Bull Rev (2018) 25:77–101 79

generate data from the model. The generative model thus

formalizes the presumed process by which the data in an

empirical study were generated.

A toy data set

As our introductory example, we will use a small data set

containing (a) the observed number of attendees at each

session of a recent conference (the data y) and (b) the num-

ber of attendees that was expected by the organizers (the

predictor x). Table 1 shows the data set.

Implementing a generative model

The generative specification is the core of the BUGS mod-

eling language (Lunn et al., 2000) that is used by WinBUGS

and dialects of which are used by JAGS and Stan. In all of

these programs, the model definition consists of a genera-

tive specification. In many cases, the model code is almost

a point-to-point translation of a suitable generative speci-

fication. Consider this BUGS implementation of the linear

regression model:

Table 1 Example data set for linear regression

Expected (x) Observed (y)

51 24 32 33 35 32 x < − c(51, 44, 57, 41, 53, 56,

44 21 42 55 18 31 49, 58, 50, 32, 24, 21,

57 23 27 49 14 37 23, 28, 22, 30, 29, 35,

41 28 38 56 31 17 18, 25, 32, 42, 27, 38,

53 22 32 58 13 11 32, 21, 21, 12, 29, 14)

56 30 21 61 23 24 y < − c(33, 55, 49, 56, 58, 61,

49 29 21 46 15 17 46, 82, 53, 33, 35, 18,

58 35 12 82 20 5 14, 31, 13, 23, 15, 20,

50 18 29 53 20 16 20, 33, 32, 31, 37, 17,

32 25 14 33 33 7 11, 24, 17, 5, 16, 7)

Attendance at each session of a conference, as predicted by the orga-

nizers (left) and as observed (middle), with the corresponding “S-style”

data file (right)

The parameter beta[1] denotes the intercept (i.e.,

observed number of attendees for 0 expected attendees),

beta[2] denotes the slope of the regression line (i.e., the

increase in the observed number of attendees associated with

a one-unit increase in the expected number of attendees),

and tau represents the inverse of the error variance. This

short piece of code maps exactly to the generative model

for linear regression that we specified. Of course, since

there is much more freedom in mathematical expression

than there is in computer code, the point-to-point transla-

tions will not always be perfect, but it will typically be an

excellent starting point.

In the code, deterministic variables are followed by the

<- assignment operator. For instance, the line mu[i] <-
beta[1] + beta[2] * x[i] specifies that the mu
parameters are given by a linear combination of the of the

stochastic beta variables and the observed data x. The #
symbol is used for comments. The complete list of distribu-

tions, functions, logical operators, and other programming

constructs that are available in WinBUGS, JAGS, and Stan,

is listed in their respective user manuals. BUGS is a declar-

ative language, which means that the order of the statements

in the model file is largely irrelevant. In contrast, in Stan,

the order of statements matters. With the model translated

from formal assumptions to BUGS language, the next step is

to interact with the software and sample from the posterior

distribution of the parameters.

WinBUGS graphical user interface

WinBUGS (Bayesian inference Using Gibbs Sampling for

Windows; Lunn et al., 2000, 2009, 2012; Spiegelhalter

et al., 2003; for an introduction see Kruschke, 2010, and

Wagenmakers, 2013) is a stand-alone piece of software

that is freely available at http://www.mrc-bsu.cam.ac.uk/

bugs/. In this section, we give a brief description of the

WinBUGS graphical user interface (GUI) using the lin-

ear regression model introduced above; later we illustrate

how WinBUGS can be called from other software, such

as R and MATLAB. For a detailed step-by-step intro-

duction to the WinBUGS GUI, the reader is referred to

Lee and Wagenmakers (2013).

To interact with WinBUGS via the GUI, users have to

create a number of files. First, there is a model file that

describes the generative specification of the model, second

is the data file that contains the raw data, and third is an

initial values file that contains some starting values for the

sampling run.

Panel A in Fig. 1 shows the model file

linreg model.txt that describes the generative

http://www.mrc-bsu.cam.ac.uk/bugs/
http://www.mrc-bsu.cam.ac.uk/bugs/

80 Psychon Bull Rev (2018) 25:77–101

model for the linear regression example. Panel B shows

the data file data.txt. The data specification follows

S-plus object notation, where vectors are encapsulated

in the concatenation operator c(...) and matrices

are defined as structures with a dimension field, such

as structure(.Data = c(...),.Dim = c(R,
C)), where R stands for the number of rows and C for

the number of columns. In the linear regression example,

the data consist of the vector of observations y corre-

sponding to the observed number of attendees, a vector of

observations x corresponding to the predicted number of

attendees, and a scalar N corresponding to the number of

sessions.

The same data format is used to store the (optional, but

strongly recommended) set of initial values for the unob-

served stochastic variables. If initial values are not supplied,

WinBUGS will generate these automatically by sampling

from the prior distribution of the parameters. Automatically

generated initial values can provide poor starting points for

the sampling run and may result in numerical instability. If

multiple MCMC chains are run in order to diagnose con-

vergence problems, we encourage users to create a separate

file for each set of initial values. As shown in Fig. 1c, we

will run three chains, each with a different set of initial val-

ues, and store these in inits1.txt, inits2.txt, and

inits3.txt.

Once the model file, the data file, and the files contain-

ing the initial values are created, follow the steps outlined

below to sample from the posterior distribution of the

parameters.

1. Load the model file and check the model specifica-

tion. To open the model file, go to File -> Open
and select linreg model.txt in the appropriate

directory. To check the syntax of the model spec-

ification, go to Model -> Specification and

open the Specification Tool window (Panel D

in Fig. 1), activate the model file by clicking inside

linreg model.txt, click on check model, and

wait for the message “model is syntactically correct” to

appear in the status bar.

2. Load the data file. To open the data file, go to File
-> Open and select data.txt in the appropriate

directory. To load the data, activate the data file, click

A

B

C

z

D

z

Ez

Fig. 1 The WinBUGS graphical user interface. a The model file. b The data file. c The initial values. d The Specification Tool window. e The

status bar

Psychon Bull Rev (2018) 25:77–101 81

on load data in the Specification Tool win-

dow, and wait for the message “data loaded” to appear

in the status bar.

3. Compile the model. To compile the model, specify

the number of MCMC chains in the box labeled num
of chains in the Specification Tool win-

dow, click on compile, and wait for the message

“model compiled” to appear in the status bar. In the

linear regression example, we will run three MCMC

chains, so we type “3” in the num of chains box.

4. Load the initial values. To open the file that con-

tains the initial values for the first chain, go to File
-> Open and select inits1.txt in the appropri-

ate directory. To load the first set of initial values,

activate inits1.txt, click on load inits in the

Specification Tool window, and wait for the

message “chain initialized but other chain(s) contain

uninitialized variables”. Repeat these steps to load the

initial values for the second and third MCMC chain.

After the third set of initial values is loaded, wait for the

message “model is initialized” to appear in the status

bar (Fig. 1e).

5. Choose the output type. To ensure that WinBUGS

pastes all requested output in a single user-friendly log

file, go to Output -> Output options, open

the Output options window, and select the log
option (Fig. 2a).

6. Specify the parameters of interest. To specify the

parameters that you want to draw inference about,

go to Inference -> Samples, open the Sample
Monitor Toolwindow, type one by one the name of

the parameters in the box labeled node, and click on

A

B

C

D

Fig. 2 The WinBUGS graphical user interface continued. a The Output Options window. b The Sample Monitor Tool window. c The Update

Tool window. d The log file

82 Psychon Bull Rev (2018) 25:77–101

set (Fig. 2b). In the linear regression example, we will

monitor the beta[1], beta[2], and tau param-

eters. To request dynamic trace plots of the progress

of the sampling run, select the name of the parame-

ters in the drop-down menu in the Sample Monitor
Tool window and click on trace. WinBUGS will

start to display the dynamic trace plots once the sam-

pling has begun.

7. Specify the number of recorded samples. To specify

the number of recorded samples per chain, fill in the

boxes labeled beg, end, and thin in the Sample
Monitor Tool window. In our linear regression

example, we will record 500 posterior samples for

each parameter. We will discard the first 500 samples

as burn-in and start recording samples from the 501th

iteration (beg=501); we will draw a total of 1,000

samples (end=1000); and we will record each succes-

sive sample without thinning the chains (thin=1).

8. Sample from the posterior distribution of the parame-

ters. To sample from the posteriors, go to Model ->
Update, open the Update Tool window (Fig. 2c),

fill in the total number of posterior samples per chain

(i.e., 1,000) in the box labeled updates, specify the

degree of thinning (i.e., 1) in the box labeled thin,

click on update, and wait for the message “model is

updating” to appear in the status bar.

9. Obtain the results of the sampling run. To obtain sum-

mary statistics and kernel density plots of the posterior

distributions, select the name of the parameters in the

drop-down menu in the Sample Monitor Tool
window and click on stat and density. WinBUGS

will print all requested output in the log file (Panel

D in Fig. 2). The figures labeled “Dynamic trace”

show trace plots of the monitored parameters; the three

MCMC chains have mixed well and look identical to

one another, indicating that the chains have converged

to the stationary distribution and that the successive

samples are largely independent. The table labeled

“Node statistics” shows summary statistics of the pos-

terior distribution of the parameters computed based on

the sampled values. For each monitored parameter, the

table displays the mean, the median, the standard devia-

tion, and the upper-and lower bound of the central 95%

credible interval of the posterior distribution. The cen-

tral tendency of the posterior, such as the mean, can be

used as a point estimate for the parameter. This 95%

credible interval ranges from the 2.5th to the 97.5th

percentile of the posterior and encompasses a range

of values that contains the true value of the parameter

with 95% probability; the narrower this 95% credible

interval, the more precise the parameter estimate. The

figures labeled “Kernel density” show density plots of

the posterior samples for each parameter.

As the reader might have noticed by now, running anal-

yses via the GUI is inflexible and labor-intensive; the GUI

does not allow for data manipulation and visualization and

requires users to click through a large number of menus and

options. Later we therefore illustrate how WinBUGS can

be called from standard statistical software, such as R and

MATLAB.

JAGS and Stan command-line interface

Both JAGS and Stan are based on a command-line interface.

Although this type of interface has fallen out of fashion,

and it is strictly speaking not required to use either of these

programs, we introduce this low-level interface here—using

JAGS as the example—in order to provide the reader with

an appreciation of the inner workings of other interfaces.

Readers who are not interested in this can skip to either one

of the next two sections.

Before launching the program, it is again useful to make

a set of text files containing the model, data, and ini-

tial values. The model file should contain the code in the

listing above; for this example, we saved the model in

linreg model.txt.

The data file should contain the data, formatted as in the

right column of Table 1. The data format in Table 1 is some-

times referred to as “S-style”; each variable name is given in

double quotation marks, followed by the assignment opera-

tor <- and the value to be assigned to the variable. Vectors

are encapsulated in the concatenation operator c(...) and

matrices are defined as structures with a dimension field:

struct(c(...),.Dim=c(R,C)), where the R × C

matrix is entered in column-major order. Our data file is

called linreg data.txt.

The same data format is used to store the (optional, but

strongly recommended) set of initial values. For at least

some of the unknowns nodes (i.e., nodes which in the BUGS

code are followed by the sampling operator ∼), initial val-

ues should be provided. If multiple chains will be run, one

unique file for each chains is recommended. Our initial

values files are called inits1.txt, inits2.txt, and

inits3.txt.

Once all these files are in place, start JAGS by opening a

command window and typing jags. Below is the complete

interaction with JAGS, in which user input is preceded by the

period (.) prompt. Comments are preceded by a pound sign #.

Psychon Bull Rev (2018) 25:77–101 83

This will produce a set of files starting withsamples chain
and an index file starting with samples index. These

files can be loaded into a spreadsheet program like

Microsoft Excel or LibreOffice Calc (or command line

tools like awk and perl) to compute summary statistics and

do inference. However, this approach is both tedious and

labor-intensive, so there exist convenient interfaces from

programming languages such as R, MATLAB, and Python.

Working from MATLAB

MATLAB is a commercial software package that can be

obtained via http://www.mathworks.com/. Just like Python

or R, MATLAB can be used to format data, generate ini-

tial values, and visualize and save results of a sampling run.

In this section we outline how users can interact with Win-

BUGS, JAGS, and Stan using MATLAB. R users can skip

this section; in the next sections, we will describe how to

use R for the same purposes.

To interact with the three computational engines from

MATLAB, we will use the Trinity toolbox (Vandekerck-

hove, 2014), which is developed as a unitary interface to

the Bayesian inference engines WinBUGS, JAGS, and Stan.

Trinity is a work-in-progress that is (and will remain) freely

available via http://tinyurl.com/matlab-trinity. The MAT-

LAB code needed to call these three engines from Trinity is

essentially identical.

http://www.mathworks.com/
http://tinyurl.com/matlab-trinity

84 Psychon Bull Rev (2018) 25:77–101

To start Trinity, download the toolbox, place it in your

MATLAB path, and then call:

The first line will cause the Trinity files to be detected

by MATLAB and the second line will create a bare-bones

MATLAB script with programming instructions. For exam-

ple, one line reads:2

The user can then enter the model code directly into the

MATLAB script, using cell string notation (note the single

quotes around each line):

It is also possible to write the model in a separate file and

provide the file name here instead of the model code. One

advantage of writing model code directly into the MATLAB

script is that the script can be completely self-contained.

Another is that the model code, when treated as a MAT-

LAB variable, could be generated on-the-fly if tedious or

repetitive code is required to define a model or if the model

file needs to be adapted dynamically (e.g., if variable names

need to change from one run to another).

Next, we need to list the parameters of interest (i.e., for

which variables we should save posterior samples). For our

current application we could list all variables but choose to

omit mu (which is particularly useful if N is large and the

vector mu takes up much memory):

2It is likely that the exact appearance of this code will vary a little over

successive versions of the Trinity toolbox, but the requirements will

remain broadly the same.

Next, we collect the data variables that MATLAB will

send to the computational engine. Again, it is possible to

do this by providing the name to a properly formatted data

file, but it is more practical to make a MATLAB variable

that contains the data. To collect the data, make a structure

variable as follows (for the example, x and y should first be

defined with the values given in Table 1):

Each field name (in single quotes) is the name of the vari-

able as it is used in the model definition.3 Note that Trinity

will not permit the model code to have variable names con-

taining underscores, as this symbol is reserved for internal

use. Following each field name is the value that this variable

will take; this value is taken from the MATLAB workspace,

so it can be an existing variable with any name, or it can be a

MATLAB expression that generates the correct value, as we

did here with N. Of course, before making this data struc-

ture, the data may need to be parsed, read into MATLAB,

and possibly pre-processed (outliers removed, etc.).

The final block to complete is a little more involved and

requires understanding of MATLAB’s anonymous functions

construct. Anonymous functions are in-line function definitions

that are saved as variables. A typical command to define an

anonymous function has the following structure:

In this example, anonfun (part (1)) is the name given

to the new function—this can be anything that is a valid

MATLAB variable name. Part (2) indicates the start of an

anonymous function with the @ symbol and lists the input

variables of the function between parentheses. Part (3) is a

3Because MATLAB does not differentiate between vectors and single-

column or single-row matrices, but some of the computational engines

do, it is sometimes convenient to pass variables explicitly as a matrix

or explicitly as a vector. For this situation, Trinity allows the flags

AS MATRIX and AS VECTOR to be prepended to any variable

name. A common situation in which this is useful is when matrix

multiplication is applied in the model, but one of the matrices has

only one column. JAGS, for example, will treat that matrix as a

vector and throw a “dimension mismatch” error unless the flag is

applied. In our example, the data structure would then be defined as

struct(’AS MATRIX x’, x).

Psychon Bull Rev (2018) 25:77–101 85

single MATLAB expression that returns the output variable,

computed from inputsa andb. This anonymous function could

be invoked with: anonfun(1,4), which would yield 5.

It is possible for an anonymous function to take no (zero)

input arguments. For example, nrand = @()-rand will

create a function called nrand that generates uniformly

distributed variates between −1 and 0. In order to supply

the computational engine with initial values for the sam-

pling process, we will define an anonymous function that

draws a sample from the prior distribution of all or part of

the parameter set. An example is:

Here, a structure is generated with one field for each

parameter, and a random initial value for each. The initial

value for each of the two betas is generated from a normal

distribution with mean 0 and standard deviation 10, and tau is

generated from a uniform distribution between 0 and 5. The

functiongenerator() can now be called from MATLAB:

Note that either of these variables can be validly omitted,

but at least one must be given. If one of the random number

generators draws a value that is not allowed by the model

(e.g., where the prior or likelihood is zero), the engines will

throw errors (e.g., JAGS will call them “invalid parent val-

ues”). If no initial values are given, both the engine and

Trinity will proceed without error, but in some engines all

MCMC chains will have the same starting point, render-

ing any convergence statistics invalid. It is always prudent

to provide at least some initial values. Initial values can be

scalars, vectors, or matrices, as needed.

Once all of these variables are prepared, they can be

handed off to the main function of Trinity, callbayes.

This function can take a large number of input fields to

control the behavior of the engine, which can be Win-

BUGS, JAGS, or Stan (WinBUGS is currently limited to

Windows operating systems, and Stan is limited to Unix-

based systems). To select the computational engine, set

engine to ’bugs’, ’jags’, or ’stan’. (Note that

if Stan is selected, the model code should be changed to

the Stan code provided in the next section.) More detail

regarding the use of callbayes can be found in its help

documentation (doc callbayes). These default inputs

are generally sufficient:

86 Psychon Bull Rev (2018) 25:77–101

and operating system. The first input selects the engine. The

various ’*filename’ inputs on lines 6–9 serve to orga-

nize the temporary files in a readable fashion, so that the

user can easily access them for debugging or reproduction

purposes.4

The input values on lines 10–14 determine how many

independent chains should be run, how many samples

should be used for burn-in, how many samples should be

saved per chain, which parameters should be saved, and by

how much the chains should be thinned (n means every nth

sample is saved). Line 15 determines a working directory,

which is currently set to a value that will work well on UNIX

systems; Windows users might want to change this. Line 16

determines how much output Trinity gives while it is run-

ning. Line 17 decides whether the text output given by the

engine should be saved.

Line 18 determines if parallel processing should be

used—if this is set to true, all the chains requested on line

10 will be started simultaneously.5 Note that for complex

models, this may cause computers to become overburdened

as all the processing power is used up by Trinity. Users who

want to run multiple chains than they have computing cores

available can use the optional input pair ’numcores’,
C, ..., where C is the maximum number of cores Trin-

ity is allowed to use. Finally, line 19 lists optional extra

modules (JAGS only). By default, the dic module is called

because this facilitates tracking of the model deviance as

a variable. Users with programming experience can create

their own modules for inclusion here (e.g., ’wiener’; see

Wabersich & Vandekerckhove, 2014).

A successful callbayes call will yield up to four out-

put arguments. stats contains summary statistics for each

saved parameter (mean, median, standard deviation, and

the mass of the posterior below 0). These can be used for

easy access to parameter estimates. chains contains all

the posterior samples saved. The usefulness of this is dis-

cussed below. diagnostics provides quick access to the

convergence metric R̂ and the number of effective samples

4When using JAGS or Stan, the working directory will contain a file

with a cryptic name that starts with tp and ends in a sequence of ran-

dom characters, with no file extension. This is the entry point script

that Trinity uses to call the engine. It can be used to reproduce the anal-

ysis outside of MATLAB, if desired—the files in that directory that

do not have the .txt extension are all that is needed for reproduc-

tion. The *.txt files are output, containing the posterior samples and

the log file. When using WinBUGS, data files, initial values files, and

model files will be available in the working directory where they can

be accessed with the WinBUGS GUI.
5On UNIX systems, this requires the installation of the free pro-

gram GNU parallel (Tange, 2011). On Windows systems, it currently

requires the MATLAB Parallel Computing Toolbox, but we are work-

ing to resolve this dependency.

(Gelman & Rubin, 1999). info gives some more infor-

mation, in particular the model variable and a list of all

the options that were set for the analysis (combining the

user-provided and automatically generated settings).

The most important output variable is chains, which

contains the saved posterior samples that are the immediate

goal of the MCMC procedure. This variable is used by prac-

tically all functions in Trinity that do post-processing, sum-

mary, and visualization. The default Trinity script contains

the line grtable(chains, 1.05). The grtable
function prints a table with a quick overview of the sampling

results, such as the posterior mean, the number of samples

drawn, the number of effective samples (n eff) and the R̂

convergence metric. The second input to grtable can be

either a number, in which case only parameters which an R̂

larger than that number will be printed (or a message that

no such parameters exist); or it can be a string with a reg-

ular expression, in which case only parameters fitting that

pattern will be shown.6

Another useful function that relies on the chains vari-

able and on regular expressions is codatable, which

prints a table with user-selected statistics for selected

parameters. For example, to see the posterior mean and

standard deviation of the beta parameters:

Finally, Trinity contains a set of functions for visualiz-

ing MCMC chains and posterior distributions, but for the

present application, a simple scatter plot and regression line

suffice (Fig. 3):

Note that the posterior distributions of the regression

parameters contain the first bisector (β1 ≈ 0, β2 ≈ 1).

Working from R

R (R Development Core Team, 2004) is a free statisti-

cal software package that can be downloaded from http://

6Regular expressions are an extremely powerful and flexible program-

ming constructs. To give some examples: if the expression is ’beta’,

all parameters with the string beta in their name will be shown. If it

is ’ˆbeta’, only parameters starting with that string will be shown.

’beta$’ will show only those ending in that string. ’.’ will match

any variable, and ’be|ta’ will match anything containing be or ta.

A complete overview to regular expressions in MATLAB can be found

via the documentation for the function regexp.

http://www.r-project.org/

Psychon Bull Rev (2018) 25:77–101 87

0 20 40 60 80 100
0

20

40

60

80

100

predicted (x)

o
b

s
e

rv
e

d
 (

y
)

Fig. 3 Results of the linear regression example. The best fitting

regression line is very close to the first bisector y = x

www.r-project.org/. In this section, we outline how users

can interact with WinBUGS, JAGS, and Stan using R. As

with MATLAB, using R to run analyses increases flexi-

bility compared to working with these Bayesian engines

directly; users can use R to format the data, generate the ini-

tial values, and visualize and save the results of the sampling

run using simple R commands.

Interacting with WinBUGS: R2WinBUGS

To interact with WinBUGS, users have to install

the R2WinBUGS package (Sturtz et al., 2005). The

R2WinBUGS package allows users to call WinBUGS from

within R and pass on the model specification, the data, and

the initial values to WinBUGS using the bugs() function.

WinBUGS then samples from the posterior distribution of

the parameters and returns the MCMC samples to R.

The following R code can be used to sample from the

posterior distribution of the model parameters in the linear

regression example using WinBUGS.

The setwd() function specifies the working directory

where R will look for the model file and will save the results.

The library() function loads the R2WinBUGS package.

Here we create a list named mydata that contains the data

(i.e., x, y, and N) and will be passed on to WinBUGS.

Here we create the initial values for the unobserved

stochastic nodes. The initial values for beta[1] and

beta[2] are random deviates from a zero-centered nor-

mal distribution with a standard deviation of 10.0 generated

using the rnorm() function. The initial values for tau
are generated from a uniform distribution with lower bound

of 0 and upper bound of 5 using the runif() function.

The code generates a unique set of initial values for each

chain.

http://www.r-project.org/

88 Psychon Bull Rev (2018) 25:77–101

Here we create a vector that contains the names of the

model parameters that we want to draw inference about.

The bugs() function calls WinBUGS and passes on the

model specification, the data, and the start values using the

following arguments:

– data specifies the list object that contains the data.

– inits specifies the list object that contains the initial

values.

– parameters specifies the vector that lists the names

of the parameters of interest.

– model.file specifies the text file that contains the

model specification. The model.file argument can

also refer to an R function that contains the model

specification that is written to a temporary file.

– n.chain specifies the number of MCMC chains.

– n.iter specifies the total number of samples per chain.

– n.burnin specifies the number of samples per chain

that will be discarded at the beginning of the sampling

run.

– n.thin specifies the degree of thinning.

– DIC specifies whether WinBUGS should return the

Deviance Information Criterion (DIC; Spiegelhalter et

la., 2002) measure of model comparison.

– bugs.directory specifies the location of

WinBUGS14.exe.

– codaPkg specifies the output that is returned from

WinBUGS. Here codaPkg is set to FALSE to ensure

that WinBUGS returns the posterior samples in the

samples object. If codaPkg is set to TRUE, Win-

BUGS returns the paths to a set of files that contains the

WinBUGS output.

– debug specifies whether WinBUGS will be automat-

ically shut down after sampling. Here debug is set to

FALSE to ensure that WinBUGS shuts down imme-

diately after sampling and returns the results to R.

If debug is set to TRUE, WinBUGS will not shut

down after sampling and will display summary statis-

tics and trace plots of the monitored parameters. As

the name suggests, setting debug to TRUE can also

provide—often cryptic—cues for debugging purposes.

For more details on the use of bugs(), the reader is

referred to the help documentation.

Once WinBUGS has finished sampling, it returns the

posterior samples to R in the samples object. The results

of the sampling run can be accessed, visualized, and sum-

marized using, for instance, the following code:

The posterior samples for beta[1], beta[2],

and tau are stored in samples$sims.array (or

samples$sims.list). The hist() function can be

used to plot histograms of the posterior distribution

of the parameters based on the samples values. The

print(samples) command displays a useful summary

of the posterior distribution of each model parameter,

including the mean, the standard deviation, and the quan-

tiles of the posteriors, and (if multiple chains are run) the R̂

convergence metric.

Interacting with JAGS: R2jags

To interact with JAGS, users have to install the R2jags
package (Su & Yajima, 2012). The R2jags package allows

users to call JAGS from within R and pass on the model

specification, the data, and the start values to JAGS using

the jags() function. JAGS then samples from the poste-

rior distribution of the parameters and returns the MCMC

samples to R.

The R code for running the MCMC routine for the lin-

ear regression example in JAGS is similar to the R code

for running the WinBUGS analysis outlined in the previous

section, with the following modifications. Instead of load-

ing the R2WinBUGS package, load the R2jags package

by typing:

Once the mydata, myinits, and myparameters
objects are created in R, use the jags() function to call

Psychon Bull Rev (2018) 25:77–101 89

JAGS and sample from the posterior distribution of the

parameters:

The jags() function takes as input the following argu-

ments:

– data specifies the list object that contains the data.

– inits specifies the list object that contains the initial

values.

– parameters.to.save specifies the vector that lists

the names of the parameters of interest.

– model.file specifies the file that contains the model

specification. The model.file argument can also

refer to an R function that contains the model specifica-

tion that is written to a temporary file.

– n.chains specifies the number of MCMC chains.

– n.iter specifies the total number of samples per chain.

– n.burnin specifies the number of samples per chain

that will be discarded at the beginning of the sampling

run.

– n.thin specifies the degree of thinning.

– DIC specifies whether JAGS should return the DIC.

For more details on the use of jags(), the reader is

referred to the help documentation.

Once JAGS has finished sampling, it returns the poste-

rior samples to R in the samples object. The results of the

sampling run can be accessed, visualized, and summarized

using, for instance, the following code:

The posterior samples for beta[1], beta[2], and tau
are stored in samples$BUGSoutput$sims.array
(or samples$BUGSoutput$sims.list), and can

be visualized and summarized using the hist() and

print() functions, respectively. As the name suggests,

the traceplot(samples) command displays trace

plots of the model parameters, which provide useful visual

aids for convergence diagnostics.

Interacting with Stan: rstan

To interface R to Stan, users need to install the rstan pack-

age (Guo et al., 2015). The rstan package allows users to

call Stan from within R and pass the model specification,

data, and starting values to Stan using the stan() function.

The MCMC samples from the posterior distribution gener-

ated by Stan are then returned and can be further processed

in R.

There are a few differences between WinBUGS/JAGS

and Stan that are worth noting when specifying Stan models.

While JAGS and WinBUGS simply interpret the commands

given in the model, Stan compiles the model specification to

a C++ program. Consequently, Stan differentiates between a

number of different variable types, and variables in a model

need to be declared before they can be manipulated. More-

over, model code in Stan is split into a number of blocks,

such as “data” and “model”, each of which serves a spe-

cific purpose. Finally, unlike in WinBUGS and JAGS, the

order of statements in a Stan model matters and statements

cannot be interchanged with complete liberty.

To run the R code for the linear regression example in

Stan, begin by loading the rstan package:

The mydata, myinits, and myparameters are cre-

ated in R as illustrated before. However, as Stan relies on

a somewhat different syntax than WinBUGS and JAGS, we

need to rewrite the model file so it can be parsed by Stan.

90 Psychon Bull Rev (2018) 25:77–101

Here we chose to specify the Stan model as a vector string

in R and pass it directly to Stan’s sampling function. Note,

however, that we could get the same result by simply saving

the code as, say, linreg model.stan.

There are a number of very obvious ways in which this

model specification differs from that in WinBUGS and

JAGS. The model code is split into four blocks and all vari-

ables that are mentioned in the “model” block are defined in

the preceding blocks. The “data” block contains the defini-

tion of all observed data that are provided by the user. The

“parameters” block contains the definition of all stochastic

variables, and the “transformed parameters” block contains

the definition of all transformations of the stochastic vari-

ables. The difference between these latter two parts of the

code is rather subtle and has to do with the number of times

each variable is evaluated during the MCMC sampling pro-

cess; a more elaborate explanation can be found in the Stan

reference manual (Stan Development Team, 2015).

We will not discuss the specifics of all the variable defini-

tions here (see Stan Development Team (2015), for details)

but will rather illustrate a few important points using as

example the tau variable. As in the model specification for

WinBUGS and JAGS, tau is the precision of the Gaus-

sian distribution. Defining a variable for the precision of the

Gaussian is, strictly speaking, not necessary because distri-

bution functions in Stan are parameterized in terms of their

standard deviation. Nevertheless, we retain tau for easy

comparability of the Stan MCMC samples with the output

of WinBUGS or JAGS. The first line of the definition of

tau states that it is a real number that is not smaller than

0, and Stan will return an error message should it encounter

a negative value for tau during the sampling process. The

next line states that tau is the inverse of the variance of the

Gaussian. If we were to reverse the order of these last two

lines, due to Stan’s line-by-line evaluation of the code, we

would get an error message stating that the variable tau is

not defined.

The specification of the actual sampling statements in the

“model” block begins, in line with Stan’s line-by-line eval-

uation style, with the prior distributions for the regression

Psychon Bull Rev (2018) 25:77–101 91

coefficients beta[1] and beta[2] and the variance of

the Gaussian. Note that the prior for sigma2 is an inverse

gamma distribution—this is equivalent to the prior specifi-

cation in the WinBUGS/JAGS model where the inverse of

the variance was given a gamma prior. Finally, we sum-

marized (1) and (2) into a single line, which is another

way in which the Stan model specification differs from the

WinBUGS/JAGS code. While WinBUGS does not allow

users to nest statements within the definition of a stochas-

tic node, Stan (and also JAGS) users can directly specify

the mean of the Gaussian to be a function of the regression

coefficients and observed data x, without needing to define

mu[i].

To sample from the posterior distribution of the parame-

ters, call the stan() function:

The stan() function takes as input the following arguments:

– data specifies the list object that contains the data.

– init specifies the list object that contains the initial values.

– pars specifies the vector that lists the names of the

parameters of interest.

– model code specifies the string vector that contains

the model specification. Alternatively, the name of a

.stan file that contains the model specification can be

passed to Stan using the file argument.

– chains specifies the number of MCMC chains.

– iter specifies the total number of samples per chain.

– warmup specifies the number of samples per chain that

will be discarded at the beginning of the sampling run.

– thin specifies the degree of thinning.

For more details on the use of stan(), we refer readers

to the corresponding R help file.

Once sampling is finished, Stan returns the posterior

samples to R in the samples object. The results of the

sampling run can be accessed, visualized, and summarized

using the following code:

The posterior samples in the samples object can most

easily be accessed using the extract() function, which

takes as input arguments:

– samples object containing the posterior samples from

Stan.

– pars character vector with the names of the parameters

for which the posterior samples should be accessed.

– inc warmup logical value indicating whether warm-

up samples should be extracted too.

The posterior samples for beta[1], beta[2], and

tau can be visualized and summarized using the hist()
and print() functions, respectively. As the name sug-

gests, the traceplot(samples) command displays

trace plots of the model parameters, which provide useful

visual aids for convergence diagnostics.

Example: Multinomial processing tree

for modeling false-memory data

In this section, we illustrate the use of WinBUGS, JAGS,

and Stan for Bayesian parameter estimation in the context

of multinomial processing trees, popular cognitive models

for the analysis of categorical data. As an example, we will

use data reported in Wagenaar and Boer (1987). The data

result from an experiment in which misleading information

was given to participants who were asked to recall details

of a studied event. The data were previously revisited by

Vandekerckhove et al. (2015), and our discussion of Wage-

naar and Boer (1987)’s experiment and their three possible

models of the effect of misleading postevent information on

memory closely follows that of Vandekerckhove et al. (2015).

The experiment proceeded in four phases. Participants

were first shown a sequence of drawings involving a

pedestrian-car collision. In one particular drawing, a car was

shown at an intersection where a traffic light was either

red, yellow, or green. In the second phase, participants

were asked questions about the narrative, such as whether

they remembered a pedestrian crossing the road as the car

approached the “traffic light” (in the consistent-information

condition), the “stop sign” (in the inconsistent-information

condition) or the “intersection” (the neutral group). In the

third phase, participants were given a recognition test. They

were shown pairs of pictures from phase I, where one of the

pair had been slightly altered (e.g., the traffic light had been

replaced by a stop sign), and asked to pick out the unal-

tered version. In the final phase, participants were informed

that there had indeed been a traffic light, and were then

asked to recall the color of the light.

92 Psychon Bull Rev (2018) 25:77–101

78

102

63
70

55

45

7

40

1315

53

21

F
re

q
u
e
n
c
y

Consistent Inconsistent Neutral
0

20

40

60

80

100

120

Correct−Correct

Correct−Incorrect

Incorrect−Correct

Incorrect−Incorrect

Fig. 4 The data from the Wagenaar and Boer (1987) experiment.

Correct–Correct: Both phase III and phase IV answers are correct;

Correct–Incorrect: phase III answer is correct but phase IV answer is

incorrect; Incorrect–Correct: phase III answer is incorrect but phase

IV answer is correct; Incorrect–Incorrect: Both phase III and phase IV

answers are incorrect. The data are grouped by condition

The data consist of the frequency with which partici-

pants’ responses fall into each of the four response cate-

gories, where each response category is characterized by

a distinct response pattern: both phase III and phase IV

answers are correct (Correct–Correct), phase III answer is

correct but phase IV answer is incorrect (Correct–Incorrect),

phase III answer is incorrect but phase IV answer is cor-

rect (Incorrect–Correct), and both phase III and phase IV

answers are incorrect (Incorrect–Incorrect). The data from

the Wagenaar and Boer (1987) experiment are shown in

Fig. 4; the figure shows the frequency of participants in each

of the four response categories in the consistent, inconsistent,

and neutral conditions.

The first theoretical account on the effect of mislead-

ing postevent information is Loftus’ destructive–updating

model. This model predicts that when conflicting infor-

mation is presented, it replaces and destroys the original

information. Second is the coexistence model, under which

the initial memory is suppressed by an inhibition mecha-

nism. However, the suppression is temporary and can revert.

The third model is the no–conflict model, under which mis-

leading postevent information cannot replace or suppress

existing information, so that it only has an effect if the orig-

inal information is somehow missing (i.e., was not encoded

or is forgotten).

Multinomial processing tree models

The three theoretical accounts can be cast as multinomial

processing tree models (MPT), which translate a decision

tree like the one in Fig. 5 into a multinomial distribu-

tion (Batchelder & Riefer, 1980; Chechile, 1973; Riefer &

Batchelder, 1988). Figure 5 shows the tree associated with

the no-conflict model. In phase I of the experiment, the pres-

ence of the traffic light is correctly stored with probability

p. If this phase is successful, the color is encoded next,

with success probability c. In phase II, the false presence of

the stop sign is stored with probability q. In phase III, the

answer is either known or guessed correctly with probability

1/2, and in phase IV the answer is either known or guessed

correctly with probability 1/3.

Fig. 5 Multinomial processing tree representation of the inconsistent

condition according to the no-conflict model (adapted from Wagenaar

& Boer, 1987). The probability of each of the four response patterns

(i.e., correct vs. error in phase III and correct vs. error in phase IV)

is given by adding the probabilities of each branch leading to that

data response pattern. The probability of each branch is given by the

product of the individual probabilities encountered on the path

Psychon Bull Rev (2018) 25:77–101 93

To calculate the probability of the four possible response

patterns (i.e., correct vs. error in phase III and correct vs.

error in phase IV), we add together the probabilities of each

branch leading to that response pattern. The probability of

each branch being traversed is given by the product of the

individual probabilities encountered on the path. For exam-

ple, under the no-conflict model, the probability (and hence,

expected proportion) of getting phase III correct but phase

IV wrong is (adding the paths in Fig. 5 from left to right and

starting at the bottom from those cases where phase III was

correct but phase IV was not): 2
3

× q × (1 − c) × p + 2
3

×

(1 − q) × (1 − c) × p + 2
3

× 1
2

× (1 − q) × (1 − p).

The two competing models both add one parameter to the

no-conflict model. In the case of the destructive-updating

model, we add one parameter d for the probability that the

traffic light information is destroyed upon encoding the stop

sign. In the case of the coexistence model, we instead add

one parameter s for the probability that the stop sign encod-

ing causes the traffic light information to be suppressed, not

destroyed, so that it remains available in phase IV.

Here we focus on the no-conflict model, but implement-

ing the other models would involve only small changes to

our code. The generative specification of the no-conflict

model for the consistent (cons), inconsistent (inco) and

neutral (neut) conditions is as follows:

cons ∼ M(θ(1,·), N1) (7)

inco ∼ M(θ(2,·), N2) (8)

neut ∼ M(θ(3,·), N3), (9)

where M denotes that the data follow a multinomial dis-

tribution and N refers to the number of participants in the

nth, n = 1, 2, 3, condition. The 3 × 4 matrix θ contains

the category probabilities of the multinomial distributions

in the three conditions, where θ(n,·) refers to the nth row

of θ . For each condition, the four category probabilities are

expressed in terms of the three model parameters p, q, and

c. As shown in Fig. 5, the category probabilities map onto

the four response categories and the corresponding response

patterns, and are obtained by following the paths in the

tree representation of the model. In particular, the category

probabilities in the three conditions are given by:

θ(1,1) = (1 + p + q − pq + 4pc)/6 (10)

θ(1,2) = (1 + p + q − pq − 2pc)/3 (11)

θ(1,3) = (1 − p − q + pq)/6 (12)

θ(1,4) = (1 − p − q + pq)/3 (13)

θ(2,1) = (1 + p − q + pq + 4pc)/6 (14)

θ(2,2) = (1 + p − q + pq − 2pc)/3 (15)

θ(2,3) = (1 − p + q − pq)/6 (16)

θ(2,4) = (1 − p + q − pq)/3 (17)

θ(3,1) = (1 + p + 4pc)/6 (18)

θ(3,2) = (1 + p − 2pc)/3 (19)

θ(3,3) = (1 − p)/6 (20)

θ(3,4) = (1 − p)/3 (21)

Finally, our priors are flat beta distributions B(1, 1); these

distributions imply equal prior probability for all values

between 0 and 1 (i.e., B(1, 1) is the same as a standard

uniform distribution):

p ∼ B(1, 1) (22)

q ∼ B(1, 1) (23)

c ∼ B(1, 1) (24)

0

2

4

6

8

10

12

Posterior distributions

from WinBUGS

MPT parameters

D
e

n
s
it
y

p

q

c

0

2

4

6

8

10

12

Posterior distributions

from JAGS

MPT parameters

D
e

n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

12

Posterior distributions

from Stan

MPT parameters

D
e

n
s
it
y

Fig. 6 The posterior distribution of the parameters of the no-conflict MPT model obtained from WinBUGS, JAGS, and Stan in combination with

R. The solid, dashed, and dotted lines show the posterior distribution of the p, q, and c parameters, respectively

94 Psychon Bull Rev (2018) 25:77–101

We will now fit the no-conflict model to the Wage-

naar and Boer (1987) data using WinBUGS, JAGS and

Stan in combination with both MATLAB and R. Obtain-

ing parameter estimates for the destructive–updating and

the coexistence models requires only minor modifications

to the code. In particular, we would have to modify the

category probabilities (10–21) to reflect the tree architec-

ture of the alternative models and define an additional

parameter (i.e., parameter d for the destructive-updating

and parameter s for the coexistence model) with the

corresponding uniform prior distribution. As an illustra-

tion, the Supplemental Material presents the WinBUGS,

JAGS and Stan model files and the corresponding R code

that allows users to estimate the parameters of the no-

conflict as well as the destructive-updating and coexistence

models.

Working from R using R2WinBUGS

The WinBUGS code for the generative specification of the

no-conflict model is given below. Note here that since the

generative model specification is just a list of declarative

statements, the order of statements does not matter for the

specification. We write the statements here in the order in

which they appear in the text. This intentionally violates

the usual “programmer logic” in which variables need to

be declared before they are used. We emphasize that such

restriction is not needed in WinBUGS code.

Psychon Bull Rev (2018) 25:77–101 95

Once the model specification is saved to a text file (e.g.,

noconflict.txt), the following R code can be used to

create the data and the initial values, and call WinBUGS

using the R2WinBUGS package:

Note that we ran 3500 iterations per chain

(n.iter=3500) and retained only every 5th sample

(n.thin=5). As the parameters in cognitive models are

often strongly correlated, it is typically necessary to run

relatively long MCMC chains and thin the chains to reduce

auto-correlation. When the sampling run has finished,

WinBUGS returns the posterior samples for the three

model parameters in the samples object. The posterior

distribution of the parameters—plotted using the sampled

values—is shown in the first column of Fig. 6.

Working from R using R2jags

The JAGS code for the generative specification of the no-

conflict model is identical to the WinBUGS code presented

in the previous section, and so is the R code for creating

the data and generating the initial values. Once the R2jags
package is loaded by typing library(R2jags), the fol-

lowing R code can be used to call JAGS and sample from

the posterior distribution of the parameters:

96 Psychon Bull Rev (2018) 25:77–101

JAGS returns the posterior samples for the three model

parameters in the samples object. The posterior distribu-

tion of the parameters is shown in the second column of

Fig. 6. The posteriors obtained with JAGS are essentially

indistinguishable from the ones obtained with WinBUGS.

Working from R using rstan

The Stan code for the non-conflict model again differs

somewhat from the WinBUGS/JAGS code:

Psychon Bull Rev (2018) 25:77–101 97

Once the model specification is saved as

noconflict.stan, the rstan package has been

loaded by typing library(rstan), and R objects have

been created that contain the data, initial values, and param-

eters of interest, the following code can be used to obtain

samples from the posterior distributions of the parameters:

The posterior samples for the three model parameters are

returned in the samples object. The third column of Fig. 6

shows estimates of the posterior densities based on the sam-

pled values; the posteriors closely resemble those obtained

with WinBUGS and JAGS.

Working from MATLAB using trinity

The code to fit the no-conflict model from MATLAB

using Trinity is again very formulaic, and differs very little

between the three computational engines. In the bare-bones

script automatically generated by trinity new, we first

enter the data:

After the data are entered, the model definition needs to

be provided as a cell string. We omit the model specification

here because both the WinBUGS/JAGS and Stan versions

are fully given in the previous sections.

Next, we list the parameters of interest in a cell variable:

and we write a function that generates a structure con-

taining one random value for each parameter in a field:

We also enter the data into a structure where we match

the names of the fields to the variable names in the model

definition:

After selecting an engine, the callbayes function is

called with mostly default settings:

The engine will return, among others, the chains vari-

able containing posterior samples for all three parameters

of interest. We can inspect the results, and we can use the

codatable function to give qualitative feedback about the

convergence of the MC chains:

Finally, we can inspect the posterior means by chain

using the stats structure:

98 Psychon Bull Rev (2018) 25:77–101

parameter value

p
o
s
te

ri
o
r

d
e
n
s
it
y

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12 c

p

q

prior

Fig. 7 The posterior distribution of the parameters of the no-conflict

MPT model obtained from JAGS in combination with Trinity

as well as check some basic descriptive statistics averaged

over all chains:

and visually inspect the posterior distributions using the

smhist function:

where the regular expression may be read as “match only

variables whose name is exactly c or exactly q or exactly

p”. The output of the last command—the posterior distribu-

tion of the parameters—is shown in Fig. 7.

Testing hypotheses

After the posterior samples have been drawn, and poste-

rior distributions possibly visualized as above, there remains

the issue of testing hypotheses relating to parameters. With

the current false-memory data set, one hypothesis of inter-

est might be that the probability p of encoding the traffic

light is greater (versus lower) than chance (Hypothesis 1).

The same question might be asked of the probability c of

encoding the light color (Hypothesis 2).

Given samples from the posterior, a convenient way of

computing the posterior probability that a hypothesis is

true is by computing the proportion of posterior samples in

which the hypothesis holds. To test Hypothesis 1, we would

calculate the proportion of cases in which p > 0.5. To test

Hypothesis 2, we calculate the proportion of cases in which

c > 0.5.

The codatable command is useful in this regard. Cus-

tom statistics on the posterior samples can be computed

by providing anonymous functions as secondary input vari-

ables. A quick way of counting the proportion of cases

in which a condition is true is to make use of the fact

that MATLAB represents logically true statements as 1

and false statements as 0. Hence, the anonymous func-

tion @(x)mean(x>.5) will return the proportion of cases

where the input is greater than 0.5:

As it turns out, the probability of Hypothesis 1 given the

data is about 84% and that of Hypothesis 2 is about 45%. In

other words, neither of the hypotheses is strongly supported

by the data. In fact, as Fig. 7 shows, most of the posterior

mass is clustered near 0.5 for all parameters.

Conclusions

Bayesian methods are rapidly rising from obscurity and into

the mainstream of psychological science. While Bayesian

equivalents of many standard analyses, such as the t test

and linear regression, can be conducted in off–the-shelf

software such as JASP (Love et al., 2015), custom models

will continue to require a flexible programming frame-

work and, unavoidably, some degree of software Mac-

Gyverism. To implement specialized models, researchers

may write their own MCMC samplers, a process that is

time-consuming and labor-intensive, and does not come

easy to investigators untrained in computational methods.

Luckily, general-purpose MCMC engines—such as Win-

BUGS, JAGS, and Stan—provide easy-to-use alternatives

to custom MCMC samplers. These software packages hit

the sweet spot for most psychologists; they provide a large

degree of flexibility at a relatively low time cost.

In this tutorial, we demonstrated the use of three popular

Bayesian software packages in conjunction with two scien-

tific programming languages, R and MATLAB. This com-

bination allows researchers to implement custom Bayesian

analyses from already familiar environments. As we illus-

trated, models as common as a linear regression can be

easily implemented in this framework, but so can more

complex models, such as multinomial processing trees

(MPT; Batchelder & Riefer, 1980; Chechile, 1973; Riefer &

Batchelder, 1988).

Although the tutorial focused exclusively on non-

hierarchical models, the packages may also be used for

modeling hierarchical data structures (e.g., Lee 2011). In

hierarchical modeling, rather than estimating parameters

separately for each unit (e.g., participant), we model the

Psychon Bull Rev (2018) 25:77–101 99

between-unit variability of the parameters with group-level

distributions. The group-level distributions are used as pri-

ors to “shrink” extreme and poorly constrained estimates

to more moderate values. Hierarchical estimation can pro-

vide more precise and less variable estimates than non-

hierarchical estimation, especially in data sets with rela-

tively few observations per unit (Farrell & Ludwig, 2008;

Rouder et al., 2005). Hierarchical modeling is rapidly gain-

ing popularity in psychology, largely by virtue of to the

availability of accessible MCMC packages. The WinBUGS,

JAGS, and Stan implementation of most hierarchical exten-

sions is very straightforward and often does not require

more than a few additional lines of code. For the hierarchical

WinBUGS implementation of regression models, the reader

is referred to Gelman and Hill (2007). For the hierarchi-

cal implementation of custom models, such as multinomial

processing trees, signal detection, or various response time

models, the reader is referred to Lee and Wagenmakers

(2013), Matzke et al. (2015), Matzke and Wagenmakers

(2009), Nilsson et al. (2011), Rouder et al. (2008) and

Vandekerckhove et al. (2011).

Although the goal of our tutorial was to demonstrate

the use of general-purpose MCMC software for Bayesian

parameter estimation, our MPT-example has also touched

on Bayesian hypothesis testing. Various other Bayesian

methods are available that rely on MCMC-output to test

hypotheses and formally compare the relative predictive

performance of competing models. For instance, Wagen-

makers et al. (2010) and Wetzels et al. (2009) discuss the

use of the Savage-Dickey density ratio, a simple procedure

that enables researchers to compute Bayes factors (Jeffreys,

1961; Kass and Raftery, 1995) for nested model compari-

son using the height of the prior and posterior distributions

obtained from WinBUGS. Vandekerckhove et al. (2015)

shows how to use posterior distributions obtained from Win-

BUGS and JAGS to compute Bayes factors for non-nested

MPTs using importance sampling. Lodewyckx et al. (2011)

outline a WinBUGS implementation of the product-space

method, a transdimensional MCMC approach for comput-

ing Bayes factors for nested and non-nested models. Most

recently, Gronau et al. (2017) provide a tutorial on bridge

sampling—a new, potentially very powerful method that is

under active development. It is important to note, however,

that these methods are almost all quite difficult to use and

can be unstable, especially for high-dimensional problems.

Throughout the tutorial, we have advocated WinBUGS,

JAGS, and Stan as flexible and user-friendly alternatives to

homegrown sampling routines. Although the MCMC sam-

plers implemented in these packages work well for the

majority of models used in psychology, they may be inef-

ficient and impractical for some. For instance, models of

choice and response times, such as the linear ballistic accu-

mulator (Brown and Heathcote, 2008) or the lognormal

race (Rouder et al., 2015), are notoriously difficult to sam-

ple from using standard MCMC software. In these cases,

custom-made MCMC routines may be the only solution. For

examples of custom-made and non-standard MCMC sam-

plers, the reader is referred to Rouder and Lu (2005) and

Turner et al. (2013), respectively.

Their general usefulness notwithstanding, the three pack-

ages all have their own set of limitations and weaknesses.

WinBUGS, as the name suggests, was developed specifi-

cally for Windows operating systems. Although it is pos-

sible to run WinBUGS under OS X and Linux using

emulators such as Darwine and CrossOver or compatibility

layers such as Wine, user experience is often jarring. Even

under Windows, software installation is a circuitous pro-

cess and requires users to decode a registration key and an

upgrade patch via the GUI. Once installed, users typically

find the GUI inflexible and labor-intensive. In interaction

with R, user experience is typically more positive. Com-

plaints focus mostly on WinBUGS’ cryptic error messages

and the limited number of built-in functions and distri-

butions. Although the WinBUGS Development Interface

(WBDev; Lunn, 2003) enables users to implement custom-

made functions and distributions, it requires experience with

Component Pascal and is poorly documented. Matzke et al.

(2013) provide WBDev scripts for the truncated-normal

and ex-Gaussian distributions; Wetzels et al. (2010) provide

an excellent WBDev tutorial for psychologists, including

a WBDev script for the shifted-Wald distribution. Impor-

tantly, the BUGS Project has shifted development away

from WinBUGS; development now focuses on OpenBUGS

(http://www.openbugs.net/w/FrontPage).

Stan comes equipped with interfaces to various program-

ming languages, including R, Python and MATLAB, and

only requires the installation of the specific interface pack-

age, which is easy and straightforward under most common

operating systems. In terms of computing time, Stan seems

a particularly suitable choice for complex models with many

parameters and large posterior sample sizes. This advantage

in computing time is due to the fact that Stan compiles the

sampling model to a C++ program before carrying out the

sampling process. The downside of this compilation step is

that, particularly for small models as used in the present

tutorial, compilation of the model might require more time

than the sampling process itself, in which case WinBUGS

or JAGS seem a more advantageous choice.

Finally, we will highlight two advantages of JAGS over

Stan. First, as illustrated in our example code, Stan code

requires variable declaration and as a result can be some-

what more complicated than JAGS code. Second, as a

consequence of Stan’s highly efficient Hamiltonian Monte

Carlo sampling algorithm, some model specifications are

not allowed—in particular, Stan does not easily allow model

specifications that require inference on discrete parameters,

http://www.openbugs.net/w/FrontPage

100 Psychon Bull Rev (2018) 25:77–101

which reduces its usefulness if the goal is model selection

rather than parameter estimation.

We demonstrated the use of three popular Bayesian soft-

ware packages that enable researchers to estimate parame-

ters in a broad class of models that are commonly used in

psychological research. We focused on WinBUGS, JAGS,

and Stan, and showed how they can be interfaced from R

and MATLAB. We hope that this tutorial can serve to further

lower the threshold to Bayesian modeling for psychological

science.

Acknowledgements The authors thank Eric-Jan Wagenmakers for

helpful comments during the writing of this article. DM was supported

by a Veni grant #451-15-010 from the Netherlands Organization of

Scientific Research (NWO). UB was supported by an NWO Research

Talent grant #406-12-125. JV was supported by NSF grants #1230118

and #1534472 from the Methods, Measurements, and Statistics panel

and John Templeton Foundation grant #48192.

References

Batchelder, W. H., & Riefer, D. M. (1980). Separation of storage and

retrieval factors in free recall of clusterable pairs. Psychological

Review, 87, 375–397.

Brown, S. D., & Heathcote, A. J. (2008). The simplest complete model

of choice reaction time: Linear ballistic accumulation. Cognitive

Psychology, 57, 153–178.

Chechile, R. A. (1973). The relative storage and retrieval losses in

short-term memory as a function of the similarity and amount

of information processing in the interpolated task (Unpublished

doctoral dissertation). Pittsburgh: University of Pittsburgh.

Farrell, S., & Ludwig, C. J. H. (2008). Bayesian and maximum

likelihood estimation of hierarchical response time models. Psy-

chonomic Bulletin & Review, 15, 1209–1217.

Gelman, A., & Hill, J. (2007). Data analysis using regression and multi-

level/hierarchical models. Cambridge: Cambridge University Press.

Gelman, A., & Rubin, D. B. (1999). Evaluating and using statistical

methods in the social sciences. Sociological Methods & Research,

27, 403–410.

Gronau, Q. F., Sarafoglou, A., Matzke, D., Ly, A., Boehm, U., Mars-

man, M., & Steingroever, H. (2017). A tutorial on bridge sampling.

arXiv:1703.05984

Guo, J., Lee, D., Goodrich, B., de Guzman, J., Niebler, E., Heller, T., &

Goodrich, B. (2015). rstan: R interface to stan [Computer software

manual]. Retrieved from https://cran.r-project.org/web/packages/

rstan/index.html

Jeffreys, H. (1961). Theory of probability, 3rd edn. Oxford: Oxford

University Press.

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the

American Statistical Association, 90, 773–795.

Kruschke, J. K. (2010). Doing Bayesian data analysis: A tutorial

introduction with R and BUGS. Burlington: Academic Press.

Lee, M. D. (2011). How cognitive modeling can benefit from hierarchical

Bayesian models. Journal of Mathematical Psychology, 55, 1–7.

Lee, M. D., & Wagenmakers, E.-J. (2013). Bayesian modeling for

cognitive science: A practical course. Cambridge: Cambridge

University Press.

Lodewyckx, T., Kim, W., Tuerlinckx, F., Kuppens, P., Lee, M. D.,

& Wagenmakers, E.-J. (2011). A tutorial on Bayes factor esti-

mation with the product space method. Journal of Mathematical

Psychology, 55, 331–347.

Love, J., Selker, R., Marsman, M., Jamil, T., Dropmann, D., Verhagen,

A. J., & Wagenmakers, E.-J. (2015). JASP [computer software].

https://jasp-stats.org/

Lunn, D. J. (2003). WinBUGS development interface (WBDev). ISBA

Bulletin, 10, 10–11.

Lunn, D. J., Jackson, C., Best, N., Thomas, A., & Spiegelhalter, D.

(2012). The BUGS book: A practical introduction to Bayesian

analysis. Boca Raton: Chapman & Hall/CRC.

Lunn, D. J., Spiegelhalter, D., Thomas, A., & Best, N. (2009). The

BUGS project: Evolution, critique and future directions. Statistics

in Medicine, 28, 3049–3067.

Lunn, D. J., Thomas, A., & Best, N. (2000). WinBUGS—a Bayesian

modelling framework: Concepts, structure, and extensibility.

Statistics and Computing, 10, 325–337.

Matzke, D., Dolan, C. V., Batchelder, W. H., & Wagenmakers, E.-J.

(2015). Bayesian estimation of multinomial processing tree mod-

els with heterogeneity in participants and items. Psychometrika,

80, 205–235.

Matzke, D., Dolan, C. V., Logan, G. D., Brown, S. D., & Wagenmak-

ers, E.-J. (2013). Bayesian parametric estimation of stop-signal

reaction time distributions. Journal of Experimental Psychology:

General, 142, 1047–1073.

Matzke, D., & Wagenmakers, E.-J. (2009). Psychological interpreta-

tion of the ex-Gaussian and shifted Wald parameters: A diffusion

model analysis. Psychonomic Bulletin & Review, 16, 798–817.

Morey, R. D., Rouder, J. N., & Jamil, T. (2015). Pack-

age Bayes factorâǍŹ. http://cran.r-project.org/web/packages/

BayesFactor/BayesFactor.pdf

Nilsson, H., Rieskamp, J., & Wagenmakers, E.-J. (2011). Hierarchi-

cal Bayesian parameter estimation for cumulative prospect theory.

Journal of Mathematical Psychology, 55, 84–93.

R Development Core Team (2004). R: A language and environment for

statistical computing [Computer software manual]. Vienna, Austria.

Retrieved from http://www.R-project.org (ISBN 3-900051-00-3).

Riefer, D. M., & Batchelder, W. H. (1988). Multinomial modeling and

the measurement of cognitive processes. Psychological Review,

95, 318–399.

Rouder, J. N., & Lu, J. (2005). An introduction to Bayesian hierarchi-

cal models with an application in the theory of signal detection.

Psychonomic Bulletin & Review, 12, 573–604.

Rouder, J. N., Lu, J., Morey, R. D., Sun, D., & Speckman, P. L.

(2008). A hierarchical process dissociation model. Journal of

Experimental Psychology: General, 137, 370–389.
Rouder, J. N., Lu, J., Speckman, P. L., Sun, D., & Jiang, Y. (2005).

A hierarchical model for estimating response time distributions.

Psychonomic Bulletin & Review, 12, 195–223.
Rouder, J. N., Province, J. M., Morey, R. D., Gomez, P., & Heath-

cote, A. (2015). The lognormal race: A cognitive-process model

of choice and latency with desirable psychometric properties.

Psychometrika, 80, 491–513.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A.

(2002). Bayesian measures of model complexity and fit. Journal

of the Royal Statistical Society B, 64, 583–639.
Spiegelhalter, D. J., Thomas, A., Best, N., & Lunn, D. (2003). Win-

BUGS version 1.4 user manual. Cambridge: Medical Research

Council Biostatistics Unit.
Stan Development Team (2015). Stan modeling language: User’s

guide and reference manual. version 2.7.0 [Computer soft-

ware manual]. Retrieved from https://github.com/stan-dev/stan/

releases/download/v2.7.0/stan-reference-2.7.0.pdf
Sturtz, S., Ligges, U., & Gelman, A. (2005). R2WinBUGS: A package

for running Win-BUGS from R. Journal of Statistical Software,

12, 1–16.

Su, Y.-S., & Yajima, M. (2012). R2jags: A package for running

JAGS from R [Computer software manual]. Retrieved from http://

CRAN.R-project.org/package=R2jags

http://arXiv.org/abs/1703.05984
https://cran.r-project.org/web/packages/rstan/index.html
https://cran.r-project.org/web/packages/rstan/index.html
https://jasp-stats.org/
http://cran.r-project.org/web/packages/BayesFactor/BayesFactor.pdf
http://cran.r-project.org/web/packages/BayesFactor/BayesFactor.pdf
http://www.R-project.org
https://github.com/stan-dev/stan/releases/download/v2.7.0/stan-reference-2.7.0.pdf
https://github.com/stan-dev/stan/releases/download/v2.7.0/stan-reference-2.7.0.pdf
http://CRAN.R-project.org/package=R2jags
http://CRAN.R-project.org/package=R2jags

Psychon Bull Rev (2018) 25:77–101 101

Tange, O. (2011). Gnu parallel - the command–line power tool. ;login:

The USENIX Magazine, 36(1), 42–47. Retrieved from http://www.

gnu.org/s/parallel

Turner, B. M., Sederberg, P. B., Brown, S. D., & Steyvers, M.

(2013). A method for efficiently sampling from distributions with

correlated dimensions. Psychological Methods, 18, 368–384.

Vandekerckhove, J. (2014). Trinity: A MATLAB interface for

Bayesian analysis. http://tinyurl.com/matlab-trinity

Vandekerckhove, J., Matzke, D., & Wagenmakers, E.-J. (2015).

Model comparison and the principle of parsimony. In Buse-

meyer, J. R., Townsend, J. T., Wang, Z. J., & Eidels, A. (Eds.)

Oxford handbook of computational and mathematical psychology.

Retrieved from http://p.cidlab.com/vandekerckhove2014model.

pdf (pp. 300–317). Oxford: Oxford University Press.

Vandekerckhove, J., Tuerlinckx, F., & Lee, M. D. (2011). Hierar-

chical diffusion models for two-choice response times. Psycho-

logical Methods, 16, 44–62. Retrieved from http://p.cidlab.com/

vandekerckhove2011hierarchical.pdf

Wabersich, D., & Vandekerckhove, J. (2014). Extending JAGS: A

tutorial on adding custom distributions to JAGS (with a diffu-

sion model example), (Vol. 46. Retrieved from http://p.cidlab.com/

wabersich2014extending.pdf

Wagenaar, W. A., & Boer, J. P. (1987). A Misleading postevent infor-

mation: Testing parameterized models of integration in memory.

Acta Psychologica, 66, 291–306.

Wagenmakers, E.-J., Lodewyckx, T., Kuriyal, H., & Grasman, R.

(2010). Bayesian hypothesis testing for psychologists: A tuto-

rial on the Savage–Dickey method. Cognitive Psychology, 60,

158–189.

Wetzels, R., Lee, M. D., & Wagenmakers, E.-J. (2010). Bayesian

inference using WBDev: A tutorial for social scientists. Behavior

Research Methods, 42, 884–897.

Wetzels, R., Raaijmakers, J. G. W., Jakab, E., & Wagenmakers, E.-J.

(2009). How to quantify support for and against the null hypothe-

sis: A flexible WinBUGS implementation of a default Bayesian t

test. Psychonomic Bulletin & Review, 16, 752–760.

http://www.gnu.org/s/parallel
http://www.gnu.org/s/parallel
http://tinyurl.com/matlab-trinity
http://p.cidlab.com/vandekerckhove2014model.pdf
http://p.cidlab.com/vandekerckhove2014model.pdf
http://p.cidlab.com/vandekerckhove2011hierarchical.pdf
http://p.cidlab.com/vandekerckhove2011hierarchical.pdf
http://p.cidlab.com/wabersich2014extending.pdf
http://p.cidlab.com/wabersich2014extending.pdf

	Bayesian inference for psychology, part III: Parameter estimation in nonstandard models
	Abstract
	Introduction
	An introduction with linear regression
	Specification of models as generative processes
	A toy data set
	Implementing a generative model

	WinBUGS graphical user interface
	JAGS and Stan command-line interface
	Working from MATLAB
	Working from R
	Interacting with WinBUGS: R2WinBUGS
	Interacting with JAGS: R2jags
	Interacting with Stan: rstan

	Example: Multinomial processing tree for modeling false-memory data
	Multinomial processing tree models
	Working from R using R2WinBUGS
	Working from R using R2jags
	Working from R using rstan
	Working from MATLAB using trinity
	Testing hypotheses

	Conclusions
	Acknowledgements
	References

