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Summary. This paper presents the Bayesian analysis of a semiparametric regression model that
consists of parametric and nonparametric components. The nonparametric component is repre-
sented with a Fourier series where the Fourier coefficients are assumed a priori to have zero means
and to decay to 0 in probability at either algebraic or geometric rates. The rate of decay controls the
smoothness of the response function. The posterior analysis automatically selects the amount of
smoothing that is coherent with the model and data. Posterior probabilities of the parametric and
semiparametric models provide a method for testing the parametric model against a non-specific
alternative. The Bayes estimator's mean integrated squared error compares favourably with the
theoretically optimal estimator for kernel regression.
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1. Introduction

This paper considers the Bayesian analysis of the semiparametric additive model
yi=dif+g(x)+e fora<x,<bandi=1,...,n ()

where {d;} are fixed known p-vectors, 3 is a p-vector of parameters that includes the y-intercept,
g is an unparameterized function defined on the interval [a, b] and {¢,;} are a random sample
from a normal distribution with mean 0 and variance o°. This paper will refer to d'3 as the
‘parametric component’ and to g as the ‘nonparametric component’. Speckman (1988) reviewed
penalized least squares methods of estimating these models and proposed a kernel method
based on the residuals.

The parametric component frequently represents the researcher’s beliefs about the correct
model before analysing the data. The nonparametric component allows the posterior regression
estimator to deviate from the parametric model. The semiparametric model permits testing
the adequacy of the parametric model relative to non-specific alternatives in x with Jeffreys’s
hypothesis testing framework (see Kass and Raftery (1995)), namely, the posterior probabilities
of parametric and semiparametric models are used in a decision theoretic framework.

This paper represents the nonparametric component with a Fourier series:

2(0) = 32 0, () fora < x < b, )
k=1
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2 \" X—a
or(x) = (m> cos{wk(b_a)} fork=1,2,...anda<x<b, (3

b
6 = | g6 dv
The cosine functions form an orthonormal basis for the piecewise continuous functions on
[a, b] (Kreider et al. (1966), pages 349-353). Because the constant function is included in the
parametric component, the model has the implicit constraint that g integrates to 0.

The cosine terms have a natural ordering that relates to the smoothness of g: smooth g will
not have high frequency components. In fact, if g is m times differentiable and g™ e L'[a, b],
then 6, = o(k™) (Katznelson (1976), p. 24). With this in mind, a priori {6,} are mutually
independent and decay to 0 in probability:

ek ~ N{Oa 7_2 exp(_’yck)}a

the normal distribution with mean 0 and variance 7° exp(—ycy),

[k for the ‘geometric smoother’, @)
ke log(k) for the ‘algebraic smoother’,
0 for the geometric smoother,
y>c= . (5)
1 for the algebraic smoother.

The condition in equation (5) is needed for the Fourier series in equation (2) to converge in
probability. The support for the prior distribution of g is the space of piecewise continuous
functions on [a, b] where the decay of the coefficients controls the number of derivatives.

The variances of {6, } have two forms in equation (4) which differ qualitatively. The algebraic
smoother concentrates its prior mass on functions with v or fewer derivatives, whereas the
geometric smoother has prior mass on analytical functions. The parameter 7> can be viewed
as the ‘global’ uncertainty about g: it determines the trade-off between the prior and the like-
lihood. The parameter «y determines the rate of decay of the Fourier coefficients, and thus the
smoothness of g. Clearly, other basis functions or other priors could be used to model g. The
representation and prior in this paper work together to express smoothness. This representa-
tion of g is less useful for expressing other types of prior knowledge, such as g is larger in one
region than in another.

The parametric component should frequently include parametric functions of x. For example,
a researcher may be interested in testing the adequacy of a hypothesized model or may have
prior information, such as beliefs about a changepoint, that cannot be expressed by the non-
parametric component. Also, under the cosine representation the odd derivatives of g are 0 at
the end points, which may inadequately represent the phenomenon. The model specified by
equations (1) and (2) is unidentified if the parametric component contains a function, say /,
of x. Then the Fourier coefficients for g and / are indeterminate. However, the prior distri-
bution for {#,} has the identifying restriction that their means are 0. Hence, the non-zero
coefficients of & cannot be added to those of g without violating the prior specification.

To complete the model’s specification, 3, o°, 7° and ~ are mutually independent of each
other and of {6,}, and

B~ N(bo» Bo)»

the normal distribution with mean b, and covariance matrix B,
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o® ~1G(ry/2, 50/2).
the inverse gamma distribution with shape r,/2 and scale s,/2,

T~ IG(”O/za Uo/z),
v~ E(wp),

the exponential distribution with mean 1/w, for the geometric smoother, and
v~ 1+ E(w)

for the algebraic smoother. The priors for # and o, though standard, were selected for
mathematical expediency. Other priors could be used without affecting the analysis of g,
provided that 8 and o are independent of {6,}.

Smoothing splines are a closely related alternative model for g. Kimeldorf and Wahba
(1970) demonstrated the correspondence between smoothing splines and a Bayesian estimator
by using Gaussian process priors, and Wahba (1978) derived polynomial splines as the
limiting case of the posterior mean of an integrated Wiener process. She also introduced a
cross-validation method of choosing the smoothing parameter.

A number of recent papers specify g to be either polynomial splines or local polynomial
functions where the coefficients of the basis functions and, to a varying extent, the number of
knots or their locations are unknown, i.e. g is a priori a spline or local polynomial function.
For example, Smith and Kohn (1996) began with a large number of knots and used Bayesian
variable selection to find the most significant knots. Wong and Kohn (1996) used a similar
method for an additive semiparametric model that allows for outliers and Smith ef al. (1998)
extended the model to autocorrelated errors. Denison ef al. (1998) used a reversible jump
Markov chain to determine the number and location of knots for local polynomial regression
estimators. One difference between Wahba’s approach and the more recent methods is that
she begins with a prior distribution with support on a function space and derives the poly-
nomial spline as the limit of posterior means, whereas the later papers specify flexible
functional forms for g.

A natural extension of local polynomials is wavelets (Antoniadis ef al., 1994), which form a
local basis. Chipman et al. (1997) and Clyde et al. (1998) have provided Bayesian methods for
selecting the number and location of the basis functions.

The specification for g in this paper is closely related to that proposed in the empirical
section of Wahba (1983). There, the representation of g has both sines and cosines, which
restricts the analysis to periodic functions with g(a) = g(b). She obtained a penalized max-
imum likelihood estimator and selected the smoothing parameter A = 72 by cross-validation
for fixed 7 in the algebraic smoother. Gallant and Monahan (1985) also used sines and
cosines with independent, doubly exponentially distributed Fourier coefficients. Their analysis
was conditional on the smoothing parameters. In contrast, this paper treats both 7 and ~ as
unknown, implements a fully Bayesian procedure and illustrates Bayesian hypothesis testing
to confirm the adequacy of a parametric model. In related work, Lenk (1991, 1993) imple-
mented a Bayesian, nonparametric density estimator by modelling the density with a logistic
transform of g.

The next section shows that, conditionally on 3, o, 7 and ~, the mean integrated squared
error (MISE) of the Bayes estimator can converge to 0 at a rate that is favourable to optimal
kernel estimators. Section 3 describes the posterior inference unconditionally on the smoothing
parameters, and Section 4 presents a simulation study and an application. The application
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illustrates a use of the semiparametric model and posterior probabilities to confirm the adequacy
of a parametric model to non-specific alternatives. Section 5 concludes with a discussion.
The data and program that were used for the analysis in this paper can be obtained from

http://www.blackwellpublishers.co.uk/rss/

2. Conditional inference

In applications the infinite series in equation (2) is truncated: gx = St 6, for K < n.
Conceptually, Bayesian inference can allow more than n — 1 terms; however, this choice leads
to aliasing, which complicates the computations without improving the analysis. For a
sample of size n the model in equations (1) and (2), using the truncated representation gg, can
be written as

Y =D3+ ®O +¢ (6)

where Y is the vector of n observations, D is an n x p design matrix, ® is the n x K matrix
with (i, k) entry ¢ (x;), © is the vector of Fourier coefficients and € is N(0, o°I). Define
var(®) = 7°W where W is a diagonal matrix with exp(—~c,) for the (k, k) entry. The design is
orthogonal when the x; are fixed at

2i—1

x,=a+(b—a) fori=1,...n,
$0 ®'® = {n/(b—a)}lif K< n.

The prior specification for ® induces a prior distribution for g, the truncated representa-
tion. It is a zero-mean Gaussian process with covariance function

K
cov{g(u), gx(x)}) = 7° /Z_:] exp(—ycx) or(u) Pr(x).

The covariance function is symmetric in its arguments, is non-stationary and integrates to 0.
Figs 1(a) and 1(c) graph the covariance function on the unit square for the geometric and
algebraic smoother respectively, with K =49, 7 = 2.5 and v = 1. Both models result in a
saddle shape with their maxima at (0, 0) and (1, 1). The parameter 7> controls the height of
the saddle, and ~ controls its width. The algebraic smoother has a sharp ridge along the
diagonal whereas the geometric smoother is rounder; thus, the algebraic smoother produces a
rougher estimator.

Conditionally on (3, o, 7 and ~, the posterior distribution of ® is normal with variance
U, = (0 2®'d+ 72w )" and mean v, = ¢ W, ®'(Y — DF). Further, assuming an orthog-
onal design on [a, b] results in mutually independent Fourier coefficients with

(b — a)o’ % exp(—~ycy)

ar(0, 1Y) =, =
Vdr(0k| ) wn,lx (b _ a)az + nr2 eXp(—’YC/c) ’

E@Y) = v = 0 s zl (i — i) 3u(x).

The conditional series estimator for orthogonal designs is

K A
g(x) = E{g(x)| Ya Bs g, T, 7} = 1; M/n,kek ¢k(x)a (7)
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Fig. 1. Covariance function of the nonparametric component and the implied smoothing kernel: (a) geometric
smoother; (b) kernel for the geometric smoother after 50 observations; (c) algebraic smoother; (d) kernel for the
algebraic smoother after 50 observations

n (b —a)r exp(—cy)
Wik = 3 Ve = (b — a)o? + n72 exp(—vcy)’ ®
B =n"' Zl (yi — d}B) (). 9)

This estimator differs from the standard series estimator Zf,il 0, ¢(x) (Hirdle (1990), pages
50-54) by weighting the estimated Fourier coefficients. Rutkowski (1982) showed that the
standard series estimator is consistent if K’ = O(n'™) for some 0 < s < 1. When 7 is small,
relatively few basis functions are used with the standard estimator, thus restricting its form.
In contrast, the Bayes estimator in equation (7) can include as many basis functions as possible,
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up to aliasing, but shrinks the maximum likelihood estimators of the Fourier coefficients
towards 0 (see Hall and Titterington (1987)).

Most nonparametric regression procedures are either explicitly or implicitly kernel or
approximate kernel methods (see Silverman (1985)). The conditional series estimator can also
be expressed as a kernel estimator

gx)=n"" ; (yi = diB) C (x5 X)
with kernel
K
CK,n(u’ X) = /Z wn,k (bk(u) ¢k(x)
=1

which is proportional to the posterior covariance function of g. Cy, is graphed in Figs 1(b)
and 1(d) for the geometric and algebraic smoothers respectively, for n = 50. Compared with
the prior covariance, the seat of the saddle is taller and narrower. The kernel function puts
more weight on observations near the end points, thus ameliorating end effects. Unlike
standard kernels, Cy (1, x) is not stationary, takes negative values and integrates to 0 instead
of to 1. However, {Cg .} is a delta sequence, as are standard kernels.

The following theorem provides a bound for the conditional series estimator’s sampling
variance and bias, the two components of the MISE:

b b b
| [ a0 - gwor ax| = [ vartaeorav+ [ 180w - ecor ax.

Theorem 1 has three interesting features. First, Bayesian estimators need not be consistent
in infinite dimensional parameter spaces (Diaconis and Freedman, 1986a, b). The theorem
shows that the MISE of the posterior mean of g converges to 0 when £, o, 7° and ~ are
known. When they are unknown, their likelihood satisfies the usual regularity conditions, so
their posterior distribution converges to a point mass at their true values at a faster rate than
that for the MISE. Second, the MISE converges to 0 for fixed 7° and ~, unlike kernel
regression, which requires the smoothing parameter to be a function of the sample size.
Third, if the true function is analytical, then the MISE for the geometric smoother can obtain
the rate O{n~" log(n)}, which is faster than the theoretically optimal rate of O(n~*°) for
kernel estimators (see Stone (1982)).

Theorem 1. Consider the estimator g given in equations (7)—(9). Assume the following.

(a) {x;} has an orthogonal design on [a, b]. Without loss of generality, assume that a = 0,
b=1land x;,=Qi—1)2nfori=1,.. . n.

(b) K=n-1.

(c) gis Lipschitz continuous: there is a Cy > 0 such that |g(x) — g(»y)| < Cy|lx — y| for all x
and y in [0, 1].

(d) There are positive C, M and p such that |0,| < C exp(—pc;) for all k > M. For the
algebraic smoother, p > 2.

(e) v > 0 for the geometric smoother, and v > 1 for the algebraic smoother.

Then the integrated variance is bounded by

! 1 for th i h
J var{3(x)} dx < { Oflog(n)/n} or the geometric smoother,

0 O~ 1=1) for the algebraic smoother.
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The bias is uniformly bounded in x by

O{log(n)/n} for the geometric smoother when p > ~,
E(E(x) — g(0)}| < O(njfl’)l)/ for the geomet?ic smoother when p < ,
omn =) for the algebraic smoother when p > -,
O(n~*=D) for the algebraic smoother when p < 7.

The proof of theorem 1 is in Appendix A.

3. Posterior inference

The posterior inference is performed via Markov chain Monte Carlo (MCMC) sampling
(Gelfand and Smith, 1990). The sequence of draws from the full conditional distributions for
8, ©, o* and 7° follow standard, normal-inverse gamma development for linear models with
normally distributed errors and will not be presented here. The only non-standard distri-
bution is for the smoothing parameter . Its random variables are generated by using ‘slice
sampling’ (Damien et al., 1999; Polson, 1996), which is a Markov chain method to decom-
pose a complex density into the product of uniform and exponential densities. Ignoring
constants, the full conditional density of ~ is

1 K
exp {— WKV =55 kzl 0 eXP(’VCk)} Ile < 7] (10)

where wy = w, — 0.5 X4, ¢, and ¢ is given in equation (5). Slice sampling introduces K
uniform random variables V}, such that their joint density with ~ is

K
S o Ve ) akEll[O < Vi < @] exp(—wg) Ile < 7], (11)
;
p =CXpJ — 72 exp(cy) ¢- (12)
T

One can readily verify that the marginal dens1ty of v from equation (11) is the full con-
ditional i 1n equation (10). Let 4, 7 and {9 } be draws on iteration i of the Markov chain,
and let aA ) be the correspondmg value of g, in equation (12) with these values substituted for
the parameters. Generate Uk = u/(az) where u, 1s a standard uniform random deviate. The
conditional distribution of ~ given {v;’} is

SO ) oc exp(—wgy) fore <y <d= min (dy).
| F0\2 _
d fy(’) —|— ln{ 2(@) exp(_ck’}/(l)) ln(uk)}’
Ck k

which has cumulative distribution function

Fy) = exp(—wgc) — exp(—wg7y) forc <7 < d
exp(—wgc) — exp(—w,d)
Inverting this cumulative distribution function, generate

7(”1) = —— In[exp(—wyc) — u{exp(—wgc) — exp(—wid)}]

Wk
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where u is a standard uniform random deviate.
The adequacy of the parametric versus the semiparametric models can be tested by com-
puting Bayes factors or the posterior probability of the models. This paper tests

H:Y, =dpB+e versus Hy Y, =dp+g(x)+e¢ (13)

by computing the marginal density of the data via the method of Gelfand and Dey (1994).
This procedure requires running independent chains for the two models. Let ; be the
unknown parameters for model H;, let f;(Y|S2;) be the density of the data given €2; under H,,
let p; be the prior density of €2; and let /; be an arbitrary density on the support of €2;. The
Gelfand and Dey approximation of the marginal density of the data under H; is

S = { U= B e p@)

where Q;") is the value of ; on the iteration u of the Markov chain, and the last U — B
iterations of U iterations are used.

The computations for the semiparametric model are facilitated by integrating ® from
equation (6) to obtain

Y =Dj+ €*,
e* ~ N(0, %), (14)
Y=l + OV,

An efficient and numerically stable procedure uses the identities
2 2 -1
5l :a‘2I—T—q>\I/l/2 ]_i_T_lpl/z(D/chpl/z w2
ot o? ’

2
det(X) = 0™ det (1+ - \11‘/2q>/q>\11‘/2>.
(o

The remaining parameters are Q; = (5, In(c?)) under H, and ©, = (5, In(c?), In(r?),
In(y — ¢)) under H, where c is given in equation (5). In both cases, the arbitrary density /; in
the Gelfand and Dey approximation was taken to be multivariate normal. Their means and
variance matrices were estimated by using the generated parameter values from the Markov
chain.

4. Simulation study and example

The simulation study generated data sets from Y, = f(x,) 4+ 2z,+¢ for i=1, ..., n where
{€;} 1s a random sample from a standard normal distribution, {x;} is an orthogonal design on
[0, 1Tand z; = 2(x; — 0.5) + 6; where {6;} is a random sample from a normal distribution with
mean 0 and standard deviation 0.5.

Four simulations used different combinations of f and parametric models. Simulations A
and B used a cubic polynomial with f(0) = —1, f(1) = 3 and roots at 0.2 and 0.7. The para-
metric component was linear in x in simulation A and cubic in x in simulation B. Simulation
C generated data from the ‘double-normal’ function

f(x) =5 — 10x + 8 exp{—100(x — 0.3)*} — 8 exp{—100(x — 0.7)*}
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and used a linear parametric model in x. Simulation D generated data from the ‘linexp’
function

f(x) =2 —5x+exp{S5(x—0.6)},

and used a quadratic parametric model in x.

Each of the four simulations consisted of 50 data sets. The simulations were performed
twice: first with 25 observations then with 250 per data set. Table 1 reports the results of the
simulations averaged over the 50 data sets. Only the geometric smoother is reported because
the algebraic smoother gave similar quantitative results. The parametric model H; and
semiparametric model H, in equation (13) were fitted to the data. The coefficients of the

Table 1. Simulation studyf

Results for the following simulations and sample sizes:

A B C D
True model
Cubic Cubic Double normal Linexp
Prior model
Linear Cubic Linear Quadratic

25 250 25 250 25 250 25 250
In{P(Y|H,)} —68.06 —498.98 —62.37 —386.82 —89.38 —702.95 —60.99 —399.10

(0.47) (1.22) (0.55) (1.29) 0.21) (0.62) (0.60) (1.26)
In{P(Y|H,)} —61.68 —396.28 —62.93 —390.51 —72.79 —41091 —61.88 —389.43

(0.54) (1.35) (0.53) (1.31) (0.43) (1.32) (0.55) (1.33)
Selected H,1 0 0 37 49 0 0 32 0
Selected H, 1 50 50 13 1 50 50 18 50
E(A*|Y, H)) 2.614 2.600 1.001 0.992 13.739 13.253 1.143 1.121

(0.094)  (0.025) (0.042)  (0.010) (0.229)  (0.064) (0.050)  (0.011)
E(0’|Y, Hy) 0.739 0.991 0.848 0.987 0.631 0.988 0.763 0.993

(0.044)  (0.011) (0.043)  (0.011) (0.039)  (0.011) (0.041)  (0.011)
HPD coverage H, 0.617 0.159 0.969 0.927 0.638 0.165 0.932 0.443

(0.011)  (0.002) (0.014)  (0.013) (0.002)  (0.002) (0.013)  (0.010)
HPD coverage H, 0.947 0.957 0.973 0.967 0.926 0.973 0.958 0.952

(0.010)  (0.006) (0.009)  (0.009) (0.011)  (0.005) (0.010)  (0.008)
RISE under H, 1.304 1.261 0.425 0.140 3.517 3.494 0.538 0.376

(0.007)  (0.001) (0.026)  (0.008) (0.004)  (0.001) (0.021)  (0.004)
RISE under H, 0.695 0.234 0.496 0.161 0.835 0.244 0.577 0.189

(0.026)  (0.006) (0.028)  (0.008) (0.029)  (0.006) (0.026)  (0.007)
Optimal kernel RISE 0.459 0.183 0.459 0.183 0.675 0.269 0.412 0.164
RISE favours H,§ 0 0 33 38 0 0 10 0
RISE favours H,§ 3 4 25 35 8 37 10 17
R* under H, 0.255 0.380 0.740 0.766 0.531 0.534 0.719 0.757

(0.014)  (0.004) (0.010)  (0.003) (0.005)  (0.002) (0.012)  (0.002)
R? under H, 0.898 0.775 0.817 0.769 0.992 0.967 0.868 0.790

(0.009)  (0.003) (0.011)  (0.003) (0.001)  (0.000) (0.009)  (0.002)
E(FY, H,) 0.789 0.692 0.471 0.268 5.420 6.057 0.346 0.374

(0.041)  (0.019) (0.018)  (0.003) (0.247)  (0.108) (0.007)  (0.009)
E(v|Y, Hy) 0.331 0.397 0.755 0.789 0.347 0.455 0.442 0.658

THPD, highest posterior density; RISE, root integrated squared error. H, is the parametric model and H, is the
semiparametric model. 50 data sets were used in each simulation. The averages over the 50 data sets are reported.
(Simulation standard errors are given in parentheses.)

iThe number of data sets where the posterior probability of the model exceeded 0.5 when the models had equal prior
probabilities.

§The number of data sets where the RISE is less than the optimal asymptotic kernel RISE.
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covariate z are estimated with equivalent accuracy under models H, and H, and are not
reported.

Table 1 first reports the logarithm of the marginal density of Y and the results from
selecting the model with the largest posterior probability when they are a priori equally likely.
The selection procedure unambiguously and correctly selects model H, in simulations A and
C. In simulation D, the linexp function is well approximated by a quadratic function. With
only 25 observations, the procedure incorrectly selects model H, in 64% of the data sets.
With 250 observations, it correctly selects H, in all 50 data sets. In simulation B, the posterior
probabilities correctly select H, in 54% of the data sets with 25 observations and in 98% of
the data sets with 250 observations.

As we would expect, when model H, is misspecified (simulations A, C and D), the posterior
mean of the error variance tends to be too large under H, and accurate under H,. The approx-
imate 95% highest posterior density (HPD) intervals for the mean of Y (see Angers and
Delampady (1992) or Wecker and Ansley (1983)) have the wrong coverage under H; and the
correct coverage under H,. The root integrated squared error (RISE) of the response func-
tion under H, is larger than under H,. The squared correlation R* between the actual and
predicted observations is smaller under H,; than under H,. When the parametric model is
correctly specified in simulation B, these performance measures are equivalent for A, and H,.

The RISE in Table 1 can be compared with the optimal asymptotic MISE for the kernel
estimator (Gasser and Miiller, 1984):

e [y (o) )

if f” is uniformly continuous, and K is the kernel. Following the lead of Hérdle ez al. (1988),
Table 1 reports the optimal asymptotic RISE for the kernel

K(x) = (15/8)(1 — 4x2)2 1[—0.5.0.5](X)~

In simulation C with 250 observations the average RISE under model H, is less than the
optimal kernel RISE, and it is between the optimal kernel RISE and the average RISE under
model H, for the other simulations when H, is false. Even so, the RISE under H, often is
better than the optimal kernel RISE for some of the data sets.

The last section of Table 1 reports the estimated smoothing parameters 7> and . Comparing
simulations A and B is instructive because the parametric component is incorrect in A and
correct in B. 7% tends to be significantly smaller in simulation B than in A so the Fourier
coefficients have greater shrinkage to their prior mean of 0 in simulation B. Also, 7 tends to
be larger in simulation B so high frequency terms have less effect. Together, the parametric
component plays a substantially reduced role in simulation B.

The empirical example uses monthly traffic accidents for the 108 months from January 1st,
1979, to December 31st, 1987, in the state of Michigan. The data are a 0.1% random sample
of all accidents and were obtained from the University of Michigan Transportation Research
Institute. Lenk and Rao (1995) analysed these data and found them to have seasonal effects.
Evans and Graham (1987), among others, postulated that traffic accidents increase with
traffic density. In turn, traffic density tends to be positively correlated with economic activity.
A surrogate for economic activity is non-institutional unemployment rates for Michigan,
obtained from Streff et al. (1988). The correlation between log(number of monthly accidents)
and log(unemployment rate) is —0.563, and a graph of the two indicates a linear relation-
ship. A standard assumption for the number of accidents is that they are Poisson random
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Fig. 2. Posterior probabilities for the semiparametric models with and without unemployment for monthly
automobile accidents

4.0
3.8
3.6
3.4

3.2 1
Semiparametric Model
3.0 T T ; T T T T T

0 12 24 36 48 60 72 84 96 108
Month
(a)

Parametric Model

Log Number of
Accidents

5.2

5.0 -
4.8 - Parametric Mode!

46 -
4.4 T
4.0 T T T . T T T T
0 12 24 36 48 60 72 84 96 108
Month
(b)

Fig. 3. Posterior analysis of seasonally adjusted log(number of automobile accidents) (a) without
log(unemployment) and (b) with log(unemployment): the straight lines are the posterior means of the linear
relationship with months from the parametric model, and the centred curved lines are the posterior means of the
semiparametric relationship with months from the semiparametric model; the bands are 95% HPD intervals for the
semiparametric model
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variables. Because the monthly counts are large, the log-counts have approximately a normal
distribution.

Two different parametric components were fitted to the data. The first had seasonal effects,
coded as 01 variables, and a trend, and the second added log(unemployment). Fig. 2 presents
the posterior probabilities under the semiparametric model H, for the two parametric speci-
fications. When log(unemployment) is not in the model, the posterior probabilities of H, are
nearly 1. However, H, is more probable if log(unemployment) is added. Fig. 3(a) graphs the
posterior means of the response functions after adjusting for seasonal effects, and Fig. 3(b)
graphs them after adjusting for seasonal effects and log(unemployment). Fig. 3 also includes
95% HPD intervals under H,. In Fig. 3(a) the 95% HPD intervals do not always include the
posterior mean under H,, thus indicating that the parametric model is inadequate. In Fig.
3(b) they do include the posterior mean under H,, thus verifying that the nonparametric
component is not needed when log(unemployment) is in the model.



874 P. J. Lenk

Table 2. Monthly traffic accidentst

Results for the following models:
H, without H, without H, with H, with
unemployment — unemployment — unemployment —unemployment
In{P(Y)} —26.952 —20.462 —19.026 —20.972
R 0.278 0.508 0.514 0.515
Error variance 0.046 0.036 0.034 0.034
(0.006) (0.005) (0.005) (0.005)
Constant 3.319 3.330 4.496 4.485
(0.055) (0.108) (0.120) (0.234)
Month 0.0025 0.0022 0.0015 0.0015
(0.0007) (0.0019) (0.0006) (0.0011)
Spring —0.184 —0.185 —0.197 —0.187
(0.058) (0.053) (0.051) (0.050)
Summer —0.208 —0.205 —0.226 —0.227
(0.059) (0.051) (0.051) (0.050)
Autumn —0.067 —0.058 —0.109 —0.110
(0.058) (0.052) (0.051) (0.052)
Unemployment — — —0.464 —0.458
— — (0.076) (0.089)

tH, is the parametric model and H, is the semiparametric model. Posterior means are
reported for the parameters, and posterior standard deviations are given in parentheses.

In Table 2 the parametric model H,; with log(unemployment) has the largest log-density of
the data and equivalent R* and error variances compared with the semiparametric models
H,. The coefficients for the parametric components are nearly equivalent under H, and H,.
There is a small positive trend. The number of accidents is substantially lower in spring and
summer, while the effect of autumn is not significant. Unemployment has a significant negative
coefficient. In conclusion, a parametric model with linear trend, seasonal effects and unemploy-
ment provides an adequate description of the data among the class of models with time
factors and unemployment.

5. Discussion

Further research is needed in several areas. All nonparametric procedures require model
choices— whether the shape of the kernel for kernel regression, the form of the penalty term for
smoothing splines or the geometry of the problem for nearest neighbour methods— that
potentially affect the analysis. Bayesian nonparametric models use more flexible likelihood
functions than do parametric models and introduce more information or structure into the prior
distributions. A natural question is the effect of the prior specification on the posterior analysis.
This paper represents the nonparametric component with a Fourier series and uses a
hierarchical specification of the prior distribution of the Fourier coefficients. The first stage of
the prior describes the rate of decay of the Fourier coefficients, and the second stage represents
prior beliefs about the hyperparameters of the first stage. The first stage works together with
the Fourier representation to specify the smoothness of the nonparametric component.
Other choices of basis may require a different specification of the prior to express smooth-
ness. For example, the number and location of knots in polynomial splines determine the
amount of detail in the estimator, whereas the prior specification for the regression coefficients
is relatively less important, as long as it is not too informative. Conversely, if we use the
Fourier representation, a careless choice of prior distribution for the Fourier coefficients will
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lead to inappropriate inferences. For example, using a spherical distribution for the Fourier
coefficients results in Fourier series that are not absolutely convergent. The prior distribution
of the Fourier coefficients was selected to work in concert with the Fourier representation.
However, the specification of the prior distribution for the hyperparameters tends to be less
critical. The prior distributions for the parametric model, regression coefficients and error
variance are standard distributions in the Bayesian literature, and the posterior analysis is
relatively insensitive to their specification.

Further work is needed in comparing this paper’s model with polynomial splines and local
polynomials. The Fourier model’s support is the piecewise continuous functions, which
contains the support of polynomial splines and local polynomials. Whether this theoretical
advantage has practical implications requires further study.

The cosine basis used in this paper is global: adding another basis element affects the
estimator over its entire support. In contrast, wavelets (Antoniadis et al., 1994) and local
polynomials (Fan and Gijbels, 1996) are localized: adding another wavelet or polynomial to
the estimator will only affect the estimator in a compact region of its support. Future research
is needed to contrast the two approaches.

Appendix A: Proof of theorem 1

The proof of theorem 1 repeatedly uses an integral approximation to series: if f(x) is non-negative, non-
increasing on [u, v] with 0 < u < v being integers, then

S0 < | @ s, (1)
It also relies on the integrals
exp(—7x) -1 2 2
=—1 —) 16
Jaz +n72 exp (—yx) Y nrly n{o” 4 n exp (=1}, (16)
exp(—27vx) -1 5 ) o’
dx = 1 — 17
J P ——r X i n{c* + nr* exp (—yx)} +02 rapee ey g g B (17)

ro xfdx @ 1-b0)/b M{(a+1)/b)T{c—(a+1)/b}
o (m4xb) bT(c)

fora>—-1,b>0,m>0and ¢ > (a+1)/b. (18)

For an orthogonal design on [0, 1], the conditional series estimator given (3, o, 7 and -y is given in

equations (7)~9). To make the dependence on k explicit, define w, (k) = w, , (equation (8)), and ¢, = c(k)

(equation (4)). The MISE of the conditional estimator depends on the sampling distribution of {6}
(equation (9)), which has the following means and variances for orthogonal designs:

E@) =n"" ;"]g(xa )

var(f) = n”’o> 21 G(x) = o I,

i

oVl O =707 32 6u(x) By () = 0

for k # k. Using the orthogonality of the basis functions, the integrated variance term in the MISE can
be written as

1 . K 5 0,2 1 5 K
|| vartgrax= 32wt 2 | s dr= v 0
0 k=1 n Jo k=1
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where f'is defined as
no* 7 exp{—2~ c(k)}
[0? + n72 exp{—y (k)]

) =

For fixed k, each f(k) is O(n™"), but there are K = n — 1 terms in the sum by assumption (b) of theorem
1. Using the integral approximation for series in equation (15) and applying the integral in equation (17)
results in the following upper bound for the geometric smoother when ¢(z) = z:

1 2 2 2 2 2
- . o o~ 4+ nt” exp(—7y) o o
¢ xX)}dx < f(H+— |1 -
L var{glo}dx < /(D + yn { 8 { o? + nt? exp(—yK) + o +nt? exp(—7y) o2+ nt? exp(—yK)
<o { log(n) }

n

For the algebraic smoother, ¢(z) = log(z), use equation (18) to obtain the following upper bound for
v>1:

2\ I-1/v
4 ) Tl/vw <om'’ ™.

n 7 T(Q2)

The large sample behaviour of the bias is somewhat more delicate than that of the variance. The
Fourier expansion of g can be written as

1
J var{g(x)} dx < f(1) + (
0

K K 00
gx) = kz;] WOk Dr(X) + AZ:I (A= w0k o)+ > O di().

k=K+1

Because the basis functions are bounded, sup, ¢ < ¢ (x)| < 22, the bias can be bounded by three terms:

K R 00
IE{g(x)} — g(x)| = /; Wk E(Or) dp(x) — /ZZI O di(x)

K n K 00
<22 Wkl E@) = 0+ 22 Iwi — 116 +2'77 52 16,1 (19)

k=1 k=1 k=K+1

By assumption (d) of theorem 1 the last sum is O{exp(—pn)} for the geometric smoother and O(n~"™")
for the algebraic smoother.

The convergence of the first term to 0 is controlled by the bias of {6,}. The following standard
argument shows that [E(f;) — 6| = O(n™"). Let 4, be the interval [(i — 1)/n, i/n] so that x; = (2i — 1)/2n
is its midpoint, and its length is 1/n. Then we can write

i=

R 1~ n
BO) =, St o) =3 | st e dn
i=1 A;
Applying assumption (c) of theorem 1 produces

B0 =001 < 3 [ 1) 05) — 800 6,09

i=1

< suplorl 3 L 18(%) — ¢(0) dx

<22 > Cy J Ix; — x| dx = 273> Con !,

i=1 4;

where C, is the constant in the Lipschitz continuity condition. Define

_ G T exp{=yc(h)
T2 2+ nr? expl—yc(k)}’

Sk

For the geometric smoother, an upper bound for the first term in equation (19) can be obtained from the
series approximation in equation (15) and the integral in equation (16):
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K

A _ C
223 Wkl E@) — 6l < O(n™") + ﬁ log{

k=1
<o{REnY,

n

o +nt? exp(—)
o? + n7? exp(—yK)

For the algebraic smoother with « > 1, applying equation (18) results in the upper bound
K " C 7,2 00 nTZ —1
223wkl E@) — 0] < f(1 O—J —+x7)  da
kZ::an,H (%) — Okl f()+202 . P +Xx X
Co (TN 1 1
<fO+a"" 22 () rli--)r(-
2y \ o’ gl gl
< om' .

The second sum in equation (19) can be bounded by using the rate of decay on the coefficients in
assumption (d) of theorem 1. For fixed k,

2
o 1

) — 1 = - 0 '

Wik =11 o2 + n1? exp(—ycy) (n)

Let M be the constant in assumption (d). For fixed M,

M 1
2% % e = 1101 = 0 ).

and the first M terms can be ignored in the limit. If M < K, then

K 1 K exp{—p c(x)}
272 =110 < o = 21/2c2J X.
k; |14n,k [10] " + (o . 7§ 1 oxp (= ()]

If p = ~, then

JK exp{—p c(x)} dx < JK exp{—y ¢(x)}

yy1 02+ n7? exp{—y c(x)} yi1 02+ nt2 exp{—yc(x)}

Using the integral in equation (16) for the geometric smoother,

X 212052 2 2 (M1
223 s — 110 < O + 2T 1g [" o expl=y(M + D)
k=1

nry 0% + nt? exp(—yK)

< 0{ log(n) }
n

Using the integral in equation (18) for the algebraic smoother,

K o .
2'2 S I — 1G] < 0™ +2'2¢o? J X

0 0%+ nrix

o\ 1 1
<oo e () e(=0)e()

< o'/ .

Combining the three terms in equation (19), when p > v the bias is Of{log(n)/n} for the geometric
smoother. For the algebraic smoother, the first two terms for the bias are O(n~"1/?), and the third term
is O(n~"~"). Because p = ~, the slower rate is O(n~"'~"/").

Next, consider the case where p < 7. For the geometric smoother,
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K K exp(—px)
2!/ ) — 110, < O™ +22C 2[
/; W, — 111641 (n )+ o vt P 7 oxp (=)

2 00 2 —1
<0(n*‘)+21/zco—[ (J——I—u""/”) du

nt?p )y \ nr?

2\ /Y
<0(,fl>+zv2c(iz) fy’lr(g)r(l—ﬁ)
nr gl v
< O(H—/'/‘r).

Combining the three terms in equation (19) when p < +, the bias for the geometric smoother is O(nfp/”).
For the algebraic smoother,

12 & NI X’
2753 w — 110, < O(n™ 2'=C -
= |Wn,k II kl (n )+ o ,[M-H 0_2 + nsz,»Y
00 Y—p
<o 21/2CJ L
)+ o nT?/o* +x7 o

2 N (p=D/y _ _
< 0(n*‘)+21/zc(”—2) ) r(p—1> r( _u)
nt ¥ gl

< O(Hf(ﬂfl)/ﬂ)

for 1 < p < ~. In equation (19), the first term is O(n~"'~'/?), the second term is O(n~"~"/7) and the third
term is O(n"*~"). When 1 < p < ~, the slowest rate is O(n~*~"/7).
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