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1. Introduction

The standard approach for modeling biochemical networks is to derive ordinary differ-

ential equations (ODEs) using the law of mass action and the concentrations of each

species. Such an approach, however, assumes that the time evolution of a system is

continuous and deterministic. In reality, chemical reactions occur as discrete events as

a result of molecular collisions which are impossible to predict with certainty (Gillespie,

1977). Furthermore, while in many cases a deterministic approach can be implemented

to a satisfactory degree of accuracy, for many important intra-cellular processes, pop-

ulations of molecules can be small and stochastic effects become important (McAdams

and Arkin, 1999).

In order to perform analysis and simulate a stochastic biochemical network model,

it is essential that each parameter regarding the network is obtained (Kitano, 2001).

This gives rise to the problem of whether it is possible to start with observed time

course data and obtain the rates of each reaction that produced the data. This is

known as reverse engineering (see Bower and Bolouri (2000) for a complete disscussion

of the problem).

There are three commonly used types of stochastic Markov process models used

to simulate biochemical networks: 1) discrete models commonly solved by the Gille-

spie algorithm (Gillespie, 1977) or an extension of it (Stundzia and Lumsden, 1996),

2) diffusion or stochastic differential equation (SDE) models in which the variables

are approximated as continuous and a white noise term models stochastic behaviour

(Doraiswamy and Kulkarni, 1987) and 3) hybrid models where some chemical species

are treated as discrete and others are treated with a continuous approximation. The

second method can be regarded as an approximation to the first, where the numbers

of molecules are treated as continuous. It is this second method that we will use as
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the basis of our inference algorithm. However, as we shall see, although the diffusion

approximation is usually inadequate for simulation purposes, it appears to be often

quite satisfactory to be used as the basis of a Bayesian inference algorithm.

In the context of likelihood, estimation of the parameters requires knowledge of the

Markovian transition density for the underlying SDE. However, as analytic solutions of

SDE’s are rarely available, we are not able to obtain the transition densities in closed

form. As observations are available at discrete times and the model is formulated in

continuous time, it is natural to work with a discretized version of the SDE known

as the Euler approximation. Unfortunately the inter-observation times are usually too

large to be used as a time step for the Euler approximation.

In this paper we treat this problem by adopting an idea previously persued by

Pedersen (1995). That is, the observed low-frequency data is augmented with the in-

troduction of m−1 latent data points in between every pair of measurements. Whereas

Pedersen uses a simulated maximum likelihood estimation approach, we use a Markov

chain Monte Carlo (MCMC) algorithm to sample the posterior distribution of the latent

data and the model parameters. We note that this strategy has been used previously

by Eraker (2001) and Kim, Shephard and Chib (1998) in their work with Stochastic

Volatility models in finance.

The structure of this paper is as follows. In Section 2, methods for modelling

stochastic kinetics are described; Section 2.1 outlines the molecular approach to ki-

netics, Section 2.2 describes the formulation using a continuous time Markov process

model, and Section 2.3 gives the diffusion approximation. In Section 3 we describe

inference for non-linear diffusion models. An illustrative application is presented in

Section 4, before conclusions are drawn in Section 5.
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2. Stochastic Kinetics

2.1 Molecular Approach to Kinetics

Consider a bi-molecular reaction of the form, Y1 + Y2 −→ Y3. This reaction will

occur when a molecule of Y1 collides with a molecule of Y2 whilst molecules move

around randomly, driven by Brownian motion. Considering a pair of such molecules in

a small, fixed volume and assuming thermal equilibrium, Gillespie (1992) has shown

that the hazard of molecules colliding is constant. We also assume the law of mass

action such that if the numbers of molecules of each reactant are Y1 and Y2 then the

hazard of the above reaction occurring would be proportional to Y1Y2.

In this paper we will consider a system of reactions involving k species Y1, Y2, . . . , Yk

and r reactions R1, R2, . . . , Rr in thermal equilibrium inside some fixed volume V . The

system will take the form

R1 : u11Y1 + u12Y2 + . . . + u1kYk −→ v11Y1 + v12Y2 + . . . + v1kYk

R2 : u21Y1 + u22Y2 + . . . + u2kYk −→ v21Y1 + v22Y2 + . . . + v2kYk

...
...

...
...

Rr : ur1Y1 + ur2Y2 + . . . + urkYk −→ vr1Y1 + vr2Y2 + . . . + vrkYk

(1)

where, uij is the stoichiometry associated with the jth reactant of the ith reaction

and vij is the stoichiometry associated with the jth product of the ith reaction. Each

reaction, Ri, has a stochastic rate constant, ci, and a rate law or hazard, hi(Y, ci), where

Y = (Y1, Y2, . . . , Yk)
′

is the current state of the system and each hazard is determined

by the order of reaction Ri under an assumption of mass action kinetics. Note that

for transparency, we denote by Yi both the species and the number of molecules it

represents in the system.

We may represent (1) more compactly as UY −→ VY , where U = (uij) and

V = (vij) are r × k dimensional matrices (obtained from the stoichiometry of the

system). Now consider reaction i and species j. When reaction i occurs, the number
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of molecules of Yj will decrease by uij and increase by vij giving an overall change of

aij = vij −uij. The reaction network can then be represented by the net effect reaction

matrix A = V − U, examples of which are given in Section 2.4.

2.2 Continuous Time Markov Process Model

Stochastic models for cellular processes are now reasonably well developed and are

traditionally based on techniques for solving the “chemical master equation”. The main

element of the master equation is the function, P (Y1, Y2, . . . , Yk; t) which gives the prob-

ability that there will be at time t (in a fixed volume, V ) Y1, Y2, . . . , Yk molecules of each

respective species. Once this function is obtained, a fairly complete characterization

of the state of the system at time t is apparent.

The master equation can be derived for any particular reaction network by using

standard probability theory to write P (Y1, Y2, . . . , Yk; t + ∆t) as the sum of the proba-

bilities of the number of ways in which the network can arrive in state (Y1, Y2, . . . , Yk)
′

at time t + ∆t (Gillespie, 1977):

P (Y ; t + ∆t) =
r

∑

i=1

hi(Y −Ai, ci)P (Y −Ai; t)∆t +

{

1 −
r

∑

i=1

hi(Y, ci)∆t

}

P (Y ; t) (2)

where Y is the state of the system at time t and Ai denotes the ith row of the net effect

matrix A. Intuitively, the term hi(Y −Ai, ci)P (Y −Ai; t)∆t is the probability that the

system is one Ri reaction removed from state Y at time t and then undergoes such a

reaction in (t, t + ∆t). The second quantity in (2) is the probability that the system

undergoes no reactions in (t, t + ∆t). We now observe that (2) leads to the master

equation

∂

∂t
P (Y ; t) =

r
∑

i=1

{hi(Y − Ai, ci)P (Y − Ai; t) − hi(Y, ci)P (Y ; t)} . (3)

For further details of the master equation formalism in chemical kinetics, good reviews

have been given by van Kampen (2001) and Doraiswamy and Kulkarni (1987). Al-
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though the master equation is exact, it is only tractable for a handful of cases. The

exactly solvable cases have been summarised by McQuarrie (1967). Therefore, stochas-

tic models are typically examined using discrete event simulation algorithms which we

briefly summarise here.

In a given system with r reactions, we know that the hazard for a type i reaction

is hi(Y, ci), so the hazard for a reaction of some type is

h0(Y, Θ) ≡
r

∑

i=1

hi(Y, ci)

where Θ = (c1, c2, . . . , cr)
′

. Consequently, the time to the next reaction is Exp(h0(Y, Θ)),

and this reaction will be a random type, picked with probabilities proportional to the

hi(Y, ci). Hence, when a reaction occurs, it will be i with probability hi(Y, ci)/h0(Y, Θ).

Samples from the process can therefore be simulated using standard discrete event sim-

ulation techniques. The algorithm was developed in the context of chemical kinetics

by Gillespie (Gillespie, 1977) and is known in the physical sciences as the “Gillespie

algorithm”. This algorithm is rigorous in that it provides an exact sample from the

corresponding master equation and is well suited to the study of systems in which

reactant populations are small, and the Master equation is analytically intractable.

It should be noted that although the Gillespie algorithm is effective for direct sim-

ulation, inference for “exact” stochastic-kinetic models is computationally problematic

for models of realistic size and complexity (Boys et al., 2004). We therefore intro-

duce the diffusion approximation which though often inadequate for simulation, can

be satisfactory for inferential purposes.

2.3 The Diffusion Approximation

2.3.1 The Fokker-Planck Equation Typically, stochastic noise terms are intro-

duced in either an ad-hoc manner, or derived, with approximations, from the underlying
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master equation. Indeed the Fokker-Planck equation can be regarded as a continuous

approximation of the master equation. By assuming that the jumps of the Markov

process governed by (3) are “small” and that the solution, P (Y ; t), varies slowly with

Y , we can expand the first term in (3) by means of a second order Taylor expansion to

give the Fokker-Planck equation (van Kampen, 2001). Formally, for a k dimensional

process Y (t) with components Y1(t), . . . , Yk(t) the nonlinear Fokker-Planck equation is

given by,

∂

∂t
P (Y ; t) = −

k
∑

i=1

∂

∂Yi

{µi(Y )P (Y ; t)} +
1

2

k
∑

i=1

k
∑

j=1

∂2

∂Yi∂Yj

{βij(Y )P (Y ; t)} , (4)

where we define the infinitesimal means for i = 1, . . . , k by

µi(Y ) = lim
∆t→0

1

∆t
E[{Yi(t + ∆t) − Yi(t)}|Y (t) = Y ] (5)

and the infinitesimal second moments for i, j = 1, . . . , k by

βij(Y ) = lim
∆t→0

1

∆t
Cov[{Yi(t + ∆t) − Yi(t)}, {Yj(t + ∆t) − Yj(t)}|Y (t) = Y ] . (6)

The Itô diffusion corresponding to (4) is then obtained as

dY (t) = µ(Y )dt + β
1

2 (Y )dW (t)

where µ(Y ) is the column vector of µi(Y ) (known as drift), β
1

2 (Y ) is any matrix

satisfying β
1

2 (β
1

2 )
′

= [βij(Y )] = β(Y ) (known as the diffusion matrix) and dW (t) =

(dW1(t), . . . , dWk(t))
′

is the increment of (standard, k dimensional) Brownian motion.

If the physics of some system suggests that Y should be (approximately) a Markov

process then we choose small ∆t such that Y cannot change much during this time

(but large enough for the Markov assumption to apply). We then compute (5) and (6)

to obtain the diffusion approximation (which is sometimes referred to as the Langevin

approach).
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2.3.2 Calculating the Diffusion Approximation It is clear that due to the assump-

tion of constant reaction hazard, the number of reactions (of a given type) occuring in

a sufficiently short time interval will be approximately Poisson distributed (indepen-

dently of other reaction types).

Suppose at time t, the state of the system is Y (t) = (Y1(t), . . . , Yk(t))
′

= Y so that

the hazards of R1, R2, . . . , Rr are h1(Y, c1), h2(Y, c2), . . . , hr(Y, cr). Let Ni denote the

number of type i reactions occurring in the interval (t, t + ∆t]. Then for “small” time

∆t, Ni ≈ Poisson(hi(Y, ci)∆t) and the change in the number of molecules of Yj is given

by

Yj(t + ∆t) − Yj(t) = a1jN1 + a2jN2 + . . . + arjNr . (7)

For each increment Yj(t + ∆t) − Yj(t), j = 1, . . . , k given by (7), we calculate the

infinitesimal means and variances through straightforward application of (5) and (6)

to obtain the SDE

dY (t) = µ(Y, Θ) dt + β
1

2 (Y, Θ) dW (t) (8)

with drift and diffusion functions,

µ(Y, Θ) = A
′

h(Y, Θ) , β(Y, Θ) = A
′

diag{h(Y, Θ)}A . (9)

Here, µ and β depend explicitly on Y and the parameter vector Θ = (c1, c2, . . . , cr)
′

.

A is the net effect matrix and h(Y, Θ) is the column vector of hazards hi(Y, ci).

2.4 Example: Prokaryotic Auto-regulatory Gene Network

Transcriptional regulation has been studied extensively in both prokaryotic and

eukaryotic organisms (see, for example McAdams and Arkin (1999), Latchman (2002)

and Ng, Wilkinson, Boys and Kirkwood (2004)). In a simple model of prokaryotic

auto regulation, dimers of a protein coded for by a gene repress its own transcription

into RNA by binding to a regulatory region upstream of the gene. The transcription
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of a gene into mRNA is facilitated by an enzyme, RNA-polymerase. The process

begins with the binding of this enzyme near the beginning of a gene to a site called

a promoter. Following the initial binding, RNA-polymerase travels away from the

promoter along the gene, synthesising mRNA as it moves. Transcription is repressed by

protein dimers, P2 which bind to sites on the DNA known as operators. The repression

and transcription mechanisms can be represented very simply by the following chemical

reactions,
R1 : DNA + P2 −→ DNA ·P2

R2 : DNA ·P2 −→ DNA + P2

R3 : DNA −→ DNA + RNA

(10)

Naturally, (10) is a simplification of the actual repression and transcription mechanisms

and can be thought of as a summary of the overall effect of the processes.

We model the binding of a ribosome to the mRNA, the translation of the mRNA

and the folding of the resulting polypeptide chain into a functional protein, P with the

single reaction

R4 : RNA −→ RNA + P (11)

The reversible dimerisation of this protein is categorised by the forward and backward

reactions

R5 : 2P −→ P2 , R6 : P2 −→ 2P (12)

Finally, the model is completed by mRNA and protein degradation,

R7 : RNA −→ ∅ , R8 : P −→ ∅ (13)

Although (10)-(13) offer a simplistic view of the mechanisms involved in gene auto-

regulation, they do provide sufficient detail to capture the network dynamics. For a

detailed discussion of gene regulation see Ptashne (1992) and Latchman (2002).
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In order to compute the diffusion approximation for the model given by (10)-(13),

we must calculate the net effect reaction matrix, A. We order the species by setting

Y = (RNA, P, P2, DNA ·P2, DNA)
′

and use the stoichiometry of the system to obtain

A
′

=













0 0 1 0 0 0 −1 0
0 0 0 1 −2 2 0 −1
−1 1 0 0 1 −1 0 0
1 −1 0 0 0 0 0 0
−1 1 0 0 0 0 0 0













. (14)

Now assume for reaction i a stochastic rate constant of ci and consider the time evo-

lution of the system as a Markov process with state Y (t) = Y at time t. Reac-

tions 1,3,4,6,7,8 are first order and therefore their hazards can be computed (using

the law of mass action) as c2DNA ·P2, c3DNA, c4RNA, c6P2, c7RNA and c8P respect-

fully. For the second order reactions R1 and R5 we obtain h1(Y, c1) = c1P2DNA and

h5(Y, c5) = 0.5c5P(P − 1).

Before calculation of µ(Y, Θ) and β(Y, Θ) (given by (9)), we note that the net

effect matrix A is not of full rank (as the number of molecules of DNA and DNA ·P2

are deterministically related) and this rank-degeneracy will cause problems for the

inference method considered in Section 3. For a general rank-degenerate system, we

re-order the columns of A so that the first s columns form a matrix of full rank (s),

where s is as large as possible. Now take the first s columns and set this to be the

matrix A, so that A is (in general) a subset of columns from the net effect reaction

matrix. A is now of dimension r × s with rank s.

For the net effect matrix given by (14), adding row 4 of A
′

to row 5 implies

DNA ·P2 + DNA = k (15)

where k is a conservation constant. Now, we remove row 4 from A
′

to obtain A
′

(and

therefore A) of full rank. Applying (15) and substituting k−DNA for DNA ·P2 reduces
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our model to one involving just 4 chemical species, Y = (RNA, P, P2, DNA)
′

for which

the full diffusion approximation is specified by drift, µ(Y, Θ),








c3DNA − c7RNA

c4RNA + 2c6P2 − c5P(P − 1) − c8P

c2(k − DNA) + 0.5c5P(P − 1) − c1P2DNA − c6P2

c2(k − DNA) − c1P2DNA









, (16)

and diffusion matrix β(Y, Θ) which may be factorised as β(Y, Θ) = BB
′

where B
′

is

the 8 × 4 dimensional matrix,
























0 0 −
√

c1P2DNA −
√

c1P2DNA

0 0
√

c2(k − DNA)
√

c2(k − DNA)√
c3DNA 0 0 0

0
√

c4RNA 0 0

0 −2
√

0.5c5P(P − 1)
√

0.5c5P(P − 1) 0
0 2

√
c6P2 −

√
c6P2 0

−
√

c7RNA 0 0 0
0 −

√
c8P 0 0

























. (17)

Note that our parameter vector Θ consists of all stochastic rate constants and is given

by Θ = (c1, c2, . . . , c8)
′

.

3. Inference for non-linear Diffusion Models

3.1 Models

We consider inference for an Itô Diffusion that satisfies a stochastic differential

equation of the form given by (8) and assume that the conditions under which the

SDE can be solved for Y (t) are satisfied (Øksendal, 1995).

Often, Y (t) will consist of both observable and unobservable components. To deal

with this, we define Y (t) = (X(t), Z(t))
′

, where X(t) defines the observable part and

Z(t) the unobservable part of the system. Note that X(t) and Z(t) have dimensions

d1 and d2 respectively and such that Y (t) has dimension d = d1 + d2. We assume

that the process X(t) will be observed at a finite number of times and the objective

is to conduct inference for the (unknown) parameter vector Θ on the basis of these

11



partial and discrete observations on Y (t). In practice it is necessary to work with the

discretized version of (8), given by the Euler approximation,

∆Y (t) = µ(Y (t), Θ)∆t + β
1

2 (Y (t), Θ))∆W (t) (18)

where ∆W (t) is a d dimensional iid N(0, I∆t) random vector.

Now suppose we have measurements X(τi) = xi at evenly spaced times τ0, τ1, . . ., τT

with intervals of length ∆∗ = τi+1 − τi. Then put ∆t = ∆∗/m for some positive integer

m. By choosing m to be sufficiently large, we can ensure that the discretization bias

associated with the Euler approximation is arbitrarily small, but this also introduces

the problem of m − 1 missing values. We deal with these missing values by dividing

the time interval [τ0, τT ] into mT + 1 equidistant points τ0 = t0 < t1 < . . . < tn = τT .

Altogether we have d1T (m− 1) + d2(Tm + 1) missing values which we substitute with

simulations Y (ti). We refer to the collection of simulated data and observations as

the augmented data. Eraker (2001) denotes by Ŷ the d × (n + 1) matrix obtained by

stacking all elements of the augmented data, that is

Ŷ =























x1(t0) X1(t1) · · · x1(tm) X1(tm+1) · · · x1(tn)
x2(t0) X2(t1) · · · x2(tm) X2(tm+1) · · · x2(tn)

...
...

...
...

...
xd1

(t0) Xd1
(t1) · · · xd1

(tm) Xd1
(tm+1) · · · xd1

(tn)
Z1(t0) Z1(t1) · · · Z1(tm) Z1(tm+1) · · · Z1(tn)

...
...

...
...

...
Zd2

(t0) Zd2
(t1) · · · Zd2

(tm) Zd2
(tm+1) · · · Zd2

(tn)























.

We now denote by Y i ≡ (X i, Zi)
′

the ith column of Ŷ. Then the joint posterior density

is given by

π(Ŷ, Θ) ∝ π(Θ)π(Z0)
n

∏

i=1

f(Y i|Y i−1, Θ), (19)

where π(Θ) is the prior density of Θ, π(Z0) is the prior density of Z0 and

f(Y i|Y i−1, Θ) = |β−1
i−1|

1

2 exp

{

−1

2
(∆Y i − µi−1∆t)

′

(∆tβi−1)
−1(∆Y i − µi−1∆t)

}

(20)
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Here, ∆Y i = Y i − Y i−1, µi = µ(Y i, Θ) and βi = β(Y i, Θ). Note that we adopt the

notation where π denotes all proper densities, p denotes π in an unnormalized form and

f denotes the (unnormalized) transtion density obtained from the Euler discretization.

All conditional densities of interest are now proportional to (19).

3.2 MCMC Scheme

We have formulated in (19) the joint posterior for the model parameters as well

as observed and unobserved data but real interest will usually be in the distribution

(Θ, (Ŷ\xobs)|xobs) where xobs = (x0, xm, . . . , xTm) denotes the observed data. As dis-

cussed in Tanner and Wong (1987), a good way to sample this distribution is to alter-

nate between simulating the parameters conditional on the augmented data (including

the missing data), and simulating from the distribution of the missing data given the

observed data and the current state of the model parameters. This sampling proce-

dure (known as data augmentation) generates a Markov chain which has the desired

posterior, (Θ, (Ŷ\xobs)|xobs) as its equilibrium distribution (see Tierney (1994) for an

overview of the use of Markov chains for exploring posterior distributions).

MCMC methods for the analysis of diffusion processes have been explored exten-

sively in the economic and financial literature. For univariate diffusions, Roberts and

Stramer (2001), Elerian, Chib and Shephard (2001) and Durham and Gallant (2002)

employ block updating schemes to simulate the latent data. For general (multivari-

ate) partially observed models, the number of unobservables (missing data and model

parameters) can be particularly large. We therefore implement a Gibbs sampler (sug-

gested by Eraker (2001)) which is a particularly convenient way of sampling from high

dimensional densities. For nonlinear diffusions, direct sampling of the full conditional

distributions (for parameters given all data, and latent data given parameters) is not

possible. At each Gibbs step, we therefore use a Metropolis-Hastings (M-H) step. This
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method is often known in the literature as “Metropolis-within-Gibbs”.

The first step in the Gibbs sampler involves simulating the latent data points (con-

ditional on Θ). We follow Eraker’s method and simulate each column, Y i, using a M-H

step with proposal density q(·|Y i−1, Y i+1, Θ) = N
(

1
2
(Y i−1 + Y i+1) , 1

2
∆tβ(Y i−1, Θ)

)

.

When i is a multiple of m, we need only simulate the d2 elements corresponding to Zi.

This is accomplished using a M-H step with proposal density q(·|Y i−1, Y i+1, Θ) further

conditioned on the observation xi.

The final step in the Gibbs sampler is to simulate Θ conditional on its current

state and the augmented data. As Θ consists of stochastic rate constants which must

be strictly positive, we set λj = log(cj), j = 1, . . . , r and assume independent proper

Uniform priors for each λj. A Metropolis random walk update is used to sample the

λj in one block. The following algorithm summarises our sampling strategy:

1. Initialize all unknowns. Use linear interpolation to initialise X i and set Zi = 0.0

for all i. Set g=1.

2. For all i = 0, 1, . . . , n at iteration g draw Y i from its full conditional. When i is

not a multiple of m we use a M-H step with proposal density q(·|Y i−1, Y i+1, Θ) .

If i is a multiple of m, only simulate the d2 elements, Zi, using a M-H step with

proposal density q(·|Y i−1, Y i+1, Θ) further conditioned on xi.

3. Draw Θ(g) using a M-H step with a Gaussian random walk update (on log(Θ)).

For full details of the MCMC methods employed here, see Eraker (2001) and Golightly

and Wilkinson (2004).
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4. Simulation Study: Prokaryotic Auto-regulatory

Gene Network

To illustrate the methodology presented in Section 3.2, the MCMC Scheme is applied

to the auto regulatory gene network model characterised by the SDE with drift as in

(16), and diffusion function as in (17).

Often it may be difficult to measure the activation state of the DNA directly. In

this case the observable part of the system is X(t) = (RNA(t), P(t), P2(t))
′

and the

unobservable part of the reduced system is Z(t) = DNA(t). Formulating the partially

observed model in this way implies that we only know the conservation constant, k

(as in (15)) and not the split into DNA and DNA ·P2. In practice it is reasonable to

observe k as it corresponds to the number of copies of the gene on the genome and in

Section 4.2 we assume k is known but we do not observe DNA ·P2(t) or DNA(t) at any

time t.

4.1 Results: Fully Observed Model

We first implement the MCMC scheme given in Section 3.2 for the fully observed

case; that is, we assume that we observe Y (t) = (RNA(t), P(t), P2(t), DNA(t))
′

at all

times t. We consider 5 equispaced data sets, D1, D2, . . . , D5 each independently simu-

lated on [0, 50) using the Gillespie algorithm to ensure exact simulation. D1, D2 and

D3 consist of 50 observations (∆∗ = 1), D4 contains 100 observations (∆∗ = 0.5) and

D5 consists of 500 observations(∆∗ = 0.1). For each data set, the MCMC sampler is

run for 1,000,000 iterations, thinned by a factor of 100 and with the first 100,000 being

discarded as burn-in. True values for (c1, c2, . . . , c8) are chosen to be 0.1, 0.7, 0.35, 0.2,

0.1, 0.9, 0.3 and 0.1 and k (the number of copies of the gene), is set to be 10.

[Table 1 about here.]

[Table 2 about here.]
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Tables 1-2 summarise the posterior distribution for the fully observed model; Table

1 gives posterior means and standard deviations for Θ estimated from a single MCMC

run using the 3 replicate length-50 datasets (D1, D2, D3) and m = 5. Table 2 is

obtained from a single MCMC run with m = 2, 5, 8, 10 and data sets D1, D4 and D5.

Replicate MCMC runs, given in Golightly and Wilkinson (2004), suggest that there is

little run-to-run variability.

Table 2 demonstrates the clear advantage of including latent variables in the esti-

mation framework. As m increases there is a notable decrease in discretization error.

For example c7, the stochastic rate constant for reaction R7 (mRNA degradation) has

a true value of 0.3 while it is estimated to be 0.269 using D1 with m = 2. However, as

m increases to 10 (and ∆t reduces from 0.5 to 0.1) we see an increase in accuracy with

an estimate of 0.316. Similarly, when using 100 and 500 observations, errors are more

pronounced for m = 2 and an increase in m gives more precise estimates of parameters

though the difference in results for m = 8 and m = 10 is small.

If we fix m, Table 2 suggests that errors are larger for the smaller data set consisting

of 50 observations. For example c1 has a true value of 0.1 while it is estimated to be

0.066 when using 50 observations and fixing m to be 5. However, as sample size

increases to 100 observations we see an estimate of 0.096. Note that when using 50

observations, estimates of c1, c2, c5 and c6 appear to be quite imprecise. In contrast,

the estimates of c1/c2 and c5/c6 (corresponding to the propensities of reactions R1 and

R5 repectively), are quite good.

4.2 Results: Partially Observed Model

We now apply the MCMC algorithm to the partially observed auto regulatory

model. To allow comparison, we use the data sets D1, D4 and D5, (as discussed in

Section 4.1) but we assume we only have observations on X(t) = (RNA(t), P(t), P2(t))
′
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such that Z(t) = DNA(t) is unobservable at all times t ≥ 0. Although we do not

observe the activation state, we assume that the number of copies of the gene is known

to be k = 10.

Due to computational demands, discretization is set using m = 5 and the sampler

is run for 10,000,000 iterations, thinned by a factor of 1000 and with the first 4,000,000

being discarded as burn-in. The resulting parameter estimates for each data set are

summarised in Table 3.

[Table 3 about here.]

As in Section 4.1, inspection of Table 3 reveals that errors are larger for all param-

eters but c7 when comparing the smaller data set consisting of 50 observations to the

2 remaining larger ones. Although for just 50 observations we learn very little about

the true values of c1, c2, c5 and c6, as with the fully observed model, estimates of c1/c2

and c5/c6 are far more precise.

5. Discussion

In this paper we have provided a fully Bayesian approach to the estimation of stochas-

tic rate constants governing biochemical reactions. When populations of molecules

are small, stochastic effects become important and the deterministic approach is no

longer satisfactory. By adopting a diffusion approximation, a white noise term models

stochastic behaviour. We are then essentially concerned with the analysis of non-linear,

discretely observed stochastic differential equations. We have shown that although the

SDE approximation is often not adequate for simulation, it can sometimes be satisfac-

tory when used in the context of Bayesian inference. This suggests that whilst both

discreteness and stochasticity are important for biochemical network simulation, little

is lost by ignoring the discreteness in an inferential model.
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Applications of the methodology included a simulation study using synthetic data

generated from a prokaryotic auto regulatory gene network model. Naturally, the inte-

gration of actual measurements into the modeling framework remains of great interest

and although real time course data is not yet readily available, it is the subject of

on-going research. As post-genomic biology becomes more predictive, the requirement

for accurate estimation of kinetic rates is becoming ever more pressing. Quantitative

real-time monitoring of gene expression at the level of a single cell is a subject of a

great experimental interest, and some small successful pilot studies have demonstrated

the possibility of doing this using different coloured flourescent reporter genes. It is an-

ticipated that in the next couple of years, large amounts of data of this type will come

on-stream, which will require analysis using the techniques such as those described in

this paper.

Further possible extensions to the modeling framework include more efficient MCMC

algorithms based on block updating of latent variables (Durham and Gallant, 2002).

Such algorithms are straightforward to implement but their appeal is limited as the

real problem is the high dependence between the parameters and the missing data. Al-

though a solution to this problem is known in the case of univariate diffusions (Roberts

and Stramer, 2001), it does not appear to be possible to extend this technique to the

class of multivariate diffusions considered here. It may nevertheless be possible to con-

struct a more efficient sampler for problems of this type based on a joint update of the

parameters and the latent process. The incorporation of variation due to experimental

error is also of interest and is in principle very straightforward to include in the model.

However, this leads to very poor mixing of the MCMC algorithm and satisfactory han-

dling of both partial observation and experimental error is likely to require an MCMC

scheme with better mixing properties than the one considered here.
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Table 1

Posterior means and Standard Deviations for parameters estimated on 3 replicate
length-50 datasets (D1, D2 and D3) from the fully observed model with m = 5. The

estimation results are based on the final 900,000 iterations of a single run of
1,000,000 MCMC iterations.

c1 c2 c1/c2 c3 c4 c5 c6 c5/c6 c7 c8

True Values

0.1 0.7 0.143 0.35 0.2 0.1 0.9 0.111 0.3 0.1

D1

Mean 0.064 0.474 0.141 0.360 0.252 0.043 0.475 0.094 0.288 0.143

S.D. 0.022 0.148 0.035 0.125 0.079 0.013 0.154 0.025 0.099 0.044

D2

Mean 0.058 0.363 0.157 0.372 0.240 0.048 0.477 0.105 0.285 0.121

S.D. 0.020 0.120 0.090 0.131 0.071 0.014 0.154 0.047 0.095 0.039

D3

Mean 0.052 0.346 0.153 0.416 0.213 0.044 0.488 0.092 0.321 0.115

S.D. 0.020 0.120 0.046 0.151 0.061 0.011 0.145 0.021 0.108 0.036
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Table 2

Posterior means and Standard Deviations for parameters estimated using data sets
D1, D4 and D5 from the fully observed model. The estimation results are based on the

final 900,000 iterations of a single run of 1,000,000 MCMC iterations.

m c1 c2 c1/c2 c3 c4 c5 c6 c5/c6 c7 c8

True Values

0.1 0.7 0.143 0.35 0.2 0.1 0.9 0.111 0.3 0.1

50 Observations

2 Mean 0.049 0.370 0.137 0.333 0.235 0.030 0.308 0.100 0.269 0.135

S.D. 0.016 0.110 0.039 0.116 0.079 0.008 0.084 0.031 0.092 0.044

5 Mean 0.066 0.475 0.140 0.361 0.253 0.042 0.468 0.093 0.286 0.143

S.D. 0.022 0.150 0.032 0.124 0.079 0.012 0.150 0.018 0.095 0.044

8 Mean 0.074 0.524 0.142 0.373 0.258 0.053 0.630 0.087 0.295 0.143

S.D. 0.027 0.175 0.027 0.122 0.075 0.017 0.226 0.014 0.093 0.041

10 Mean 0.076 0.531 0.143 0.403 0.265 0.060 0.741 0.084 0.316 0.146

S.D. 0.025 0.165 0.027 0.141 0.076 0.019 0.273 0.013 0.105 0.041

100 Observations

2 Mean 0.103 0.661 0.157 0.285 0.240 0.051 0.571 0.090 0.224 0.105

S.D. 0.024 0.142 0.028 0.082 0.061 0.010 0.126 0.015 0.055 0.029

5 Mean 0.096 0.663 0.147 0.286 0.246 0.057 0.593 0.097 0.228 0.110

S.D. 0.018 0.119 0.027 0.054 0.055 0.013 0.151 0.013 0.048 0.025

8 Mean 0.101 0.687 0.148 0.295 0.250 0.076 0.856 0.091 0.235 0.110

S.D. 0.020 0.132 0.021 0.066 0.051 0.018 0.233 0.010 0.046 0.024

10 Mean 0.102 0.691 0.149 0.296 0.257 0.096 0.967 0.086 0.236 0.110

S.D. 0.020 0.134 0.021 0.066 0.052 0.023 0.235 0.009 0.047 0.023

500 Observations

2 Mean 0.092 0.597 0.155 0.327 0.214 0.101 0.925 0.110 0.222 0.091

S.D. 0.010 0.062 0.022 0.041 0.026 0.009 0.082 0.011 0.031 0.016

5 Mean 0.098 0.622 0.158 0.331 0.213 0.113 1.028 0.110 0.226 0.092

S.D. 0.010 0.063 0.021 0.039 0.025 0.010 0.093 0.010 0.029 0.015

8 Mean 0.113 0.824 0.138 0.330 0.216 0.144 1.230 0.114 0.225 0.094

S.D. 0.013 0.077 0.016 0.040 0.025 0.013 0.126 0.009 0.030 0.016

10 Mean 0.110 0.773 0.143 0.330 0.214 0.137 1.180 0.112 0.226 0.093

S.D. 0.012 0.073 0.017 0.038 0.024 0.012 0.114 0.009 0.032 0.016
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Table 3

Posterior means and Standard Deviations for parameters estimated using data sets D1, D4

and D5 from the partially observed model. Discretization is set at m = 5 and the estimation

results are based on the final 6,000,000 iterations of a single run of 10,000,000 MCMC

iterations.

c1 c2 c1/c2 c3 c4 c5 c6 c5/c6 c7 c8

True Values

0.1 0.7 0.143 0.35 0.2 0.1 0.9 0.111 0.3 0.1

50 Observations

Mean 0.049 0.442 0.116 0.310 0.012 0.062 0.603 0.103 0.265 0.011

S.D. 0.015 0.131 0.033 0.080 0.023 0.018 0.183 0.013 0.062 0.014

100 Observations

Mean 0.077 0.941 0.090 0.255 0.270 0.097 0.761 0.120 0.280 0.125

S.D. 0.020 0.253 0.022 0.050 0.122 0.027 0.214 0.012 0.048 0.061

500 Observations

Mean 0.105 0.574 0.180 0.370 0.187 0.112 1.021 0.110 0.218 0.107

S.D. 0.016 0.076 0.049 0.062 0.073 0.009 0.084 0.008 0.024 0.041
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