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A b s t r a c t .  The power law process has been used to model reliability growth, 
software reliability and the failure times of repairable systems. This article re- 
views and further develops Bayesian inference for such a process. The Bayesian 
approach provides a unified methodology for dealing with both time and failure 
truncated data, As well as looking at the posterior densities of the parameters 
of the power law process, inference for the expected number of failures and the 
probability of no failures in some given time interval is discussed. Aspects of 
the prediction problem are examined. The results are illustrated with two data 
examples. 

Key words and phrases: Power law process, Bayesian inference, prediction, 
repairable system. 

1. Introduction 

The power law process can be described as a nonhomogeneous Poisson process 
{N(t), t >_ 0} with intensity function u(t) =/3t~-1/~ ~, c~ > 0, ~q > 0, and mean 
value function re(t) = E(N(t))  = (t/a) ~. This has been widely used in the litera- 
ture to model reliability growth (Crow (1982)), software reliability (Kyparisis and 
Singpurwalla (1985)), and more generally repairable systems (Ascher and Feingold 
(1984), Engelhardt and Bain (1986), Rigdon and Basu (1989)). We follow Ascher 
(1981) in using the term power law process being convinced by his arguments that 
this is superior to the more frequently used Weibull process terminology. 

An alternate way of describing the power law process is to consider the se- 
quence of successive failure times T1, T2, . . . ,  where Ti is the time of the i-th fail- 
ure. Then the time of the first failure T1 has a Weibull distribution with scale and 
shape parameters c~ and/3, respectively, while the failure time Ti, conditional on 
T1 = Q , . . . ,  Ti-1 = t i-1,  has a t runca ted  Weibull dis tr ibut ion with left t runca t ion  
point ti-1. 

Inference on the power law process has generally been considered in the liter- 
a ture  from a frequency viewpoint.  Two sampling schemes are usually considered; 
failure t runcat ion  and t ime t runcat ion.  For these sampling schemes the large lit- 
era ture  on point est imation,  confidence intervals, and tests of hypotheses for the 
parameters  c~, /3, and the intensity function at the end of the test ing period is 

623 



624 SHAUL K. BAR-LEV ET AL. 

reviewed by Rigdon and Basu (1989). Prediction for times of future failures is dis- 
cussed by Lee, L. and Lee, K. (1978) and Engelhardt and Bain (1978), while Miller 
(1984) examines the prediction of the future intensity parameter. Calabria et al. 
(1988) discuss modified maximum likelihood estimators of the expected number 
of failures in a given time interval and of the failure intensity and compare their 
mean squared errors with those of the maximum likelihood estimators. 

From a Bayesian perspective, Guida et al. (1989) discuss point and inter- 
val estimation for a and ~3 assuming failure truncation data and using several 
different choices of priors, both informative and noninformative. Kyparisis and 
Singpurwalla (1985) analyse both interval and failure truncation data by employ- 
ing informative priors on a and ~ and derive prediction distributions of future 
failure times and the number of failures in some future time interval. Their pre- 
dictive and posterior distributions generally require complicated numerical com- 
putations. Calabria et al. (1990) also derive predictive distributions for future 
failure times using both informative and noninformative priors and note the nu- 
merical equivalence with classical methods when noninformative priors are used. 
The above three references usually assume that the prior distributions on a and ,/3 
are independent. Alternatively Calabria et al. (1990) consider independent priors 
on a and the mean value function re(t), with t fixed. 

The above references are concerned with data from a single system for which 
inference is required either on the parameters of the model for that system or on 
prediction for the future of that particular system. Crow (1974) and Bain (1978) 
discuss multisample estimation procedures where data are available on several 
independent systems which are assumed to be equivalent in the sense that the 
same power law process applies to them all. The related question of prediction 
from one system on which data are available to another equivalent system for which 
no data are available (in this context see Remark in Section 4) has apparently not 
been considered in the literature. This problem can arise, for example, if data are 
available on, say, an aircraft generator and another generator of the same model 
is to begin working under similar conditions as the first. 

In this paper we further develop Bayesian inference for the power law pro- 
cess. We use vague noninformative priors which are motivated in Section 2. In 
many situations only weak prior information is available. Frequently, strong prior 
knowledge is only readily available to the manufacturer of the system, while the 
data analysis is of interest to the buyer who does not wish to use the prior of 
the manufacturer since in a sense he is testing how good the manufacturer is. In 
addition, analysis based on vague priors can be used as a base line to examine the 
effect of informative priors. We further show that these priors generally provide 
mathematically tractable results. 

In Section 2 we indicate how a Bayesian analysis handles both failure and time 
truncation data in the same manner, in contrast to the frequency approach. Previ- 
ous Bayesian results have not considered time truncation. Section 3 presents pos- 
terior densities for the parameters a and/3 and compares these results with those 
obtainable from the frequency approach. These posterior densities are similar to 
those previously obtained by Guida et al. (1989) and Kyparisis and Singpurwalla 
(1985), but include both failure and time truncation data. Section 4 discusses 
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Table 1. Failure times in hours for aircraft generator. 

i = Failure number t i  = Failure time 

1 55 

2 166 

3 205 

4 341 

5 488 

6 567 

7 731 

8 1308 

9 2050 

10 2453 

11 3115 

12 4017 

13 4596 

Table 2. Software failure times in seconds. 

i ---- Failure number t i  = Failure time i t i  i t i  i t i  

1 115 11 1955 21 6162 31 36800 

2 115 12 2026 22 6552 32 37363 

3 198 13 2632 23 8415 33 40133 

4 376 14 3821 24 9752 34 40785 

5 570 15 3861 25 14260 35 46378 

6 706 16 4649 26 15094 36 58074 

7 1783 17 4871 27 18494 37 64798 

8 1798 18 4943 28 18500 38 67344 

9 1813 19 5558 29 23061 

10 1905 20 6147 30 26229 

p r e d i c t i o n  of  t h e  n u m b e r  of  fa i lu res  in some  spec i f i ed  t i m e  in t e rva l  a n d  of  fu- 

t u r e  fa i lu re  t imes .  B o t h  p r e d i c t i o n s  for t h e  p a r t i c u l a r  s y s t e m  u n d e r  o b s e r v a t i o n  

a n d  for a d i f fe ren t  equ iva l en t  s y s t e m  (see R e m a r k  in Se c t i on  4) a r e  c o n s i d e r e d .  

A l t h o u g h  s o m e  of  ou r  r e su l t s  r equ i r e  n u m e r i c a l  i n t e g r a t i o n ,  m o s t  a re  g iven  in a 

m a t h e m a t i c a l l y  exp l i c i t  fo rm in t e r m s  of  ser ies  wh ich  a re  eas ie r  to  c o m p u t e .  Pos-  

t e r i o r  d i s t r i b u t i o n s  for s y s t e m  re l i ab i l i ty ,  for t h e  e x p e c t e d  n u m b e r  of  fa i lu res  in a 

spec i f i ed  t i m e  in t e rva l  a n d  for t h e  i n t e n s i t y  f u n c t i o n  a r e  d e r i v e d  in Se c t i on  5. 

T h r o u g h o u t  th i s  p a p e r  we i l l u s t r a t e  some  of  t h e  r e su l t s  w i t h  two  n u m e r i c a l  
e x a m p l e s .  T h e  f irst  e x a m p l e  involves  t h e  fa i lu re  t i m e s  of  a " c o m p l e x  t y p e  of  

a i r c r a f t  g e n e r a t o r " .  T h e s e  d a t a ,  due  to  D u a n e  (1964),  a n d  d i s c u s s e d  by  R i g d o n  

a n d  B a s u  (1989),  a re  p r e s e n t e d  in T a b l e  1. T h e y  will  be  used  to  i l l u s t r a t e  r e su l t s  

r e l a t i n g  to  a new s y s t e m  equ iva l en t  to  t h e  one  f rom which  t h e  d a t a  a r e  t a k e n ,  as  

d i s cus sed  above .  
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The second example involves software failures data, taken from Musa (1979) 
(also presented as Table 1 in Kyparisis and Singpurwalta (t985)), and is given in 
our Table 2. For software failures, the particular "system" being analyzed is of 
interest, and for this system interest is focused on system reliability and future 
prediction. 

2. The likelihood function and the choice of priors for (a,/3) 

We discuss two different sampling protocols which provide data on the power 
law process: (i) failure truncation and (ii) time truncation. For (i), the number 
of failures, say n, is fixed before testing begins and ordered system failure times 
T1,T2,. . .  ,T,, with observed values tl < t2 < . '-  < t,~ are obtained. For (ii), let 
t be a predetermined time and suppose n > 1 failures are observed during (0, t] 
with failure times tl < t2 < ...  < try. 

The resulting likelihoods for both protocols can be written in a unified form 
(see for example, Crow (1982)) as 

(2.1) L(a 3 I t )  : (9 /~)  ~ t{/~ e t = ( t l , . .  tn), 

where y = t,~ for failure truncation and y = t for time truncation. (The case 
of n = 0 for time truncation gives a different likelihood but is of no inferential 
interest and thus will not be considered.) 

From the Bayesian perspective both failure and time truncation data can be 
handled in the same manner through (2.1) and result in the same type of posterior 
inference on c~ and 3 in contrast to the classical frequency approach (Crow (1982)) 
in which each case must be treated separately and different types of results are 
obtained. 

We consider two types of noninformative vague priors for a and 3. We moti- 
vate our choice of such priors by just considering the time T1 to the first failure. 
This has a Weibull distribution with scale parameter a and shape parameter 3. 
The use of the distribution of T1 allows us to use the location-scale model and is 
justified by the fact that our prior knowledge is not affected by whether we observe 
T1 or TI , . . . ,T~ .  Suggestions for informative priors for the Weibull distribution 
can be found in Singpurwalla (1988). Indeed, the distribution of log T1 can be writ- 
ten in the form of a location-scale distribution with location parameter # = log a 
and scale parameter a = 3 -1. Following Jeffrey's rule for noninformative priors in 
the location-scale situation (see Box and Tiao (1973), pp. 56-57), we consider two 
cases: (a) tt and a are known to be independent a priori, and (b) the prior inde- 
pendence assumption is ignored. The noninformative prior of (#, a) will be then 
proportional to  o "-1, for (a), and to cr -2, for (b). Transforming (#, or) --, (a,/3) 
results then in f(c~,/3) o ( (a3)  -1 and f ( a ,  3) o( a -1, as the noninformative priors 
of (a,/3) for cases (a) and (b), respectively. 

For notational convenience we consider the prior 

(2.2) f (a ,  3) .x  (c~/3"r) -1, a > O, /3 > O, 
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with 3' = 0 and 3' = 1 corresponding to the cases of dependence and independence, 
respectively. The case 7 = 1 is most commonly used (Box and Tiao (1973)). The 
prior (a/3) -1 has been used by Guida et al. (1989). 

A referee has pointed out that the priors in (2.2) can alternatively be easily 
obtained (following Box and Tiao (1973)) by searching for a transformation for 
each parameter such that in terms of this transformation the likelihood function is 
data translated and then taking the transformed parameter to be locally uniform. 
We feel that our above argument based on the location-scale properties of the 
transformed Weibull distribution has some interest and helps clarify the role of 
the prior independence assumption. 

3. Inference on (a,/3) 

From (2.1) and (2.2) the posterior density of (a,/3) can be seen to be 

(3.1) f ( ~ , 3  I t) =- c-y(t)/3 '~-'Y ti e - (U/~) ' /a  '~+1, c~ > O, /3 > O, 

where 

(3.2) cT(_t ) = in y/t i  F ( n ) F ( n - 3 ,  , 7 = 0,1. 

Note that for 3' = 0 and n = 1 this posterior density does not exist (i.e., is 
improper). Heuristically, one may argue that with only vague prior information 
the case n = 1 should not allow inference on both parameters. 

Marginal inference on/3 is often of particular interest especially for reliability 
growth models. When /3 = 1, the power law process becomes a homogeneous 
Poisson process. For/3 > l, the frequency of failures increases with time and thus 
the system is degrading in a reliability sense, while for/3 < 1 the failure frequency 
decreases with time and thus the system is improving. If the posterior density of/3 
is heavily concentrated over (0, 1), this would imply that there is an improvement 
over time. The marginal posterior density of/3 can be obtained by integrating out 
a in (3.1). This gives that a posteriori 

(3.3) 

where 

(3.4) /3=n/~-~lny / t i . i=l  

The 7 = 1 case has been given by Guida et al. (1989). Prom (3.3), one or two-sided 
Bayesian probability intervals can be readily obtained. Note that for V = 1, these 
will be numerically the same as confidence intervals obtained for failure truncation 
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Fig. 1. The posterior density of ~ for the data  of Table 2. 

data, but will differ slightly from confidence intervals obtained for time truncation 
data (e.g., Rigdon and Basu (1989)). Figure 1 displays the posterior density of 
for the data of Table 2. It can be seen that this posterior is concentrated around 
0.4 and indicates a growth in software reliability. Kyparisis and Singpurwalla 
(1985) analysed these data using several distinctly different priors and obtained 
fairly similar results. For these data the details of the prior information does not 
tend to influence the posterior significantly. 

The posterior density of c~ is obtained from (3.1) to be 

(3.5) : 

i= l  

Bayesian probability intervals can be computed by either numerically integrat- 
ing (3.5) or as follows. Following Lee, L. and Lee, K. (1978), we define & = yn -1/~ 

and W -- (&/a) ~, where ~ is given by (3.4). After some algebraic manipulation it 
can be shown that 

(3.6) jr0 ~ 
P ( W  < w It_) = G((nw)X/2n)g'y(x) dx, 

where 

(3.7) g.~(x) = (1/2)'~-~Xn-~-le-X/2/r(n-- ~), j~o x G(x) = v '~ -%-v /F(n)dv .  

For ~ = 1 and y = tn, (3.6) coincides with the expression obtained by Lee, L. and 
Lee, K. (1978) for the distribution of W, a pivotal quantity for ~. Accordingly, 
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for the failure truncation case, with 7 = 1, the Bayesian probability intervals are 
numerically equivalent to confidence intervals for a in the classical approach. Of 
course, their interpretation differs. 

4. Prediction distributions 

In this section we derive the prediction distributions of the number of fu- 
ture failures in some time interval and of future failure times. Two cases are of 
particular interest: 

(I) A system has been observed until time y and we want to predict the 
number of future failures in some interval (Sl, s2], y _< sl, and the future failure 
times for the particular system we are observing. 

(II) Data on one system have been obtained. Another equivalent system (in 
the sense that it has exactly the same intensity function) is to begin operating and 
we want to predict failure times and the number of failures of the new system over 
the interval (0, s], for some s of common interest. 

Remark. As noted above, various aspects of prediction for the system under 
observation have been discussed in the literature. We feel that inference for an 
"equivalent" system is often of interest. For example, we may have conducted 
an experiment on a number of printers of the same type working under the same 
operating conditions and be interested in another printer (of the same type) just 
beginning to work under similar conditions. Here, we only consider the problem 
with data available on one system. The more general problem is currently under 
research. One of the referees has commented that this problem should not really 
be considered a prediction problem but just a "procedure by which properties 
conferred from given sample data are attached to any item which is assumed to be 
equivalent". Furthermore the referee points out, quite correctly, that the posterior 
obtained for the system under observation is actually an informative prior for the 
equivalent system. Consequently, in the absence of data on the equivalent system, 
inference on the number of failures occurring on a time interval for the equivalent 
system (and other quantities of interest) can be obtained by standard probability 
arguments and should not be considered prediction in the same way as in case (I). 
We basically agree with this distinction but still find the word prediction to be 
useful at least in an informal sense for case (iI). We note that Geisser (1986) states 
that "Statistical prediction is the process by which values for unknown observables 
(potential observations yet to be made or past ones which are no longer available) 
are inferred based on current observations and other information at hand." Our 
case (II) falls under this definition. 

In the following we frequently make use of the fact that for c > 0, 

/0 ( (4.1) /3lc3d/3= F(l+l) /(- lnc)  I+1, / + 1 > 0 ,  0 < c <  1 
oc, otherwise, 

which facilitates calculations. 



630 SHAUL K. BAR-LEV ET AL. 

4.1 Prediction of the number of failures in some time interval 
Let N(sl ;  s2) denote the number of failures occurring in the interval (sl, s2], 

then 

(4.2) P[N(sl;s2) = r I a ,  fl] 

= [ ( ~ = / ~ ) ~  - ( s , / ~ ) 4 ]  ~ e x p { - [ ( ~ / . ) ~  - ( ~ , / ~ ) ' ] } / r ! ,  

r = 0 , 1 , . . . .  

Consequently, the predictive distribution of N (s 1; s2) is 

/J/j (4.3) P[N(s l ;  s2) = r l t] =- P[N(s l ;  s2) = r t a, f l]f(a,  fl l t-)dadfl 

F(n + r) c fo fln-~-i 
- r(r + i~ ~(t) ti 

\ / = 1  / 

• - - S l  + 

n > f f ,  r = 0 , 1 , . . . .  

In general this would need to be computed numerically. However, for the 
important special case of (I) where sl = y, (4.3) with the help of (4.1) and the 
binomial formula, reduces to 

(4.4) P[N(y;s2)  = r t t] 

r k=o in f l  s2/ti  + ln(s2/y) k 
i=1 

n - ~  

n > y ,  r = 0 , 1 , . . . .  

Using a different prior, Kyparisis and Singpurwalla (1985) obtain a compli- 
cated alternative to (4.4) which requires special numerical techniques to compute. 
Figure 2 displays the predictive probability function of N(y; s2) given in (4.4) for 
the data of Table 2 with y = 67344, s2 = 80000 and 3' --- 1. These particular val- 
ues were chosen to allow comparison with Fig. 3.3 of Kyparisis and Singpurwalla 
(1985). The results are quite similar, both having a modal value 2 and very small 
probability of more than 8 failures in this interval. 

For case (II), sl = 0, s2 = s, (4.3) becomes 

(4 .s )  P[N(0; s) = ~ I t] 

. .  r (n  + r) f ~  
= c~ It) F~7 + 1) Jo 2 " - ' -  (1 + (y/s)~)-(~+~)d/~, 

n>3~,  r = 0 , 1  . . . . .  
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P(N(67,:M4; 80,000) = r) 

0.25 

0.20 

0.15 

0.10 

Fig. 2. 

631 

0.05 

0.00 

0 4 5 

l T ? * r 
! 

6 7 8 9 

The  predict ive probabi l i ty  function of N(67,  344; 80,000) for the  da t a  of Table 2. 

The integral in (4.5) can be computed  numerically. Consider, however, the 
two special cases: s > y and s = y. Using (4.1) and the Taylor expansion for 
(1 + a) -m, lal <: 1, (4.5) for s > y can be wri t ten as an infinite sum, 

(4.6) P[N(0;  s) = r I t] 

I n ] = n + r - 1  ~ J ,~ 
r j=O Lln i_[I1 s/ti + ln(s/y)) 

s>y, n > 7 ,  r = 0 , 1 , . . . .  

Whereas  for s = y, (4.5) reduces to 

P[N(O;y)=r[tj= (n+r-1)(1/2)'~+r, n>~/, r = 0 , 1 ,  (4.7) 
n - 1  . . . .  

i.e., N(0;  y) is a negative binomial variate counting the number  of failures occurring 
prior to observing the n- th  success. (The result in (4.7) could have been obta ined 
also by using combinatorial  methods).  Note that  the distr ibution of N(0;  y) de- 
pends neither on the t~'s, the actual observed failure times, nor on 7, but  does 
depend on the number  of failures n in the interval (0, y]. The distr ibution in (4.7) 
has two modes at r = n - 1 and r = n. Figure 3 displays (4.7) for the da ta  of 
Table 1 (n = 13) for r = 1(1)24. Other  values of r each have probabil i ty less than 
0.0092. Consequently we would not expect  more than 24 failures for a generator 
equivalent to ours operat ing over 4596 hours. 
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0.09 

0.08 

0.07 

0.06 

0.05 

0.04 

0.03 

0.02 

0.01 

0.00 

Fig. 3, 

,I 
' i , i i , 

0 1 2 3 4 
. . . . . . . . . . . . .  L ' L ' I r 

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

The predict ive probabi l i ty  funct ion (4.7) of N(0; 4596) for the  d a t a  of Table 1. 

4.2 Prediction of future failure times 
We first consider case (I). For this case we restrict ourselves to the failure 

truncation case for which y = tn (the time truncation case leads to cumbersome 
calculations). We are interested, given current available data  t l , . . . ,  tn, to predict 
the future (n + r ) - t h  failure time Tn+r. Often Tn+l, the next failure is of particular 
interest. 

Define Z~ = Tn+~ - Tn. Conditional on the observation Tn = tn, predicting 
T~+r is equivalent to predicting Z~. Calabria et al. (1990) obtain the required 
predictive distribution using the noninformative prior (2.2) with 3, = 1. Earlier, 
Kyparisis and Singpurwalla (1985) discussed this problem using a different prior. 
For the prior (2.2) it is readily shown that  

(4.8) ( n + r - 1 ) ~  
P ( Z r  < z I t )  = 7. 

- -  7" 
k=0 

1 ( r - 1 ) ( - 1 ) k  
n + k  k 

i=1 

in h ( t n + z )  + l n ( t n + z ~ k  ' 
i=1 ti \ t~ J 

n > %  z_>O, r = l , 2 , . . . .  

For the special case r = 1, (4.8) reduces to 

(4.9) P(Z1 <_ z l t) = l - 
In h t~/ t i  

i = 1  

lnl i (tn + z) 
i = 1  t i  

z_>0, n > ~ / ,  
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Fig. 4. The predictive distr ibutions of Z1 and Z2 for the da ta  of Table 1. 

i.e., Z1 I _t equals in distribution to the minimum of n - 7 i.i.d.r.v.'s with common 

cumulative distribution I n 
In 1-I t~/ti 

1 - i=l 
(tn + z) 

in 
i=lll ti 

This result is useful for simulation purposes. 
The predictive distribution of T~+r can be computed through the relation 

(4.10) P(Tn+~ <_ ~" I t_) = P ( Z r  <_ 7- - tn It_), 

where the right-hand side of (4.10) can be computed from (4.8). 
Kyparisis and Singpurwalla (1985) obtained results which require substantial 

numerical integration in contrast to the explicit solution given here. Figure 4 dis- 
plays the predictive distribution of Zr given by (4.8) for r = 1, 2 and the data 
of Table 2. It can be seen that for Z1 the results are quite similar to Fig. 3.4 
of Kyparisis and Singpurwalla (1985). The next failure will almost certainly oc- 
cur within the next 14000 seconds and within the next 2000 seconds there is a 
probability of about 1/3 of a failure occurring. 

We now consider case (II) for both failure and time truncation. Let Wr denote 
the r-th failure time of an equivalent new system which is to begin operating. Using 
the fact that (W~/a) ~ has a gamma distribution with scale parameter 1 and shape 
parameter r, the prediction distribution of Wr given _t is 

(4.n) P(Wr < w It) 

xr-le--x I 
( r - 1 ) ! d x  f (a ,  flit)dad/3 
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- - r ( n  + r) 
(r - 1)! 

~ c  n L~ X r-1 ] 

n > y ,  w > 0 ,  r =  1,2 . . . . .  

Two special cases might be of interest: w = y and r = 1. For w = y, we get, using 
Gradshteyn and Ryzhik ((1965), 3.194(8), p. 285) and (4.1), that  

(4.12) 
n--1 

k = O  

n > %  r = 1 , 2 , . . . ,  

a result tha t  could alternatively be obtained by a combinatorial method. 
For r = 1 and w > y, we get by using (4.1) and the Taylor expansion of 

(1 + a) -n ,  lal < 1, tha t  

(4.13) 

n - -  7 

P ( W l  <_ w I t )  = 1 - 

j=0 in i=1 f l  w/ti -r ln(w/y)J J 

w > y ,  n > %  

5. Posterior distributions for some parameter functions 

We derive here posterior distributions of functions of (a, ~) which are of partic- 
ular interest. The parameter  functions considered are: system reliability, expected 
number of failures on a given interval and the intensity function. 

We define system reliability to be the probability of no failures over a specified 
time interval. For a given repairable system for which da ta  have been collected, a 
high reliability over some future t ime of interest will effect decisions on replacement 
and maintenance policy and on the purchase of spares. Clearly, similar consider- 
ations arise when dealing with a new equivalent system. In terms of reliability 
growth (hardware or software) a high reliability for some period of interest may 
imply tha t  it is worthwhile ending the development process. Similar considerations 
make the expected number of failures in a given interval of interest. 

As Crow (1975) points out once a development project ends and no further 
modifications are made in the system, then failures are often assumed to occur with 
a constant  failure rate which takes on the current value of the intensity function. 
Thus inference on the current intensity function value is of interest. 
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5.1 The posterior distribution for system reliability 
As in Section 4 we consider two cases of particular concern: (I) Data  on system 

are available over (0, y), where y = t,~ or t depending on whether  failure or time 
t runcat ion was used and we want to make inference for the future; i.e., for the 
interval (y, s I and (II) Data  are available on a system as in (I), on which we want 
to base inference on an equivalent system which is just  beginning to operate; i.e., 
over the t ime interval (0, s]. For cases (I) and (II) the system reliability, as defined 
above, is obtained from (4.2) to be, respectively, 

(5.1)  

and 

(5.2) 

w = ,~(y,.~) = P I N ( y ;  ~) = 01 = e x p { - [ ( ~ / ~ )  t3 - ( v / ~ ) z ] } ,  ~ > y,  

w = w(s) = P[N(s )  = O] = exp{-(s/a)~3}.  

For case (I), the posterior density of w can then be shown to be 

/Sn-~-l (i=[llt~/s) ~w[(s/Y)~'-l] ~ 

~0 :)C' (5.3) f (w I t )  = c ~ ( t ) ( - l n w ) n - l w - 1  [1 --(y/8)/3] n 

For case (II), it is 

(5.4) / ( w i t )  = c ~ ( t ) ( - l n w ) ~ - ~ w - l f 0 ~  

0 < w < l ,  s > y ,  

/3n- ~- l (i=nll ti/ s)  Z w(Y/s)~d/3, 

0 < w < l ,  

which, for s = y ,  reduces to 

(5.5) f(w It)  = ( - l n w ) ' ~ - l / r ( n ) ,  0 < w < 1. 

n > 3 ' .  

n > 7 ,  

For given data,  a numerical integration of (5.4), even with double precision, is 
cumbersome and requires an extensive amount  of computing time for convergence. 
This computat ion,  however, is significantly facilitated by writing (5.4), for y < s,  
in terms of an infinite sum as follows. Write 

w (y/s)'~ = exp{(y/s) ~a in w} = E ( y / s )  i~(ln w)i/i!. 
i = 0  

Substi tut ing this in (5.4), interchanging the order of integration and infinite 
summat ion  (the legitimacy of which can easily be verified), and using (4.1), yields 

(5.6) f ( w l t : ) :  ( - l n w ) ' ~ - l w - l ~  - ] ( lnw) i  t j / y )  

r ( n )  ~=0 In t j /s  + ln(y/s) i 

0 < w < l ,  s > y ,  n> 7. 
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Fig. 5. The posterior density of w = P(N(s) = 0) for s = y = 4596 (equation (5.5)), 
s ---- 1.25y, 1.5y (equation (5.6)) and ~ -- 1 for the data of Table 1. 

F igu re  5 d i sp lays  the  pos t e r io r  dens i t ies  (5.5) (wi th  s = y) and  (5.6) w i th  
s = 1.25y, s = 1.5y and  ~ / =  1 for the  d a t a  of  Tab l e  1 (in which  y = 4596).  I t  can  
be  seen t h a t  t h e y  are  all h ighly  c o n c e n t r a t e d  a r o u n d  a s y s t e m  re l iabi l i ty  of  zero 
ind ica t ing  t h a t  it is e x t r e m e l y  unl ikely  t h a t  an equiva len t  s y s t e m  would  su rv ive  as 

long as 4596 or m o r e  hours  w i t h o u t  a failure.  

5.2 Posterior distributions of the expected number of failures in future time in- 
terval 

T h e  e x p e c t e d  n u m b e r  of  fai lures  over  t he  in tervals  (y, s] and  (0, s) a re  # = 
#(y, s) = (s/a) ~ - (y/a) ~ and  # = #(s) = (s/a) ~, respect ively .  C o m p a r i n g  those  

w i th  (5.1) and  (5.2), respect ively ,  we find t h a t  w(y, s) = e -~(y 's )  for case (I) and  
w(s) = e -u(s)  for case (II) .  We the re fo re  i m m e d i a t e l y  o b t a i n  f r o m  (5 .3) - (5 .6)  t h a t ,  

for case (I), t he  pos t e r io r  dens i ty  of  # is 

(5.7) 

n 

~0 \~=1 / d~,  f(. I t) = c-~(~)P n-1 ~ ~ (~--~ 

p>O, n > ' 7 .  

For  case (II) ,  it is 

(5.s) = c (t-)Pn-1 fo t /s It) 

# > 0 ,  n ~ ' 7 ,  
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which for s = y, reduces to 

(5.9) it I t ~ gamma(n, 1). 

(5.10) f ( i t  I t )  = ( i tn -1 /F(n) )  i! 
i=0 

As in (5.6), (5.8) for s > y can be written in terms of an infinite sum as 

i n--"f 
In i~l t j / y  

In 5=l t j / s  + ln(y/s) ~ 

it > O, s > y, n > ' 7 .  

5.3 The posterior distribution for the intensity function 
In the context of reliability growth models, as discussed by Crow (1975), if 

after time y no further improvements are to be made on the system, then it can 
be assumed that the system will have a constant failure rate taking the value of 
the intensity function at y; i.e., u = u(y) = (/3/(~)(y/~) ~-1. Consequently, if we 
let y be shifted to the origin, the system reliability for a future interval (0, to] will 
be 

(5.11) R(to) = e - u ( y ) t ° .  

By using (3.1) and (4.1), we find the posterior density of u given t to be 

/o { H  } (5.12) f (u  ] t) = c . ~ ( t ) y n b  ' n - 1  /~-3,-lexp --~ln y/ti  -- uy//3 d/3, 
i----1 

u > 0 ,  n - ' y  > 0. 

Employing Gradshteyn and Ryzhik ((1965), 3.471(9), p. 340), (5.12) can be 
written as 

(5.13) f (u  It) = 2c-~(t)yT~u ~-1-~/2 

K_~ (( 2 u y l n I I Y / t i  
i=1 

u > 0 ,  n - ~ ,  > 0. 

where K_.~(z) is the modified Bessel function of the second kind of order - 'y  with 
argument z, which is available in terms of infinite series. 

Employing Gradshteyn and Ryzhik ((1965), 8.486(16), p. 970, 8.446, p. 961 
and 8.447(3), p. 961), we find that Ko(Z) and K_l(Z) in (5.13) can be expressed 
as 

(5.14) K_l(z )  = Kl(Z) 

(z/2)2k+l 
: Z - I E  k!(k Jr- 1)! 

k=0 
[ln z/2 - (1/2)¢(k + 1) - (1/2)~p(k + 2)], 
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and 

(5.15) 
(z/2)2k Ko(z) = (k!)2 [V(k + 1) - l n z / 2 ] ,  

k=0 

k j - 1  where ¢(k + 1) = - C  + ~ j = l  , and C is Euler's constant. (5.14) and (5.15) 
are quite tractable for plotting (5.13) for specific data and obtaining Bayesian 
probability intervals. A posterior distribution for R(to) can be readily obtained 
from (5.11). 

Now let 5 = L,(y)/i,(y), where i(y)  = (~/d)(y/&)~-l ,  & = ynl/[3 and ~) is 
given by (3.4), then by using (5.12) we obtain 

L 
~ C  

(5.16) P(5 x It) = G(2n2x/z)g.~(z)dz, x >_ O, 

where g~ and G are defined in (3.7). 
For failure truncation; i.e., ~ = 1 and y = t~, (5.16) coincides with the 

expression obtained by Lee, L. and Lee, K. (1978) for the distribution of 5, a pivotal 
quantity for u. Thus, for the failure truncation case, the Bayesian probability 
intervals are the same numerically as the confidence intervals for ~, obtained by 
Lee, L. and Lee, K. (1978). 

6. Conclusions 

We have shown how the Bayesian approach provides a unified methodology for 
inference problems on the power law process. In particular, failure and time trun- 
cation data are handled similarly in contrast to the standard frequency method- 
ology which deals with each quite separately and violates the likelihood principle. 

In addition to the usual inferential questions which have previously been dis- 
cussed in the literature, we have developed posterior distributions for the expected 
number of failures and the probability of no failures over a specified time interval. 
Also we have shown how data on one system can be used to make predictions on 
a second equivalent system. The case where data are available independently on a 
number of equivalent systems and inference is desired on a new system equivalent 
to the others is open for further research. In principle, the Bayesian approach 
can be applied to this problem but the resulting multiple integrations cannot be 
carried out explicitly and require either numerical integration or some accurate 
approximation methods. 
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