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Bayesian Inference in Nonparanormal Graphical

Models

Jami J. Mulgrave∗ and Subhashis Ghosal†

Abstract. Gaussian graphical models have been used to study intrinsic depen-
dence among several variables, but the Gaussianity assumption may be restrictive
in many applications. A nonparanormal graphical model is a semiparametric gen-
eralization for continuous variables where it is assumed that the variables follow
a Gaussian graphical model only after some unknown smooth monotone transfor-
mations on each of them. We consider a Bayesian approach in the nonparanormal
graphical model by putting priors on the unknown transformations through a
random series based on B-splines where the coefficients are ordered to induce
monotonicity. A truncated normal prior leads to partial conjugacy in the model
and is useful for posterior simulation using Gibbs sampling. On the underlying
precision matrix of the transformed variables, we consider a spike-and-slab prior
and use an efficient posterior Gibbs sampling scheme. We use the Bayesian Infor-
mation Criterion to choose the hyperparameters for the spike-and-slab prior. We
present a posterior consistency result on the underlying transformation and the
precision matrix. We study the numerical performance of the proposed method
through an extensive simulation study and finally apply the proposed method on
a real data set.

Keywords: Bayesian inference, nonparanormal, Gaussian graphical models,
sparsity, continuous shrinkage prior.

MSC 2010 subject classifications: 62F15, 62G05, 62-09.

1 Introduction

Graphical models describe intrinsic relationships among a collection of variables. Each
variable in the collection is represented by a node or a vertex. Two nodes in the graph
are connected by an edge if and only if the corresponding variables are not conditionally
independent given the remaining variables. Conditional independence impacts the pre-
cision matrix, that is, the inverse covariance matrix, by setting the (i, j)th off-diagonal
entry to zero if the random variables associated with the ith and jth nodes are condition-
ally independent given others. Conditional independence makes the partial correlation
coefficient between the random variables associated with the ith and jth entries equal
to zero as well. If the random variables in the collection can be assumed to be jointly
normally distributed, then the conditional independence between the ith and the jth
variables is exactly equivalent to having the (i, j)th entry of the precision matrix equal
to zero. Such models are known as Gaussian Graphical Models (GGMs). Learning the
conditional dependence structure in a GGM is therefore equivalent to estimating the
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corresponding precision matrix under the assumed sparsity condition. Modeling intrin-
sic dependence between random variables through GGMs is commonly used in biology,
finance, and the social sciences.

Estimation of a sparse precision matrix needs some form of regularization. In the non-
Bayesian literature, the estimation is typically carried out by minimizing the penalized
log-likelihood of the data with the ℓ1-penalty on the elements of the precision matrix.
This method is known as the graphical lasso (Friedman et al., 2008). Many algorithms
have been proposed to solve this problem (Meinshausen and Buhlmann, 2006; Yuan
and Lin, 2007; Friedman et al., 2008; Banerjee et al., 2008; d’Aspremont et al., 2008;
Rothman et al., 2008; Lu, 2009; Scheinberg et al., 2010; Witten et al., 2011; Mazumder
and Hastie, 2012).

Bayesian methods for GGMs involve using priors on the precision matrix and priors
on the graph as well. A popular prior on a precision matrix is given by the family of
G-Wishart priors (Giudici, 1999; Letac and Massam, 2007; Wang and Li, 2012). The
G-Wishart prior is conjugate to multivariate normal random variables and yields an
explicit expression for the posterior mean. If the underlying graph is decomposable, the
normalizing constant in a G-Wishart distribution has a simple closed form expression. In
the absence of decomposability, the expression is more complex (Uhler et al., 2018), but
may be computed by simulations. Simulations from a G-Wishart distribution is possible
using the R package BDgraph (Mohammadi and Wit, 2017, 2019), which uses an explicit
expression for the normalizing constant for a decomposable graph and uses the birth-
death Markov chain Monte Carlo (MCMC) algorithm (Mohammadi and Wit, 2015) if
the graph is not decomposable. This allows computation of the marginal likelihood, and
hence the posterior probability, of any given graph. However, as the number of possible
graphs is huge, computing posterior probabilities of all graphs is an impossible task for
even a modest number of nodes. The problem is worsened by the fact that a very low
fraction of graphs are decomposable. Thus when learning the graphical structure from
the data, alternative mechanisms of putting priors on the entries of the precision matrix
that allow sparsity are typically employed. A prior that models a sparse precision matrix
is ideally a mixture of a point mass at zero and a continuous component (Wong et al.,
2003; Carter et al., 2011; Talluri et al., 2014; Banerjee and Ghosal, 2015). However, since
the normalizing constants in these mixture priors are intractable due to the positive
definiteness constraint on the precision matrix, absolutely continuous priors have been
proposed. The Bayesian graphical lasso (Wang, 2012) has been developed as a Bayesian
counterpart to the graphical lasso. However, its use of a double exponential prior, which
does not have enough mass at zero, does not give a true Bayesian model for sparsity.
Continuous shrinkage priors, such as the horseshoe (Carvalho et al., 2010), generalized
double Pareto (Armagan et al., 2013), Dirichlet-Laplace (Bhattacharya et al., 2015), and
others have been proposed as better models of sparsity since these priors have infinite
spikes at zero and heavy tails.

Only a few results on the frequentist behavior of Bayesian methods for precision
matrix estimation exist in the literature. Banerjee and Ghosal (2014) studied posterior
convergence rates for a G-Wishart prior inducing a banding structure, but the true
precision matrix need not have a banded structure. Banerjee and Ghosal (2015) provided
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results on posterior contraction rates for the precision matrix under point mass spike-
and-slab priors.

Although GGMs are useful, the distributional assumption may fail to hold on some
occasions. A nonparametric extension of the normal distribution is the nonparanormal
distribution in which the random variables X = (X1, . . . , Xd) are replaced by some
transformed random variables f(X) := (f1(X1), . . . , fd(Xd)) and it is assumed that
f(X) has a d-variate normal distribution Nd(µ,Σ) (Liu et al., 2009). In some situa-
tions, the logarithmic transform may be appropriate, but in general, the transformations
f1, . . . , fd are hard to specify. It is, therefore, more sensible to let f1, . . . , fd be unspeci-
fied, and use a nonparametric technique for their estimation. Liu et al. (2009) designed
the nonparanormal graphical model, a two-step estimation process in which the func-
tions fj were estimated first using a truncated empirical distribution function, and then
the inverse covariance matrix Ω = Σ−1 was estimated using the graphical lasso applied
to the transformed data. Although the approach in Liu et al. (2009) works well in many
settings, their estimator for the transformation functions is based on the empirical dis-
tribution function, which leads to an unsmooth estimator. While the focus of this paper
is on the nonparanormal graphical model, an alternative to the nonparanormal graphi-
cal model is the copula Gaussian graphical model (Pitt et al., 2006; Dobra and Lenkoski,
2011; Liu et al., 2012; Mohammadi and Wit, 2017) which avoids estimation of the trans-
formation functions by using rank-based methods to transform the observed variables.

Bayesian approaches can naturally blend the desired smoothness in the estimate
by considering a prior on a function space that consists of smooth functions. Gaus-
sian process priors are the most commonly used priors on functions (Rasmussen and
Williams, 2006; Choudhuri et al., 2007; van der Vaart and van Zanten, 2007; Lenk and
Choi, 2017). Priors on function spaces have also been developed using a finite random
series of certain basis functions like trigonometric polynomials, B-splines, or wavelets
(Rivoirard and Rousseau, 2012; de Jonge and van Zanten, 2012; Arbel et al., 2013;
Shen and Ghosal, 2015). We consider a Bayesian approach using a finite random se-
ries of B-splines prior on the underlying transformations. We choose the B-splines basis
over other possible choices because B-splines can easily accommodate restrictions on
functions, such as monotonicity and linear constraints, without compromising good ap-
proximation properties (Shen and Ghosal, 2015). In our context, as the transformation
functions f1, . . . , fd are increasing, imposing the monotonicity restriction through the
prior is essential. This can be easily installed through a finite random series of B-splines
by imposing the order restriction on the coefficients. By equipping the vector of the
coefficients with a multivariate normal prior truncated to the cone of ordered coordi-
nates, the order restriction can be imposed maintaining the conjugacy inherited from
the original multivariate normal distribution. A simple Gibbs sampler is constructed in
which first, a truncated normal prior on the transformation functions results in a trun-
cated normal posterior distribution that is sampled using a Hamiltonian Monte Carlo
technique (Pakman and Paninski, 2014). Second, a Student t-spike-and-slab prior on
the precision matrix of the transformed variables results in sampling the corresponding
posterior distribution of the precision matrix and the edge matrix, which determines
the absence or presence of an edge in the graphical model. The underlying graphical
structure can then be constructed from the obtained edge matrix.
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The paper is organized as follows. In the next section, we state model assumptions
of the Gaussian graphical model and the nonparanormal graphical model. In addition,
we specify the prior distributions for the underlying parameters. In Section 3, we ob-
tain the posterior distributions, describe the Gibbs sampling algorithm and the tuning
procedure. In Section 4, we provide a posterior consistency result for the priors under
consideration. In Section 5, we present a simulation study. In Section 6, we apply the
method to a real data set and finally, we conclude with a discussion section.

2 Model and Priors

Let X = (X1, . . . , Xp) denote a random vector that is distributed as p-variate multi-
variate normal, Np(µ,Σ). The undirected graph G = (V,E) that corresponds to this
distribution consists of a vertex set V , which has p elements for each component of X,
and an edge set E which consists of ordered pairs (d, k) where (d, k) ∈ E if there is an
edge between Xd and Xk. The edge between (d, k) is excluded from E if and only if Xd

is independent of Xk given all other variables. For multivariate normal distributions,
the conditional independence holds if and only if Σ−1

d,k = Ωd,k = 0; here for a matrix A,
Ad,k denotes its (d, k)th element.

Definition 1. A random vector X = (X1, . . . , Xp) has a nonparanormal distribu-
tion if there exist smooth monotone functions {fd : d = 1, . . . , p} such that Y =
f(X) ∼ Np(µ,Σ), where f(X) = (f1(X1), . . . , fp(Xp)). In this case we shall write
X ∼ NPN(µ,Σ,f).

By assuming that the transformed variables f(X) are distributed as normal, the
conditional independence information in the nonparanormal model is completely con-
tained in the parameter Ω, as in a parametric normal model. Since the transformation
functions are one-to-one, the inherent dependency structure given by the graph for the
observed variables is retained by the transformed variables. We note that any continu-
ous random variable can be transformed into a normal variable by a strictly increasing
transformation. However, testing for high-dimensional multivariate normality is not
feasible, and hence testing for the nonparanormality assumption is not possible in high
dimension, but clearly, the condition is a lot more general than multivariate normality.
Instead of testing for nonparanormality, one may assess the efficacy of the assumption
by looking at the effect of the transformations. If the transformation functions are lin-
ear, then assuming multivariate normality should be adequate. If the transformation
functions are non-linear, then modeling through the nonparanormal distribution may
be useful.

We put prior distributions on the unknown transformation functions through a ran-
dom series based on B-splines. The coefficients are ordered to induce monotonicity, and
the smoothness is controlled by the degree of the B-splines and the number of basis
functions used in the expansion. Cubic splines, which are B-splines of degree 4, are used
in this paper. The resulting posterior means of the coefficients give rise to a monotone
smooth Bayes estimate of the underlying transformations.
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Thus the smooth monotone functions that we use to estimate the true transformation
functions are assumed to be multivariate normal,

f(X) =

J
∑

j=1

θjBj(X) ∼ Np(µ,Ω
−1), (2.1)

where f is a p-vector of functions, X is an n×p matrix, and θj is a p-vector; here Bj(·)
are the B-spline basis functions, θj are the associated coefficients in the expansion of the
function, and J is the number of B-spline basis functions used in the expansion. These
transformed variables f(X) are subsequently used to estimate the sparse precision
matrix and hence in structure learning.

In the next part, we discuss the prior on the coefficients in more detail.

• Prior on the B-spline coefficients

First, we temporarily disregard the monotonicity issue and put a normal prior
on the coefficients of the B-splines, θ ∼ NJ(ζ, σ

2I), where σ2 is some positive
constant, ζ is some vector of constants, and I is the identity matrix. A normal
prior is convenient as it leads to conjugacy. However, apart from monotonicity of
the transformations, we also need to address identifiability since unknown µ and
Σ allow flexibility in the location and the scale of the transformation so that the
distribution of f(X) can be multivariate normal for many different choices of f .
The easiest way to address identifiability is to standardize the transformations by
setting µ = 0 and the diagonal entries of Σ to 1. However, then it will be more
difficult to put a prior on sparse Ω complying with the restriction on the diagonal
entries of Σ because of the constraint Σ = Ω−1. Hence it is easier to keep µ and Ω

free and impose restrictions on the locations and the scales of the transformation
functions fd, d = 1, . . . , p. There are different ways to impose constraints on the
locations and scales of fd. One can impose some location and scale restrictions
on the corresponding B-spline coefficients, for instance, by making the mean θ̄d =
J−1

∑J
j=1 θdj = 0 and the variance θ̄d = J−1

∑J
j=1(θdj − θ̄d)

2 = 1. Then the prior
distribution for θd, d = 1, . . . , p, will have to be conditioned on these restrictions.
The non-linearity of the variance restriction makes the prior less tractable. In order
to obtain a conjugate normal prior, we instead consider the following two linear
constraints on the coefficients through function values of the transformations:

0 = fd(1/2) =

J
∑

j=1

θdjBj(1/2), (2.2)

1 = fd(3/4)− fd(1/4) =
J
∑

j=1

θdj [Bj(3/4)−Bj(1/4)]. (2.3)

It may be noted that, as only a few B-spline functions are non-zero at any given
point, the restrictions (2.2) and (2.3) involve only a few θjs. More specifically, as
the degree of B-splines used in this paper is 4, the first equation involves only 4
coefficients and the second only 8, no matter how large J is.
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The linear constraints can be written in matrix form as

Aθ = c, (2.4)

where

A =

[

B1(1/2) B2(1/2) · · · BJ(1/2)
B1(3/4)−B1(1/4) B2(3/4)−B2(1/4) · · · BJ(3/4)−BJ(1/4)

]

(2.5)
and c = (0, 1)′.

Using conditional normal distribution theory, the resulting prior on the coefficients
θ is

θ|{Aθ = c} ∼ NJ(ξ,Γ),

where the prior mean and variance are

ξ = ζ +A′(AA′)−1(c−Aζ), (2.6)

Γ = σ2[I −A′(AA′)−1A]. (2.7)

However, the prior dispersion matrix Γ is singular due to the two linear constraints,
resulting in a lack of Lebesgue density for the prior distribution on R

J . Thus, we
work with a dimension reduced coefficient vector by removing two coefficients to
ensure that we have a Lebesgue density on R

J−2 for the remaining components.
Suppose we remove the last two coefficients. Then, the reduced vector of basis
coefficients is θ̄d = [θd,1, θd,2, . . . , θd,J−2]. Then we can solve for θd,J−1 and θd,J
using Aθ = c to obtain,

[

θd,J−1

θd,J

]

=

[

ad,1 ad,2 · · · ad,J−2

bd,1 bd,2 · · · bd,J−2

]

× θ̄d +

[

ad,0
bd,0

]

, (2.8)

where ad,0, . . . , ad,J−2, bd,0, . . . , bd,J−2 are the corresponding constants. In matrix
form, we have

[

θd,J−1

θd,J

]

= Wdθ̄d + qd, (2.9)

where

Wd =

[

ad,1 ad,2 · · · ad,J−2

bd,1 bd,2 · · · bd,J−2

]

and qd =

[

ad,0
bd,0

]

.

Then the resulting prior for the coefficients for each predictor is,

θ̄|{Aθ = c} ∼ NJ−2(ξ̄, Γ̄), (2.10)

where the reduction is denoted with a bar.

Finally, we impose the monotonicity constraint on the coefficients, which is equiv-
alent with the series of inequalities θ2 − θ1 > 0, . . . , θJ − θJ−1 > 0 and expressed
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in matrix/vector form is Fθ > 0, where F is (J − 1)× J ,

F =

⎡

⎢

⎢

⎣

−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
· · ·
0 0 0 · · · −1 1

⎤

⎥

⎥

⎦

. (2.11)

Due to the two linear constraints, the monotonicity constraint reduces to

F̄ θ̄ + ḡ > 0, (2.12)

where F̄ is the (J − 1)× (J − 2) matrix,

F̄ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
· · ·
0 0 0 · · · −1 1
a1 a2 a3 · · · aJ−3 (aJ−2 − 1)

(b1 − a2) (b2 − a2) (b3 − a3) · · · (bJ−3 − aJ−3) (bJ−2 − aJ−2)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(2.13)
and ḡ is the constant (J − 2)-vector, ḡ = (0, 0, 0, . . . , a0, (b0 − a0))

′.

The final prior on the coefficients is given by a truncated normal prior distribution

θ̄|{Aθ = c} ∼ TNJ−2(ξ̄, Γ̄, T ), (2.14)

where T = {θ̄ : F̄ θ̄ + ḡ > 0}, and the Np(µ,Σ)-distribution restricted on a set
T is denoted by TNp(µ,Σ, T ). The conjugacy property of the prior distribution
is preserved by the truncation. Instead of the simplifying example of solving for
the last two coefficients, we use a more general method to reduce the dimension.
The Symbolic Math Toolbox in MATLAB is used to solve for any two coefficients
in terms of the remaining coefficients. In particular, for the first row of the linear
constraints matrix A given by (2.5), we find the first column with a nonzero
element. Then, for the second row of the linear constraints matrix, we find the
first column with a nonzero element that is not the same as the column selected
from the first row. We use the indices from those two columns to select the two
coefficients that will be removed from the dimension in order to find θ̄, F̄ , and ḡ.

Although any choice of ζ is admissible, the prior can put a substantial probability
of the truncation set T = {θ̄ : F̄ θ̄+ ḡ > 0} only when the original mean vector ζ
has increasing components. A simple choice of ζ involving only two hyperparam-
eters is given by

ζj = ν + τΦ−1
( j − 0.375

J − 0.75 + 1

)

, j = 1, . . . J, (2.15)

where ν is a constant, τ is a positive constant, and Φ−1 is the inverse of the
cumulative distribution function (i.e. the quantile function) of the standard normal
distribution. The motivation for the choice comes from imagining that the prior
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distribution of each θj as N(ν, τ2) before the ordering is imposed, and hence the
expectations of the order statistics of N(ν, τ2) may be considered as good choices
for their means. The expression in (2.15) gives a reasonable approximation to these
expectations. Similar expressions Φ−1(j/(J + 1)) appear for the score function
of locally most powerful rank tests against normal alternatives (see Hájek et al.
(1999)). Royston (1982) described the expression Φ−1((j − 0.375)/(J − 0.75 + 1)),
j = 1, . . . , J , as a more accurate approximation for the expected values of standard
normal order statistics than the expression Φ−1(j/(J + 1)) used in rank tests.

• Prior on the mean

For each predictor, we put an improper uniform prior p(µ) =
∏p

d=1 pd(μd) ∝ 1
on µ.

• Prior on the precision matrix

We build on the techniques of Wang (2015), which use a normal spike-and-slab
prior to estimate a sparse precision matrix, but replace the normal by a Student
t-distribution spike-and-slab prior, following Scheipl et al. (2012). Let τ2d,k be the

slab variance and c0τ
2
d,k be the spike variance. The spike scale c0 is assumed to

be very small and given. Having a continuous spike instead of a point mass at
zero is more convenient since it admits density; see Wang (2015). Unlike in Wang
(2015), we estimate the sparse precision matrix by allowing the spike-and-slab
variances and probability to be random with an inverse-gamma prior to lead to
a Student t-distribution for the slabs. The diagonal entries of Ω are given an
exponential distribution with rate parameter λ/2 for some λ > 0. We introduce
a symmetric matrix of latent binary variables L = ((ld,k)) with binary entries to
represent the edge matrix. The entries ld,k, d < k, are assumed to be independent
with π denoting the probability of 1, i.e. the probability of an edge. Let N(·|·, ·)
and Exp(·|·) respectively stand for the densities of the normal and exponential
distributions. Let η = (τ2d,k, π, d < k, λ). Let M+ stand for the space of positive

definite matrices and v2d,k = ld,kτ
2
d,k + c0τ

2
d,k(1 − ld,k). The joint prior for Ω =

((ωd,k)) and L is then obtained as

p(Ω,L|η) ∝
∏

d<k

N(ωd,k|0, v
2
d,k)

∏

d

{Exp(ωd,d|λ/2)}
∏

d<k

πld,k(1− π)ld,k1Ω∈M+ .

(2.16)

The prior for η = (τ2d,k, π, d < k, λ) are given by, independently of each other,

π ∼ Be(1, 10), τ2d,k ∼ IG(b0, b1), (2.17)

where Be stands for the beta distribution and IG for the inverse-gamma distribu-
tion. The value of λ controls the distribution of the diagonal elements of Ω. We use
λ = 1 under similar reasoning to Wang (2015), because it assigns a considerable
probability to the region of reasonable values of the diagonal elements. We set the
shape parameters of the beta distribution to 1 and 10 to set the prior probability
of sparsity to about 10%. See Scheipl et al. (2012) for more details regarding the
spike-and-slab prior based on a mixture of inverse gamma distributions.
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3 Posterior Computation

The full posterior distribution is

p(θ,Ω,L,µ|X) ∝ (detΩ)n/2 exp
(

−
1

2

n
∑

i=1

(θ′B(Xi)− µ)′Ω(θ′B(Xi)− µ)
)

×

p
∏

d=1

pd(θd)

p
∏

d=1

p(μd)× p(Ω,L)1{Fθ>0}, (3.1)

where B(x) = ((Bj(xd))), the prior on the B-spline coefficients is pd(θd), the prior on
the means is p(μd), and the joint prior on the sparse precision matrix and the edge
matrix is p(Ω,L). Here, the likelihood is constructed from the working assumption that
∑J

j=1 θjBj(X) ∼ Np(µ,Ω
−1).

The joint posteriors are standard and so they are not derived. They can be evaluated
in the following Gibbs sampling algorithm.

3.1 Gibbs Sampling Algorithm

1. For every d = 1, . . . , p, sample the B-spline coefficients as follows.

(a) Since we can reduce the number of coefficients by two, the basis functions for
these two coefficients can be represented as

[

BJ−1(Xi) BJ(Xi)
]

[

θd,J−1

θdJ

]

= B∗θ∗
d = B∗(Wdθ̄d + qd),

where the ∗ is used to denote the two-dimensional vectors B∗ and θ∗
d.

Setting Yd = (
∑J

j=1 θdjBj(Xid), d = 1, . . . , p, i = 1, . . . , n), the joint posterior
for the B-spline coefficients is a truncated normal, with density

p(θ̄1, . . . , θ̄p|Ω,µ,Y )

∝ (detΩ)n/2 exp
(

−
1

2

n
∑

i=1

(Yi − µ)′Ω(Yi − µ)
)

× p(θ̄1) · · · p(θ̄p)

restricted on the region {F̄ θ̄+ ḡ > 0} to satisfy the monotonicity constraint.

However, this truncated multivariate normal distribution is p×(J−2) dimen-
sional, so we sample it using the following conditional normals in a Markov
chain,

p(θ̄d|Y , θ̄{1,...,p}\d,µ,Ω)

∝ exp
[

−
1

2
θ̄′
d

{ 1

λ2
d

n
∑

i=1

(B̄ +B∗Wd)
′(B̄ +B∗Wd) + Γ̄−1

}

θ̄d

+
{

ξ̄Γ̄−1 −
1

λ2
d

n
∑

i=1

(B∗qd − δd,i)
′(B̄ +B∗Wd)

}

θ̄d

]

1{F̄dθ̄d+ḡd>0},
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where using the conditional normal theory,

δd,i = μd +
∑

e∈(1:p\d)

(−
ωd,e

ωd,d
)(Yi,e − μe)

and λ2
d = 1/ωd,d.

Samples from the truncated conditional normal posterior distributions for the
B-spline coefficients are obtained using the exact Hamiltonian Monte Carlo
algorithm (exact HMC) (Pakman and Paninski, 2014). Each iteration of the
exact HMC results in a transition kernel which leaves the target distribution
invariant and the Metropolis acceptance probability equal to 1. The exact
HMC within Gibbs is like Metropolis within Gibbs and hence is a valid algo-
rithm to sample from the joint density.

2. Obtain the centered transformed variables:

(a) Compute Yid =
∑J

j=1 θdjBj(Xid);

(b) Sample µ|(Y ,Ω) ∼ Np(Ȳ , 1
nΩ

−1);

(c) Find Zid =
∑J

j=1 θdjBj(Xid)− μd = Yid − μd.

3. The posterior density of Ω given L is

p(Ω|Z,L, τ 2, λ)∝ (detΩ)n/2 exp
{

−
1

2
tr(SΩ)

}

∏

d<k

exp
(

−
ω2
d,k

2v2d,k

)

p
∏

d=1

exp
(

−
λ

2
ωd,d

)

,

where S = Z ′Z.

For every d = 1, . . . , p, sample each column vector of Ω and L using the following
partitions as described in Wang (2015):

• Denote V = ((v2d,k)) to be the p × p symmetric matrix with zeros in the

diagonal and (v2d,k = ld,kτ
2
d,k + c0τ

2
d,k(1− ld,k) : d < k) in the upper diagonal

entries. Similarly, denote T = ((τ2d,k)) and Π = ((πd,k)) to be p× p symmetric

matrices with zeros in the diagonal and (τ2d,k : d < k) and (πd,k : d < k) in
the upper diagonal entries, respectively.

• Without loss of generality, partition Ω,S,L,V ,T , and Π by focusing on the
last column and row:

Ω =

[

Ω11 ω12

ω′
12 ω22

]

, S =

[

S11 s12
s′12 s22

]

, L =

[

L11 l12
l′12 l22

]

,

V =

[

V11 v12

v′
12 0

]

, T =

[

T11 τ12
τ ′
12 0

]

, Π =

[

Π11 π12

π′
12 0

]

.

• To sample a column vector of Ω, use the following change of variables:

(ω12, ω22) �→ (u = ω12, v = ω22 − ω′
12Ω

−1
11 ω12).



J. J. Mulgrave and S. Ghosal 459

Then the full conditionals are given by

(u|·) ∼ N(−Cs12,C), (v|∗) ∼ Ga
(n

2
+ 1,

s22 + λ

2

)

,

where C = {(s22 + λ)Ω−1
11 + diag(v−1

12 )}
−1, and Ga stands for the gamma

distribution.

• To sample the corresponding off-diagonal column vector of the edge-inclusion
indexes ldk, d, k = 1, . . . , p, d < k, since the ld,k are independent Bernoulli,
we sample according to the probability

P(ldk = 1|·) =
φ(ωdk|0, τ

2
dk)πdk

φ(ωdk|0, τ2dk)πdk + φ(ωdk|0, c0τ2dk)(1− πdk)
,

where φ stands for the normal density function.

• Update τ2dk, d, k = 1, . . . , p, d < k, based on the off-diagonal column vectors
ωdk and ldk, using the relations

(τ2dk|·) ∼ IG
(

b0 +
1

2
, b1 +

ω2
dk

2
(ldk +

1− ldk
c0

)
)

.

• Update π, d, k = 1, . . . , p, d < k, based on the off-diagonal entry ldk,

(π|·) ∼ Be(1 +
∑

d<k

1{ldk = 1}, 10 +
∑

d<k

1{ldk = 0}).

These steps are repeated until convergence.

3.2 Choice of Prior Parameters

We use a model selection criterion to determine the optimal number of basis functions
pre-MCMC. Sampling methods that involve putting a prior on the number of basis
functions, such as reversible jump Monte Carlo, are computationally complicated. We
calculate the Akaike Information Criterion (AIC) for different numbers of basis functions
and choose the number of basis functions that correspond to the lowest AIC. The AIC
is determined as the minimum of two times the negative log-likelihood −2l(θd), plus the
number of parameters in the model, with respect to the basis coefficients subject to the
linear and monotonicity constraints. The AIC is preferred here as the true transform
does not belong to the set of splines and hence the correct model selection is not the
goal, but minimizing the estimated estimation error is, which is provided by the model
with the lowest AIC. The lowest AIC is found between a grid of four and 100 basis
functions by doing a search in which the lowest AIC is chosen when the next ten values
are larger than the current value in the search, since the AIC should approximately be
a U-shaped curve due to the trade-off between accuracy and complexity. Then for each
predictor, d = 1, . . . , p, and for the number of basis functions, J ,

− 2l(θd) = n log σ2
d +

1

σ2
d

n
∑

i=1

(

J
∑

j=1

θdjBj(Xid)− μd

)2

. (3.2)



460 Bayesian Inference in Nonparanormal Graphical Models

After plugging in the maximum likelihood estimators (MLEs) of μd and σd and
making the substitution Zid = Bj(Xid)− n−1

∑n
m=1 Bj(Xmd), minimizing the −2l(θd)

results in the following problem,

minimize
θd

n log(θ′
dZ

′Zθd), subject to Fθd > 0, Aθd = c. (3.3)

This problem can be equivalently solved using the quadratic programming function in
MATLAB Optimization Toolbox:

minimize
θd

1

2
θ′
dZ

′Zθd, subject to Fθd > 0, Aθd = c. (3.4)

For numerical stability, the monotonicity constraint was changed to Fθd ≥ 10−4.
Finally, after plugging in the solution of the quadratic programming problem θ̂d, the
final number of basis functions is chosen by selecting the number J that minimizes the
AIC

AIC = −2l(θ̂d) + 2J = n log(θ̂′
dZ

′Zθ̂d) + 2J.

There is some dependence on the choice of hyperparameters. We use a model selec-
tion criterion to determine the hyperparameters, b0 and b1, for inverse gamma distri-
butions for ((τ2dk)) and to determine the constant value for the spike scale, c0, after the
MCMC sampling. Inspired by Dahl et al. (2005, 2008), we solve a convex optimization
problem in order to use the Bayesian Information Criterion (BIC). First, we find the

Bayes estimate of the inverse covariance matrix, Ω̂Bayes. The Bayes estimate is defined

as Ω̂ = E(Ω|Z). We find the average of the transformed variables, Z̄ = M−1
∑M

m=1 Zm,
where Zm, m = 1, . . . ,M , are obtained from the MCMC output. Then, using the sum
of squares matrix, S = Z̄ ′Z̄, we solve the following to obtain the maximum likelihood
estimate of the inverse covariance matrix, Ω̂MLE:

minimize
Ω

− n log detΩ+ tr(ΩS), subject to C(Ω̂), (3.5)

where C represents the elements of Ω̂ that are zero and nonzero, and they are determined
by the zeros of the estimated edge matrix from the MCMC. The estimated edge matrix
from the MCMC sampler will be described in more detail in Section 5. This constrained
optimization problem was implemented as an unconstrained optimization problem, as
described in Dahl et al. (2005, 2008).

Finally, we calculate BIC = −2l(Ω̂MLE)+ k log n, where k = #C(Ω̂), the sum of the
number of diagonal elements and the number of edges in the estimated edge matrix,
and −l(Ω̂MLE) = −n log det Ω̂MLE + tr(Ω̂MLES).

We select the combination of hyperparameters, b0, b1, c0, that results in the smallest
BIC.

4 Posterior Consistency

Posterior consistency is a fundamental way of validating a Bayesian method using a
frequentist yardstick in the large sample setting, and is of interest to both frequentists
and Bayesians; for a thorough account of posterior consistency, see Ghosal and van der
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Vaart (2017). In Gaussian graphical models, using point mass spike-and-slab priors,
Banerjee and Ghosal (2015) showed that the posterior for Ω is consistent in the high-
dimensional setting provided that (p+s)(log p)/n → 0, where s stands for the number of
non-zero off-diagonal entries of the true Ω. With a slight modification of the arguments,
it follows that the result extends to continuous spike-and-slab priors provided that the
spike scale c0 is sufficiently small with increasing p. In the nonparanormal model, the
main complicating factor comes from the unknown transformations f1, . . . , fp, since
the rest will then be as in a Gaussian graphical model. Below we argue that these
transformations may be estimated consistently in an appropriate sense.

We study the posterior distributions for each transformation fd separately, which
can be learned from the marginal likelihood for each component. Thus the problem
of posterior consistency for fd can be generically described as follows. For brevity,
we drop the index d. Consider the model Y = f(X) ∼ N(μ, σ2), where f is a con-
tinuously differentiable, strictly monotone increasing transformation from (0, 1) to R.
Clearly, this model is not identifiable and hence consistent estimation is not possible
in the usual sense. Identifiability can be ensured by setting μ = 0 and σ = 1, but
the procedure followed in this paper instead puts constraints on f : f(1/2) = 0 and
f(3/4)− f(1/4) = 1. We shall show that the posterior for f is consistent under this set
of constraints.

As the function f is necessarily unbounded near 0 and 1 to ensure that f(X) is
normally distributed, which is a distribution with unbounded support, it is clear that
uniform posterior consistency for f is not possible. We shall, therefore, consider the
notion of uniform convergence on a compact subset of (0, 1): for a fixed δ > 0, the
pseudo-metric to consider is d(f1, f2) = sup{|f1(x) − f2(x)| : δ ≤ x ≤ 1 − δ}. Even
then, the usual posterior distribution may be highly impacted by observations near 0 or
1, so we actually study a modified posterior distribution, based on observations falling
within the given fixed compact subset [δ, 1− δ] of (0, 1), with δ < 1/4, to be described
below.

Let f0 be the true transformation function, which is assumed to be continuously
differentiable and strictly monotone increasing and complying with the constraints
f0(1/2) = 0 and f0(3/4) − f0(1/4) = 1. Let μ0 and σ0 > 0 be respectively the true
values of μ and σ. Note that the cumulative distribution function (c.d.f.) of X is given
by F (x) = P(X ≤ x) = P(f(X) ≤ f(x)) = Φ((f(x) − μ)/σ) and the corresponding
true c.d.f. is F0(x) = Φ((f0(x)− μ0)/σ0), where Φ stands for the c.d.f. of the standard
normal distribution.

Consider n i.i.d. observations X1, . . . , Xn from the true distribution. Let n∗ be the
number of observations falling in [δ, 1− δ], n∗

− the number of observations falling below
δ and n∗

+ the number of observations falling above 1 − δ. Let X∗
1 , . . . , X

∗
n∗ be the ob-

servations falling in [δ, 1− δ]. The posterior consistency is based on the posterior given
these complying observations X∗

1 , . . . , X
∗
n∗ , and the counts (n∗

−, n
∗
+).

Observe that π− := P(X < δ) = F (δ) and π+ := P(X > 1 − δ) = 1 − F (1 − δ).
Then n∗

− ∼ Bin(n, π−) and n∗
+ ∼ Bin(n, π+). Let F ∗ stand for the c.d.f. of X∗, let F ∗

0

stand for its true value and let (π−
0 , π

+
0 ) be the true value of (π−, π+). Then we have
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the identity

F (x) = π− + (1− π+ − π−)F ∗(x), F0(x) = π−
0 + (1− π+

0 − π−
0 )F

∗
0 (x) (4.1)

for all x ∈ [δ, 1− δ].

Thus we have

f(x) = μ+ σΦ−1(F (x)), f0(x) = μ0 + σ0Φ
−1(F0(x)). (4.2)

We note that the posterior distributions of the quantities π− and π+ can be obtained
based on the counts n∗

− and n∗
+ respectively. In particular, using a Dirichlet prior on

the probability vector (π−, π+, 1 − π− − π+), we have consistency for the posterior
distribution of (π−, π+) at (π−

0 , π
+
0 ). We shall assume that the posterior distribution

of (π−, π+) is consistent. Note that the truncated observations alone do not lead to a
posterior distribution for (π−, π+).

The modification in the posterior distribution of μ, σ and f that we consider can be
described as follows. Using the given prior on (μ, σ, f) and the truncated observations
X∗

1 , . . . , X
∗
n∗ , we obtain the induced posterior distribution of F ∗, while we obtain the

posterior distribution on (π−, π+) directly conditioning on (n∗
−, n

∗
+). Then the posterior

distribution of {F (x) : x ∈ [δ, 1−δ]} is induced from (4.1). Finally, the modified posterior
distribution of (μ, σ, f) is induced from the relations

σ = 1/(Φ−1(F (3/4))− Φ−1(F (1/4))), μ = −
Φ−1(F (1/2))

Φ−1(F (3/4))− Φ−1(F (1/4))
, (4.3)

and (4.2) in view of the restrictions f(1/2) = 0 and f(3/4) − f(1/4) = 1. The corre-
sponding true values satisfy the analogous relations

σ0 = 1/(Φ−1(F0(3/4))− Φ−1(F0(1/4))), μ0 = −
Φ−1(F0(1/2))

Φ−1(F0(3/4))− Φ−1(F0(1/4))
.

(4.4)

The following theorem on posterior consistency refers to this modified posterior
distribution rather than the original posterior distribution of (μ, σ, f). The proof can
be found in the Supplementary Material (Mulgrave and Ghosal, 2019).

Theorem 1. In the above setting let the prior on μ and σ contain μ0 and σ0 in its
support and independently, the prior Π for f satisfies the condition that

Π(f : d(f, f0) < ǫ, d(f ′, f ′
0) < ǫ) > 0 for every ǫ > 0. (4.5)

Then for any ǫ > 0,

Π(|μ− μ0| < ǫ, |σ − σ0| < ǫ, d(f, f0) < ǫ|X∗
1 , . . . , X

∗
n∗ , n∗

−, n
∗
+) → 1 a.s. (4.6)

The condition on the prior for the transformation f is satisfied by the truncated
normal prior described in Section 2, and hence the transformation f (as well as the
mean and variance parameters μ and σ2) are consistently estimated by the posterior,
as shown in the following corollary.
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Corollary 1. Let the prior on f be described by f =
∑J

j=1 θjBj, where the prior for J
has infinite support and θ = (θ1, . . . , θJ) is given a truncated normal prior as described
in Section 2. Then for any ǫ > 0, Π(f : d(f, f0) < ǫ, d(f ′, f ′

0) < ǫ) > 0 and hence (4.6)
holds.

5 Simulation

We conduct a simulation study to assess the performance of the Bayesian approach to
graphical structure learning in nonparanormal graphical models. This method will be re-
ferred to as ‘Spike Slab’ in the results. The unobserved random variables, Y1, . . . , Yp, are

simulated from a multivariate normal distribution such that Yi1, . . . , Yip
i.i.d.
∼ Np(µ,Ω

−1)
for i = 1, . . . , n. The means µ are selected from an equally spaced grid between 1 and
2 with length p. We consider nine different combinations of n, p, and sparsity for Ω:

• p = 25, n = 50, sparsity = 10% non-zero entries in the off-diagonals

• p = 50, n = 150, sparsity = 5% non-zero entries in the off-diagonals

• p = 100, n = 500, sparsity = 2% non-zero entries in the off-diagonals

• p = 25, n = 50, AR(1) model

• p = 50, n = 150, AR(1) model

• p = 100, n = 500, AR(1) model

• p = 25, n = 50, circle model

• p = 50, n = 150, circle model

• p = 100, n = 500, circle model

where the circle model and the AR(1) model are described by the relations

• Circle model: ωii = 2, ωi,i−1 = ωi−1,i = 1, and ω1,p = ωp,1 = 0.9

• AR(1) model: ω11 = ωpp = 1.9608, ωii = 2.9216 and ωi,i−1 = ωi−1,i = −1.3725.

The sparsity levels for Ω are computed using lower triangular matrices that have
diagonal entries that are Gaussian distributed with μdiag = 1 and σdiag = 0.1, and non-
zero off-diagonal entries that are Gaussian distributed with μ\diag = 0 and σ\diag = 1.
Since these are lower triangular matrices, we are ensured to have positive definite ma-
trices.

The hyperparameters for the prior are chosen to be ν = 1, τ = 0.5, and σ2 = 1.
The observed variables X = (X1, . . . , Xp) are constructed from the simulated unob-
served variables Y1, . . . , Yp. The functions used to construct the observed variables are
four c.d.f.s and the power function evaluated at the simulated unobserved variables
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Y1, . . . , Yp. The four c.d.f.s are: normal, logistic, extreme value, and stable. The power
function is Xd = [Φ(Yd)]

1/m, d = 1, . . . , p, where m is an integer between 1 and 5.
We could choose any value for the parameters, but for computational ease, we use the
maximum likelihood estimates of the parameters with the mle function in MATLAB.
Any values for the parameters could be chosen for the c.d.f.s. We choose the values
of the parameters for each of the c.d.f.s to be the maximum likelihood estimates for
the parameters of the corresponding distributions (normal, logistic, extreme value, and
stable), using the variables Y1, . . . , Yp.

The initial B-spline coefficient values for the exact HMC algorithm are constructed
as follows. First, pretending that the data are already normal, we start with the identity
function f(Xd) = Xd, where Xd is uniform and Φ−1(Xd) is normal so that f = Φ−1.
Then in the model, with the pretension that the transformation is a linear combi-
nation of B-spline basis functions, Φ−1(Xd) =

∑J
j=1 θjBj(Xd) ∼ N(μd, σ

2
d). Mul-

tiplying both sides by Bk(Xd) and integrating, we have
∫ 1

0
Bk(Xd)Φ

−1(Xd)dXd =
∑J

j=1 θj
∫ 1

0
Bj(Xd)Bk(Xd)dXd. Making the substitution Zd =Φ−1(Xd), so that Φ(Zd)=

Xd, leads to the relation

∫ ∞

−∞

Bk(Φ(Zd))Zdφ(Zd)dZd =

J
∑

j=1

θj

∫ ∞

−∞

Bj(Φ(Zd))Bk(Φ(Zd))φ(Zd)dZd.

Since these functions in the integral are functions of normal probability densi-
ties, Gauss-Hermite quadrature is used to estimate the left and right-hand sides. The
number of points used is 20. Then setting the approximation for the left-hand side,
∫∞

−∞
Bk(Φ(Zd))Zdφ(Zd)dZd, equal to b, and setting the approximation for the right-

hand side,
∫∞

−∞
Bj(Φ(Zd))Bk(Φ(Zd))φ(Zd)dZd equal to E, we have the linear equation

b = Eθ. Using the quadratic programming function in the MATLAB Optimization
Toolbox, we solve for θ for each predictor

minimize
θ

1

2
θ′E′Eθ − b′Eθ, subject to Fθ > 0, Aθ = c. (5.1)

For numerical stability, the monotonicity constraint is changed to Fθ ≥ 10−4.

After finding the initial coefficients θd, we construct the initial values for Yd =
∑J

j=1 θdjBj(Xd) using the observed variables. These initial values for Y are used to find

initial values for Σ,µ, and Ω for the algorithm, where Σinitial = cov(Y ),µinitial = Ȳ ,
and Ωinitial = Σ−1

initial.

We consider four combinations of the hyperparameter settings for the spike-and-
slab algorithm with c0 = {0.02, 0.005} and (b0, b1) = {(1, 1), (10, 30)}. We select the
values for b0 and b1 because they cover reasonable shapes of the prior distribution
for the slab variance and the c0, assumed to be small, covers two different orders of
magnitude. Other choices could be used for the spike-and-slab algorithm. The model
selection criterion described in Section 3.2 chooses the combination of hyperparameters
that yields the lowest BIC, and that combination of hyperparameters is used to obtain
the final estimates of the precision matrix and edge matrix. The spike-and-slab algorithm
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is implemented in MATLAB by modifying the code provided by Wang (2015). The exact
HMC algorithm is implemented in MATLAB using the code provided by the authors
(Pakman and Paninski, 2014).

The nonparanormal method of Liu et al. (2009) is implemented using the R package
huge (Zhao et al., 2015). The graphical lasso method is selected for the graph estimation
and by default, the screening method selected is the lossless screening method. Three
regularization selection methods are used to select the graphical model: the Stability
Approach for Regularization Selection (StARS) (Liu et al., 2010), a modified Rotation
Information Criterion (RIC) (Lysen, 2009), and the Extended Bayesian Information
Criterion (EBIC) (Foygel and Drton, 2010). The default parameters in the huge package
are used for each selection method. The documentation for the huge package mentions
an alternative threshold of 0.05 for the StARS method, but the results are not sensitive
to the default choice of 0.1 or 0.05, so the default threshold of 0.1 is used. As in Liu
et al. (2009), the number of regularization parameters used is 50 and they were selected
among an evenly spaced grid in the interval [0.16,1.2].

A Bayesian copula graphical model (Mohammadi et al., 2017) is implemented using
the R package, BDgraph (Mohammadi and Wit, 2017, 2019). This method will be re-
ferred to as, ‘Bayesian Copula’. Posterior graph selection is done using Bayesian model
averaging, the default option in the package, in which it selects the graph with links for
which their estimated posterior probabilities are greater than 0.5.

We run 100 replications for each of the nine combinations and assess structure learn-
ing for each replication. We collect 10000 MCMC samples for inference after discarding
a burn-in of 5000. Thinning is not applied. For each replication, we determine the final
hyperparameter setting for the spike-and-slab algorithm by choosing, out of the four
hyperparameter settings, the one that yields the lowest value of the BIC. Finally, the
selected hyperparameter setting is used to find the Bayesian estimates of the precision
and edge matrices and are used to learn the graphical structure.

To assess the performance of the graphical structure learning, specificity (SP), sensi-
tivity (SE), and Matthews Correlation Coefficient (MCC) are computed. These metrics
have been previously used for assessing the accuracy of classification procedures (Baldi
et al., 2000). They are defined as follows:

Specificity =
TN

TN+ FP
, Sensitivity =

TP

TP + FN
,

MCC =
TP× TN− FP× FN

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

where TP is the number of true positives, TN is the number of true negatives, FP is the
number of false positives, and FN is the number of false negatives. True positives mean
that edges that are included in the estimate are also present in the true model, true
negatives mean that edges that are not included in the estimate are also not included
in the true model, false positives mean that there are edges included in the estimate
that are not present in the true model and false negatives mean that there are edges
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Figure 1: Boxplots of the sensitivity results for each of the methods for different struc-
tures of precision matrices. Percent refers to the 10% model for dimension p = 25, 5%
model for dimension p = 50 and 2% model for dimension p = 100.

that are not included in the estimate that are present in the true model. The MCC is
regarded as an overall measure of classification. The higher the values are for all three
metrics, the better is the classification.

The median probability model (Berger and Barbieri, 2004), commonly used for
graphical model structures, is used to find the Bayesian estimate of the edge matrix.
The edge matrix estimate is found by comparing the mean of the samples of edge ma-
trices and determining if each off-diagonal element of the mean is greater than 0.5. If
it is greater than 0.5, it is coded as an edge. If the off-diagonal element of the mean is
not greater than 0.5, it is coded as no edge. Models that are estimated to have no edges
resulted in undefined MCC values. The results are presented in Figures 1–3.

The Spike Slab method has generally high specificity, compared to the models se-
lected by the EBIC, StARS, and RIC methods. The Spike Slab suffers in sensitivity
for the 10%, 5%, and 2% models, but the models selected by the EBIC, StARS, and
RIC methods also suffer in sensitivity. It is interesting to note that the EBIC selection
method has been shown to perform well with the graphical lasso (Foygel and Drton,
2010), but appears to suffer in performance when the graphical lasso is combined with
the nonparanormal estimation method. In particular, for the AR(1) and 10% models
for dimension p = 25, the EBIC-selected model results in no edges. When comparing
the Spike Slab to the Bayesian Copula method, the Spike Slab has varying levels of
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Figure 2: Boxplots of the specificity results for each of the methods for different struc-
tures of precision matrices. Percent refers to the 10% model for dimension p = 25, 5%
model for dimension p = 50 and 2% model for dimension p = 100.

success. For p = 25, the Bayesian Copula outperforms the Spike Slab, but for p = 50
and p = 100, the Spike Slab generally outperforms the Bayesian Copula method for the
AR(1) and circle models. Lastly, the Bayesian Copula method outperforms the Spike
Slab for the sparsity percent models. Overall, based on the MCC values, the Spike Slab
performs similar to or better than the models selected by the EBIC, StARS, and RIC
methods and similar to or better than Bayesian Copula for dimensions p = 50 and
p = 100.

6 Real Data Application

We consider the data set based on the GeneChip (Affymetrix) microarrays for the
plant Arabidopsis thaliana originally referenced in (Wille et al., 2004). Since there are
118 microarrays, the sample size is n = 118. There are 39 genes from the isoprenoid
pathway that are used. For pre-processing, the expression levels for each gene, xi for
i = 1, . . . , 118, are log-transformed. Additionally, for the Spike Slab method, the ex-
pression levels for each gene are converted to values between 0 and 1 using the equation
(xi −min(xi))/(max(xi)−min(xi)). We study the associations among the genes using
the Spike Slab method, the nonparanormal method of Liu et al. (2009), as well as the
Bayesian Copula method of Mohammadi and Wit (2017). These data are treated as
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Figure 3: Boxplots of the Matthews correlation coefficient results for each of the meth-
ods for different structures of precision matrices. Percent refers to the 10% model for
dimension p = 25, 5% model for dimension p = 50 and 2% model for dimension p = 100.

multivariate Gaussian in the original analyses (Wille et al., 2004). For the Spike Slab
method, the final hyperparameter setting is chosen using the BIC method described in
Section 3.2 and for the nonparanormal method of Liu et al. (2009), 50 regularization
parameters are used on an evenly spaced grid in the interval [0.16,1.2]. The three selec-
tion methods, RIC, EBIC, and StARS, are used with the default parameters in the huge
package. The nonparanormal model selected by EBIC result in no edges, so this model
is not included in the comparison. Bayesian model averaging is used for the posterior
graph selection of the Bayesian Copula method using the BDgraph package, in which it
selects the graph with links for which the estimated posterior probabilities are greater
than 0.5. The Spike Slab method can converge in about 29 minutes on a laptop for a
given hyperparameter setting for these data. The graphs are displayed in Figures 4–5.
Plots are made with the circularGraph function in MATLAB.

Our study shows that each of the methods leads to graphs with different levels of
sparsity. In particular, the Spike Slab and the nonparanormal using the RIC method lead
to more sparsity than the nonparanormal using the StARS method and the Bayesian
Copula method. The Spike Slab method results in 93 edges, the nonparanormal method
using RIC results in 133 edges, and the nonparanormal method using StARS results in
209 edges. The Bayesian Copula method resulted in 231 edges. The Spike Slab model
and the nonparanormal model selected with the RIC both capture some of the same
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Figure 4: Circular graphs illustrating the differences in edges between the methods using
the microarray data set.
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Figure 5: Circular graphs illustrating the differences in edges between the methods using
the microarray data set.
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edges, so these edges could be considered for further analysis. Sparse models may aid
in scientific exploration and interpretation.

7 Discussion

We have introduced a Bayesian method to construct graphical models for continuous
data that do not rely on a normality assumption. The method assumes the nonpara-

normal structure, that under some unknown monotone transformations on each com-

ponent, the original observation vector reduces to a multivariate normal vector. The

precision matrix of the transformed observations thus also determines the graphical

structure of conditional independence of the original observations. We have consid-

ered a prior distribution on the underlying transformations through a finite random

series of B-splines with increasing coefficients that are given a multivariate truncated
normal prior. The precision matrix of the transformed observations is given a spike-

and-slab prior distribution. The procedure requires carefully considering identifiability

restrictions. We have shown that certain linear constraints on the coefficients can give

rise to identifiability. The advantage of using linear restrictions only is that the trun-

cated multivariate normal structure on the vector of coefficients can be maintained

under the identifiability restrictions. This allows us to use an efficient Gibbs sampler
to compute the posterior distribution. We have shown that a suitably modified pos-

terior distribution leads to posterior consistency of the mean and the variance of the

transformed observations and the transformation functions using Euclidean distances

on the mean and variance and the uniform pseudo-distance on a compact subset of the

unit interval for the transformation functions. Since the transformations are learned

through the marginal distributions of the component variables, their learning is largely

independent of the learning of the precision matrix. Rather, the learning of the preci-
sion matrix is dependent on the transformations. The posterior consistency result we

provide shows that, after a small tweaking of the posterior distribution of the trans-

formations to comply with restrictions, for each component, the posterior distribution

of the underlying transformation is consistent. In large samples, this ensures that the

transformations are close to the unknown true transformations. In addition, the pos-

terior for the precision matrix is consistent, computed using the assumed consistent

transformations.

The Bayesian method, Spike Slab, appears to perform better than an earlier proposed

empirical estimation method in the nonparanormal model at picking up edges that are

significantly different from zero, thereby resulting in sparser models. Although it is

not feasible to check for the nonparanormal distribution and therefore determine if our

transformations improve on detecting the true transformation functions compared to

the previous method, we believe that the use of the smooth and strictly increasing

transformation functions that take into account for non-normality in combination with
the prior on the precision matrix that incorporates sparsity improves on the goal of

learning the structure of Gaussian graphical models when the data are continuous but

not Gaussian.



472 Bayesian Inference in Nonparanormal Graphical Models

Supplementary Material

Supplementary Material for Bayesian Inference in Nonparanormal Graphical Models
(DOI: 10.1214/19-BA1159SUPP; .pdf). The supplement that includes the proof to the
consistency theorems. https://github.com/jnj2102/BayesianNonparanormal.

GitHub Repository: Bayesian Nonparanormal
(https://github.com/jnj2102/BayesianNonparanormal). The code used to run the meth-
ods described in this paper are available on GitHub.
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