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SUMMARY
We consider Bayesian inference in semiparametric mixed models (SPMMs) for longitudinal data.
SPMMs are a class of models that use a nonparametric function to model a time effect, a
parametric function to model other covariate effects, and parametric or nonparametric random
effects to account for the within-subject correlation. We model the nonparametric function using a
Bayesian formulation of a cubic smoothing spline, and the random effect distribution using a
normal distribution and alternatively a nonparametric Dirichlet process (DP) prior. When the
random effect distribution is assumed to be normal, we propose a uniform shrinkage prior (USP)
for the variance components and the smoothing parameter. When the random effect distribution is
modeled nonparametrically, we use a DP prior with a normal base measure and propose a USP for
the hyperparameters of the DP base measure. We argue that the commonly assumed DP prior
implies a nonzero mean of the random effect distribution, even when a base measure with mean
zero is specified. This implies weak identifiability for the fixed effects, and can therefore lead to
biased estimators and poor inference for the regression coefficients and the spline estimator of the
nonparametric function. We propose an adjustment using a postprocessing technique. We show
that under mild conditions the posterior is proper under the proposed USP, a flat prior for the fixed
effect parameters, and an improper prior for the residual variance. We illustrate the proposed
approach using a longitudinal hormone dataset, and carry out extensive simulation studies to
compare its finite sample performance with existing methods.

Keywords
Dirichlet process prior; Identifiability; Postprocessing; Random effects; Smoothing spline;
Uniform shrinkage prior; Variance components

1. Introduction
Longitudinal data arise in many fields, such as epidemiology, clinical trials, and survey
research. Linear mixed models (LMMs) (Laird and Ware, 1982) are commonly used for
longitudinal data analysis, where covariate effects are modeled parametrically and within-
subject correlation is modeled using random effects. Semiparametric mixed models
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(SPMMs) extend LMMs by modeling a covariate effect, e.g., time effect, using a
nonparametric function (Zeger and Diggle, 1994; Zhang et al., 1998), and other covariate
effects parametrically. Inference in SPMMs has been mainly developed using frequentist
methods, such as kernel and profile methods (Zeger and Diggle, 1994; Lin and Carroll,
2001; Fan and Li, 2004; Wang, Carroll, and Lin, 2005) and smoothing spline and P-spline
methods using a joint maximum penalized likelihood (Zhang et al., 1998; Verbela et al.,
1999; Ruppert, Wand, and Carroll, 2003). All these approaches assume a parametric normal
distribution for the random effects. In this article, we develop Bayesian methods for
inference in SPMMs. We model the time effect nonparametrically using a Bayesian
formulation of splines and model the random effect distribution parametrically or
nonparametrically using a Dirichlet process (DP) prior.

This work is motivated by a longitudinal study on the reproductive hormone progesterone
(Sowers et al., 1998). Scientific interest included estimation of the time course of the
progesterone level in a menstrual cycle as well as the effects of age and body mass index
(BMI). Figure 1a plots the log-transformed progesterone level as a function of day in a
standardized menstrual cycle, suggesting that progesterone level varies over time in a
complicated manner, and that it is difficult to model its time trend with a simple parametric
function. Figure 1c shows histograms of the posterior estimates (means) of the random
intercepts assuming a normal random effect distribution. It suggests substantial departure
from normality in the random effect distribution (Verbeke and Lesaffre, 1996). These
observations motivate us to develop a Bayesian method with a nonparametric model for the
progesterone profile and a nonparametric random effect distribution.

Bayesian methods for parametric LMMs have been extensively developed. Assuming
normal random effects, posterior inference can be easily implemented using standard Gibbs
sampling. Kleinman and Ibrahim (1998) relaxed the normality assumption by modeling the
random effect distribution nonparametrically using a DP prior assuming a normal base
measure with a zero mean. Similar approaches have been considered by many other authors,
including, e.g., Müller and Rosner (1997), Mukhopadhyay and Gelfand (1997), and Pennell
and Dunson (2007).

In this article, we discuss extensions to SPMMs. Spline estimation in the SPMM relies
heavily on estimation of the smoothing parameter, which is treated as an extra variance
component in the Bayesian model. Thus the choice of appropriate prior distributions for
variance components is critical. We develop a uniform shrinkage prior (USP) for variance
components in SPMMs and study its theoretical properties. Conjugate inverse gamma (IG)
and inverse Wishart (IW) priors have been commonly used for variance components, mainly
for computational convenience. Several authors have noted serious difficulties in using
diffuse IG priors for random effect variances (Natarajan and Kass, 1998, 2000; Gelman,
2006), and showed that the resulting posterior is near improper and the variance component
estimators could be excessively biased, especially when the number of subjects is small.
Similar problems arise in using diffuse IW priors. To address this issue, Daniels (1999) and
Natarajan and Kass (2000) proposed USPs for variance components in two-level parametric
(generalized) LMMs. We show that their proposed USPs are restricted to problems where
random effects are independent and the associated design matrix is block diagonal. A
Bayesian smoothing spline in SPMMs induces additional random effects that result in a
nonblock-diagonal design matrix for combined random effect vectors. Therefore, the
methods from Daniels (1999) and Natarajan and Kass (2000) are not applicable. We propose
modified USPs that can be applied. We show that under mild conditions, the proposed USPs
combined with a flat prior for the fixed effect parameters and an improper prior for the
residual variance lead to a proper posterior distribution.
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The second contribution of this article is to model random effects using a center-adjusted DP
prior in SPMMs. We show that a standard DP prior can lead to biased estimators and poor
inference on the nonparametric mean function. We develop a postprocessing procedure to
adjust inference for the nonparametric function. Extensive simulation studies are conducted
to evaluate finite sample performance of the proposed methods and to compare with the
existing methods.

Section 2 presents the Bayesian SPMM. Section 3 develops the USP for the variance
components when the random effect distribution is assumed normal. Section 4 discusses
posterior adjustments when using nonparametric random effect distribution with a nonzero
mean. Section 5 reports an application. Section 6 summarizes extensive simulation studies.

2. A Bayesian SPMM
Let Yij (i = 1, … , m, j = 1, … , ni) be the outcome for the ith subject at time tij. We assume
Yij follows the SPMM (Zeger and Diggle, 1994; Zhang et al., 1998)

(1)

where β is a p × 1 vector of fixed effects associated with covariates Xij, f(t) is an unknown
twice-differentiable smooth function of time, and bi is a q × 1 vector of random effects
associated with covariates Zij and follows some distribution F(·). We consider both
parametric and nonparametric models for the random effect distribution F(bi). We assume
residuals ∊ ij ~ N(0, σ2) are independent and are independent of bi.

We estimate the nonparametric function f(t) using a smoothing spline by assuming f(t)
follows the integrated Wiener prior (Wahba, 1978)

(2)

where δ = (δ0, δ1)T is an unknown 2 × 1 vector of parameters, λ is a tuning parameter, T1

and T2 specify the range of t, and  is a two-fold integrated Wiener process
with W(t) being a standard Wiener process. Because f(t) already includes an intercept and a
linear term in t, we assume that the design vector Xij in equation (1) does not have rows
corresponding to 1 or t.

Following Zhang et al. (1998), denote by t0 a vector of ordered distinct time points of the tij
(i = 1, … , m, j = 1, … , ni) and T = (1, t0), where 1 is an r × 1 vector of 1 with r being the
number of distinct time points. Let Yi = (Yi1, … , Yini)

T, and define Xi, Zi, ∊i (i = 1, … , m)
similarly. Let Ni be an incidence matrix for the ith subject mapping ti = (ti1, … , tini)

T with t0

such that the (j, l)th element of Ni is 1 if  and 0 otherwise (j = 1, … , ni, l = 1, … , r).
Then model (1) can be written as

(3)

where . Further denote , and similarly define X, N and
∊. Let Z = diag(Z1, … , Zm). We have
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(4)

where  with I denoting an identity matrix of

dimension .

The integrated Wiener prior (2) for the smoothing spline f(t) is equivalent to a finite-
dimensional smoothing spline prior for f. Let K denote the integrated Wiener covariance at

the design points t0 with the (j, k)th element . Let L be an r × (r −
2) full rank matrix satisfying K = LLT and LT T = 0. Finally let B = L(LT L)−1. We assume

(5)

where δ is a 2 × 1 vector, a is an r × 1 vector. Equation (5) can be interpreted as specifying
that a priori f(·) is centered around a linear function with nonlinearities (or roughness)
characterized by the random variation term Ba. Let 0 and I generically denote a vector of all
zeroes and the identity matrix of suitable dimension. The finite-dimensional Bayesian
smoothing spline assumes a nearly flat prior δ ~ N(0, dI) and a normal prior a ~ N(0, τI),
where d is a large constant, and τ is the smoothing parameter. The spline (5) is equivalent to
equation (2) in the sense that the posterior mean of f(t0) is identical under both priors (5) and
(2). This vague prior specification for the smoothing spline is applicable when little prior
information is available regarding the feature of the underlying f(t). When features of f(t) are
known a priori, such information should be incorporated in the prior, leading to alternative
approaches of modeling f(t). It follows that the SPMM (4) has the following LMM
representation

(6)

where Z(1) = Z, X⋆ = (X, NT), β⋆ = (βT, δ)T, Z(2) = NB, and b and a are random effects with
b ~ F(·) that might depend on variance components D, and a ~ N(0, τI) with the smoothing
parameter τ being treated as an extra variance component.

3. A Uniform Shrinkage Prior for the SPMM
In this section, we consider SPMM (6) with a normal random effect distribution, b ~ N(0, ,
where = diag(D, … , D). We propose a USP for the covariance matrix D and the
smoothing parameter τ. The idea of the USP is easiest explained in a simple normal
sampling model, , with prior . The posterior mean,

 is a shrinkage estimator, i.e., a weighted

average of the prior mean 0 and the sample average . Assuming a uniform
prior for the shrinkage coefficient  implicitly defines a prior for σ2 known as
the USP. Daniels (1999) and Natarajan and Kass (2000) extended this idea to two-stage
hierarchical models. Assuming independence across clusters, a shrinkage matrix for each
individual random effect vector is defined. This independence is equivalent to assuming a
block-diagonal design matrix for the random effects. An average shrinkage matrix for all
random effect vectors can then be sensibly defined, e.g., through the use of a harmonic mean
in a simple normal–normal model (Daniels, 1999).
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However, in the SPMM-induced LMM (6), a shrinkage matrix for each individual random
effect vector cannot be readily defined due to two reasons. First, the model contains two sets
of random effects, b and a. The responses Yi and Yj are correlated by sharing the same set of
random effects a. As a result, there is not a shrinkage matrix associated with each individual
bi estimate alone. Second, even without the random effects b in the model, because the
design matrix Z(2) is not block diagonal, the shrinkage matrix for a is still not diagonal. In
other words, there is no shrinkage coefficient that is naturally associated with each ai either.
Therefore, in model (6) a new definition of the joint USP for (D, τ) (conditional on σ2) is
needed. Below we propose a stepwise procedure to define a prior for (σ2, D, τ) by deriving
conditional USPs for D given σ2, and τ given (σ2, D).

We first factor the prior on (σ2, D, τ) as π(σ2)π(D | σ2)π(τ | σ2, D). We assume π(σ2) ~ IG(α,
ν) ∝ exp (−ν/σ2)/(σ2)α+1, using, e.g., α = ν = 0.01, to represent a vague prior.

To derive π(D | σ2), we first consider the following simplified LMM:

(7)

i.e., model (6) with random effects a removed. Let . Following Daniels
(1999) and Natarajan and Kass (2000), we define an average shrinkage matrix for the
posterior mean of bi conditional on (β⋆, σ2) as (D−1 + 1/σ2V)−1 1/σ2V. By placing a uniform
prior on the above shrinkage matrix, we obtain the conditional prior

To derive π(τ | σ2, D), we rewrite the SPMM-induced LMM (6) as

(8)

where ∊⋆ = Z(1) b + ∊. Let R = Z(1) Z(1)T + σ2I.

The lack of a block-diagonal structure of Z(2) implies that the posterior mean of each ai
conditional on (β⋆, D, σ2) cannot be represented as a shrinkage estimator toward its prior
mean 0. In other words, there is no natural definition of a shrinkage coefficient associated
with the estimate of each ai. This hinders the application of the USP proposed by Daniels
(1999) or Natarajan and Kass (2000). We propose to work with the shrinkage matrix in the
posterior mean of the vector a, which can be shown to be equal to S = (τ−1I + Z(2)T

R−1Z(2))−11/τI.

Let Q be the diagonalizing orthogonal matrix that satisfies Z(2)T R−1Z(2) = QΛσ2,DQT,
where Λσ2,D is diagonal. Denote λi ≥ 0 the diagonal elements of Λσ2,D. Both Q and λi are
functions of (σ2, D), but not of τ. The shrinkage matrix S hence can be rewritten as S =
QS⋆QT, where S⋆ = (τ−1I + Λσ2,D)−1τ−1I. Because Q does not depend on τ, S can be
regarded as a linear transformation of S⋆. Therefore, a uniform prior on S is equivalent to a
uniform prior on S⋆. The diagonalized shrinkage matrix S⋆ contains r − 2 shrinkage
coefficients (τ−1 + λi)−1 τ−1 along the diagonal. Conditional on (σ2, D), in the spirit of
Daniels (1999) and Natarajan and Kass (2000), we define a USP for τ by placing a uniform

prior on (τ−1 + λ̄)−1τ−1 with . This leads to a USP for τ as
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(9)

THEOREM 1: In the normal SPMM (6), assume (X⋆, Z(1), Z(2)) is of full column rank p + mq + r
and n > p + mq + r. Then (1) the joint conditional USP π(D, τ|σ2) is proper; and (2) under
the improper prior π(β⋆, D, τ, σ2) ∝ 1/σ2 · π(D, τ | σ2), the posterior is proper.

The proof is given in Web Appendix A.1. Statement (1) is one of the desirable properties for
a noninformative prior as described in Daniels (1999). Statement (2) allows us to combine
the proposed USP with commonly used improper priors for the fixed effects and residual
variance.

The proposed USP is applicable to a general class of LMMs. Specifically, consider the
following general LMM:

(10)

where the random effects c = (c1, … , cm) ~ N(0, τI) and ∊ ~ N(0, R). The SPMM-induced
LMM (8) is a special case, with c = a, Ƶ = Z(2). The posterior mean of c involves a shrinkage
matrix S = (τ−1I + ƵT R−1 Ƶ)−1 τ−1I toward 0. Denote λi the eigenvalues of ƵT R−1 Ƶ and let

. The USP for τ in equation (10) can be defined by placing a uniform prior
on (1/τ + λ̄)−1 1/τ. When the matrix ƵT R−1 Ƶ is block diagonal, e.g., two-stage clustered
LMMs, the proposed USP reduces to the corresponding USP defined by Natarajan and Kass
(2000) in the normal outcome case. For independent data, it reduces to that in Daniels
(1999). The proofs are given in Web Appendix A.2.

One can also show a more general posterior propriety result. That is, Theorem 1 holds for
general LMM (10) as long as the covariance matrix has a conditionally (on σ2) proper prior,
assuming the above improper priors for β and σ2. These results extend the results of Chen,
Shao, and Xu (2002) for two-stage clustered random effect models with a normal outcome
to general LMMs.

Finally, we note one important computational detail. To compute the prior (9), one can write
λ̄ = tr(Z(2)T R−1Z(2))/(r − 2) = tr(Z(2)Z(2)T R−1)/(r − 2), where tr(·) represents the trace of a
matrix. This way the calculation of λ̄ does not involve finding the orthogonal transformation
of Z(2)T R−1 Z(2), and the computational burden is greatly reduced. In addition, R−1 can be
computed using the Schur complement formula (Searle, 1982, p. 261). This approach
converts calculation of the inverse of an n × n matrix to inverting an (m × q) × (m × q)
matrix.

Posterior Markov chain Monte Carlo (MCMC) simulation is implemented using the Gibbs
sampler with Metropolis steps for sampling the variance components. See Web Appendix A.
5 for details.

4. Bayesian SPMMs with Nonparametric Random Effects
4.1 SPMM with a Hierarchically Centered DP for Random Effects

In this section, we discuss inference in the SPMM (1) when the random effect distribution
F(b) is assigned a nonparametric DP prior. Specifically, we assume
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(11)

where DP(M, G0) denotes a DP with a total mass parameter M and base measure G0.

In LMMs when a DP prior is assumed for the random effect distribution, the base measure
G0 is typically assumed to have a zero mean, as in G0 = N(0, D) (Christopher and
MacEachern, 1996; Kleinman and Ibrahim, 1998; Pennell and Dunson, 2007, among
others). Despite the centering of bi at zero a priori, i.e., E(bi | D) = 0, the random distribution
G has a nonzero mean almost surely. This will lead to biased inference for the fixed effects
that are paired with the random effects bi, i.e., effects associated with common columns in
the design matrices X and Z, e.g., an intercept and a random intercept (Li, Müller, and Lin,
2007). The problem arises in SPMMs because the spline estimation of the nonparametric
function f(t) involves the fixed effect intercept and slope of time, and the subject-specific
random effects bi often contain random intercepts. We propose to adjust with the random
moments of a hierarchically centered DP to address this issue. We refer to the resulting
inference as center-adjusted inference.

The center-adjusted DP approach involves two modifications, namely rewriting model (11)
as a centered hierarchical model and a postprocessing adjustment. First, following Li et al.
(2007), we remove the paired fixed effects from X⋆ in equation (6) and absorb them in the
paired random effects by defining G0 = N(βb, D) with βb being an unknown parameter
vector. Therefore, the SPMM (6) is rewritten as

(12)

where β̃ corresponds to β⋆ with the paired fixed effects removed, and similarly for X ̃.

The matrices , are the matrix blocks in X ̃ and Z(1) that correspond
to the ith subject; and bi ~ DP(M, G0), with G0 = N(βb, D). We complete the DP SPMM
with hyperpriors on D, βb, τ, σ2. Specifically, we use the USP defined in Section 3 for (D, τ).
For βb, we assume βb ~ N(0, Σ0) with Σ0 = d′ ·I, where d′ is a large constant. We continue
using an IG prior for σ2.

The second and novel modification is an adjustment in the reported posterior inference.
Inference about βb is replaced by inference on the (random) moments of the random
probability measure G. Closed-form expressions for the conditional moments are given in Li
et al. (2007). See also Section 4.2.

Similar to the earlier discussion of posterior propriety for the normal SPMMs, we are
interested in posterior propriety under the DP SPMM with an improper prior on (β̃, βb, σ2).
This seems to have been largely ignored in the literature due to the common use of
conjugate vague yet proper priors. Li et al. (2007) show posterior propriety in a LMM

similar to equation (12), except with the  a term excluded. The inclusion of the random

effects  a for modeling the smoothing spline leads to dependence across subjects, thus
preventing a direct application of their results. Theorem 2 shows that a similar result still
holds.
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THEOREM 2: In the DP SPMM (12), assuming the centered DP prior and the conditions in
Theorem 1 hold, under the improper prior π(β̃, βb, D, τ, σ2) ∝ 1/σ2 · π(D, τ | σ2), the
posterior is proper.

The proof of Theorem 2 is given in Web Appendix A.3. The conclusion remains valid when
a DP prior is assumed for only a subvector of the random effects, with a multivariate normal
distribution for the remaining random effects and an arbitrary design matrix for all random
effects.

4.2 Center-Adjusted Inference for Fixed Effects Paired with Nonparametric Random Effects
Posterior simulation in model (12) is carried out by MCMC simulation. See Web Appendix
A.6 for details. We now describe a postprocessing technique to adjust for the random
moments of G. Li et al. (2007, Propositions 2 and 3) give explicit formulas for the posterior
conditional mean and covariance matrix of the (random) first two moments, μG = ∫bdG(b)
and CovG = ∫(b − μG)(b − μG)T dG(b) of the random probability measure G. We use these
closed-form expressions to draw inference on the fixed effects paired with bi and the
variance components of bi. Let y generically denote the observed data. We report E(μG | y)
and Cov (μG | y) as posterior inference for the fixed effects paired with bi, and E(CovG | y)
and Cov (CovG | y) as posterior moments for the variance components of bi. We report
posterior credible intervals (CIs) for the components of the mean and covariance matrix of G
using either a normal approximation or by matching their first and second moments to those
of a lognormal distribution, the latter being used for the variances. We select the log-normal
distribution because of its positive support.

4.3 Center-Adjusted Inference for f(t)
The estimation of f(t) in equation (12) involves estimation of the fixed effect intercept, slope
of time, and induced random effects a. If the nonparametric random effects bi contain a
random intercept, slope, or both, then we need to adjust inference on f(t), similar to the
adjusted inference for fixed effects. When no random intercept or slope term is present, no
adjustment is required for f(t).

In equation (12), let βc and ci be the subvectors of βb and bi that correspond to the fixed and
random intercept/slope/both, as appropriate. Let r = M/(m + M), as before. Further let

. If bi
includes a random intercept and/or slope, then we report posterior inference on f ≡ TμG +
Ba.

THEOREM 3:

i.

(13)

ii.

(14)

The proof of Theorem 3 is given in Web Appendix A.4. These results show that the
posterior mean and covariance matrix of f can be evaluated using the posterior samples of
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(ci, βc, D, a, M). The posterior CI for each component of f is obtained using a normal
approximation.

5. An Application to the Progesterone Data
The progesterone dataset contained a total of 492 observations from 34 healthy women with
each woman contributing from 11 to 28 observations over time. The menstrual cycle lengths
of these women ranged from 23 to 56 days, with an average of 29.6 days. Each woman’s
menstrual cycle length was standardized uniformly to a reference 28-day cycle (Sowers et
al., 1998). There were 98 distinct standardized time points. Figure 1a shows the data.

Denote by Yij the jth log-transformed progesterone value measured at standardized day tij
since menstruation for the ith woman, and by AGEi and BMIi her age and BMI, respectively.
We centered the tij’s at the average of all distinct time points and scaled by 10, i.e., scaled to
a range of 2.8 units. We consider the following SPMM:

(15)

where f(t) is a smooth function, bi are i.i.d. random intercepts with mean zero, and ∊ij are
independent residuals following a N(0, σ2) distribution. We centered age and BMI at the
medians 36 years and 26 kg/m2 and divided by 100. The curve f(t) hence represents the
progesterone profile for the population of women with age 36 years and BMI 26 kg/m2.

We first fit the SPMM (15) by assuming a N(0, θ) distribution for bi. We used independent
N(0, 104) priors for all fixed effect parameters in the LMM representation of equation (15)
and an IG(10−2, 10−2) prior for σ2. A USP was used for (θ, τ), where τ is the smoothing
parameter for f(t). The specification reflects a lack of prior information from the
investigators on the model parameters, in particular, features of the progesterone profile.
Some implementation detail can be found in Web Appendix A.6. Figure 1a plots the
posterior mean of f(t) and the pointwise 95% CIs. For comparison, we also evaluated the
corresponding estimates using independent IG(10−2, 10−2) priors for θ and τ. The fitted
curve and the 95% CIs remain virtually unchanged (not shown). The estimates of the
regression coefficients and variance components are presented in Table 1.

The posterior means of the random intercepts under both the USP and IG priors are clearly
bimodal with peaks around −0.35 and 0.5 (Figure 1c), suggesting nonnormality of the
random intercept distribution. We therefore fit the DP SPMM (15) assuming a
nonparametric distribution for the random intercepts bi with a hierarchically centered DP(M,
N(βb, θ)) prior. Accordingly, f(t) in equation (15) is replaced by fc (t), a centered version,
i.e., with μG subtracted. We considered two choices for the total mass parameter, M = 0.75
and M ~ G(0.5, 1), a gamma prior with E(M) = Var(M) = 0.5. We assign a N(0, 104) prior
for βb and a USP for (θ, τ). For comparison, we also carried out inference under π(θ, τ) =
π(θ)π(τ) with π(θ) = π(τ) = IG(10−2, 10−2).

To compare with inference assuming normal random effects, we report inference on f(t) ≡
μG + fc(t). The estimate of f(t) and corresponding 95% pointwise CIs are plotted in Figure 1b
(solid lines) with an IG(0.5, 1) prior for M and a USP for (θ, τ). The plots under the IG
priors for (θ, τ), and for fixed M(=0.75) and either a USP or IG priors for (θ, τ) (none shown)
are practically indistinguishable. Table 1 reports fixed effect and variance component
estimates under these models.

These results suggest that the posterior mean of f(t) is not greatly affected by the
distributional assumption on the random intercepts, as expected. The posterior means of f(t)
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are similar and the CIs using the center-adjusted DP prior are slightly shorter than those
using a normal prior. The progesterone level remains relatively low and stable in the first
half of a menstrual cycle and increases markedly after ovulation. It reaches a peak around
reference day 23 and then decreases. Except for β1 and β2, inference for other parameters are
essentially the same across different models. Remarkable changes were observed in the
estimate of β1. In contrast to the parametric model, the results under the DP model suggest a
significant age effect on the log progesterone.

To compare our results with those using Zhang et al.’s (1998) methods, we implemented
their (frequentist) approach without including the stochastic process term in their model for
a fair comparison. Their results (not shown) are very similar to those using our Bayesian
approach assuming normal random intercepts and a USP. Compared to their results, ours
using the center-adjusted DP prior and the USP are distinct in two aspects. First, we found a
significant age effect on log progesterone. The biological meaning of this finding is yet to be
investigated. We noticed that the 95% CIs for the fixed effects are generally shorter than the
frequentist confidence intervals. Second, although not large, there is an appreciable
difference in inference for the random intercept variance and smoothing parameter. The 95%
CI lengths are smaller for these parameters than their frequentist counterparts. As a result,
the average 95% CI lengths for the nonparametric function estimates are slightly smaller.
Although these differences are small in our data, when the number of distinct time points is
small or the number of subjects is small, larger differences are expected in estimating the
nonparametric function, random intercept variance, and smoothing parameter. We note that
the comparison of posterior credible versus frequentist confidence interval estimates should
not be overinterpreted. However, a reasonably constructed Bayesian CI may be expected to
possess desirable frequentist properties, such as those considered in our simulation studies.
A thorough discussion of this comparison is beyond the scope of this article.

For comparison, we also present in Table 1 the parameter estimates obtained under the DP
prior without center adjustments. Inference for the regression coefficients and residual
variance is similar across all DP models. Figure 1b (dashed lines) plots the pointwise
posterior means of f(t) and their 95% pointwise CIs for fixed M(=0.75) and IG priors for θ
and τ using the conventional DP prior without center adjustments. Compared to the solid
lines, the posterior means are shifted slightly downward and the CIs are dramatically wide.
For other prior combinations, i.e., fixed versus random M and USP versus IG priors, the
posterior means were shifted upward and the CIs were similarly wide. Specifically, for fixed
M + USP, the average  and the average CI length = 1.49; for random M + USP, the
average  and average CI length = 0.99; and for random M + IG priors, the average

 and average CI length = 1.12. In comparison, the average posterior mean was 0.99
and the average CI length was 0.45 under the centered DP prior with adjustments and a
gamma prior for M.

6. Simulation Studies
We carried out extensive simulation studies to investigate the (frequentist) performance of
the proposed inference approach. In all simulations we set up a simulation truth as in model
(1) (or model (1) with both age and BMI excluded) to mimic the design in the progesterone
study. Unless otherwise stated we used a moderate sample size of m = 34 in the simulations.
More details can be found in Web Appendix A.7. Some results are summarized in Tables 2
and 3. We report the relative biases (RBs), mean squared errors (MSEs), standard errors of
the MSEs (SEs), 95% CI lengths (CILs), and the 95% coverage probabilities (CPs). Here RB
is defined as the ratio of bias and the absolute value of the nonzero true parameter. The
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simulations with 200 replicates, 21,000 iterations with 1,000 burn-in in each replicate, took
on average about 15 hours to run.

First we used a simulation truth model as in equation (1) with a normal random effect
distribution, bi ~ N(0, θ), two fixed effects, (β1, β2) and f(·) like in the progesterone study.
The simulation results indicate that the proposed inference performs well assuming normal
random effects and under both the USPs and IG priors for the variance components and the
smoothing parameter. Some summaries are shown in Table 2.

Next we considered a scenario with a bimodal normal mixture as the true random effect
distribution. The results show unbiased estimates of all model parameters under both the
USP and IG priors for the variance components. However, the MSEs for the estimated β1
and β2 assuming normal random effects are significantly larger than those using the center-
adjusted inference under the DP priors. The 95% CI lengths assuming normal priors are
significantly larger, although their CPs are closer to the nominal 95%. Some summaries are
shown in Table 3.

For comparison with a traditional DP prior, we carried out inference under the same model
assuming a DP prior without center adjustments. We find markedly biased estimates, wide
CIs, and overly high CPs for f(t). See Figure 2 in the Web Appendix. The estimated random
effect distribution, E(G | Y), which included the corresponding fixed effect as its mean, is
plotted in Figure 2 in the article. Details on how the random effect distribution was
estimated are given in Web Appendix A.8. Also shown in Figure 2 is E(G | Y) under a
normality assumption for the random effect distribution. It is symmetric, as expected. In
comparison, the estimates using the centered-adjusted DP prior capture the bimodality of the
true distribution. The estimates are reasonable considering the latent nature of the random
effects, the relatively small sample size (m = 34) and the discrete nature of the DP prior.

To investigate performance under smaller sample sizes, we reduced the number of subjects
to m = 10. The simulation results are shown in Table 3. We find that the IG prior leads to
considerably biased inference for the random effect variance θ. Similar results were obtained
when we increased the simulation truth of the variance of the random intercepts. These
results suggest that the USP provides a robust alternative to the IG priors for inference on
variance components, especially when the number of subjects is small.

Finally, we performed more simulations with a bimodal random effect distribution and
conducted center-adjusted inference with a DP prior. We compared the IG prior versus the
USP for the variance of the base measure. The results are summarized in Table 3. The IG
prior leads to seriously biased estimate of the random effect variance θ. The problem persists
even when the sample size m was doubled to 68 (results not shown), suggesting difficulties
with the use of the diffuse IG priors for variance components. More simulation results can
be found in the Web Appendix.

7. Discussion
We proposed a framework for Bayesian inference in SPMMs. We addressed two important
gaps in the literature, a default prior for the variance components in such models, and
adjustment of inference for fixed effects that are linked with non-parametrically modeled
random effects. The latter includes inference for a nonparametric mean function over time.

The proposed approach is fully model based, and thus enjoys all the advantages of such
methods. In particular, posterior inference on any well defined event of interest is
meaningful and possible. Uncertainties can be characterized by appropriate summaries of
the posterior distribution. The proposed methods allow unequally spaced time points in
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estimating the nonparametric function. When data are missing completely at random or
missing at random, due to the model-based nature, the proposed inference procedures are
still valid.

Some limitations remain. For example, in the application example, we assumed a SPMM
with random intercept for the log progesterone level, with the assumption that the individual
progesterone profiles differ by a vertical shift. A possible extension of the model would be
to model individual departure from the mean curve as another spline function. On the other
hand, an informal inspection of the residual curves in the progesterone example does not
show important violations of the current assumptions. The periodicity of the curve estimates,
when desired, could be incorporated in our model. Our current model does not impose this
constraint. This does not seem to be a problem, as the posterior log progesterone profile
appears to already satisfy (approximately) the periodicity constraint.

We focus on estimation of a single nonparametric function in this article. But the methods
can be generalized to generalized additive mixed models in the presence of multiple
nonparametric additive covariate effects and non-Gaussian outcomes (Lin and Zhang, 1999).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The posterior means and 95% pointwise CIs of f(t) for the progesterone data. (a) Assuming
normal random intercepts and USPs for the random intercept variance and smoothing

parameter: ––– posterior mean ⋯⋯ 95% CIs. Average , denoted as  and
average CI length = 0.46. The unconnected dots represent the raw data. (b) –––: Posterior
means and 95% CIs assuming a DP prior with center adjustment and a gamma prior for
M(~G(0.5, 1)) for the random intercept distribution and USPs for the random intercept

variance and smoothing parameter , Average CI length = 0.45). ⋯⋯: Posterior
means and 95% CIs assuming the traditional DP prior without center adjustment under fixed
M(=0.75) and IG priors for the random intercept variance and smoothing parameter

, Average CI length = 2.62). (c) Histograms of the 34 posterior means of the
random intercepts when their distribution is assumed normal for the progesterone data. The
left and right panels correspond to the models assuming USPs and IG priors for the variance
of the random intercepts and smoothing parameter, respectively.
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Figure 2.
The densities of the posterior means of the random intercept distributions in the model with
age and BMI included and the true random intercept distribution being 11/18 × N(−0.35,
0.03) + 7/18 × N(0.55, 0.05). ⋯⋯: normal prior for the random intercept distribution – – –:
DP prior with center adjustment with fixed M(= 0.75) — —: DP prior with center
adjustment with a gamma prior for M(~G(0.5, 1)). USPs are used for the random intercept
variance and smoothing parameter. The solid curve (–––) is the true density of the random
intercept shifted 0.9737 unit to the right. This shift corresponds to the true average values of
f(t) across all distinct time points. Results are based on 200 replicates. The corresponding
estimated densities under the inverse gamma priors for θ and τ are practically
indistinguishable (not shown).
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