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Abstract— While probabilistic techniques have been considered
extensively for performing inference over the space of metric
maps, no corresponding general purpose methods exist for topo-
logical maps. We present the concept of Probabilistic Topological
Maps (PTMs), a sample-based representation that approximates
the posterior distribution over topologies given available sensor
measurements. The PTM is obtained by performing Bayesian
inference over the space of all possible topologies and provides a
systematic solution to the correspondence problem in the domain
of topological mapping. It is shown that the space of topologies
is equivalent to the space of set partitions on the set of available
measurements, which is intractably large. This combinatorial
problem is overcome by computing an approximate sample-based
representation of the posterior. We describe a general frame-
work for modeling measurements and estimating the posterior.
A Markov Chain Monte Carlo (MCMC) algorithm that uses
specific instances of these models for odometry and appearance
measurements is also discussed. We present experimental results
that validate our technique and generate good maps when using
odometry and appearance as sensor measurements.

I. INTRODUCTION

Mapping an unknown and uninstrumented environment is
one of the foremost problems in robotics. Both metric maps
[9][33][31] and topological maps [38][3][27][21] have been
explored in depth as viable representations of the environment
for this purpose. In both cases, probabilistic approaches have
had great success in dealing with the inherent uncertainties
associated with robot sensori-motor control, that would oth-
erwise make map-building a very brittle process. Lately, the
vast majority of probabilistic solutions to the mapping problem
also solve the localization problem simultaneously, since these
two problems are intimately connected. A solution to the
Simultaneous Localization and Mapping (SLAM) problem, as
it is called, demands that the algorithm maintain beliefs over
the pose of the robot as well as the map of the environment.
Subsequently, the pose and the map are each recursively
updated by assuming the belief about the other quantity to
be fixed and true [31].

The majority of the work in robot mapping deals with
the construction of metric maps. Metric maps provide a fine-
grained representation of the environment and also contain the
actual geometric structure of the environment. This makes nav-
igation using metric maps easy but also introduces significant
problems during their construction. Due to systematic errors
in odometry, the map tends to drift over time, which makes
global consistency difficult to achieve in large environments.

Topological representations, on the other hand, offer a
different set of advantages that are useful in many scenarios.
Topological maps attempt to capture spatial connectivity of

the environment by representing it as a graph with arcs
connecting the nodes that are designated significant places
in the environment [23]. The arcs are usually annotated with
navigation information. This is the definition of a topological
map used in our work.

Possibly the hardest problem in robotic mapping is the
correspondence problem or data association problem, also
variously known as “closing the loop” [15] or “the revisiting
problem” [43]. The correspondence problem is the problem of
determining if sensor measurements taken at different points
in time correspond to the same physical location. When a
robot receives a new measurement, it has to decide whether
to assign this measurement to one of the locations it has
visited previously, or to a completely new location. The corre-
spondence problem is hard as the number of possible choices
grows combinatorially. Indeed, we demonstrate below that the
number of choices is the same as the number of possible
partitions of a set, which grows hyper-exponentially with the
cardinality of the set. Previous solutions to the correspondence
problem [46][20] commit to a specific correspondence at each
step, so that once a wrong decision has been made, the
algorithm has difficulty recovering.

In this paper, we describe Probabilistic Topological Maps
(PTMs), a sample-based representation that captures the pos-
terior distribution over all possible topological maps given the
available sensor measurements. The intuitive reason for com-
puting the posterior is to solve the correspondence problem
for topologies in a systematic manner. The set of all possi-
ble correspondences between measurements and the physical
locations from which the measurements are taken is exactly
the set of all possible topologies. By inferring the posterior on
this set, it is possible to locate the most probable topologies
without committing to a specific correspondence at any point
in time, thus providing the most general solution.

The idea of defining a probability distribution over the space
of topological maps and using sampling in order to obtain this
distribution is the major contribution of this work. The key
realization here is that a distribution over this combinatorially
large space can be succinctly approximated by a sample set
drawn from this distribution. While sampling has been used in
the context of data association previously in computer vision
[4][5], its use in finding a distribution over all possible maps
is completely novel to the best of our knowledge.

As a second major contribution, we show how to perform
inference in the space of topologies given uncertain sensor data
from the robot, the outcome of which is exactly a Probabilistic
Topological Map. A general theory for incorporating odometry
and appearance measurements in the inference process is



provided. More specifically, we describe an algorithm that
uses Markov chain Monte Carlo (MCMC) sampling [11] to
extend the highly successful Bayesian probabilistic framework
to the space of topologies. To enable sampling over topologies
using MCMC, each topology is encoded as a set partition over
the set of landmark measurements. We then sample over the
space of set partitions, using as target distribution the posterior
probability of the topology given the measurements.

Another important aspect of this work is the definition of
a simple but effective prior on the density of landmarks in
the environment that we assume. We demonstrate that given
this prior the additional sensor information used can be very
scant indeed. In fact, while our method is general and can
deal with any type of sensor measurement (or, for that matter,
prior knowledge), our results include those obtained using
only odometry measurements that still yield nice maps of the
environment. In addition to using odometry, we also describe
an appearance model for use in our algorithm.

Our algorithm is completely data-driven in the sense that
it does not require or provide a control algorithm for robot
exploration that aids in mapping. Our algorithm also does
not compute localization information for the robot during the
map inference. Finally, our contribution is not a complete
system for topological mapping, but a technique to compute
a posterior distribution over topologies given the sensor mea-
surements from the landmark locations. Accordingly, we do
not provide landmark detection algorithms or other techniques
for detecting “significant places”, but assume that these are
available.

In subsequent sections, we first provide related work in
probabilistic mapping in general and topological mapping in
particular. Then, we define Probabilistic Topological Maps for-
mally and provide the theory for estimating the posterior over
the space of topologies. Subsequently, we describe an imple-
mentation of the theory using MCMC sampling in topological
space. This is followed by a section that provides details about
the specific odometry and appearance models used and their
evaluation. In particular, we use Fourier Signatures [17][28]
of panoramic images to construct an appearance model in this
case. A prior over the space of topologies is also described.
Finally, we provide experimental validation for our technique
and conclude the paper with a discussion about our method.

II. RELATED WORK

Our work is drawn from the area of probabilistic mapping
and, more specifically, topological mapping. We review prior
research in these areas that is relevant to our work.

A. Probabilistic Mapping and SLAM

Early approaches to the mapping problem (usually obtained
by solving the SLAM problem) used Kalman filters and
Extended Kalman filters [24][2][6][8][41][42]. Kalman filter
approaches assume that the motion model, the perceptual
model (or the measurement model) and the initial state distri-
bution are all Gaussian. Extended Kalman filters relax these
assumptions a bit by linearizing the motion model using
a Taylor series expansion. More importantly, the Kalman

filter approach can estimate the complete posterior over maps
efficiently. This is offset by their inability to cope with the
correspondence problem.

A well-known extension of the basic Kalman filter paradigm
is the Lu/Milios algorithm [26], a laser-specific algorithm that
performs maximum likelihood correspondence. It iterates over
a map estimation and a data association phase that enable
it to recover from wrong correspondences in the presence
of small errors. In spite of this, the algorithm encounters
limitations when faced with large pose errors and fails in large
environments.

Rao-Blackwellized Particle Filters (RBPFs) [34], of which
the FastSLAM [31][32] algorithm is a specific implementation,
are also theoretically capable of maintaining the complete
posterior distribution over maps. This is possible since each
sample in the RBPF can represent a different data association
decision [30]. However, in practice the dimensionality of the
trajectory space is too large to be adequately represented in
this approach, and often the ground-truth trajectory along
with the correct data association will be missed altogether.
This problem is a fundamental shortcoming of the importance
sampling scheme used in the RBPF, and cannot be dealt with
satisfactorily except by an exponential increase in the number
of samples, which is intractable. Additionally, RBPFs are also
prone to odometry drift over time. Recent work by Haehnel
et. al. [15] tries to overcome the odometry drift by correcting
for it through scan matching.

Yet another approach to SLAM that has been successful
is the use of the EM algorithm to solve the correspondence
problem in mapping [46][1]. The algorithm iterates between
finding the most likely robot pose and the most likely map.
EM-based algorithms do not compute the complete posterior
over maps, but instead perform hill-climbing to find the most
likely map. Such algorithms make multiple passes over sensor
data which makes them extremely slow and unfit for on-line,
incremental computation. In addition, EM cannot overcome
local minima, resulting in incorrect data associations. Other
approaches exist that report loop closures and re-distribute the
error over the trajectory [14][35][45][43], but these decisions
are again irrevocable and hence mistakes cannot be corrected.

Recent work by Duckett [7] on the SLAM problem is
similar to our own, in the sense that he too searches over
the space of possible maps. The SLAM problem is presented
as a global optimization problem and metric maps are coded
as chromosomes for use in a genetic algorithm. The genetic
algorithm searches over the space of maps (or chromosomes)
and finds the most likely map using a fitness function. How-
ever, since genetic algorithms are susceptible to local minima,
this method suffers from the same shortcomings as the EM
techniques described previously.

B. Topological Maps

Many topological approaches to mapping include robot
control to help maneuver the robot to the exact location it was
in when visiting the location previously or to guide the robot
around a suspected loop again. This helps solve the correspon-
dence problem. Examples of this approach include Choset’s



Generalized Voronoi Graphs [3] and Kuipers’ Spatial Seman-
tic Hierarchy [23]. Other approaches that involve behavior-
based control for exploration-based topological mapping are
also fairly common. Mataric [27] uses boundary-following
and goal-directed navigation behaviors in combination with
qualitative landmark identification to find a topological map
of the environment. A complete behavior-based learning sys-
tem based on the Spatial Semantic Hierarchy that learns at
many levels starting from low-level sensori-motor control to
topological and metric maps is described in [37]. Yamauchi
et al. [50][51] use a reactive controller in conjunction with
an Adaptive Place Network that detects and identifies special
places in the environment. These locations are subsequently
placed in a network denoting spatial adjacency.

Though probabilistic methods have been used in conjunction
with topological maps before, none exist that are capable
of dealing with the inference of a posterior distribution in
topological space. Most instances of previous work extant in
the literature that incorporate uncertainty in topological map
representations do not deal with general topological maps,
but with the use of decision theory to learn a policy that
the robot follows to navigate the environment. Simmons and
Koenig [40] model the environment using a POMDP in which
observations are used to update belief states. Shatkay and
Kaelbling [39] use the Baum-Welch algorithm, a variant of
the EM algorithm used in the context of HMMs, to solve
the correspondence problem for topological mapping. Other
examples of such work include [19] and [13].

Lisien et al. [25] have provided a method that combines
locally estimated feature-based maps with a global topological
map. Data association for the local maps is performed using
a simple heuristic wherein each measurement is associated
with the existing landmark having the minimum distance to
the measured location. A new landmark is created if this
distance is above a threshold. The set of local maps is then
combined using an “edge-map” association, i.e. the individual
landmarks are aligned and the edges compared. Clearly, this
technique, while suitable for mapping environments where the
landmark locations are sufficiently dissimilar, is not robust in
environments with large or multiple loops.

Another approach that is closer to the one presented here
is given by Tomatis et al. [49] and uses POMDPs to solve
the correspondence problem. However, in their case while
a multi-hypothesis space is maintained, it is used only to
detect the points where the probability mass splits into two.
Also, this work like a lot of others uses specific qualities of
the indoor environment such as doors and corridor junctions,
and hence is not generally applicable to any environment.
Other work by Kuipers and Beeson [22] focusses on the
identification of distinctive places which is accomplished by
applying a clustering algorithm to the measurements at all
the distinctive places. Unlike our method, this method does
not include inference about the topologies themselves. Finally,
SLAM algorithms used to generate metric maps have also
been applied to generating integrated metric and topological
maps with some success. For instance, Thrun et al. [47] use
the EM algorithm to solve the correspondence problem while
building a topological map. The computed correspondence is
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Fig. 1. Two topologies with 6 observations each corresponding to set
partitions (a) with six landmarks ({0}, {1}, {2}, {3}, {4}, {5}) and (b)
with five landmarks({0}, {1, 5}, {2}, {3}, {4}) where the second and sixth
measurement are from the same landmark.

subsequently used in constructing a metric map. By contrast,
Thrun [44] first computes a metric map using value iteration
and uses thresholding and Voronoi diagrams to extract the
topology from this.

III. PROBABILISTIC TOPOLOGICAL MAPS

A Probabilistic Topological Map is a sample-based repre-
sentation that approximates the posterior distribution P (T |Z)
over topologies T given observations Z. While the space of
possible maps is combinatorially large, a probability density
over this space can be approximated by drawing a sample of
possible maps from the distribution. Using the samples, it is
possible to construct a histogram on the support of this sample
set.

For the purpose of this work, we assume that the robot is
equipped with a “landmark detector” that simply recognizes
a landmark when it is near (or on) a landmark, i.e. it is
a binary measurement that tells us when landmarks were
encountered. No knowledge of the correspondence between
landmark observations and the actual landmarks is given to the
robot: indeed, that is exactly the topology that we seek. The
problem then is to compute the discrete posterior probability
distribution P (T |Z) over the space of topologies.

Our technique exploits the equivalence between topologies
of an environment and set partitions of landmark measure-
ments, which group the measurements into a set of equivalence
classes. When all the measurements of the same landmark are
grouped together, this naturally defines a partition on the set of
measurements. It can be seen that a topology is nothing but the
assignment of measurements to sets in the partition, resulting
in the above mentioned isomorphism between topologies and
set partitions. An example of the encoding of topologies as
set partitions is shown in Figure 1.

We begin our consideration by assuming that the robot
observes N “special places” or landmarks during a run, not
all of them necessarily distinct. Formally, for the N element
measurement set Z = {Zi|1 ≤ i ≤ N}, a partition T
can be represented as T = {Si | i ∈ [1,M ]}, where
each Si is a set of measurements such that Si ∩ Sj = φ

∀i, j ∈ [1,M ], i �= j,
⋃M
i=1 Si = Z , and M ≤ N is

the number of sets in the partition. M is also the number



of distinct landmarks in the environment. In the context of
topological mapping, all members of the set S i represent
landmark observations of the ith landmark. The cardinality of
the set of all possible topologies is identical to the number of
set partitions of the observation N -set. This number is called
the Bell number bN [36], defined as bN = 1

e

∑∞
k=0

kN

k! , and
grows hyper-exponentially (but slower than the factorial) with
N , for example b1 = 1, b2 = 5 but b15 =190899322. The
combinatorial nature of this space makes exhaustive evaluation
impossible for all but trivial environments.

IV. A GENERAL FRAMEWORK FOR INFERRING PTMS

The aim of inference in the space of topologies is to obtain
the posterior probability distribution on topologies P (T |Z).
All inference procedures that compute sample-based represen-
tations of distributions require that evaluation of the sampled
distribution be possible. In this section, we describe the general
theory for evaluating the posterior at any given topology.

Using Bayes Law on the posterior P (T |Z), we obtain

P (T |Z) ∝ P (Z|T )P (T ) (1)

where P (T ) is a prior on topologies and P (Z|T ) is the
observation likelihood.

In this work, we assume that the only observations we
possess are odometry and appearance. Note that this is not
a limitation of the framework, and other sensor measure-
ments, such as laser range scans, can easily be taken into
consideration. We factor the set Z as Z = {O,A} , where
O and A correspond to the set of odometry and appearance
measurements respectively. This allows us to rewrite (1) as

P (T | O,A) = kP (O,A|T )P (T )
= kP (O|T )P (A|T )P (T ) (2)

where k is the normalization constant, and we have used
the fact that the appearance and odometry are conditionally
independent given the topology. We discuss evaluation of the
appearance likelihood P (A|T ), odometry likelihood P (O|T ),
and the prior on topologies P (T ), in the following sections.

A. Evaluating the Odometry Likelihood

It is not possible to evaluate the odometry likelihood
P (O|T ) without knowledge of the landmark locations. How-
ever, since we are not interested in the landmark locations, we
integrate over the set of landmark locations X and calculate
the marginal distribution P (O|T ) from the joint distribution
P (O,X |T ). The likelihood is then the following integral:

P (O|T ) =
∫
X

P (O|X,T )P (X |T ) (3)

where P (O|X,T ) is the measurement model, an unknown
density on O given X and T , and P (X |T ) is a prior over land-
mark locations. Note that (3) makes no assumptions about the
actual form of X , and hence, is completely general. Evaluation
of the odometry likelihood using (3) requires the specification
of a prior distribution P (X |T ) over landmark locations in the
environment and a measurement model P (O|X,T ) for the
odometry given the landmark locations.

B. Evaluating the Appearance Likelihood

Similar to the estimation of the odometry likelihood, which
was performed by introducing the set of landmark locations,
estimation of the appearance likelihood P (A | T ) is performed
through the introduction of a hidden parameter Y = {y i|1 ≤
i ≤ M} which denotes the “true appearance” corresponding
to each set in the topology. As we do not care about computing
this value we marginalize over Y , so that

P (A | T ) =
∫
Y

P (A | Y, T )P (Y | T ) (4)

where P (Y | T ) is a prior on the appearance. As each
individual yi is independent of all other yj , the prior P (Y | T )
can be factored into a product of priors on the individual y i.

P (Y | T ) =
M∏
i=1

P (yi) (5)

The topology T introduces a partition on the set of appear-
ance measurements by determining which “true appearance”
yi each measurement aij actually measures, i.e the partition
encodes the correspondence between the set a and the set y.
Also, given Y , the likelihood of the appearance can be factored
into a product of likelihoods of the individual appearance
instances. Hence, denoting the ith set in the partition as S i,
we rewrite P (A | Y, T ) as -

P (A | Y, T ) =
M∏
i=1

|Si|∏
j=1

P (aij | yi) (6)

where the dependence on T is subsumed in the partition.
Combining Equations (4), (5) and (6), we get the expression
for the appearance likelihood as

P (A | T ) =
M∏
i=1

∫
yi

P (yi)
|Si|∏
j=1

P (aij | yi) (7)

In the above equation, P (yi) is a prior on appearance in the
environment, and P (aij | yi) is the appearance measurement
model. Evaluation of the appearance likelihood requires the
specification of these two quantities.

C. Prior on Topologies

The prior on topologies P (T ), required to evaluate (2),
assigns a probability to topology T based on the number of
distinct landmarks in T and the total number of measurements.
The prior is easily obtained and intuitively understood using
an urn-ball model.

Let the total number of landmarks in the environment be L,
and let N and M be the number of measurements and number
of landmarks in the topology as before. It is possible that L is
greater than N . This setup can be converted into an urn-ball
model by considering landmarks to be urns and measurements
to be balls, giving L urns and N balls respectively. A set
partition on the measurements is created by randomly adding
the balls to the urns, where it is assumed that a ball is equally
likely to land in any urn (i.e. there is a uniform distribution
on the urns). The distribution on the number of occupied urns,



after adding all the N balls randomly to the urns, is given by
the Classical Occupancy Distribution [18] as

P (M) =
(
L

M

)
L−NM !

{
N

M

}
(8)

where
{
N
M

}
denotes the Stirling number of the second kind

that gives the number of possible ways to split a set of size N
into M subsets, and is defined recursively as

{
N
M

} ∆=
{
N−1
M−1

}
+

M
{
N−1
M

}
[36].

The number of occupied urns after adding all the balls
corresponds to the number of landmarks in the topology, while
the specific allocation of balls to urns (called an allocation
vector) corresponds to the topology itself. Also, (8) assigns an
equal probability to all ball allocations with the same number
of occupied urns. Hence, we can interpret (8) as

P (M) ∝ P (allocation vector with M occupied urns)×
No. of allocation vectors with M occupied urns (9)

The number of allocation vectors with M occupied urns is
equal to the number of partitions of the set of balls into M
subsets. This is precisely the Stirling number of the second
kind

{
N
M

}
. Combining this observation with (8) and (9) yields

P (allocation with M occupied urns) ∝
(
L

M

)
L−NM !

=
L!

(L−M)!
L−N

As mentioned previously, the probability of an allocation
vector corresponds to the probability of a topology. Hence,
the prior probability of a topology T with M landmarks is

P (T |L) = k
L−N × L!
(L−M)!

(10)

where k is a normalization constant. This prior distribution
assigns equal probability to all topologies containing the same
number of landmarks.

Note that the total number of landmarks L is not known.
Hence, we assume a Poisson prior on L, giving P (L|λ) =
λLe−λ

L! , and marginalize out L to get

P (T ) =
∑
L

P (T |L)P (L|λ)

∝
∑
L

L−N × λLe−λ

(L −M)!

= e−λ
∞∑

L=M

L−N × λL

(L −M)!
(11)

where λ is the Poisson parameter and the summation replaces
the integral as the Poisson distribution is discrete. In practice,
the prior on L is actually a truncated Poisson distribution since
the summation in (11) is only evaluated for a finite number
of terms. Specifying a different distribution on the allocation
of balls to urns, rather than the uniform distribution assumed
above, yields different priors on topologies. We do not further
explore this possibility in this work.

Algorithm 1 The Metropolis-Hastings algorithm
1) Start with a valid initial topology Tt, then iterate once for each

desired sample
2) Propose a new topology T

′
t using the proposal distribution

Q(T ′
t ; Tt)

3) Calculate the acceptance ratio

a =
P (T ′

t |Zt)

P (Tt|Zt)

Q(Tt; T
′
t )

Q(T ′
t ; Tt)

(12)

where Ztis the set of measurements observed up to and
including time t.

4) With probability p = min(1, a), accept T ′
t and set Tt ← T ′

t .
If rejected we keep the state unchanged (i.e. return Tt as a
sample).

V. INFERRING PROBABILISTIC TOPOLOGICAL MAPS

USING MCMC

The previous section provided a general theory for inferring
the posterior over topologies using odometry and appearance
information. We now present a concrete implementation of
the theory that uses the Metropolis-Hastings algorithm [16],
a very general MCMC method, for performing the inference.
All MCMC methods work by running a Markov chain over
the state space with the property that the chain ultimately
converges to the target distribution of our interest. Once the
chain has converged, subsequent states visited by the chain
are considered to be samples from the target distribution. The
Markov chain itself is generated using a proposal distribution
that is used to propose the next state in the chain, a move in
state space, possibly by conditioning on the current state. The
Metropolis-Hastings algorithm provides a technique whereby
the Markov chain can converge to the target distribution
using any arbitrary proposal distribution, the only important
restriction being that the chain be capable of reaching all the
states in the state space.

The pseudo-code to generate a sequence of samples from
the posterior distribution P (T |Z) over topologies T using
the Metropolis-Hastings algorithm is shown in Algorithm 1
(adapted from [11]). In this case the state space is the space of
all set partitions, where each set partition represents a different
topology of the environment. Intuitively, the algorithm samples
from the desired probability distribution P (T |Z) by rejecting
a fraction of the moves generated by a proposal distribution
Q(T ′

t ;Tt), where Tt is the current state and T ′
t is the proposed

state. The fraction of moves rejected is governed by the
acceptance ratio a given by (12), which is where most of
the computation takes place. Computing the acceptance ratio,
and hence, sampling using MCMC, requires the design of a
proposal density and evaluation of the target density, the details
of which are discussed below.

We use a simple split-merge proposal distribution that
operates by proposing one of two moves, a split or a merge
with equal probability at each step. Given that the current
sample topology has M distinct landmarks, the next sample
is obtained by splitting a set, to obtain a topology with M +1
landmarks, or merging two sets, to obtain a topology with
M − 1 landmarks. If the chosen move is not possible, for
example a merge move may not be possible because the
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Fig. 2. Illustration of the proposal - Given a topology (a) corresponding to
the set partition with N=5, M=4, the proposal distribution can (b) perform
a merge step to propose a topology with a smaller number of landmarks
corresponding to a set partition with N=5, M=3 or (c) perform a split step
to propose a topology with a greater number of landmarks corresponding to
a set partition with N=M=5 or re-propose the same topology.

topology only contains one landmark, the current topology
is re-proposed. The proposal is illustrated in Figure 2 for a
trivial environment.

The merge movemerges two randomly selected sets in the
partition to produce a new partition with one less set than
before. The probability of a merge is simply 1/NM where
NM is the number of possible merges and is equal to the
binomial coefficient

(
M
2

)
, (M > 1).

The split movesplits a randomly selected set in the partition
to produce a new partition with one more set than before.
To calculate the probability of a split move, let NS be the
number of non-singleton sets in the partition. Clearly, NS is
the number of sets in the partition that can be split. Out of
these NS sets, we pick a random set R to split. The number
of possible ways to split R into two subsets is given by the
Stirling number

{|R|
2

}
. Combining the probability of selecting

R and the probability of splitting it, we obtain the probability

of the split move as psplit =
(
NS

{|R|
2

})−1

.
The proposal distribution is summarized in pseudo-code

format in Algorithm 2, where q is the proposal distribution
and r = q(T ′|T )

q(T |T ′) is the proposal ratio, a part of the acceptance
ratio in Algorithm 1. It is to be noted that this proposal does
not incorporate any domain knowledge, but uses only the
combinatorial properties of set partitions to propose random
moves

In addition to proposing new moves in the space of
topologies, we also need to evaluate the posterior probability
P (T |Z). This is done as described in Section IV. The specifi-
cation of the measurement models and the details of evaluating
the posterior probability using these models are given in the
following section.

VI. EVALUATING THE POSTERIOR DISTRIBUTION

We evaluate the posterior distribution, which is also the
MCMC target distribution, using (2). It is important to note
that we do not need to calculate the normalization constant
in (2) since the Metropolis-Hastings algorithm requires only a
ratio of the target distribution evaluated at two points, wherein
the normalization constant cancels out. The odometry and

Algorithm 2 The Proposal Distribution
1) Select a merge or a split with probability 0.5
2) If a merge is selected go to 3, else go to 4
3) Merge move:

• if T contains only one set, re-propose T ′ = T , hence
r = 1

• otherwise select two sets at random, say P and Q

a) T ′ = (T − {P} − {Q}) ∪ {P ∪ Q} and q(T ′|T ) =
1

NM

b) q(T |T ′) is obtained from the reverse case 4(b), hence
r = N−1

M NS

�|P �Q|
2

�
, where NS is the number of

possible splits in T ′

4) Split move:
• if T contains only singleton sets, re-propose T ′ = T ,

hence r = 1
• otherwise select a non-singleton set R at random from T

and split it into two sets P and Q.
a) T ′ = (T − {R}) ∪ {P, Q} and q(T ′|T ) =�

NS

�|R|
2

��−1

b) q(T |T ′) is obtained from the reverse case 3(b), hence

r = NM

�
NS

�|R|
2

��−1

, where NM is the number of

possible merges in T ′
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Fig. 3. Cubic penalty function (in this case, with a threshold distance of 3
meters) used in the prior over landmark density

appearance measurement models required to evaluate (2) are
described below.

A. Evaluating the Odometry Likelihood

Evaluation of the odometry likelihood is performed using
(3) under the assumption, common in robotics literature, that
landmark locations have the 2D form X = {(x i, yi, θi)|1 ≤
i ≤ N}. This requires the definition of a prior on the
distribution of the landmark locations X conditioned on the
topology T , P (X |T ).

We use a simple prior on landmarks that encodes our
assumption that landmarks do not exist close together in the
environment. If the topology T places two distinct landmarks
xi and xj within a distance d of each other, the negative log
likelihood corresponding to the two landmarks is given by the
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Fig. 4. Illustration of the optimization using “soft constraints”. The observed
odometry in (a) is modified to the one in (b) because the soft constraint
determined by the topology used in this case, ({0, 4}, {1}, {2}, {3}) , tries
to place the first and last landmarks at the same physical location.

penalty function

L(xi, xj ;T ) = L(xj , xi;T ) =
{

f(d) d < D
0 d ≥ D

(13)

where d is the Euclidean distance between xi and xj , D is
a threshold value, called the “penalty radius”, and we define
f(d) to be a cubic function as shown in Figure 3. The cubic
function is defined using two parameters - the penalty radius D
at which the function becomes zero, and the maximum value
of the function at the origin. The total probability of landmark
locations X given topology T , P (X |T ), is then calculated as

P (X |T ) = exp



−

∑
1 ≤ i < j ≤ N
xj /∈ S(xi)

L (xi, xj)




(14)

where S(xi) denotes the set containing xi.
Now, we can write the negative log-likelihood function

corresponding to P (O|T ) in (3) as

LO(X) =
(
X −XO

σO

)2

+
∑
S∈T

∑
i,j∈S

(
Xi −Xj

σT

)2

+
∑

1 ≤ i < j ≤ N
xj /∈ S(xi)

L (xi, xj) (15)

where S is a set in the partition corresponding to T , σO and σT
are standard deviations explained below, and Xo is the set of
landmark locations obtained from the odometry measurements.
The intuition here is that the topology T constrains some
measurements as being from the same location even though the
odometry may put these locations far apart. The log-likelihood
function accounts for the error from distorting the odometry,
the first term in (16), and the error for not conforming to the
topology T , the second term in (16).

The error for not conforming to a topology is expressed
through a set of “soft constraints”. These constraints try to

place two observations that are ascribed to the same landmark
by the topology at the same physical location. A simple
example illustrating soft constraints is given in Figure 4. The
standard deviations for the odometry and soft constraints, σO
and σT respectively, encode the amount of error that we are
willing to tolerate in each of these quantities. The final term
in (15), where the sum is over all Xi and Xj not contained
in the same set, is simply the negative log-likelihood of the
prior in (14).

1) Numerical Evaluation of the Odometry Likelihood:In
some cases, it may be possible to evaluate the integral in (3)
analytically using the functional form of the log-likelihood
given in (15). If closed form evaluation is not possible, it may
still be possible to use an analytical approximation technique
such as Laplace’s method [48] to evaluate (3).

However, in general, it is not possible to use any form of
analytical evaluation to compute (3). Instead, we employ a
Monte Carlo approximation, using importance sampling [10]
to approximate the integrand P (O|X,T )P (X |T ). Importance
sampling works by generating samples from a proposal dis-
tribution that is easy to sample from. Each sample is then
weighted by the ratio of the target distribution to the proposal
distribution evaluated at the sample location. The Monte Carlo
approximation is subsequently performed by summing the
weighted samples. The primary condition on the proposal
distribution is that it should be non-zero at all locations where
the target distribution is non-zero. In addition, importance
sampling is efficient if the proposal distribution is a close
approximation to the target distribution.

In our case, the importance sampling proposal distribution
is obtained by modifying the log-likelihood in (15). Firstly,
ignoring the final term corresponding to the prior in (15), we
obtain the function

ψ(X) =
(
X −XO

σO

)2

+
∑
S∈T

∑
i,j∈S

(
Xi −Xj

σT

)2

(16)

This function is a lower bound on (15) since the prior term in
(15) is never negative. Consequently, (16) can be used to obtain
a valid importance sampling distribution. We then employ
Laplace’s method to obtain a multivariate Gaussian distribu-
tion from ψ(X), which is used as the proposal distribution.
This is achieved by computing the maximum likelihood path
X� through a non-linear optimization of ψ(X), and creating
a local Gaussian approximation Q(X |O, T ) around X �

X� = argmax
X

ψ(X)

Q (X | O, T ) =
1√|2πΣ|e

− 1
2 (X−X�)T Σ−1(X−X�)

where Σ is the covariance matrix relating to the curvature of
ψ(X) around X∗. The distribution Q(X |O, T ) is then used
as the proposal distribution for the importance sampler.

In practice, we use the Levenberg-Marquardt algorithm in
conjunction with a sparse QR solver to perform the opti-
mization described above. The Levenberg-Marquardt algo-
rithm requires the derivative of the objective function that is
being minimized, in this case the function ψ(X) in (16). To



compute the (sparse) Jacobian H given by H = ∂ψ(X)
∂X , we

use an automatic differentiation (AD) framework. Automatic
differentiation (AD) is a technique for augmenting computer
programs with derivative computations. It exploits the fact that
by applying the chain rule of differential calculus repeatedly
to elementary operations, derivatives of arbitrary order can be
computed automatically and accurately to working precision.
See [12] for more details.

The odometry likelihood given by (3) is now evaluated using
the Monte Carlo approximation

∫
X

P (O|X,T )P (X |T ) ≈ 1
N

N∑
i=1

P (O|X(i), T )P (X(i)|T )
Q(X(i)|O, T )

(17)
where the X (i) are samples obtained from the Gaussian
proposal distribution Q(X |O, T ) and N is the number of
samples.

B. Evaluating the Appearance Likelihood

We use Fourier signatures as appearance measurements.
Fourier signatures have previously been used in the context of
memory-based navigation [28] and localization using omni-
directional vision [29]. They are computed by calculating the
1-D Fourier transform of each row of the panoramic image
and storing these coefficients in a matrix [29]. Only a few
coefficients corresponding to the lower spatial frequencies are
used for this purpose.

A more popular dimensionality reduction technique is to
extract a set of eigen images from the set of measurement
images and project the images onto this eigen space. The
drawback of such systems is that they need to further pre-
process the measurement images in order to obtain rotational
invariance. In contrast, the Fourier coefficient magnitudes
in a Fourier signature are rotation-invariant as panoramic
images are periodic. Hence, a Fourier signature yields a low-
dimensional, rotation-invariant representation of the image. We
use images obtained from an eight-camera rig mounted on a
robot to produce panoramic images. The eight images obtained
at each point in time are stitched together automatically to
form a 3600 view of the environment. An example of such a
panoramic image is shown in Figure 5.

In our case, Fourier signatures are calculated using a modi-
fication of the procedure given in [28]. Firstly, a single column
image obtained by averaging the columns of the input image
is calculated and subsequently, the one-dimensional Fourier
transform of this image is performed. This gives us the Fourier
signature of the image. It is to be noted that Fourier signatures
do not comprise a robust source of measurements, since the
measurements contain many false positives, in the sense that
images from distinct physical locations often yield similar
Fourier signatures. However, they have the advantage of being
simple to compute and model. Moreover, in conjunction with
odometry, they still produce good results as we demonstrate
in Section VII.

Evaluation of the appearance likelihood is performed using
(7). However, in this case, each appearance measurement a ij
is a vector given as aij = {aij1, aij2, . . . , aijK}, where aijk

is the kth Fourier component in the Fourier signature. Also,
we assume a similar vector form for the hidden appearance
variables yi, so that yi = {yi1, yi2, . . . , yiK}. We can then
write (7) as

P (A|T ) =
M∏
i=1

∫
yi

P (yi1, . . . , yiK)×

|Si|∏
j=1

P (aij1, . . . , aijK | yi1, . . . , yiK) (18)

Clearly, the various frequency components of the Fourier
signature are independent given the corresponding appearance
variable, and hence, can be factored, as can be the prior over
the hidden appearance variables. Consequently, we modify
(18) to get the expression for the appearance likelihood as

P (A | T ) =
M∏
i=1

K∏
k=1

∫
yik

P (yik)
|Si|∏
j=1

P (aijk | yik) (19)

We assume the measurement model for appearance instance
aijk to be Gaussian centered around yik with variance σ2

ik .
Hierarchical priors are placed on yik and σ2

ik: the prior on
σ2
ik being an inverse gamma distribution while the prior on

yik is taken to be a Gaussian with mean µ and variance σ2
ik

κ .
This particular choice of priors forms the conjugate prior to
the Gaussian measurement model with unknown mean and
variance, and allows the integration in (19) to be performed
analytically. The appearance model can then be summarized
as

aijk � N (yik, σ2
ik)

yik � N (µ,
σ2
ik

κ
) (20)

σ2
ik � IG(αk, βk)

where IG denotes the inverse gamma distribution. Note that
while the value of κ is generally chosen so that the prior on
yik is vague, we usually have some extra “world knowledge”
that can be used to set the values of the hyper-parameters
αk and βk. For example, if we expect the value of the
Fourier signature to vary by only a small amount in the
neighborhood of a given location, the prior on σ 2

ik should
reflect this knowledge by being peaked about a specific value.

The generative model for Fourier signature measurements
specified by (20) is now used to compute the appearance
likelihood given by (19) as follows

P (A | T ) =
M∏
i=1

K∏
k=1

∫
σ2

ik

IG(αk, βk)×

∫
yik

N (µ,
σ2
ik

κ
)
|Si|∏
j=1

N (yik, σ2
ik) (21)

Due to the use of the conjugate prior, we can compute
P (A|T ) from (21) analytically. We prove in the appendix
that performing the integration over y ik and σ2

ik gives the
expression for the appearance likelihood as

P (A|T ) ∝
M∏
i=1

CKi

K∏
k=1

Γ(γik + 1)
(
β +

1
2
Φik

)−(γi+1)

(22)



Fig. 5. A Panoramic image obtained from the robot camera rig
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Fig. 6. (a) Raw odometry and (b) Ground truth topology from the first
experiment involving 9 observations

where

Ci = (κ+ |Si|)−
1
2

Φik = κ (µ� − µ)2 +
|Si|∑
j=1

(aijk − µ�)2

µ� =
κµ+

∑|Si|
j=1 aijk

κ+ |Si|
γi = α+

|Si|
2

+ 1

and constants that do not affect the likelihood ratio have been
omitted.

The appearance model presented above is not specific to
Fourier signatures. Indeed, it is a general purpose clustering
model that assumes that the data to be clustered are distributed
as a mixture of Gaussians with an unknown number of
components. A topology labels each data instance as arising
out of one of the mixture components, where the number of
mixture components is determined by the topology.

C. Putting it Together

The odometry and appearance likelihoods and the prior on
topologies required to compute the target distribution (2), are
given by (17), (22) and (11) respectively. We use this target
distribution to sample using Algorithm 1 as explained before.

VII. EXPERIMENTS AND RESULTS

Two sets of experiments were performed to validate the
Probabilistic Topological Maps algorithm. Both the experi-
ments were performed using an ATRV-Mini mounted with an
eight-camera rig. In all cases, we initialized the sampler with
the partition that assigned each measurement to its own set.
We describe the experiments and results below.

The first experiment was conducted inside our lab using
a relatively short run of the robot. Nine landmark locations

Fig. 7. Landmark locations plotted using odometry for second experiment

were observed during the run of approximately 15 meters.
The raw odometry obtained from the robot, labeled with the
landmark locations, and the ground-truth topology are shown
in Figure 6. Only the odometry measurements were used in
the experiment, no appearance information was provided to the
algorithm. This was done by simply neglecting the appearance
likelihood term in (2). The penalty radius was set to 2.5 meters
for this experiment.

Table I shows the evolution of the MCMC sampler for
different values of the maximum penalty parameter. In our
algorithm, it is the penalty term that facilitates merging of
nodes in the map that are the same. Without the penalty, the
system has no incentive to move toward a topology with lesser
number of nodes as this increases the odometry error. Table
I(a) illustrates this case. It can be seen that the topology that is
closest to the raw odometry data and also having the maximum
possible nodes gets the maximum probability mass. For the
rest of the cases with maximum penalties equal to 50, 100,
and 150 respectively, the most likely solution is the topology
indicated by the raw odometry. The large error in odometry
makes the ground truth topology less likely in these cases.
The ground truth topology is the second-most likely topology
for maximum penalty values 100 and 150. This is because as
the penalty is increased the effect of odometry is diminished
and the ground truth topology gains more of the probability
mass. However, a very large penalty swamps odometry data
and makes absurd topologies more likely.

The second experiment demonstrates the usefulness of ap-
pearance in disambiguating noisy odometry measurements.
The experiment was conducted in an indoor office environment
where the robot traveled along the corridors in a run of
approximately 200 meters and observed nine landmarks. The
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(b) Penalty=50
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(d) Penalty=150
TABLE I

CHANGE IN PROBABILITY MASS WITH MAXIMUM PENALTY OF THE FIVE MOST PROBABLE TOPOLOGIES IN THE HISTOGRAMMED POSTERIOR. THE

HISTOGRAM AT THE END OF EACH ROW GIVES THE PROBABILITY VALUES FOR EACH TOPOLOGY IN THE ROW.
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Fig. 8. The five topologies with highest posterior probability mass for the second experiment using only odometry (a) an incorrect topology receives 91%
of the probability mass while the ground truth topology (b) receives 6%, (c), (d) and (e) receive 0.9%, 0.8% and 0.7% respectively.

landmark locations obtained using odometry are shown in
Figure 7. As in the first experiment, the five most likely
topologies from the target distribution were obtained using
only odometry measurements. A penalty radius of 20 meters
and a maximum penalty of 100 were used to obtain the
topologies, which are shown in Figure 8. As before, the ground
truth topology receives only a small probability due to noisy
odometry.

We now repeat the experiment, but this time using the
appearance measurements, i.e. the Fourier signatures of the
panoramic images obtained from the landmark locations, in
addition to the odometry. The first five frequencies of the
Fourier signatures were used for this purpose. The values
of the variance hyper-parameters in the appearance model
were set so that the prior over the variance is centered at
500 with a variance of 50. The five most likely topologies
in the resulting probability histogram are shown in Figure 9.
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Fig. 9. Topologies with highest posterior probability mass for the second experiment using odometry and appearance (a) The ground truth topology receives
94% of the probability mass while (b), (c), (d) and (e) receive 3.2%, 1.2%, 0.3% and 0.3% of the probability mass respectively.

The ground truth topology gets the majority of the probability
mass. This experiment illustrates the use of appearance mea-
surements to disambiguate noisy odometry data. Additionally,
it demonstrates that the Bayesian model used herein refines
the posterior over topologies given more data.

VIII. CONCLUSIONS

In the first experiment, even though the environment is
small, noisy odometry results in the ground truth topology
not receiving the highest probability mass. If a maximum
likelihood approach were used in this case, the result would
just be an incorrect topology. However, using a Bayesian
methodology to compute the posterior over topologies yields
the most complete and robust result for the given data.
Subsequently, the resulting posterior can be post-processed,
if necessary, using an application-specific technique to yield
a single topology. On the other hand, computations such
as planning and topological localization can be performed
using the full posterior without rejecting any possibility. For
example, plans can be computed on a multiple topological
maps sampled from the posterior distribution; each plan being
given a confidence rating proportional to the probability of
the sampled topology. In contrast to maximum-likelihood or
other truncated approaches, our technique allows such general-
purpose, application-specific use of the output.

The second experiment illustrates the power of using a
Bayesian approach in the sense that good results are obtained
even with noisy data, when a large amount of data is available.
Initially, due to odometry drift in the large environment, an
incorrect topology gets a large majority of the probability
mass. However, the inclusion of appearance measurements,
which are themselves noisy, in the inference results in a
“better” posterior. Note that in a real application we would not
have the ground truth topology and consequently, the notion of
a better posterior does not make sense. The experiment merely
affirms the fact that use of more data from varied sources
improves Bayesian inference and yields more robust results.

IX. DISCUSSION

We presented the novel idea of computing discrete prob-
ability densities over the space of all possible topological
maps. The Probabilistic Topological Maps are computed using
Markov Chain Monte Carlo sampling over set partitions that

are used to encode the topologies. PTMs are a system-
atic solution to the correspondence problem in topological
mapping and provide an optimal estimation of the posterior
distribution over topologies for the given measurements. We
provide a general framework for estimating the posterior over
the space of topologies and two specific models for computing
measurement likelihood, one that uses odometry and the other
using appearance. The odometry likelihood computation uses
a simple spatial prior on landmark distribution in the form
of a cubic penalty function that disallows proximity among
landmarks. The appearance model used in this work deals with
Fourier signatures of panoramic images. The model clusters
similar appearance measurements as coming from the same
spatial location. Experimental results on environments with
varied sizes demonstrate the applicability of PTM.

Currently, the PTM algorithm requires four parameters to be
chosen by the user. These are the penalty radius and maximum
penalty values for the odometry likelihood, and the α and
β variance hyper-parameters and the number of frequency
components for the appearance likelihood. The penalty values
depend on the size and scale of the environment being mapped
and need to be empirically determined for each environment.
This is also the case for the variance hyper-priors, which
encode the variation in appearance values from the same
location in the environment. Changes in lighting, uncalibrated
cameras and other measurement noise may make this variation
large. It is our experience that there is rarely need to use more
than the first five frequency components in the appearance
model. This is because the higher frequency components
mainly contain noise, which we do not seek to model. It is also
to be noted that while we use Fourier signatures in this work,
any other rotation-invariant dimensionality reduction technique
can be used in its stead.

While we only provide likelihood models for odometry and
appearance, a simple extension to laser data is also possible. If
two lasers are used to gather 3600 laser scans at the landmark
locations, the likelihood of two scans being from the same
location can be computed by finding the difference between
the scans after an optimal alignment. This likelihood, extended
to multiple scan comparison, can be used to sample over
partitions.

One advantage of our approach is that an estimate of
topology is possible even if only a meager amount of in-
formation is available. It is not the purpose of this work to



find the best topological map, but to compute the posterior
probability density over topological space as per the Bayesian
approach. We have shown this capability in experiments that
use only odometry from the robot to create distributions that
can either correspond to the odometry or the prior (in this
case the spatial penalty function) as parameters are varied.
Appearance modeling has largely been used in this work as a
disambiguation mechanism for odometry, i.e. by creating more
or by decreasing the evidence for the odometry. Of course,
more sophisticated appearance models are possible that could
be used to completely replace odometry, but that is not the
purpose of our appearance model.

A problem with the current setup is the use of a single value
for the penalty radius. This can cause poor performance if the
distribution of landmarks varies across the environment, for
example, if most of the landmarks occur in a closely-spaced
group but the remainder are spread wide apart. Finding clusters
at different scales is a well-researched problem in machine
learning and it is future work to apply those techniques to
automate the process of setting the penalty radius.
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APPENDIX

To obtain the expression for the appearance likelihood given
in (22), consider the integral in (7) which is the probability of
a set in the topology taking into account only one frequency
component

P (S) =
∫
σ2

ik,yik

P (σ2
ik)P (yik|σ2

ik)
|Si|∏
j=1

P (aijk | yik, σ2
ik)

Plugging in the functional forms of the distributions defined
in the model (20), we get

P (S) = Ki

∫
σ2

ik

(
σ2
ik

)−Ai
e
− β

σ2
ik

∫
yik

e
− 1

2σ2
ik

Bik

where

Ki =
βα

Γ(α)
κ

1
2

(2π)
|Si|+1

2

Ai = α+
|Si|
2

+
3
2

Bik = κ (yik − µ)2 +
|Si|∑
j=1

(aijk − yik)
2

Performing the inner integration, we get

P (S) = K ′
∫
σ2

ik

(
σ2
ik

)−γi
e
− 1

σ2
ik

(β+ 1
2Φik)

(23)

where

K ′ =
1

(2π)
|Si|
2

βα

Γ(α)

(
κ

κ+ |Si|
) 1

2

Φik = κ (µ� − µ)2 +
|Si|∑
j=1

(aijk − µ�)2

µ� =
κµ+

∑|Si|
j=1 aijk

κ+ |Si|
γi = α+

|Si|
2

+ 1

We now provide here a useful definition of the Gamma
function ∫ ∞

0

e−αttγdt =
Γ(γ + 1)
α(γ+1)

using which (23) can be integrated (note that t corresponds to
σ−2
ik ) to yield

P (S) = K ′ Γ(γi + 1){
β + 1

2Φik
}(γi+1)

whence (22) follows.
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