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Supplementary Materials of 

Bayesian Inference of the Sites of Perturbations in Metabolic 

Pathways via Markov Chain Monte Carlo 

Bayu Jayawardhana, Douglas B. Kell and Magnus Rattray 
 

1 METHODS 

1.1 Prior distributions  

In general, the support of the prior distribution function pθ and px0 must 
contain all possible values of θ or x0. If a component θi in the vector of 
system parameter θ or a component x0,i in the vector of initial condition x0, 
is independent of other parameters or other initial conditions, and admits 
only positive real values, then a gamma or lognormal distribution function 
can be assigned as the prior distribution of θi or x0,i. Multivariate distribu-
tion functions must be used if there are dependency among several compo-
nents in θ or x0.  

The same principle applies to the prior distribution of the initial condi-
tions of conserved variables. Since the conserved variables have to satisfy 
the constraint (2), we parameterize their initial conditions as follows: For 
the j-th constraint,  
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j
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and x0,i is the i-th component of the initial condition x0. Dirichlet distribu-
tion can be used to define the distribution of a:={ai | i∈Aj} and any positive 
distribution function may define the distribution of Cj.  The Dirichlet distri-
bution for K variates has probability density function given by 
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where Γ is the gamma function, (µ1,…, µK) is the mean of the distribution 
and the constant σ controls the spread or denseness of the distribution. Note 
that by setting σ = 1, uniform distribution is obtained and is defined on the 
simplex µ1+…+µK = 1. 

Hence, the distribution function of conserved variables corresponding to 
the j-th constraint using the parameterization (SUPPL. 1) and using 
Dirichlet distribution function is given by 
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The biochemical reaction kinetics database, such as SABIO-RK (Rojas, 
et al., 2007), provides valuable information for the prior distribution of 
parameters. It can show both kinetics parameters and their uncertainties as 
reported in the literature.  

1.2 Metropolis-Hastings algorithm and convergence 

measure  

As described in Section 2.1 we can draw samples w = (θ, yext, x0) from 
the target distribution ptarget(w) as defined in (6) and marginalizing the 
samples over x0 and yext, to get samples from p(θ|Dint, Dext).  

Metropolis-Hastings algorithm can be used to generate Markov chains 
that will eventually produce samples from the target distribution w(n) ∼  
ptarget(w) for large n (Hastings, 1970; Metropolis, et al., 1953). Given the 
current sample w(n), the next sample w(n+1) is proposed from a proposal 
distribution pproposal(.| w(n)) with the acceptance probability:  
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  (SUPPL. 3). 

Therefore, the Metropolis-Hastings algorithm is summarized as follows: 

1. Initialize the initial sample w(0) and set sampling time n = 0; 

2. Sample a point v from pproposal(.|w(n)) and sample a point u 
from a uniform distribution defined on (0,1); 

3. If u ≤ pacceptance(v| w(n)) then w(n+1) = v, otherwise set 
w(n+1) = w(n). 

4. Increment n and repeat the procedure from step 2. 

A variant of the Metropolis-Hastings that we used in our simulation is 
the single-component Metropolis-Hastings (Spiegelhalter, et al., 1996). Let 
W be the size of the vector w. Let the the proposal distribution pproposal be 
decomposed into W proposal distributions, pi

proposal, i = 1,…,W, such that 
the domain of w can be spanned by the basis defining the range space of 
every pi

proposal. For example, if w∈RW, pi
proposal is chosen such that the range 

space of each pi
proposal defines an orthogonal subspace in RW. Define the i-th 

acceptance probability by  
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Define mod(a,W) := a – W a/W where a > 0 in an integer and  . is the 
floor function. The single-component Metropolis-Hastings algorithm can 
be given as follows: 

1. Initialize the initial sample w(0) and set sampling time n = 0; 

2. Sample a point v from pi
proposal(.|w(n)) where i = mod(n,W) 

and sample a point u from a uniform distribution defined on 
(0,1); 

3. If u ≤ pi
acceptance(v|w(n)) then w(n+1) = v, otherwise set 

w(n+1) = w(n). 

4. Increment n and repeat the procedure from step 2. 

Several parallel Markov chains with different initial conditions can be 
simulated to assess the convergence of the chains to the target distribution 
using the variance-based convergence measure proposed by Gelman 
(1996). Although it evaluates the convergence of a single component wi in 
the vector w, the convergence of the whole components is checked by 
monitoring the convergence of each component.  
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Suppose that M parallel chains each with � samples have been gener-
ated. The sequences of i-th component is denoted by (wj

i(n)), n = 1,…,�, 
j=1,…,M. The measure uses the between-sequence variance B and the 
within-sequence variances W defined by: 
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Gelman proposed that the parallel chains is run until the value of R̂ is less 
than 1.2 (or approximately, R̂ is less than 1.4). Once the parallel chains have 
converged, the samples from each chains can be combined.  

1.3 Proposal distributions  

The proposal distribution is crucial in the acceptance or the rejection of a 
proposed move in the MCMC sampler. Given the state of current MCMC 
sample w(n), the proposal distribution function pproposal(.|w(n)) can be any 
distribution function as long as the proposal can be reversed. The choice 
determines the convergence rate of the sampler to the stationary posterior 
distribution. Ideally, it belongs to the same class of functions as the poste-
rior distribution function. However, since the posterior distribution function 
contains an indeterminate function g, it is impossible to find an analytic 
proposal distribution that approximates the posterior distribution.  

It is more feasible to assign the proposal according to possible values of 
parameter θ or initial condition x0 and control the acceptance/rejection ratio 
by adaptively tuning the parameter of proposal distribution, such as σ in 
(SUPPL. 2) whenever a Dirichlet distribution is used. Thus the assignment 
of proposal distribution follows a similar line to the prior distribution. For 
the conserved variables, the parameterization (SUPPL. 2) can be used with 
Dirichlet distribution as a proposal distribution for a and with lognormal 
distribution as a proposal distribution for Cj.  

Most proposal distributions have parameters µ that control the distribu-
tion function shape. These parameters can be adaptively tuned during the 
Markov process such that the acceptance rate of the proposed move is 
within a desirable interval in order to prevent the chain moves being local-
ized. Typically, a rejection rate within 60% to 70% suffices to guarantee 
the chains will not be confined to the neighborhood of a local minimum. 
Change of parameters in the proposal distribution can also improve the 
convergence rate of the chains (Spiegelhalter, et al., 1996). One way to do 
this is by changing the proposal distribution according to the distribution of 
the current chains w(n), n=1,…,�. For example, if Gaussian distributions 
are used as the proposal distribution, the covariance matrix can be updated 
by computing the covariance matrix of the current chains to improve the 
convergence speed and by scaling the covariance matrix to control the 
acceptance rate. Similarly, the parameter σ in the Dirichlet distribution 
(SUPPL. 2) can be manipulated to maintain the convergence rate. 

2 SIMULATIONS SETUP 

2.1 Glycolytic Pathways 

We also refer to the Section 3.1 of the main paper for the model of 
glycolytic pathways and some simulation setup for the MCMC. 
Table 1 gives the sixteen parameter datasets used in Section 3.1 
with a set of initial conditions that can give steady-state solution.  

The Markov chain moves according to the single-component 
Metropolis-Hastings algorithm as described in Section 1.2 of this 
Supplementary Material. 

 
As a complementary section to the Section 3.1 of the main pa-

per, details of the log-mean values and the log-variance values for 
the prior distributions for Vmax are listed in Table 2. The interval of 
uniform distributions for the prior distributions of the initial condi-
tions and the concentrations of external glucose, F26BP, glycerol 
and ethanol are listed in Table 3. Note that we use the same prior 
distributions for all sixteen cases.  

For the conserved variables, the proposal distribution is assigned 
according to the parametrization in (SUPPL. 1) with the parame-
ters Cj and a. Dirichlet distribution is used for the proposal distri-
bution of a.  

Based on the model and parametrization of conserved variables, 
w = (θ, yext, x0

non-conserved
, C1, C2, aATP, aADP, aAMP, a�AD, a�ADH) ∈ 

R+
34×{z∈R3 | z1+z2+z3 = 1}×{z∈R2 | z1+z2 = 1}  where R+ is the 

space of positive real value. 
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The proposal distribution for parameters, external observable 
variables, Cj and the initial concentrations of non-conserved me-
tabolites are multivariate lognormal distribution where log value of 
the current sample is used as the log-mean and the log-covariance 
matrix is updated every 500,000 samples according to the covari-
ance of the log of MCMC samples obtained so far from the three 
parallel chains. For the first 500,000 samples, the log-covariance 
matrix is set to diagonal matrix where each diagonal entry is listed 
in Table 4.  

Suppose that Σ is the log-covariance matrix of the samples (θ, 

yext, x0
non-conserved

, C1, C2) and Σi is the i-th eigenvector of Σ. In this 
case, for i = 1,…,34, we use pi

proposal given by a multivariate log-
normal distribution where the log space is defined in the direction 
of (ΣiT,0,0,0,0,0)T. In other words, let z ∼ N(0,σi) where N is the 
Gaussian distribution with zero mean and variance σi, the proposed 
sample v is given by v = exp([ΣiT,0,0,0,0,0]Tz). Here, σi is the pa-
rameter of the proposal distribution pi

proposal that is adaptively set to 
control the rejection rate. Initially, σi is set to one and then, in 
every update of Σ, σi is reset to one tenth of the i-th eigenvalue of 
Σ. For i = 35,…,37, the i-th proposal distribution is given by [01x34, 
z1, z2, z3, 0, 0]T where 01x� denotes the zero vector with dimension 
of � and (z1, z2, z3) are sampled from a Dirichlet distribution with 
the denseness parameters σadenine. For i = 35,…,37, the i-th proposal 
distribution is given by [01x37, 0, 0, 0, z1, z2]

T where (z1, z2) are 
sampled from a Dirichlet distribution with the denseness parame-
ters σpyridine. The parameters σpyridine and σadenine is set initially to 50 
and adaptively changed based on the rejection rate.  

Table 2. The log-mean and log-variance for the prior distribution of Vmax. 

Parameters Log-mean Log-variance 

V1
max 4.5643 0.4805 

V2
max 5.4116 1.2069 

V3
max 5.8171 3.2104 

V4
max 5.2003 0.4805 

V5
max 5.76 1.2069 

V7,f
max 7.0676 0.4805 

V7,r
max 8.7765 0.4805 

V8
max 7.1546 0.4805 

V9
max 7.8267 0.4805 

V10
max 5.8861 0.4805 

V11
max 6.9847 0.4805 

V12
max 5.1552 2.5903 

V13
max 6.6846 7.6872 

V14
max 3.912 0.4805 

Note that exp(√0.4805) ≈ 2, exp(√1.2069) ≈ 3, exp(√2.5903) ≈ 5, exp(√3.2104) ≈ 6 
and exp(√7.6872) ≈ 16. 

Table 3. The interval of uniform distribution for the prior distribution of 
initial conditions and the concentrations of external glucose, F26BP, glyc-
erol and ethanol (excluding the conserved variables). 

x0 Interval x0 Interval x0 Interval 

[Gli](0) (0.01,10) [P3G](0) (0.01,10) [Glo] (0.01,1000) 
[G6P](0) (0.001,10) [P2G](0) (0.01,10) [Glycerol] (0.01,100) 
[F6P](0) (0.01,10) [PEP](0) (0.001,10)   
[F16BP](0) (0.001,10) [PYR](0) (0.01,10)   

[DHAP](0) (0.01,10) [AcAld](0) (0.01,10)   
[GAP](0) (0.001,10) [EtOH] (0.01,10)   
[BPG](0) (0.01,10) [F26BP] (0.001,10)   

[Gli] is the internal glucose, [Glo] is the external glucose. 

Table 4. The diagonal entries Σi,i of the initial log-covariance matrix Σ 
used in the proposal distribution for (θ, yext, x0

non-conserved
, C1, C2). 

Corresponding 
sample 

Σi,i Corresponding 
sample 

Σi,i Corresponding 
sample 

Σi,i 

V1
max 0.0048 V13

max 0.0769 [P2G](0) 0.0048 
V2

max 0.0121 V14
max 0.0048 [PEP](0) 0.0048 

V3
max 0.0321 Glycogen flux 0.0048 [PYR](0) 0.0048 

V4
max 0.0048 Trehalose flux 0.0048 [AcAld](0) 0.0048 

V5
max 0.0121 [Gli](0) 0.0048 [EtOH] 0.0048 

V7,f
max 0.0048 [G6P](0) 0.0048 [F26BP] 0.0048 

V7,r
max 0.0048 [F6P](0) 0.0048 [Glo] 0.0048 

V8
max 0.0048 [F16BP](0) 0.0048 [Glycerol] 0.0048 

V9
max 0.0048 [DHAP](0) 0.0048 C1 0.0048 

V10
max 0.0048 [GAP](0) 0.0048 C2 0.0048 

V11
max 0.0048 [BPG](0) 0.0048   

V12
max 0.0259 [P3G](0) 0.0048   

We use the same strategies for all sixteen cases. For each case, 
we run three parallel chains where each chain uses the single-
component Metropolis-Hastings with the setting described above. 
The simulations took about 500,000 to 1,000,000 samples to get to 
the convergence of the three chains using the convergence measure 
presented in Section 1.2 of this Supplementary Material. A thin-
ning with the size of 39 is applied to the MCMC samples to get 
less correlated samples. (A thinning with the size of M is a proce-
dure of subsampling the samples with the period of M samples.)  

2.2 Pyruvatic Pathways 

The setting of simulation in the pyruvate pathways of L. lactis is 
similar to that in the glycolytic pathways of S. cerevisiae. In par-
ticular, the single-component Metropolis-Hastings algorithm is 
used in the simulation. 

The prior distributions for Vmax are uniform distributions defined 
on (0,20000). The interval of uniform distributions for the prior 
distributions of the initial conditions and the concentrations of 
external glucose, lactate, acetoin, O2, phosphate, ethanol and buta-
nediol are listed in Table 5. Note that we use the same prior distri-
butions for the three cases.  

For the conserved variables, the proposal distribution is assigned 
according to the parametrization in (SUPPL. 1) with the parame-
ters Cj and a. Dirichlet distribution is used for the proposal distri-
bution of a.  

Based on the model and parametrization of conserved variables, 
w = (θ, x0

non-conserved
, C1, C2, C3, aATP, aADP, a�AD, a�ADH, aCoA, aAcCoA,) 

∈ R+
30×Ω×Ω×Ω where R+ is the space of positive real value and Ω 

:={z∈R2 | z1+z2 = 1}.  
For i = 1,…,30, the proposal distribution pi

proposal is similar to 
that in the glycolytic pathways. Suppose that Σ is the log-
covariance matrix of the samples (θ, x0

non-conserved
, C1, C2, C3) and Σi 

is the i-th eigenvector of Σ. We use pi
proposal given by a multivariate 

lognormal distribution where the log space is defined in the direc-
tion of (ΣiT,0,0,0,0,0,0)T. The log-covariance matrix is set to di-
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agonal matrix for the first 500,000 samples where each diagonal 
entry is set to 0.0048. 

For i = 31,32, the i-th proposal distribution is given by [01x30, z1, 
z2, 01x4]T where (z1, z2) are sampled from a Dirichlet distribution 
with the denseness parameters σadenine. For i = 33,34, the i-th pro-
posal distribution is given by [01x32, z1, z2, 0

1x2]T where (z1, z2) are 
sampled from a Dirichlet distribution with the denseness parame-
ters σpyridine. For i = 35,36, the i-th proposal distribution is given by 
[01x34, z1, z2]

T where (z1, z2) are sampled from a Dirichlet distribu-
tion with the denseness parameters σCoA. The parameters σpyridine, 
σadenine and σCoA is set initially to 50 and adaptively changed based 
on the rejection rate.  

Table 5. The interval of uniform distribution for the prior distribution of 
initial conditions and the concentrations of external glucose, lactate, ace-
toin, O2, phosphate, ethanol and butanediol (excluding the conserved vari-
ables). 

x0 Interval x0 Interval x0 Interval 

[pyruvate](0) (0.0001,10) C2 (1,20) O2 (0.002,2) 
[AcP](0) (0.0001,10) C3 (0.1,2) PO4 (0.1,100) 
[AcO](0) (0.0001,10) [lactate] (0.01,10)   
[AcLac](0) (10-6,1) [halfglucose] (0.1,100)   
[AcetIn](0) (10-6,1) [Ac] (0.01,10)   
[AcetOut](0) (10-6,1) [EtOH] (0.01,10)   
C1 (0.5,10) [Butanediol] (0.0001,0.1)   

[AcP] is the Acetyl phosphate, [AcO] is the acetaldehyde, [AcLac] is the Acetolactate, 
[AcetIn] is the internal acetoin, [AcetOut] is the external acetoin, [Ac] is the acetate 
and [EtOH] is the ethanol. 

3 SIMULATIONS DATA 

Table 6 describes the comparison of credible interval computed 
based on full measurement and based on minimal measurement.  

Table 6. Credible interval for full and minimal informations in Case A. 

Credible Interval 
Parameters 

Full information Minimal information 

V1
max (95.02 , 142.6) (95.54 , 268.24) 

V2
max (152.44 , 2598.82) (147.3 , 1938.66) 

V3
max (351.3 , 10575.69) (86.31 , 8683.26) 

V4
max (92.11 , 126.16) (89.53 , 719.58) 

V5
max (95.46 , 136.96) (111.54 , 2702.47) 

V7,f
max (1273.35 , 4554.52) (325.65 , 4013.86) 

V7,r
max (1546.9 , 15912.29) (1780.56 , 17816.62) 

V8
max (376.32 , 5290.68) (313.05 , 4841.79) 

V9
max (1046.81 , 7230.22) (654.06 , 10018.24) 

V10
max (216.88 , 307.98) (152.71 , 1368.56) 

V11
max (596.59 , 875.71) (315.05 , 4028.74) 

V12
max (381.76 , 4029.47) (153.49 , 5587.67) 

V13
max (28.35 , 85.48) (23.83 , 108.79) 

V14
max (47.96 , 287.65) (39.58 , 264.87) 

The unit for Vmax is mmol(l-internal vol)-1min-1.  

Most of the measurement data in Case B, C, D or E are close to 
those in Case A and have overlapping error bars (Figure 1). For 

Case B, only the measurement of AMP, glucose flux and pyruvate 
flux have error bars that do not overlap with those of Case A (the 
‘wild-type’). For Case C, only the measurement of F16BP, P3G, 
PEP, succinate flux, glucose flux and pyruvate flux that do not 
have overlapping error bars with Case A. Only the error bar of 
F6P, F16BP and pyruvate flux in Case D that do not intersect with 
those in Case A. For the last scenario, Case E, the error bars of 
NADH, P3G, F16BP, succinate flux, glucose flux and pyruvate 
flux do not overlap with those in Case A. Therefore, it is not easy 
to guess the changes in the parameters due to these overlapping of 
uncertainties in measurement data.  
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Figure 1. The mean value and standard deviation of simulated measure-
ment data in glycolysis pathways for five different scenarios. The symbol 

(♦) – Case A, (□) – Case B, (△) – Case C, (◊) – Case D, (○) – Case E. 
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