University of Groningen

Bayesian inference of the sites of perturbations in metabolic pathways via Markov chain Monte Carlo

Jayawardhana, Bayu; Kell, Douglas B.; Rattray, Magnus

Published in:
Bioinformatics

DOI:
10.1093/bioinformatics/btn103

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2008

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Jayawardhana, B., Kell, D. B., \& Rattray, M. (2008). Bayesian inference of the sites of perturbations in metabolic pathways via Markov chain Monte Carlo. Bioinformatics, 24(9), 1191-1197. https://doi.org/10.1093/bioinformatics/btn103

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Supplementary Materials of

Bayesian Inference of the Sites of Perturbations in Metabolic Pathways via Markov Chain Monte Carlo

Bayu Jayawardhana, Douglas B. Kell and Magnus Rattray

1 METHODS

1.1 Prior distributions

In general, the support of the prior distribution function p_{θ} and $\mathrm{p}_{x 0}$ must contain all possible values of θ or x_{0}. If a component θ_{i} in the vector of system parameter θ or a component $x_{0, i}$ in the vector of initial condition x_{0}, is independent of other parameters or other initial conditions, and admits only positive real values, then a gamma or lognormal distribution function can be assigned as the prior distribution of θ_{i} or $x_{0, i}$. Multivariate distribution functions must be used if there are dependency among several components in θ or x_{0}.

The same principle applies to the prior distribution of the initial conditions of conserved variables. Since the conserved variables have to satisfy the constraint (2), we parameterize their initial conditions as follows: For the j-th constraint,
$x_{0, i}=a_{i} C_{j}, \quad \forall i \in \mathfrak{A}_{j} \quad$ where $\quad \sum_{i \in \mathfrak{A}_{j}} a_{i}=1$,
(SUPPL. 1)
and $x_{0, i}$ is the i-th component of the initial condition x_{0}. Dirichlet distribution can be used to define the distribution of $a:=\left\{a_{i} \mid i \in \mathfrak{A}_{j}\right\}$ and any positive distribution function may define the distribution of C_{j}. The Dirichlet distribution for K variates has probability density function given by
$\mathrm{p}\left(z_{1}, \ldots, z_{K}\right)=\frac{\Gamma(\sigma) \delta\left(1-\sum_{i=1}^{K} z_{i}\right)}{\prod_{i=1}^{K} \Gamma\left(\mu_{i} \sigma\right)} \prod_{i=1}^{K} z_{i}^{\mu_{i} \sigma-1}$,
where Γ is the gamma function, $\left(\mu_{1}, \ldots, \mu_{K}\right)$ is the mean of the distribution and the constant σ controls the spread or denseness of the distribution. Note that by setting $\sigma=1$, uniform distribution is obtained and is defined on the simplex $\mu_{1}+\ldots+\mu_{K}=1$.

Hence, the distribution function of conserved variables corresponding to the j-th constraint using the parameterization (SUPPL. 1) and using Dirichlet distribution function is given by

$$
\mathrm{p}_{C_{j}}\left(C_{j}\right) \frac{\Gamma(\sigma)}{\prod_{i \in \mathfrak{A}_{j}} \Gamma\left(a_{i} \sigma\right)} \prod_{i \in \mathfrak{R}_{j}} x_{0, i}^{a_{i} \sigma-1}
$$

The biochemical reaction kinetics database, such as SABIO-RK (Rojas, et al., 2007), provides valuable information for the prior distribution of parameters. It can show both kinetics parameters and their uncertainties as reported in the literature.

1.2 Metropolis-Hastings algorithm and convergence measure

As described in Section 2.1 we can draw samples $w=\left(\theta, y_{\text {ext }}, x_{0}\right)$ from the target distribution $\mathrm{p}_{\text {targel }}(w)$ as defined in (6) and marginalizing the samples over x_{0} and $y_{\text {ext }}$, to get samples from $\mathrm{p}\left(\theta \mid \mathfrak{D}_{\text {int }}, \mathfrak{D}_{\text {ext }}\right)$.

Metropolis-Hastings algorithm can be used to generate Markov chains that will eventually produce samples from the target distribution $w(n) \sim$ $\mathrm{p}_{\text {targel }}(w)$ for large n (Hastings, 1970; Metropolis, et al., 1953). Given the current sample $w(n)$, the next sample $w(n+1)$ is proposed from a proposal distribution $\left.\mathrm{p}_{\text {proposal }} . \mid w(n)\right)$ with the acceptance probability:

$$
\begin{aligned}
& \mathrm{p}_{\text {acceptance }}(w(n+1) \mid w(n)):= \\
& \quad \min \left(1, \frac{\mathrm{p}_{\text {target }}(w(n)) \mathrm{p}_{\text {proposal }}(w(n+1) \mid w(n))}{\mathrm{p}_{\text {target }}(w(n+1)) \mathrm{p}_{\text {proposal }}(w(n) \mid w(n+1))}\right)
\end{aligned}
$$

(SUPPL. 3).
Therefore, the Metropolis-Hastings algorithm is summarized as follows:

1. Initialize the initial sample $w(0)$ and set sampling time $n=0$;
2. Sample a point v from $\mathrm{p}_{\text {proposal }}(. \mid w(n))$ and sample a point u from a uniform distribution defined on $(0,1)$;
3. If $u \leq \mathrm{p}_{\text {acceptance }}(v \mid w(n))$ then $w(n+1)=v$, otherwise set $w(\mathrm{n}+1)=w(n)$.
4. Increment n and repeat the procedure from step 2 .

A variant of the Metropolis-Hastings that we used in our simulation is the single-component Metropolis-Hastings (Spiegelhalter, et al., 1996). Let W be the size of the vector w. Let the the proposal distribution $\mathrm{p}_{\text {proposal }}$ be decomposed into W proposal distributions, $\mathrm{p}_{\text {proposal },}^{i} i=1, \ldots, W$, such that the domain of w can be spanned by the basis defining the range space of every $\mathrm{p}_{\text {proposal. }}^{i}$. For example, if $w \in \mathbb{R}^{W}, \mathrm{p}_{\text {proposal }}^{i}$ is chosen such that the range space of each $\mathrm{p}_{\text {proposal }}^{i}$ defines an orthogonal subspace in \mathbb{R}^{W}. Define the i-th acceptance probability by

$$
\begin{aligned}
& \mathrm{p}_{\text {acceptance }}^{i}(w(n+1) \mid w(n)):= \\
& \quad \min \left(1, \frac{\mathrm{p}_{\text {target }}(w(n)) \mathrm{p}_{\text {proposal }}^{i}(w(n+1) \mid w(n))}{\mathrm{p}_{\text {target }}(w(n+1)) \mathrm{p}_{\text {proposal }}^{i}(w(n) \mid w(n+1))}\right)
\end{aligned}
$$

Define $\bmod (a, W):=a-W\lfloor a / W\rfloor$ where $a>0$ in an integer and $L . J$ is the floor function. The single-component Metropolis-Hastings algorithm can be given as follows:

1. Initialize the initial sample $w(0)$ and set sampling time $n=0$;
2. Sample a point v from $\mathrm{p}_{\text {proposal }}^{i}(\mid w(n))$ where $i=\bmod (n, W)$ and sample a point u from a uniform distribution defined on (0,1);
3. If $u \leq \mathrm{p}_{\text {acceptance }}^{i}(v \mid w(n))$ then $w(n+1)=v$, otherwise set $w(n+1)=w(n)$.
4. Increment n and repeat the procedure from step 2 .

Several parallel Markov chains with different initial conditions can be simulated to assess the convergence of the chains to the target distribution using the variance-based convergence measure proposed by Gelman (1996). Although it evaluates the convergence of a single component w_{i} in the vector w, the convergence of the whole components is checked by monitoring the convergence of each component.

B. Jayawardhana et al.

Suppose that M parallel chains each with N samples have been generated. The sequences of i-th component is denoted by $\left(w_{i}{ }^{j}(n)\right), n=1, \ldots, N$, $j=1, \ldots, M$. The measure uses the between-sequence variance B and the within-sequence variances W defined by:

$$
\begin{gathered}
B=\frac{N}{M-1} \sum_{j=1}^{M}\left(\bar{w}_{i}^{j}-\bar{w}_{i}\right)^{2} \quad W=\frac{1}{M} \sum_{j=1}^{M} \sigma_{i, j}^{2} \quad \text { where } \\
\bar{w}_{i}^{j}=\frac{1}{N} \sum_{n=1}^{N} w_{i}^{j}(n), \bar{w}_{i}=\frac{1}{M} \sum_{j=1}^{M} \bar{w}_{i}^{j} \text { and } \sigma_{i, j}^{2}=\frac{1}{N-1} \sum_{n=1}^{N}\left(w_{i}^{j}(n)-\bar{w}_{i}^{j}\right)^{2} .
\end{gathered}
$$

The convergence measure is given by

$$
\hat{R}=\frac{\operatorname{var}\left(w_{i}\right)}{W}, \text { where } \operatorname{var}\left(w_{i}\right)=\frac{N-1}{N} W+\frac{1}{N} B
$$

Gelman proposed that the parallel chains is run until the value of $\sqrt{\hat{R}}$ is less than 1.2 (or approximately, \hat{R} is less than 1.4). Once the parallel chains have converged, the samples from each chains can be combined.

1.3 Proposal distributions

The proposal distribution is crucial in the acceptance or the rejection of a proposed move in the MCMC sampler. Given the state of current MCMC sample $w(n)$, the proposal distribution function $\mathrm{p}_{\text {proposal }}(. \mid w(n))$ can be any distribution function as long as the proposal can be reversed. The choice determines the convergence rate of the sampler to the stationary posterior distribution. Ideally, it belongs to the same class of functions as the posterior distribution function. However, since the posterior distribution function contains an indeterminate function g, it is impossible to find an analytic proposal distribution that approximates the posterior distribution.

It is more feasible to assign the proposal according to possible values of parameter θ or initial condition x_{0} and control the acceptance/rejection ratio by adaptively tuning the parameter of proposal distribution, such as σ in (SUPPL. 2) whenever a Dirichlet distribution is used. Thus the assignment of proposal distribution follows a similar line to the prior distribution. For the conserved variables, the parameterization (SUPPL. 2) can be used with Dirichlet distribution as a proposal distribution for a and with lognormal distribution as a proposal distribution for C_{j}.

Most proposal distributions have parameters μ that control the distribution function shape. These parameters can be adaptively tuned during the Markov process such that the acceptance rate of the proposed move is within a desirable interval in order to prevent the chain moves being localized. Typically, a rejection rate within 60% to 70% suffices to guarantee the chains will not be confined to the neighborhood of a local minimum. Change of parameters in the proposal distribution can also improve the convergence rate of the chains (Spiegelhalter, et al., 1996). One way to do this is by changing the proposal distribution according to the distribution of the current chains $w(n), n=1, \ldots, N$. For example, if Gaussian distributions are used as the proposal distribution, the covariance matrix can be updated by computing the covariance matrix of the current chains to improve the convergence speed and by scaling the covariance matrix to control the acceptance rate. Similarly, the parameter σ in the Dirichlet distribution (SUPPL. 2) can be manipulated to maintain the convergence rate.

2 SIMULATIONS SETUP

2.1 Glycolytic Pathways

We also refer to the Section 3.1 of the main paper for the model of glycolytic pathways and some simulation setup for the MCMC. Table 1 gives the sixteen parameter datasets used in Section 3.1 with a set of initial conditions that can give steady-state solution.

The Markov chain moves according to the single-component Metropolis-Hastings algorithm as described in Section 1.2 of this Supplementary Material.

As a complementary section to the Section 3.1 of the main paper, details of the log-mean values and the log-variance values for the prior distributions for $V_{\max }$ are listed in Table 2. The interval of uniform distributions for the prior distributions of the initial conditions and the concentrations of external glucose, F26BP, glycerol and ethanol are listed in Table 3. Note that we use the same prior distributions for all sixteen cases.

For the conserved variables, the proposal distribution is assigned according to the parametrization in (SUPPL. 1) with the parameters C_{j} and a. Dirichlet distribution is used for the proposal distribution of a.

Based on the model and parametrization of conserved variables, $w=\left(\theta, y_{\text {ext }}, x_{0}^{\text {non-conserved }}, C_{1}, C_{2}, a_{A T P,} a_{A D P}, a_{A M P,} a_{N A D}, a_{N A D H}\right) \in$ $\mathbb{R}_{+}{ }^{34} \times\left\{z \in \mathbb{R}^{3} \mid z_{1}+z_{2}+z_{3}=1\right\} \times\left\{z \in \mathbb{R}^{2} \mid z_{1}+z_{2}=1\right\}$ where \mathbb{R}_{+}is the space of positive real value.

The proposal distribution for parameters, external observable variables, C_{j} and the initial concentrations of non-conserved metabolites are multivariate lognormal distribution where log value of the current sample is used as the log-mean and the log-covariance matrix is updated every 500,000 samples according to the covariance of the log of MCMC samples obtained so far from the three parallel chains. For the first 500,000 samples, the log-covariance matrix is set to diagonal matrix where each diagonal entry is listed in Table 4.

Suppose that Σ is the log-covariance matrix of the samples $(\theta$, $y_{\text {ext }}, x_{0}{ }^{\text {non-conserved }}, C_{1}, C_{2}$) and Σ^{i} is the i-th eigenvector of Σ. In this case, for $i=1, \ldots, 34$, we use $\mathrm{p}_{\text {proposal }}^{i}$ given by a multivariate lognormal distribution where the log space is defined in the direction of $\left(\Sigma^{i \mathrm{~T}}, 0,0,0,0,0\right)^{\mathrm{T}}$. In other words, let $\mathrm{z} \sim \mathcal{N}\left(0, \sigma_{i}\right)$ where \mathcal{N} is the Gaussian distribution with zero mean and variance σ_{i}, the proposed sample v is given by $v=\exp \left(\left[\Sigma^{i \mathrm{~T}}, 0,0,0,0,0\right]^{\mathrm{T}} z\right)$. Here, σ_{i} is the parameter of the proposal distribution $\mathrm{p}_{\text {proposal }}^{i}$ that is adaptively set to control the rejection rate. Initially, σ_{i} is set to one and then, in every update of Σ, σ_{i} is reset to one tenth of the i-th eigenvalue of Σ. For $i=35, \ldots, 37$, the i-th proposal distribution is given by $\left[0^{1 \times 34}\right.$, $\left.z_{1}, z_{2}, z_{3}, 0,0\right]^{\mathrm{T}}$ where $0^{1 \times N}$ denotes the zero vector with dimension of N and $\left(z_{1}, z_{2}, z_{3}\right)$ are sampled from a Dirichlet distribution with the denseness parameters $\sigma_{\text {adenine }}$. For $i=35, \ldots, 37$, the i-th proposal distribution is given by $\left[0^{1 \times 37}, 0,0,0, z_{1}, z_{2}\right]^{\mathrm{T}}$ where $\left(z_{1}, z_{2}\right)$ are sampled from a Dirichlet distribution with the denseness parameters $\sigma_{\text {pyridine }}$. The parameters $\sigma_{\text {pyridine }}$ and $\sigma_{\text {adenine }}$ is set initially to 50 and adaptively changed based on the rejection rate.

Table 2. The log-mean and log-variance for the prior distribution of $V_{\max }$.

Parameters	Log-mean	Log-variance
$V_{\text {max }}^{1}$	4.5643	0.4805
V^{2} max	5.4116	1.2069
V^{3} max	5.8171	3.2104
V^{4} max	5.2003	0.4805
$V_{\text {max }}$	5.76	1.2069
$V^{7, \mathrm{f}_{\text {max }}}$	7.0676	0.4805
$V^{7, r_{\text {max }}}$	8.7765	0.4805
V^{8} max	7.1546	0.4805
$V_{\text {max }}^{\prime}$	7.8267	0.4805
$V^{10}{ }_{\text {max }}$	5.8861	0.4805
$V^{1{ }^{\text {max }}}$	6.9847	0.4805
$V^{12}{ }_{\text {max }}$	5.1552	2.5903
$V^{13}{ }_{\text {max }}$	6.6846	7.6872
$V^{14}{ }_{\text {max }}$	3.912	0.4805

Note that $\exp (\sqrt{ } 0.4805) \approx 2, \exp (\sqrt{ } 1.2069) \approx 3, \exp (\sqrt{ } 2.5903) \approx 5, \exp (\sqrt{ } 3.2104) \approx 6$ and $\exp (\sqrt{ } 7.6872) \approx 16$.

Table 3. The interval of uniform distribution for the prior distribution of initial conditions and the concentrations of external glucose, F26BP, glycerol and ethanol (excluding the conserved variables).

x_{0}	Interval		x_{0}	Interval	x_{0}

$[\mathrm{DHAP}](0)$	$(0.01,10)$	[AcAld] (0)	$(0.01,10)$
$[\mathrm{GAP}](0)$	$(0.001,10)$	[EtOH]	$(0.01,10)$
$[\mathrm{BPG}](0)$	$(0.01,10)$	$[\mathrm{F} 26 \mathrm{BP}]$	$(0.001,10)$

[Gli] is the internal glucose, [Glo] is the external glucose.

Table 4. The diagonal entries $\Sigma^{i, i}$ of the initial log-covariance matrix Σ used in the proposal distribution for $\left(\theta, y_{e x t}, x_{0}^{\text {non-conserved }}, C_{1}, C_{2}\right)$.

Corresponding sample	$\Sigma^{\text {i,i }}$	Corresponding sample	$\Sigma^{i, i}$	Corresponding sample	$\Sigma^{i, i}$
$V_{\text {max }}^{1}$	0.0048	$V^{13}{ }_{\text {max }}$	0.0769	[P2G](0)	0.0048
V^{2} max	0.0121	$V^{14}{ }_{\text {max }}$	0.0048	[PEP](0)	0.0048
$V^{3}{ }_{\text {max }}$	0.0321	Glycogen flux	0.0048	[PYR](0)	0.0048
$V_{\text {max }}^{4}$	0.0048	Trehalose flux	0.0048	[AcAld](0)	0.0048
$V^{5}{ }_{\text {max }}$	0.0121	[Gli](0)	0.0048	[EtOH]	0.0048
$V^{7, \mathrm{f}}{ }_{\text {max }}$	0.0048	[G6P](0)	0.0048	[F26BP]	0.0048
$V^{7,{ }_{\text {max }}}$	0.0048	[F6P](0)	0.0048	[Glo]	0.0048
$V^{8}{ }_{\text {max }}$	0.0048	[F16BP](0)	0.0048	[Glycerol]	0.0048
$V_{\text {max }}{ }^{\text {max }}$	0.0048	[DHAP](0)	0.0048	C_{1}	0.0048
$V^{10}{ }_{\text {max }}$	0.0048	[GAP](0)	0.0048	C_{2}	0.0048
$V^{11}{ }_{\text {max }}$	0.0048	[BPG](0)	0.0048		
$V^{12}{ }_{\text {max }}$	0.0259	[P3G] (0)	0.0048		

We use the same strategies for all sixteen cases. For each case, we run three parallel chains where each chain uses the singlecomponent Metropolis-Hastings with the setting described above. The simulations took about 500,000 to $1,000,000$ samples to get to the convergence of the three chains using the convergence measure presented in Section 1.2 of this Supplementary Material. A thinning with the size of 39 is applied to the MCMC samples to get less correlated samples. (A thinning with the size of M is a procedure of subsampling the samples with the period of M samples.)

2.2 Pyruvatic Pathways

The setting of simulation in the pyruvate pathways of L. lactis is similar to that in the glycolytic pathways of S. cerevisiae. In particular, the single-component Metropolis-Hastings algorithm is used in the simulation.

The prior distributions for $V_{\max }$ are uniform distributions defined on $(0,20000)$. The interval of uniform distributions for the prior distributions of the initial conditions and the concentrations of external glucose, lactate, acetoin, O_{2}, phosphate, ethanol and butanediol are listed in Table 5. Note that we use the same prior distributions for the three cases.

For the conserved variables, the proposal distribution is assigned according to the parametrization in (SUPPL. 1) with the parameters C_{j} and a. Dirichlet distribution is used for the proposal distribution of a.

Based on the model and parametrization of conserved variables, $w=\left(\theta, x_{0}{ }^{\text {non-conserved }}, C_{1}, C_{2}, C_{3}, a_{A T P}, a_{A D P,} a_{N A D,} a_{N A D H,} a_{C o A}, a_{A c C o A},\right)$ $\in \mathbb{R}_{+}^{30} \times \Omega \times \Omega \times \Omega$ where \mathbb{R}_{+}is the space of positive real value and Ω $:=\left\{z \in \mathbb{R}^{2} \mid z_{1}+z_{2}=1\right\}$.

For $i=1, \ldots, 30$, the proposal distribution $\mathrm{p}_{\text {proposal }}^{i}$ is similar to that in the glycolytic pathways. Suppose that Σ is the logcovariance matrix of the samples $\left(\theta, x_{0}\right.$ non-conserved $\left., C_{1}, C_{2}, C_{3}\right)$ and Σ^{i} is the i-th eigenvector of Σ. We use $\mathrm{p}_{\text {proposal }}^{i}$ given by a multivariate lognormal distribution where the \log space is defined in the direction of $\left(\Sigma^{i \mathrm{~T}}, 0,0,0,0,0,0\right)^{\mathrm{T}}$. The log-covariance matrix is set to di-

B. Jayawardhana et al.

agonal matrix for the first 500,000 samples where each diagonal entry is set to 0.0048 .

For $i=31,32$, the i-th proposal distribution is given by $\left[0^{1 \times 30}, z_{1}\right.$, $\left.z_{2}, 0^{1 \times 4}\right]^{\mathrm{T}}$ where $\left(z_{1}, z_{2}\right)$ are sampled from a Dirichlet distribution with the denseness parameters $\sigma_{\text {adenine }}$. For $i=33,34$, the i-th proposal distribution is given by $\left[0^{1 \times 32}, z_{1}, z_{2}, 0^{1 \times 2}\right]^{\mathrm{T}}$ where $\left(z_{1}, z_{2}\right)$ are sampled from a Dirichlet distribution with the denseness parameters $\sigma_{\text {pyridine. }}$. For $i=35,36$, the i-th proposal distribution is given by $\left[0^{1 \times 34}, z_{1}, z_{2}\right]^{\mathrm{T}}$ where $\left(z_{1}, z_{2}\right)$ are sampled from a Dirichlet distribution with the denseness parameters $\sigma_{C O A}$. The parameters $\sigma_{\text {pyridine }}$, $\sigma_{\text {adenine }}$ and $\sigma_{C O A}$ is set initially to 50 and adaptively changed based on the rejection rate.

Table 5. The interval of uniform distribution for the prior distribution of initial conditions and the concentrations of external glucose, lactate, acetoin, O_{2}, phosphate, ethanol and butanediol (excluding the conserved variables).

x_{0}	Interval	x_{0}	Interval	x_{0}	Interval
[pyruvate] (0)	$(0.0001,10)$	C_{2}	$(1,20)$	O_{2}	$(0.002,2)$
[AcP](0)	$(0.0001,10)$	C_{3}	$(0.1,2)$	PO_{4}	$(0.1,100)$
[AcO](0)	$(0.0001,10)$	[lactate]	$(0.01,10)$		
[AcLac] (0)	$\left(0^{-6}, 1\right)$	[halfglucose] $(0.1,100)$			
[AcetII](0)	$\left(0^{-6}, 1\right)$	[Ac]	$(0.01,10)$		
[AcetOut](0)	$\left(0^{-6}, 1\right)$	[EtOH]	$(0.01,10)$		
C_{1}	$(0.5,10)$	[Butanediol]	$(0.0001,0.1)$		

[AcP] is the Acetyl phosphate, $[\mathrm{AcO}]$ is the acetaldehyde, [AcLac] is the Acetolactate, [AcetIn] is the internal acetoin, [AcetOut] is the external acetoin, [Ac] is the acetate and $[\mathrm{EtOH}]$ is the ethanol.

3 SIMULATIONS DATA

Table 6 describes the comparison of credible interval computed based on full measurement and based on minimal measurement.

Table 6. Credible interval for full and minimal informations in Case A.

Parameters	Credible Interval	
	Full information	Minimal information
$V_{\text {max }}^{1}$	(95.02, 142.6)	$(95.54,268.24)$
V^{2} max	$(152.44,2598.82)$	$(147.3,1938.66)$
V^{3} max	$(351.3,10575.69)$	(86.31, 8683.26$)$
$V^{4}{ }_{\text {max }}$	(92.11, 126.16)	$(89.53,719.58)$
V^{5} max	(95.46, 136.96)	(111.54, 2702.47)
$V^{7, f_{\text {max }}}$	(1273.35, 4554.52)	($325.65,4013.86$)
$V^{7, r_{\text {max }}}$	(1546.9, 15912.29)	$(1780.56,17816.62)$
V^{8} max	(376.32, 5290.68)	$(313.05,4841.79)$
$V_{\text {max }}^{\prime}$	(1046.81, 7230.22)	$(654.06,10018.24)$
$V^{10}{ }_{\text {max }}$	$(216.88,307.98)$	$(152.71,1368.56)$
$V^{1{ }_{\text {max }}}$	(596.59, 875.71)	$(315.05,4028.74)$
$V^{12}{ }_{\text {max }}$	$(381.76,4029.47)$	(153.49, 5587.67)
$V^{13}{ }_{\text {max }}$	$(28.35,85.48)$	$(23.83,108.79)$
$V^{14}{ }_{\text {max }}$	(47.96, 287.65)	(39.58, 264.87)

The unit for $V_{\max }$ is $\mathrm{mmol}(l-\text {-internal vol })^{-1} \mathrm{~min}^{-1}$.
Most of the measurement data in Case $\mathrm{B}, \mathrm{C}, \mathrm{D}$ or E are close to those in Case A and have overlapping error bars (Figure 1). For

Case B, only the measurement of AMP, glucose flux and pyruvate flux have error bars that do not overlap with those of Case A (the 'wild-type'). For Case C, only the measurement of F16BP, P3G, PEP, succinate flux, glucose flux and pyruvate flux that do not have overlapping error bars with Case A. Only the error bar of F6P, F16BP and pyruvate flux in Case D that do not intersect with those in Case A. For the last scenario, Case E, the error bars of NADH, P3G, F16BP, succinate flux, glucose flux and pyruvate flux do not overlap with those in Case A. Therefore, it is not easy to guess the changes in the parameters due to these overlapping of uncertainties in measurement data.

Figure 1. The mean value and standard deviation of simulated measurement data in glycolysis pathways for five different scenarios. The symbol $(\star)-$ Case A, ($\square)-$ Case B, $(\triangle)-$ Case C, $(\diamond)-$ Case D, $(\circ)-$ Case E.

REFERENCES

Gelman, A. (ed) (1996) Inference and monitoring convergence. Chapman \& Hall, London.
Hastings, W.K. (1970) Monte-Carlo Sampling Methods Using Markov Chains and Their Applications, Biometrika, 57, 97-\&.
Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E. (1953) Equation of State Calculations by Fast Computing Machines, Journal of Chemical Physics, 21, 1087-1092.
Rojas, I., Golebiewski, M., Kania, R., Krebs, O., Mir, S., Weidemann, A. and Wittig, U. (2007) SABIO-RK: a database for biochemical reactions and their kinetics, BMC Systems Biology, 1, S6.
Spiegelhalter, W.R., Gilks, W.R., Richardson, S. and Spiegelhalter, D.J. (1996) Markov chain Monte Carlo in practice. Chapman \& Hall, London.

