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Abstract – A hierarchical animal model was developed for inference on genetic merit of

livestock with uncertain paternity. Fully conditional posterior distributions for fixed and genetic

effects, variance components, sire assignments and their probabilities are derived to facilitate

a Bayesian inference strategy using MCMC methods. We compared this model to a model

based on the Henderson average numerator relationship (ANRM) in a simulation study with 10

replicated datasets generated for each of two traits. Trait 1 had a medium heritability (h2) for

each of direct and maternal genetic effects whereas Trait 2 had a high h
2 attributable only to

direct effects. The average posterior probabilities inferred on the true sire were between 1 and

10% larger than the corresponding priors (the inverse of the number of candidate sires in a mating

pasture) for Trait 1 and between 4 and 13% larger than the corresponding priors for Trait 2. The

predicted additive and maternal genetic effects were very similar using both models; however,

model choice criteria (Pseudo Bayes Factor and Deviance Information Criterion) decisively

favored the proposed hierarchical model over the ANRM model.

uncertain paternity / multiple-sire / genetic merit / Bayesian inference / reduced animal

model

1. INTRODUCTION

Multiple-sire mating is common on large pastoral beef cattle operations in

Argentina, Australia, Brazil and parts of the United States, for example. Here,

groups of cows are exposed to several males within the same breeding sea-

son. Consequently, pedigrees in these herds are uncertain, adversely affecting

accuracy of genetic evaluations and selection intensities.

A number of statistical models have been proposed for genetic evaluation

of animals with uncertain paternity. One simple solution appears to be genetic

grouping [19], whereby “phantom parent”groups are assigned to animals within

the same mating pasture. In genetic grouping, phantom parent groups are

typically defined to be a contemporary cluster of unknown parents in order
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to minimize bias on breeding value predictions due to genetic trend [2,13].

The use of genetic grouping for multiple-sire mating, however, is equivalent

to assuming an infinite number of non-inbred, unrelated candidate sires within

each group, each candidate having the same probability of being the correct

sire [12,17] of the animal with an uncertain paternity. However, only the

candidate sires actually used within a group or pasture should be considered.

This requirement is more aptly handled with the average numerator relation-

ship matrix (ANRM) proposed by Henderson [11]. The ANRM is based on

knowledge of true probabilities of each candidate male being the correct sire.

The ANRM helps specify the correct genetic variance-covariance matrix when

these probabilities are presumed known [12], thereby facilitating best linear

unbiased predictions (BLUP) of genetic merit. A simple and rapid algorithm

to compute the inverse of the ANRM is available [6] and the advantage in

selection response of using ANRM versus genetic grouping, when candidate

sires are recorded, has been demonstrated by simulation studies [12,17]. Equal

prior probabilities might be assumed for each sire; however information from

blood typing, genetic markers, mating behavior, fertility, breeding period and

gestation length could also be used to make these probabilities more distinct-

ive [7,11].

A novel empirical Bayes procedure to infer upon uncertain paternity was

proposed by Foulley et al. [7,8]. Their sire model implementation combines

data and prior information to determine the posterior probabilities of sire

assignments for each animal with uncertain paternity. With the advent of

Markov chain Monte Carlo (MCMC) techniques in animal breeding [18], it

is now possible to extend their method to an animal model and allow a more

formal assessment of statistical uncertainty on genetic merit and of probabilities

of sire assignments.

The objectives of this study were to: (1) develop a hierarchical animal

model and Bayesian MCMC inference strategy for the prediction of genetic

merit on animals having an uncertain paternity; (2) use this model to estimate

posterior probabilities of paternity, by combining prior and data information;

and (3) compare the performance of the proposed model with a model based on

the use of the Henderson ANRM having equal prior probability assignments

for all candidate sires.

2. THE BAYES HIERARCHICAL MODEL

2.1. The reduced animal model with maternal effects

Consider an n × 1 data vector y =
{

yij

}

, i = 1, 2, . . . , n; j = 1, 2, . . . , q.

Here i identifies the record and j the animal associated with the ith record.

We allow for the possibility of any animal j having no record; nevertheless,
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a genetic evaluation on that same animal may be desired if it is related to

other animals having data. In the reduced animal model (RAM) of Quaas and

Pollak [14], y is partitioned into two major subsets:

y =

[

yp

yt

]

=

[

Xp

Xt

]

β +

[

Z1p

Z1tPt

]

ap +

[

Z2p

Z2t

]

mp +

[

ep

Z1tγt + et

]

. (1)

The first np ×1 subset yp of y is observed on qp animals that are identified as

parents or ancestors of other animals having data. In equation (1), yp is a linear

function of a p × 1 vector of “fixed” effects β, a qp × 1 vector of additive direct

genetic effects ap, and a qp× 1 vector of additive maternal genetic effects mp.

Here, ap and mp correspond to effects on the qp parents. The design matrices

connecting yp to β, ap and mp are Xp, Z1p, and Z2p, respectively. The remaining

nt × 1 data subset yt is recorded on terminal or non-parent animals who are not

parents of any other animals with data. As with yp, yt is modeled similarly as a

function of β, and mp except that t rather than p is used as the subscript index

for the respective design matrices in equation (1). Furthermore, yt is modeled

as a linear function (through Z1tPt) of ap. Here Z1t is a nt ×qt design matrix and

Pt is a qt × qp matrix connecting the genetic effects of qt non-parent animals

to that of their parents. That is, in Pt, row j, indexed j = qp + 1, qp + 2, . . . , q

connects the genetic effect of non-parent animal j to that of its sire s∗

j and

dam d∗

j such that the j, s∗

j and j, d∗

j elements of Pt for identified parents of

animal j are equal to 0.5. The “residual” vector is composed of error terms

ep and et, respectively of parent and terminal animals, and additionally, for

terminal animals, of additive Mendelian genetic sampling terms in the vector

γt, which is connected to yt through Z1t.

We assume that the variance covariance matrix of the RAM residual vector is:

R = var

[

ep

Z1tγt + et

]

=

[

Iqp
σ2

e 0

0 Z1tΩttZ
′

1tσ
2

a + Iqt
σ2

e

]

, (2)

where Ωtt = diag
{

ωj

}q

j=qp+1
is a qt × qt diagonal matrix, with the jth element

corresponding to the proportion of the additive genetic variance (σ2

a) on animal j

that is due to Mendelian sampling [13]; and σ2

e is the residual variance.

The structural prior specifications on the genetic effects are defined accord-

ingly to include only parent terms, i.e.

p

([

ap

mp

]

|G

)

= N
(

0, G ⊗ App

)

, (3)

where G =

[

σ2

a σam

σam σ2

m

]

is the genetic variance-covariance matrix for direct and

maternal genetic effects with σ2

m being the maternal genetic variance, and σam
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the covariance between direct and maternal genetic effects. Furthermore, App

is the numerator relationship matrix amongst all qp parent animals and ⊗ is

the Kronecker or direct product. For conjugate convenience, a joint bounded

uniform or normal prior p(β) may be specified for β, an inverted Wishart prior

density p(G) specified for G and an inverted gamma density p(σ2

e ) specified

for σ2

e .

In addition we have that
[

at

mt

]

=
[

I2 ⊗ Pt

]

[

ap

mp

]

+

[

γt

δt

]

, (4)

where at and mt are respectively, the qt × 1 vectors of additive and maternal

genetic effects associated with terminal animals. Furthermore, γt and δt are

each qt ×1 vectors of additive and maternal Mendelian genetic sampling terms,

respectively, also associated with terminal animals and such that

[

γt

δt

]

|G ∼ N

([

0

0

]

, G ⊗ Ωtt

)

. (5)

2.2. Modeling uncertain paternity

In populations undergoing multiple-sire mating, a number of males are

possible candidate sires for each of several animals. This translates into

uncertainty on various elements of Pt for non-parent animals and on various

elements of App for parent animals.

We first considered uncertain paternity on the qt non-parent animals indexed

j = qp+1, qp+2, . . . , q and associated with nt records in yt. Let Z1 =

[

Z1p

Z1tPt

]

.

Then if non-parent j has uncertain paternity, this uncertainty translates into

the j, s∗

j element of Pt being unknown or, equivalently, the s∗

j element of

z′
1ij being unknown, where z′

1ij is the row of Z1 matching with the address

of yij in y. Suppose, that for animal j, there are vj possible candidate sires

with identifications listed in sj =
{

s
(1)

j , s
(2)

j , . . . , s
(vj)
j

}

. The distribution of yij,

conditional on a given sire assignment s∗

j = s
(k)
j , 1 ≤ k ≤ vj, on animal j and

all other parameters is given by:

yij|β, ap, mp, s∗

j = s
(k)
j , σ2

a, σ
2

e

∼ N
(

x′
ijβ + 0.5a

s
(k)
j

+ 0.5ad∗

j
+ z′

2ijmp, σ
2

e + ω
(k)
j σ2

a

)

,

i = np + 1, np + 2, . . . , n; j = qp + 1, qp + 2, . . . , q. (6a)

Here x′
ij, and z′

2ij are, respectively, the rows of X and Z2 matching the address

of yij in y. When animal j has certain paternity, vj = 1 such that then s∗

j is not
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random. Note that the conditioning on known d∗

j (dam identification) is implied

for all animals throughout this paper whereas the conditioning on s∗

j = s
(k)
j is

explicitly provided given that s∗

j may be uncertain. This uncertainty is further

reflected in equation (6a) by the term ω
(k)
j = ωj

∣

∣

∣

s∗j =s
(k)
j

indicating that fraction

ω
(k)
j of genetic variance attributable to Mendelian sampling for animal j is a

function of its inbreeding coefficient and hence of the sire assignment s∗

j = s
(k)
j .

Now consider the possibility that at least one of the parent animals, indexed

from 1 to qp, has uncertain paternity such that elements of App are also uncertain.

The sampling distribution of yij, on parent animal j, j = 1, 2, . . . , qp, is not

conditioned on uncertainty on sires, that is,

yij|β, ap, mp, σ
2

e ∼ N
(

x′
ijβ + aj + z′

2ijmp, σ
2

e

)

,

i = 1, 2, . . . , np; j = 1, 2, . . . , qp. (6b)

Uncertain paternity on parent animals is modeled with the second stage

structural prior on ap and mp in equation (3). A useful decomposition of

A−1

pp as shown by Henderson [10] and Quaas [13] is A−1

pp = TpΩ
−1

pp T′
p, where

Tp is a qp × qp lower triangular matrix and Ωpp = diag
{

ωj

}qp

j=1
is a qp × qp

diagonal matrix analogous to Ωtt, but with elements corresponding to the

fraction of σ2

a due to Mendelian sampling on each parent animal j. All of

the diagonal elements of Tp are equal to 1 with at most two other elements

per row, say j, s∗

j and j, d∗

j , being equal to −0.5, if the corresponding parents

s∗

j and d∗

j of animal j are identified, for j = 1, 2, . . . , qp. Consequently,
∣

∣A−1

pp

∣

∣ =
∣

∣Tp

∣

∣

∣

∣Ω−1

pp

∣

∣

∣

∣T′
p

∣

∣ =
∣

∣Ω−1

pp

∣

∣ since
∣

∣Tp

∣

∣ = 1. Given this result, the joint

prior density of ap and mp conditioned on App, can be written as,

p

(

ap

mp

∣

∣

∣

∣

G, App

)

∝ |G|−
p
2

∣

∣Ω−1

pp

∣

∣ exp (−0.5

×
(

a′
pTpΩ

−1

pp T′
papg11 + 2a′

pTpΩ
−1

pp T′
pmpg12 + m′

pTpΩ
−1

pp T′
pmpg22

))

, (7)

where gij is the (i, j)th element of G−1 for i, j = 1, 2.

Let t′j denote the jth row of Tp. Then it can be readily shown that the

additive and maternal Mendelian sampling terms are respectively γj = t′jap =

aj − 0.5as∗j
− 0.5ad∗

j
and δj = t′jmp = mj − 0.5ms∗j

− 0.5md∗

j
for j = 1, . . . , qp.

If there are no known candidates for s∗

j and d∗

j then the corresponding parental

contributions of as∗j
and ad∗

j
to γj and ms∗j

and md∗

j
to δj are equal to 0, as

would be true for each of the base population animals j = 1, 2, . . . , qb ≤ qp.

Let s∗

p =
{

s∗

j

}qp

j=1
denote the vector of random sire assignments on parent

animals and s(k)
p =

{

s
(k)
j

}qp

j=1

be a particular realization of s∗

p from the set
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Sp =
{

s1, s2, s3, . . . , sqp

}

such that the jth element of s(k)
p is one of the vj

elements chosen from sj =
{

s
(1)

j , s
(2)

j , . . . , s
(vj)
j

}

for j = 1, 2, . . . , qp. Note that

for the qb base animals, sj is an empty set. We can then rewrite (7), explicitly

conditioning on sire assignments as follows:

p

(

ap

mp

∣

∣

∣

∣

G, s∗

p = s(k)
p

)

∝ |G|−
qp
2

qp
∏

j=1

(

(

ω
(k)
j

)−1

× exp

(

−0.5
(

ω
(k)
j

)−1
(

(

γ
(k)
j

)2

g11 +
(

δ
(k)
j

)2

g22 + 2γ
(k)
j δ

(k)
j g12

)))

, (8)

where δ
(k)
j = δj

∣

∣

s∗j =s
(k)
j

and γ
(k)
j = γj

∣

∣

s∗j =s
(k)
j

, indicating the natural dependence

of Mendelian sampling terms on the sire assignment s∗

j = s
(k)
j . Since there is

no need to infer upon uncertain paternity for the qb base animals, ω
(k)
j = 1 for

j = 1, 2, . . . , qb with
{

s
(k)
j

}qb

j=1

being an empty subset of s(k)
p .

The third stage of the model specifies the prior probability for each of vj

males being the correct sire of an animal j. As we do similarly for parents,

we let s∗

t =
{

s∗

j

}q

j=qp+1
denote the vector of random sire assignments on the

non-parent animals and s
(k)
t =

{

s
(k)
j

}q

j=qp+1

denote a particular realization of

s∗

t from the set St =
{

sqp+1, sqp+2, . . . , sq

}

. For all q animals, we then write

s(k) =

[

s(k)
p

s
(k)
t

]

=
{

s
(k)
j

}q

j=1

as being a realization of s∗ =

[

s∗

p

s∗

t

]

=
{

s∗

j

}q

j=1
from

the set S =
{

Sp, St

}

. The probability that s
(k)
j is the sire of animal j is defined

as π
(k)
j = Prob

(

s∗

j = s
(k)
j

)

for k = 1, 2, . . . , vj such that
∑vj

k=1
π

(k)
j = 1. For

animals with certain paternity, there is only one candidate s∗

j ≡ s
(1)

j such

that π
(1)

j = 1 and hence is constant. For each of the qb base animals, π
(k)
j

is not specified since there are no candidate sires. The set of probabilities

πj =
{

π
(1)

j ,π
(2)

j , . . . ,π
(vj)
j

}

for each one of vj candidate sires for non-base

animal j (j = qb +1, qb +2, . . . , q) may be conceptually elicited using external

information (e.g. genetic markers). The entire set of probabilities π =
{

πj

}q

qb+1

is rarely known with absolute certainty, and so we might regard them as random

quantities from a Dirichlet distribution:

p
(

πj|αj

)

∝

vj
∏

k=1

(

π
(k)
j

)

α
(k)
j

(9)
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where αj =
{

α
(k)
j

}vj

k=1

, α
(k)
j > 0 for k = 1, 2, . . . , vj and π

(vj)
j = 1 −

∑vj−1

k=1
π

(k)
j

is constrained accordingly. Specification of the set of hyper-parameters α =
{

αj

}q

j=qb+1
might be based on the assessed reliability of the source of external

information on the prior probability of each sire assignment.

We use (6a), (6b), and (8) as key expressions to determine the joint posterior

density of all unknown parameters:

p
(

β, ap, mp, s∗ = s(k),π, G, σ2

e |y
)

∝

np
∏

i=1

p
(

yij|β, ap, mp, σ
2

e

)

n
∏

i=np+1

p
(

yij|β, ap, mp, s∗

t = s(k)
t , σ2

a, σ
2

e

)

× p
(

ap, mp|s
∗

p = s(k)
p , G

)

p (β) Prob
(

s∗ = s(k)|π
)

p (π|α) p (G) p
(

σ2

e

)

. (10)

Here,

Prob
(

s∗ = s(k)|π
)

=

q
∏

j=qb+1

Prob
(

s∗

j = s
(k)
j |πj

)

=

q
∏

j=qb+1

vj
∏

k=1

(

π
(k)
j

)I
(k)
j

,

where I
(k)
j = 1 if s∗

j = s
(k)
j and I

(k)
j = 0 otherwise. Furthermore, p (π|α)

=
∏q

j=qb+1
p
(

πj|αj

)

=
∏q

j=qb+1

∏vj

k=1

(

π
(k)
j

)

α
(k)
j

. The fully conditional distri-

butions (FCD) of all unknown parameters/quantities or blocks thereof in (10)

necessary to conduct MCMC inference with some details on the sampling

strategy itself are derived in the Appendix of this paper. A good exposition on

MCMC implementations in hierarchical animal breeding models analogous to

that presented in this paper is provided by Wang et al. [19].

3. SIMULATION STUDY

A simulation study was carried out to compare two models for the prediction

of genetic merit allowing for uncertain paternity on some animals. The first

model is the hierarchical model proposed in this paper (section 2), which infers

upon this uncertainty using phenotypic data; the other model is based on the

use of the Henderson average numerator relationship.

Ten datasets were generated for each of two different types of traits. Trait 1

had medium direct heritability (h2

a = 0.3), medium maternal heritability

(h2

m = 0.2) and a slightly negative direct-maternal correlation (ram = −0.2)

as, for example, would characterize weaning weight. Trait 2 had a high
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direct heritability (h2

a = 0.5), but null h2

m as would characterize post-weaning

gain. The residual variance (σ2

e ) was 60 and 50, respectively for Traits 1

and 2.

Each population included 80 sires, 400 dams (480 parents) and 2000 non-

parent animals, all of which descended from 20 base sires and 100 base dams.

From these base animals, five generations were created. Fifteen males and

75 females were randomly selected from each generation to be parents of

the next generation. Furthermore, five sires and 25 dams from the previous

generation’s breedstock were retained, such that a total of 20 sires and 100

dams were used as the breeding group for each generation. That is, the

population was structured to have overlapping generations. The probability

of any offspring being assigned to an uncertain paternity situation was 0.3.

If an animal had uncertain paternity, it was randomly assigned to one of six

possible multiple-sire groups in each of the five generations. These groups

had six different sizes: vj = 2, 3, 4, 6, 8 or 10 candidate sires. Once the

group was chosen, one of the males in the group was selected to be the true

sire with either equal (1/vj) or unequal probability relative to the rest of the

candidate sires (the actual probabilities used to assign progeny to sires in each

group can be obtained from the corresponding author upon request). The latter

scenario was intended to represent the dominant male situation, common in beef

cattle [5]. The five sires selected from the previous generation’s breedstock had

only certain progeny. An additional ten sires were used in group matings but

also had certain progeny, whereas the remaining five sires had only uncertain

progeny. One group of three sires in each population was formed with sires

having only uncertain progeny with the purpose of comparing the performance

of the two models in the case where sires have only their own record and

pedigree as the only source of information for their genetic evaluation, other

than uncertain progeny. All other mating groups had at least one sire that

was known to be sires of other animals. We deliberately intended to mimic

the situation observed in some ranches under genetic evaluation in Brazil.

These ranches select their own young bulls to serve their herd by natural

service (NS) and also collect semen from their own top bulls to be used in

artificial insemination (AI). Moreover, they import external genetics especially

through AI. In this scenario, the sires can be categorized in three different

ways: (1) sires having only known progeny (i.e. imported AI bulls); (2) sires

having both known and uncertain progeny assignments, such as top herd bulls

that are used by AI or known NS mating but also by uncertain NS in multiple

sire pastures during the breeding season and (3) sires having only uncertain

progeny assignments.

Only one record was generated per animal. For both traits, the overall mean

was equal to 100 and a fixed effects factor with three levels, having values 25,

−25 and 0, was randomly assigned to generate the individual records.
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The ten replicates for each of the two traits were analyzed using three

different models:

(1) HIER: A hierarchical mixed effects model fully accounting for uncertainty

on sire assignments as proposed in section 2.

(2) ANRM: A linear mixed effects model based on the average numerator

relationship matrix [11]. Equal and fixed probabilities were assigned to

each candidate sire of animals pertaining to uncertain paternity.

(3) TRUE: A linear mixed effects model based on the true sire assignments,

as if there was no uncertainty on assignments. This model was included to

serve as a positive control for the other two models.

For all three models, a MCMC sampling chain of G = 20 000 cycles was run

after a burn-in period of 4000 cycles. In order to concentrate our attention on

the relative performance of the models for breeding value prediction, variance

components were considered to be known. Flat bounded priors were placed on

each fixed effect. Naïve equal prior probabilities, i.e. inverse of the number of

candidate sires within each group, were specified on each sire assignment to an

animal. By setting α
(k)
j =

1

vj

for k = 1, 2, . . . , vj, we have that
∑vj

k=1
α

(k)
j = 1,

and the same weight is statistically given to prior and data information in the

sampling of sire assignments for the jth animal in the set of animals with

uncertain paternity.

The parameters used to compare the methods studied were the mean squared

error of prediction (MSEP), the mean bias of prediction (MBIAS) and rank

(Spearman) correlations between estimated and true genetic values. The MSEP

for each model was estimated as
∑

10

h=1

∑q

j=1

(

ûhj − uhj

)2
/q

/

10, where 10

denotes the number of replicates, q is the total number of parent or non-parent

animals with uncertain paternity per replicate, ûhj is the estimated genetic

additive or maternal effect for animal j in replicate h and uhj is the true genetic

additive or maternal effect for animal j in replicate h. MBIAS was similarly

estimated as
∑

10

h=1

∑q

j=1

(

ûhj − uhj

)

/q
/

10.

Variables describing uncertain paternity, specifically, s∗

j and π
(k)
j , were ana-

lyzed separately for parents and non-parents, since parents were considered to

have greater amounts of information on their genetic merit compared to non-

parents. Sires had on average 23.6 progeny, while dams averaged 5.9 progeny.

Within each group size category, the animals with certain paternity and with

uncertain paternity were considered separately. Pairwise comparisons based

on genetic merits estimated under the three different models were performed

using a t-test.

We also considered two model choice criteria: the Pseudo Bayes Factor

(PBF) [9] and the Deviance Information Criterion (DIC) [16]. For comparing,
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say, models M1 and M2, the corresponding PBF was determined to be:

PBF1,2 =

n
∏

i=1

p
(

yij|y(−ij), M1

)

p
(

yij|y(−ij), M2

) ,

where p
(

yij|y(−ij), Mr

)

is the conditional predictive ordinate (CPO) for observa-

tion yij, intended to be a cross-validation density, which suggests what values of

yij are likely when Model Mr is fit to all other observations y(−ij) except yij. An

MCMC approximation for the CPO of Model Mr with parameters θ is obtained

by a harmonic mean of the G MCMC cycles:

p
(

yij|y(−ij), Mr

)

≈
1

1

G

G
∑

l=1

p−1
(

yij|θ
(l), Mr

)

·

The DIC is composed of a measure of global fit, posterior mean of the

deviance, and a penalization for complexity of the model. The deviance for

Model Mr using the null standardization from Spiegelhalter et al. [16] can

be estimated by D̄r =
1

G

∑G

l=1
−2 log p

(

y|θ(l), Mr

)

. The “complexity” of

Model Mr is determined as the effective number of parameters given by pD(r) =

D̄r − Dr(θ̄) where Dr(θ̄) = −2 log p(y|θ̄, Mr) with θ̄ being the posterior mean

of θ. That is, pD(r) represents the difference between the posterior mean of the

deviance and the deviance based on the posterior mean of the parameters under

Model Mr. The DIC for Model Mr is then determined as:

DICr = D̄r + pD(r).

Smaller values of DIC are indicative of a better-fitting model.

4. RESULTS

Since it was unclear to us whether the indicator variable s∗

j or parameter π
(k)
j

should be used for inferring uncertainty with respect to the assignment of sire k

to animal j, we considered both variables. Inference on the probabilities of the

true sires for animals with uncertain paternity in the HIER model was based on

determining the frequency of the MCMC samples of s∗

j that were equal to the

true sire, designated as Prob
(

s∗

j = s
(true)
j |y

)

, and by determining E
(

π
(true)
j |y

)

the posterior mean of π
(true)
j , the probability parameter identified with s

(true)
j ,

the true sire of j. These summaries are presented separately for parent and

non-parent animals with uncertain paternity in Table I for both Traits 1 and 2.
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Table I. Posterior means of probabilities of sires being true sires
(

E
(

π
(true)

j |y
))

and probability of sire assignments being equal to true sires
(

Prob
(

s
∗

j = s
(true)

j |y
))

averaged across sires and replicates for Traits 1 and 2 by multiple-sire group size and
parents versus non-parent animals.

Multiple-sire group size

Parameter Animal Category 2 3 4 6 8 10

Trait 1
(

E
(

π
(true)

j |y
))

Parents 0.513 0.341 0.259 0.175 0.126 a 0.105
(

E
(

π
(true)

j |y
))

Non-parents 0.509 0.339 0.259 0.172 0.130 0.103

Prob
(

s
∗

j = s
(true)

j |y
)

Parents 0.525 0.349 0.269 0.183 0.127 0.110

Prob
(

s
∗

j = s
(true)

j |y
)

Non-parents 0.517 0.345 0.268 0.178 0.134 0.105

Trait 2
(

E
(

π
(true)

j |y
))

Parents 0.510 0.343 0.265 0.177 0.132 0.105
(

E
(

π
(true)

j |y
))

Non-parents 0.520 0.346 0.270 0.179 0.134 0.106

Prob
(

s
∗

j = s
(true)

j |y
)

Parents 0.521 0.352 0.280 0.188 0.138 0.111

Prob
(

s
∗

j = s
(true)

j |y
)

Non-parents 0.540 0.360 0.289 0.191 0.143 0.111

a posterior probability is not statistically different from the prior of its group size at
α = 0.05.

The average posterior probabilities attributed to the true sire (i.e. based on

Prob
(

s∗

j = s
(true)
j |y

)

) were between 1 and 10% larger than the respective priors

(1/vj for a respective mating group of size vj) for Trait 1 and between 4 and

13% larger than the priors for Trait 2. Inference on uncertain paternity using

Prob
(

s∗

j = s
(true)
j |y

)

had a slightly better general performance than an inference

based on E
(

π
(true)
j |y

)

. The larger differences between the average posterior

and prior probabilities in Trait 2 may be a result of the higher heritability.

These differences were generally statistically significant (P < 0.05), based on

one-sample t-tests.

The consistently higher probability attributed to s
(true)
j by HIER indicates

that this model tends to infer towards the correct sire; however, the small

magnitude of these differences suggests that phenotypes may not be sufficiently

informative to precisely infer upon paternity assignments under these two

trait scenarios. The average Prob
(

s∗

j = s
(true)
j |y

)

for mating groups of size
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Figure 1. Mean squared error of prediction (MSEP) of posterior means of additive
and maternal genetic effects of parent and non-parent animals with uncertain paternity
for Traits 1 and 2 under three models: (1) HIER based on proposed hierarchical
model; (2) ANRM based on the Henderson average numerator relationship matrix;
and (3) TRUE based on knowledge of the true sire as a positive control. Within each
group, bars sharing the same letter are not statistically different at α = 0.05.

vj = 3 and formed with sires with exclusively uncertain progeny were 0.348

for Trait 1 and 0.360 for Trait 2. These probabilities were consistent with

those determined for other groups of size vj = 3 but including sires that had

also certain progeny. That is, the HIER model performed similarly in terms of

probabilities of assignments to sires whether or not sires have both certain and

uncertain progeny or only uncertain progeny as the source of information.

In terms of MBIAS, none of the three models were significantly different

from each other under all situations analyzed, and the results are not presented

here. The mean squared error of prediction (MSEP) and rank correlation on

additive and maternal genetic effects of parents and non-parents, with uncertain

paternity for Trait 1 (medium h2

a – additive and maternal effects) are presented

in Figures 1 and 2, respectively. As expected, the MSEP was always smaller

and rank correlation higher for TRUE compared to ANRM and HIER, showing

that the use of multiple-sire matings adversely affects the accuracy of genetic

evaluations [17]. Posterior means of additive and maternal genetic effects were

very similar for HIER and ANRM with no significant difference in MSEP and

rank correlations on these posterior means between these models. There was,

however, a tendency of having a smaller MSEP and a higher rank correlation

under HIER for animals with uncertain paternity. There does not seem to be

enough information, at least in this simulated scenario, to discriminate between

ANRM and HIER for MSEP and rank correlation of genetic evaluations using

only phenotypic records. This result may be due to the small differences

between prior and posterior probabilities of sire assignments under HIER.
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Figure 2. Rank correlation of additive and maternal genetic effects of parent and
non-parent animals with uncertain paternity for Traits 1 and 2 under three models:
(1) HIER based on proposed hierarchical model; (2) ANRM based on the Henderson
average numerator relationship matrix; and (3) TRUE based on knowledge of the true
sire as a positive control. Within each group, bars sharing the same letter are not
statistically different at α = 0.05.

For Trait 2, the MSEP and rank correlation were also not statistically different

between ANRM and HIER across the ten simulated datasets (Figs. 1 and 2).

Here, the differences in terms of rank correlation among models were somewhat

smaller relative to Trait 1. This result may be due to the higher h2, and therefore

the decreased importance of pedigree information, i.e. sire assignments, relative

to phenotypes for the prediction of genetic effects.

We applied two model choice criteria, the PBF and DIC as previously

described, to compare the statistical fit of the two models, ANRM and HIER.

The PBF for all replicates were always favorable to HIER compared to ANRM,

with magnitudes ranging from 2.1 × 102 to 2.4 × 107 for Trait 1, and from

6.3 × 107 to 2.6 × 1024 for Trait 2. The calculated DIC were also always in

favor of HIER compared to ANRM ranging from differences of 9 to 41 for

Trait 1 and from 33 to 115 for Trait 2. These results appear to be decisively in

favor of the HIER model since Spiegelhalter et al. [16] has suggested a DIC

difference of 7 to be an important difference in the model fit. For Trait 1, the

average DIC over the ten replicates was 17 843 for HIER (D̄HIER = 17 135 and

pD(HIER) = 709) and 17 866 for ANRM (D̄ANRM = 17 164 and pD(ANRM) = 702);

and for Trait 2 we obtained an average DIC of 17 553 for HIER (D̄HIER = 16 605

and pD(HIER) = 949) and of 17 630 for ANRM (D̄ANRM = 16 704 and pD(ANRM) =

926). The primary reason for a smaller DIC for HIER compared to ANRM

was the smaller mean deviance (D̄r) of HIER. The difference in terms of D̄r

was large enough to compensate for the penalty of a larger effective number

of parameters (pD(r)) applied to HIER. These two model choice criteria (PBF
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and DIC) clearly indicate that the HIER model provides a better statistical fit

than the ANRM model to the simulated data involving animals with uncertain

paternity.

5. DISCUSSION

We proposed in this study a fully Bayesian approach for prediction of

genetic merit of animals having uncertain paternity. Similar to the empirical

Bayes sire model method of Foulley et al. [7], our procedure combines data

and prior information to determine posterior probabilities of sire assignments.

Nevertheless, our method represents an important extension since it uses more

recently developed MCMC tools to provide small sample inference based on

the animal model, the most common model for current genetic evaluations. Our

method can be readily extended to multiple-trait or other quantitative genetic

(e.g. random regression) models without great conceptual difficulty. It could

also be easily generalized to the case of uncertain dams; however, this is not a

typical scenario in livestock breeding.

The results obtained from our simulation study indicate that a model account-

ing for uncertainty on sire assignments provides a better fit to data characterized

by uncertain paternity relative to a model based on the use of the average

numerator relationship matrix [11]. The relative performance between the two

models might be expected to increase with h2 since the power of discriminating

between candidate sires should intuitively increase. We previously have shown

that when h2 = 0.10, there was no significant difference between prior and

posterior probabilities of sire assignments [3]. However, the lower the h2,

the greater the importance of data on uncertain progeny in the prediction of a

sire’s genetic merit [17]. The difference between the two models, nevertheless,

does not then necessarily increase with higher heritabilities as the importance

of pedigree information relative to phenotypic information decreases with

respect to the prediction of genetic merit. Our work then suggests that the

largest differences in performance between the two models exist for traits with

medium h2. Nonetheless, due to similarity in terms of rank correlation, and

especially in the absence of prior information from e.g. genetic markers, the

ANRM model may be preferable for genetic evaluation of large populations

given the potential savings in computational time.

In the presence of prior information on sire assignments, the hierarchical

model presented in this study represents an important alternative for genetic

prediction. That is, in addition to the incorporation of prior probabilities on

sire assignments, as also possible with ANRM, the HIER model allows for the

integration of the uncertainty about these prior probabilities in the prediction of

genetic merit. Genetic markers, for example, represent an important objective

source of prior information. Moreover, the HIER model represents a general
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framework which could be extended to model the quality of genetic marker

information contributing to sire assignment [15].

The use of multiple-sire mating is common in large beef cattle populations

raised on pastoral conditions. Currently, about 25–30% of the calves evaluated

by the beef cattle improvement programs in Brazil derive from multiple-sire

mating. Multiple sire matings are used to improve pregnancy rates, since the

average size of breeding groups, as a function of paddock size, is too large

to be sired by a single bull. Other examples of uncertain parentage include

the use of AI followed by NS, accidental or unplanned breedings, and AI with

pooled semen as is common in swine production. Multiple-sire matings are

also commonly found in some sheep production systems.

The impact of modeling uncertain paternity, either through ANRM or HIER,

is expected to be particularly important for large herds. These herds provide

sizable gene pools for selection, thereby offering great potential for genetic

improvement programs; however, the exclusive use of single matings is costly

and generally impractical on these operations due to their size and labor

commitments. Genetic evaluation systems that model uncertain paternity will

aid genetic improvement of economically important traits in large populations

raised in pastoral conditions and undergoing multiple-sire mating.
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APPENDIX

Specification of fully conditional distributions

Let θ =
[

β′, a′
p, m′

p

]′

; W
(k)
t =

[

X Z1|s∗t =s
(k)
t

Z2

]

, with Z1|s∗t =s
(k)
t

indicating

the dependency of this design matrix on sire assignments s∗

t = s
(k)
t for non-

parent animals; and
(

Σ(k)
p

)−

=

[

V−1

ββ 0p×2qp

02qp×p G−1 ⊗ A−1

pp

∣

∣

s∗p=s
(k)
p

]

, with A−1

pp

∣

∣

s∗p=s
(k)
p

indicating the dependence of parental relationships on sire assignments s∗

p =

s(k)
p for parent animals, and V−1

ββ being a p×p diagonal matrix consistent with a

N
(

βo, Vββ

)

prior assignment on β. If V−1

ββ = 0p×p, then p(β) ∝ 1. We, however,
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adopted a proper bounded uniform prior on β, which is equivalent to specifying

V−1

ββ = 0p×p but with values of β constrained to be within the specified bounds.

Then, it can be readily shown using results from Wang et al. [18] that the FCD

of θ is multivariate normal, that is,

θ|s∗ = s(k), G, σ2

e , y ∼ N(θ̂(k), C(k)) (A.1)

where

θ̂(k) = C(k)

(

W(k)′

t

(

R(k)
t

)−1

y +

[

V−1

ββ βo

02qpx1

])

for C(k) =

(

W
(k)′

t

(

R
(k)
t

)−1

W
(k)
t +

(

Σ(k)
p

)−

)−1

, with R
(k)
t = R|

s
∗
t =s

(k)
t

indicat-

ing the dependency of R on sire assignments s∗

t = s
(k)
t on non-parents.

The FCD of sire assignments in s∗ are considered separately for parents and
non-parent animals. For parent animals, the FCD of the sire assignment on
animal j is:

Prob
(

s∗

j = s
(k)
j |β, ap, mp, s∗

−j = s
(k)

−j ,π, G, σ2

e , y
)

=

π
(k)
j

(

ω
(k)
j

)

−1

exp

(

−0.5
(

ω
(k)
j

)

−1
(

(

γ
(k)
j

)2

g11 +

(

δ
(k)
j

)2

g22 + 2
(

γ
(k)
j

)(

δ
(k)
j

)

g12

))

vj
∑

k=1

π
(k)
j

(

ω
(k)
j

)

−1

exp

(

−0.5
(

ω
(k)
j

)

−1
(

(

γ
(k)
j

)2

g11 +

(

δ
(k)
j

)2

g22 + 2
(

γ
(k)
j

)(

δ
(k)
j

)

g12

))

,

j = qb + 1, qb + 2, . . . , q, (A.2)

where s∗

−j = s
(k)

−j is used to denote the conditioning on sire assignments for all

animals other than j. For non-parent animals, the FCD of the sire assignment

on animal j is:

Prob
(

s∗

j = s
(k)
j |β, ap, mp, s∗

−j = s
(k)

−j ,π, G, σ2

e , y
)

=

π
(k)
j

(

σ2

e + ω
(k)
j σ2

a

)−1/2

exp

(

−0.5
(

σ2

e + ω
(k)
j σ2

a

)−1 (

e
(k)
ij

)2
)

vj
∑

k=1

π
(k)
j

(

σ2

e + ω
(k)
j σ2

a

)−1/2

exp

(

−0.5
(

σ2

e + ω
(k)
j σ2

a

)−1 (

e
(k)
ij

)2
)

, (A.3)

where e
(k)
ij = yij−x′

ijβ−0.5a
s
(k)
j

−0.5ad∗

j
−z′

2ijmp and j = qp+1, qp+2, . . . , q.

Therefore, MCMC inference on sire assignments require random draws from

generalized Bernoulli (i.e. single trial multinomial) distributions.

The FCD’s for the probabilities of sire assignments are given by:

p
(

πj|β, ap, mp, s∗ = s(k), G, σ2

e , y
)

∝

vj
∏

k=1

(

π
(k)
j

)

α
(k)
j +I

(k)
j −1

, (A.4)



486 F.F. Cardoso, R.J. Tempelman

which corresponds to a series of Dirichlet distributions for j = qb + 1, qb +

2, . . . , q.

The FCD’s of each of σ2

e and G using the RAM specification do not have

recognizable forms. Bink et al. [1] suggested univariate Metropolis-Hastings

sampling updates for various functions of variance components in their RAM-

based specification. We alternatively base our MCMC algorithm on the method

of composition using specifically Algorithm 2 of Chib and Carlin [4] except

that their data distribution is fully marginalized over the random effects whereas

the RAM specification in (1) is only marginalized over the non-parent genetic

effects. The joint posterior density of all parameters in a full animal model can

be obtained from the reduced animal model as follows:

p
(

β, a, m|s∗ = s(k), G, σ2

e , y
)

= p
(

β, ap, mp|s
∗ = s(k), G, σ2

e , y
)

p
(

γt, δt|ap, mp, G, s∗ = s(k)
)

. (A.5)

That is, a random draw from (A.5) is equivalent to a random draw from

(A.1) followed by a random draw from p
(

γt, δt|ap, mp, G, s∗ = s(k)
)

that can

be readily derived as a sequence of univariate draws from the additive γ
(k)
j and

maternal δ
(k)
j Mendelian sampling terms. Specifically, this involves sampling

first from

γ
(k)
j |β, ap, mp, s∗ = s(k), G, σ2

e , y

∼ NID















1

σ2
e

+

(

ω
(k)
j

)−1

σ2
a







−1

e
(k)
ij

σ2
e

,







1

σ2
e

+

(

ω
(k)
j

)−1

σ2
a







−1








j = qp + 1, qp + 2, . . . , q, (A.6)

followed by

δ
(k)
j |γt, β, ap, mp, s∗ = s(k), G, σ2

e , y ∼ NID

(

−
g12

g22
γ

(k)
j ,

ω
(k)
j

g22

)

j = qp + 1, qp + 2, . . . , q. (A.7)

Let p(G) be a conjugate inverted Wishart prior density with parameters

vg and Go such that E
(

G|vg, Go

)

=
1

vg − 3
G−1

o
. The FCD of G given the

augmentation of the RAM joint posterior density in (8) with γt and δt is:

p
(

G|β, a, m, s∗ = s(k), σ2

e , y
)

∝ |G|−
q+vg+3

2 exp
(

−0.5 trace
(

G−1
(

SG + G−1

o

)))

, (A.8)
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where

SG =

[

a′A
−1

a a′A
−1

m

m′A
−1

a m′A
−1

m

]

.

These components of SG can be readily computed without explicitly determin-

ing at and or mt. For example, using results from Quaas [13] and those in this

paper, a′A
−1

a = a′
pA−1

pp ap + γ′

tΩ
−1

tt γt, where γ′

tΩ
−1

tt γt =
∑q

j=qp+1

γ2

j

ωj

·

Finally, let p
(

σ2

e

)

be an inverted-gamma density with parameters αe and βe.

Then the FCD of σ2

e is also inverted-gamma and given by:

p
(

σ2

e |β, a, m, s = s(k), G, y
)

∝
(

σ2

e

)−(n/2+αe−1)
exp

(

−
1

σ2
e

(

e′e

2
+ βe

))

·

(A.9)

The first np elements of e are ep =
{

eij

}qp

j=1
which are residuals due to records

on the parents. The last nt elements of e are e
(k)
t =

{

e
(k)
ij − γ

(k)
j

}q

j=qp+1

with

e
(k)
t = et|s∗t =s

(k)
t

indicating the dependence of et on sire assignments s∗

t = s
(k)
t

on non-parent animals.

The MCMC sampling scheme can thus be summarized as follows:

(1) Draw samples of β, ap, and mp from (A.1) using the proposition from the

appendix of Wang et al. [18].

(2) Draw samples of γt and δt from (A.6) and (A.7).

(3) Compute SG using the samples of ap, mp, γt, and δt in order to sample G

from a scaled inverted Wishart distribution (A.8).

(4) Determine e
(k)
t and combine with ep to sample σ2

e from an inverted-gamma

distribution (A.9).

(5) For each animal j with uncertain paternity, independently draw a sire s∗

j

using as the probability of assignment either (A.2) if the animal is a parent

or (A.3) if the animal is a non-parent.

(6) For each animal j with uncertain paternity, independently draw πj from a

Dirichlet distribution (A.4).


