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S

By extending Schwarz’s (1978) basic idea we derive a Bayesian information criterion
which enables us to evaluate models estimated by the maximum penalised likelihood
method or the method of regularisation. The proposed criterion is applied to the choice
of smoothing parameters and the number of basis functions in radial basis function net-
work models. Monte Carlo experiments were conducted to examine the performance of
the nonlinear modelling strategy of estimating the weight parameters by regularisation
and then determining the adjusted parameters by the Bayesian information criterion. The
simulation results show that our modelling procedure performs well in various situations.

Some key words: Bayes approach; Maximum penalised likelihood; Model selection; Neural network; Nonlinear
regression.

1. I

Recent years have seen the development of various types of nonlinear model such as
neural networks, kernel methods and splines. Nonlinear models are generally characterised
by including a large number of parameters. Since maximum likelihood methods yield
unstable parameter estimates, the adopted model is usually estimated by the maximum
penalised likelihood method (Good & Gaskins, 1971; Green & Silverman, 1994) or the
method of regularisation or the Bayes approach and so on.

Crucial issues with nonlinear modelling are the choice of a smoothing parameter, the
number of basis functions in splines and the number of hidden units in neural networks.
Choosing these parameters in the modelling process can be viewed as a model selection
and evaluation problem. Schwarz (1978) proposed the Bayesian information criterion, .
However, theoretically, the  covers only models estimated by the maximum likelihood
method. It still remains to construct a criterion for evaluating nonlinear models estimated
by the maximum penalised likelihood method.

This paper has two aims. First, the  is extended to cover the evaluation of models
estimated by the maximum penalised likelihood method. Secondly, the criterion is used
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to construct radial basis function network nonlinear regression models. In §2, by extending
Schwarz’s basic ideas, we present various types of Bayesian information criterion. Section 3
describes nonlinear regression modelling based on radial basis function networks. In §4
we investigate the performance of the nonlinear modelling techniques, using Monte Carlo
simulations. Section 5 provides discussion, including possibilities for future work.

2. B    

2·1. Bayesian information criteria

Suppose we are interested in selecting a model from a set of candidate models
M1 , . . . ,Mr for a given observation vector y of dimension n. It is assumed that modelM

k
is characterised by the probability density f

k
( y|h
k
), where h

k
µH
k
5Rp

k
is a p

k
-dimensional

vector of unknown parameters. Let p
k
(h
k
|l
k
) be the prior density for parameter vector h

k
under model M

k
, where l

k
is a hyperparameter. The posterior probability of the model M

k
for a particular dataset y is then given by

pr (M
k
|y)=pr (M

k
) P fk (y|hk )pk (hk |lk )dhkN ∑r

a=1
pr (M

a
) P fa (y|ha )pa (ha |la )dha ,

where pr (M
k
) is the prior probability for model M

k
.

The Bayes approach for selecting a model is to choose the model with the largest
posterior probability among a set of candidate models for given values of l

k
. This is

equivalent to choosing the model that maximises

pr (M
k
) P fk (y|hk )pk (hk |lk )dhk) pr (M

k
) f
k
(y|l
k
). (1)

The quantity f
k
( y|l
k
) obtained by integrating over the parameter space H

k
is the marginal

probability of the data y under model M
k
, and it can be rewritten as

f
k
(y|l
k
)=P exp {nq

k
(h
k
|y, l
k
)}dh
k
, (2)

where

q
k
(h
k
|y, l
k
)=n−1{log f

k
(y|h
k
)+ log p

k
(h
k
|l
k
)}. (3)

We first consider the case where log p
k
(h
k
|l
k
)=O (n). Let h@

k
be the mode of q

k
(h
k
|y, l
k
).

Then, using the Laplace method for integrals in the Bayesian framework developed by
Tierney & Kadane (1986), Tierney et al. (1989) and Kass et al. (1990), we have under
certain regularity conditions the Laplace approximation to the marginal distribution (2)
in the form

f
k
(y|l
k
)=P exp {nq

k
(h
k
|y, l
k
)}dh
k

=
(2p)p

k
/2

np
k
/2 |Q
l
k

(h@
k
) |D

exp {nq
k
(h@
k
|y, l
k
)}{1+O

p
(n−1 )}, (4)

where

Q
l
k

(h@
k
)=−

∂2{q
k
(h
k
|y, l
k
)}

∂h
k
∂hT
k
K
h
k
=h@
k

.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/91/1/27/218739 by guest on 20 August 2022



29Bayesian analysis of radial basis function networks

Substituting the Laplace approximation in equation (1) and taking the logarithm of the
resulting formula, we have

−2 log {pr (M
k
) f
k
(y|l
k
)}=−2 log f

k
(y|h@
k
)−2 log p

k
(h@
k
|l
k
)+p
k
log n+ log |Q

l
k

(h@
k
) |

−2 log pr (M
k
)−p
k
log 2p+O

p
(n−1 ). (5)

Choosing the model with the largest posterior probability among a set of candidate models
for given values of l

k
is equivalent to choosing the model that minimises the criterion (5).

We next consider the case where log p
k
(h
k
|l
k
)=O (1). Then the mode h@

k
of q
k
(h
k
|y, l
k
)

in (3) can be expanded as

h@
k
=h@ (ML)
k
+
1

n
J−1
k
(h@ (ML)
k
)
∂
∂h
k

log p
k
(h
k
|l
k
)K
h
k
=h@(ML)
k

+O
p
(n−2 ), (6)

where h@ (ML)
k

is the maximum likelihood estimate of h
k
in the model f

k
( y|h
k
) and

J
k
(h@ (ML)
k
)=−

1

n

∂2 log f
k
(y|h
k
)

∂h
k
∂hT
k
K
h
k
=h@(ML)
k

.

Substituting the stochastic expansion (6) in equation (5) yields

−2 log {pr (M
k
) f
k
(y|l
k
)}=−2 log f

k
(y|h@ (ML)
k
)−2 log p

k
(h@ (ML)
k
|l
k
)+p
k
log n

+ log |J
k
(h@ (ML)
k
) |−2 log pr (M

k
)−p
k
log 2p+O

p
(n−1 ).

Ignoring the term of order O (1) and higher-order terms in this equation, we have Schwarz’s
(1978) Bayesian information criterion,

=−2 log f
k
(y|h@ (ML)
k
)+p
k
log n. (7)

Suppose that the prior probabilities, pr (M
k
), are all equal, and that the prior density

p
k
(h
k
|l
k
) is sufficiently flat in the neighbourhood of h@

k
. These conditions lead to the

modification of equation (7) to the following:

I=−2 log f
k
(y|h@ (ML)
k
)+p
k
log n+ log |J

k
(h@ (ML)
k
) |−p

k
log 2p.

This variant, based on the inclusion of the term log |J
k
(h@ (ML)
k
) |, is regarded as an improved

version of .
The use of Laplace’s method for integrals has been extensively investigated as a useful

tool for approximating Bayesian predictive distributions, Bayes factors and Bayesian model
selection criteria (Davison, 1986; Clarke & Barron, 1994; Kass & Wasserman, 1995; Kass &
Raftery, 1995; O’Hagan, 1995; Neath & Cavanaugh, 1997; Pauler, 1998; Lanterman, 2001).

2·2. Smoothing parameter selection

We extend the  so that it can be applied to the evaluation of models estimated by
the method of maximum penalised likelihood. In this subsection we drop the notational
dependence on the model M

k
and consider the Bayesian approach with equal prior pro-

babilities. It is assumed that the logarithm of a prior density is of order O (n), that is
log p(h|l)=O (n), where h is p-dimensional.

Suppose that the model is constructed by maximising the penalised loglikelihood function

l
l
(h)= log f (y|h)−

nl

2
hTDh, (8)
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where D is a p×p known matrix of rank p−d and l is a smoothing parameter. The
penalty term corresponds to a singular multivariate normal prior density, p(h|l), where

p(h|l)= (2p)−(p−d)/2 (nl)(p−d)/2 |D|D
+

expA− nl2 hTDhB , (9)

in which |D|
+

is the product of the ( p−d ) nonzero eigenvalues of D. For the Bayesian
justification of the maximum penalised likelihood approach, we refer to Silverman (1985)
and Wahba (1990, Ch. 1).

It follows from equation (4) that minus twice the log marginal likelihood,−2 log { f (y|l)},
can be approximated by

−2 log { f (y|l)}j−2 log f (y|h@ )−2 log p(h@ |l)+p log n+ log |Q
l
(h@ ) |−p log 2p.

(10)

By substituting the prior density (9) into this equation, we have

P (l)=−2 log f (y|h@ )+nlh@TDh@+d log n+ log |Q
l
(h@ ) |− log |D|

+

−d log 2p− ( p−d) log l, (11)

whereQ
l
(h)=−n−1∂2 log f (y|h)/∂h ∂hT+lD and the estimator h@ is a solution of the equation

∂q(h|y, l)
∂h

=
∂
∂hq1n log f (y|h)−

l

2
hTDh+

p−d
2n

logAnl2pB+ 12n log |D|
+r=0. (12)

This implies that h@ is the maximiser of the penalised loglikelihood function (8).
We choose the smoothing parameter l to minimise P (l). In the context of model

selection, we minimise P (l) over l for each model, and then choose a model for which
P (l) is minimised over a set of competing models, which might consist of various types
of nonparametric regression model estimated by the maximum penalised likelihood method.

3. R     

3·1. Preamble

Section 3·2 presents a radial basis function network regression model and derives a
Bayesian information criterion in the context of generalised linear models (Nelder &
Wedderburn, 1972; McCullagh & Nelder, 1989, Ch. 2). The resulting formulae are applied
in §3·3 to special cases involving Gaussian, logistic and Poisson nonlinear regression models
based on radial basis function networks. For background about radial basis function
networks, we refer to Broomhead & Lowe (1988), Moody & Darken (1989), Poggio &
Girosi (1990), Bishop (1995, p. 164), Ripley (1996, p. 131), Webb (1999, p. 140), Ando
et al. (2001) and references given therein.

3·2. Radial basis function network generalised linear models

Suppose that we have n independent observations y
a

corresponding to q-dimensional
design points x

a
, for a=1, . . . , n. In generalised linear models y

a
are assumed to be drawn

from the exponential family of distributions with densities

f (y
a
|x
a
; j
a
, y)=exp [{y

a
j
a
−u(j

a
)}/y+v(y

a
, y)], (13)
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where u ( . ) and v ( . , . ) are functions specific to each distribution, and y is an unknown
scale parameter. The conditional expectation E(Y

a
|x
a
)=m
a
=u∞(j

a
) is related to the pre-

dictor g
a
=h (m

a
), where h ( . ) is a link function. We model the predictor g

a
by a radial basis

function network of the form

g
a
= ∑
p

j=1
w
j
w
j
(x
a
)+w

0
(a=1, 2, . . . , n), (14)

where {w
j
(x); j=1, . . . , p} is a set of radial basis functions. We shall use Gaussian basis

functions, such that

w
j
(x)=w

j
(x; m
j
, s
j
)=expA− dx−mjd22ns2

j
B ( j=1, 2, . . . , p),

where m
j

is the q-dimensional vector determining the location of the basis function, s2
j

determines the width, n is a hyperparameter and d . d is the Euclidian norm. The hyperpara-
meter n adjusts the amount of overlapping among the basis functions so that the network
can capture the structure in the data over the region of the input space (Ando et al., 2001).

If we write

g
a
= ∑
p

j=1
w
j
w
j
(x
a
)+w

0
=wTb(x

a
),

where w= (w0 , w1 , . . . , wp )T and b (x
a
)= (1, w1 (xa ), . . . , wp (xa ) )T, the parameter j

a
in (13)

can be expressed as j
a
=u∞−1[h−1{wTb (x

a
)}]. Then it follows from (13) and (14) that the

data are summarised by a model from a class of probability densities of the form

f (y
a
|x
a
; w, y)=exp ([y

a
r{wTb(x

a
)}−s{wTb(x

a
)}]/y+v(y

a
, y) ), (15)

where r ( . )=u∞−1 0 h−1 ( . ) and s ( . )=u 0 u∞−1 0 h−1 ( . ).
In the model-fitting, the radial basis function network model is generally determined

by a two-stage procedure. In the first stage we construct the basis functions by analysing
the data on the explanatory variables, using a k-means clustering algorithm. This algorithm
divides the input dataset {x1 , . . . , xn} into p clusters C1 , . . . , Cp corresponding to the
number of basis functions. Then the centres and widths are determined by

m@
j
=
1

n
j
∑
aµC
j

x
a
, s@2
j
=
1

n
j
∑
aµC
j

dx
a
−m@
j
d2 ,

where n
j
is the number of observations which belong to the jth cluster C

j
.

In the second stage, we estimate the weight parameters w by maximising the penalised
loglikelihood function

l
l
(w, y)= ∑

n

a=1
([y
a
r{wTb(x

a
)}−s{wTb(x

a
)}]/y+v(y

a
, y) )−

nl

2
wTDw, (16)

where D is a ( p+1)× ( p+1) positive semidefinite matrix and l is a regularisation para-
meter. If a hyperparameter n is used, the smoothness of the fitted model is mainly determined
by n, and the regularisation parameter l has the effect of reducing the variances of the
network parameter estimates. For the penalty term, we use the second-order penalty given by

∑
p

j=2
(D2w

j
)2=wTDT

2
D
2
w,
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where D is the difference operator defined by Dw
j
=w
j
−w
j−1

and D2 is a ( p−1)× ( p+1)
matrix representation of the difference operator D2. The use of difference penalties has
been investigated by Whittaker (1923), Tanabe & Tanaka (1983), Green & Yandell (1985)
and O’Sullivan et al. (1986).

The maximum penalised likelihood estimator w@ is a solution of the equation
∂l
l
(w, y)/∂w=0. This equation is generally nonlinear in w, so we use Fisher’s scoring

algorithm (Nelder & Wedderburn, 1972; Green & Silverman, 1994). For fixed values of
y, n, l and the number of basis functions p, the Fisher scoring iteration may be expressed as

wnew= (BTWB+nlDT
2
D
2
)−1BTW f,

where B= (b (x1 ), . . . , b (xn ) )T, W is an n×n diagonal matrix with ith diagonal element
w
ii
={yu◊(j

i
)h∞(m
i
)2}−1 and f an n-dimensional vector with f

i
= ( y

i
−m
i
)h∞(m
i
)+wTb (x

i
).

If h ( . ) is a canonical link function such as h−1 ( . )=u∞( . ), W=diag (w11 , . . . , wnn ) and
f= (f1 , . . . , fn )T simplify to

w
ii
=u◊{wTb(x

i
)}/y, f

i
= (y
i
−m
i
)/u◊{wTb(x

i
)}+wTb(x

i
).

After w@ is obtained, the estimate of the scale parameter y@ is obtained as a solution of
∂l
l
(ŵ, y)/∂y=0. Replacing w and y in (15) by their sample estimates w@ and y@ yields the

statistical model f ( y
a
|x
a
; w@ , y@ ), which depends on the values of l, n and p. We use P

to choose appropriate values for these parameters. The result is summarised in the following
theorem.

T 1. L et f (y
a
|x
a
; w, y) be a radial basis function network generalised linear

model given by (15), and let f (y
a
|x
a
; w@ , y@ ) be the statistical model estimated by maximising

the penalised loglikelihood function (16). T hen a Bayesian information criterion for evaluating
f (y
a
|x
a
; w@ , y@ ) is

(G)P =−2 ∑
n

a=1
([y
a
r{(w@ Tb(x

a
)}−s{w@ Tb(x

a
)}]/y@+v(y

a
, y@ ) )+nlw@ TDT2D2w@

−3 log (2p/n)+ log |Q
l
(w@ , y@ ) |− log |DT

2
D
2
|
+
− ( p−1) log l,

where

Q
l
(w@ , y@ )=

1

ny@ ABTCB+ny@ lDT2D2 BTe/y@

eTB/y@ −y@ ∑
n

a=1
q
aB .

Here C is an n×n diagonal matrix, e is an n-dimensional vector and W
a
q
a
is the second

derivative of l
l
(w, y)/n with respect to y, with

C
aa
=
(y
a
−m@
a
){u◊∞(j@

a
)h∞(m@
a
)+u◊(j@

a
)2h◊(m@

a
)}

{u◊(j@
a
)h∞(m@
a
)}3

+
1

u◊(j@
a
)h∞(m@
a
)2
,

e
a
= (y
a
−m@
a
)/{u◊(j@

a
)h∞(m@
a
)},

q
a
=2[y

a
r{w@ Tb(x

a
)}−s{w@ Tb(x

a
)}]/y@ 3+∂2v(y

a
, y)/∂y2 |

y=y@
,

for a=1, . . . , n.
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Canonical link functions relate the parameter j
a
in the exponential family (13) directly

to the predictor g
a
=Wp
j=1
w
j
w
j
(x
a
)+w

0
in (14), and lead to

f (y
a
|x
a
; w@ , y@ )=exp ([y

a
w@ Tb(x

a
)−u{w@ Tb(x

a
)}]/y@+v(y

a
, y@ ) ). (17)

Then we have the following theorem.

T 2. L et h( . ) be the canonical link function so that h( . )=u∞−1 ( . ). T hen a Bayesian
information criterion for evaluating the statistical model f (y

a
|x
a
; w@ , y@ ) given by equation (17)

is

(C)P =−2 ∑
n

a=1
([y
a
w@ Tb(x

a
)−u{w@ Tb(x

a
)}]/y@+v(y

a
, y@ ) )+nlw@ TDT

2
D
2
w@

−3 log (2p/n)+ log |Q(C)
l
(w@ , y@ ) |− log |DT

2
D
2
|
+
− ( p−1) log l,

where Q(C)
l
(w@ , y@ ) can be obtained by replacing C, q

a
and e in Q

l
(w@ , y@ ) by, respectively,

C(C)=diag [u◊{w@ Tb(x
1
)}, . . . , u◊{w@ Tb(x

n
)}],

q(C)
a
=2[y

a
w@ Tb(x

a
)−u{w@ Tb(x

a
)}]/y@ 3+∂2v(y

a
, y)/∂y2 |

y=y@
,

e(C)= (y
1
−m@
1
, . . . , y

n
−m@
n
)∞.

3·3. Some special cases

Example 1: Radial basis function network Gaussian regression model. In this case
y
a
=m (x

a
)+e
a
(a=1, . . . , n), where m ( . ) is an unknown smooth function and the errors e

a
are independently and normally distributed with mean zero and variance s2.

We represent m ( . ) in terms of a radial basis function network as

m(x
a
)= ∑
p

j=1
w
j
w
j
(x
a
)+w

0
(a=1, 2, . . . , n),

where {w
j
(x); j=1, . . . , p} is a prescribed set of Gaussian basis functions. Then the general

approach of §3·2 leads to

fN (ya |xa ; w@ , s@2 )=
1

√(2ps@2 )
expC− 1

2s@2
{y
a
−w@ Tb(x

a
)}2D (a=1, . . . , n), (18)

where

w@= (BTB+nbDT
2
D
2
)−1BTy, s@2=

1

n
∑
n

a=1
{y
a
−w@ Tb(x

a
)}2

with b=ls2.
If in the Bayesian framework we specify a Gaussian prior density p(w|l) as in (9), the

posterior distribution for w is normal with mean vector w@ and covariance matrix
(B∞B/s2+nlD)−1 ; see Silverman (1985) and Spiegelhalter et al. (2002).

Taking u (j@
a
)=j@2
a
/2, y=s@ 2, v ( y

a
, y)=−y2

a
/(2s@ 2 )− log {s@√(2p)} and h (m@

a
)=m@

a
in

Theorem 2, we obtain the following Bayesian information criterion for evaluating the
statistical model f

N
( y
a
|x
a
; w@ , s@2 ) in (18):

(N)P (b, n, p)= (n+p−1) log s@2+nbw@ TDT
2
D
2
w@ /s@2+n+ (n−3) log (2p)+3 log n

+ log |Q(G)
b
(w@ , s@2 ) |− log |DT

2
D
2
|
+
− ( p−1) log b, (19)
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Fig. 1: Example 1. Comparison of the true curve, dashed lines, and the smoothed curve, solid lines,
for radial basis functions with n=1, 10.

where

Q(G)
b
(w@ , s@2 )=

1

ns@2ABTB+nbDT2D2 BTe/s@2eTB/s@2 n/(2s@2 )B .
For illustration, data {( y

a
, x
a
); a=1, . . . , 100} were generated from the true model

y
a
=0·2 sin (3px2

a
)+exp {−(x

a
−0·5)2}+exp {−16(x

a
−0·6)2}+e

a

with Gaussian noiseN (0, 0·16), where the design points are uniformly distributed in [0, 1].
Figures 1 (a) and (b) give the fitted curves and the radial basis functions with n=1 and
n=10. The fitted curve in Fig. 1 (a) is obviously undersmoothed, while the one in Fig. 1 (b)
gives a good representation of the underlying function over the region [0, 1].

Example 2: Radial basis function network logistic regression model. Let y1 , . . . , yn be
independent binary random variables with

pr (Y=1|x
a
)=p(x

a
), pr (Y=0|x

a
)=1−p(x

a
),

where x
a
are q-dimensional explanatory variables. We model p(x

a
) by

logq p(xa )1−p(x
a
)r= ∑p

j=1
w
j
w
j
(x
a
)+w

0
.

Estimating the ( p+1)-dimensional parameter vector w by maximum penalised likelihood
gives the model

f
L
(y
a
|x
a
; w@ )=p@ (x

a
)y
a
{1−p@ (x

a
)}1−y

a
(a=1, . . . , n), (20)

where p@ (x
a
)=exp {w@ Tb (x

a
)}/[1+exp {w@ Tb (x

a
)}] is the estimated conditional probability.

By taking

u(j@
a
)= log {1+exp (j@

a
)}, v(y

a
, y)=0, h(m@

a
)= log

m@
a

1−m@
a

, y=1,
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Fig. 2: Example 2. Fitting radial basis function network logistic regression models for the true models
(a) pr (Y=1|x)=1/[1+exp {−cos (2px)}],
(b) pr (Y=1|x)=1/[1+exp {−exp (−3x) cos (3px)}].

The broken and solid curves represent the true and estimated conditional probability models,
respectively.

in Theorem 2, we obtain

(L)P (l, n, p)=2 ∑
n

a=1
( log [1+exp {w@ Tb(x

a
)}]−y

a
w@ Tb(x

a
) )+nlw@ TDT

2
D
2
w@

−2 log (2p/n)+ log |Q(L)
l
(w@ ) |− log |DT

2
D
2
|
+
− ( p−1) log l, (21)

where

Q(L)
l
(w@ )=BTC(L)B/n+lDT

2
D
2

with C(L)
aa
=exp {w@ Tb(x

a
)}/[1+exp {w@ Tb(x

a
)}]2 as the ath diagonal element of C(L).

For illustration, binary observations y1 , . . . , y100 were generated from the true models

pr (Y=1|x)=
1

1+exp {−cos (2px)}
, pr (Y=1|x)=

1

1+exp {−exp (−3x) cos (3px)}
,

where the design points are uniformly distributed in [0, 1]. We fitted the radial basis
function network logistic model (20) to these data. Figure 2 shows the true and estimated
conditional probability functions; the circles indicate the data.

Example 3: Radial basis function network Poisson regression model. Suppose that we
have n independent observations y

a
, each from a Poisson distribution with conditional

expectation E(Y
a
|x
a
)=c(x

a
), where x

a
consists of q covariates. It is assumed that the

conditional expectation is of the form

log {c(x
a
)}= ∑

p

j=1
w
j
w
j
(x
a
)+w

0
=wTb(x

a
) (a=1, 2, . . . , n).
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We estimate the unknown parameter vector w by maximising the penalised loglikelihood
function, and then have the model

fP (ya |xa ; w@ )=exp {−c@(x
a
)}c@(x

a
)y
a
/y
a
!, (22)

where c@(x
a
) is the estimated conditional expectation.

By taking u(j@
a
)=exp (j@

a
), y=1, v( y

a
, y)=−log ( y

a
!) and h(m@

a
)=log (m@

a
) in Theorem 2,

we obtain the model-evaluation criterion

(P)P (l, n, p)=2 ∑
n

a=1
[exp {w@ Tb(x

a
)}−y

a
w@ Tb(x

a
)+ log (y

a
!)]+nlw@ TDT

2
D
2
w@

−2 log (2p/n)+ log |Q(P)
l
(w@ ) |− log |DT

2
D
2
|
+
− ( p−1) log l,

where Q(P)
l

(w@ )=BTC(P)B/n+lDT
2
D
2
with C(P)

aa
=exp {w@ Tb (x

a
)} as the ath diagonal element of

C(P). The adjusted parameters l, n and p are determined as the minimisers of (P)P (l, n, p).
When we set l=0 in (16), the solution becomes the ordinary maximum likelihood

estimators. Often the maximum likelihood method yields unstable estimates of weight
parameters and so leads to large errors in predicting future observations. Regularisation
is essential in Example 2, since some of the maximum likelihood estimates of the weight
parameters are often infinite. In our experiments the frequency of convergence was only
395 times out of 1000 repeated Monte Carlo trials for a combination of (n, p)= (50, 15)
and 804 times for (n, p)= (100, 15). The frequency of non-convergence increases as the
number of basis functions increases.

4. N 

Monte Carlo experiments were conducted to compare the effectiveness of the criteria
(N)P in (19) and (L)P in (21) with -type criteria.

Akaike’s information criterion (1973) was derived as an estimator of the Kullback &
Leibler (1951) information from the predictive point of view and is given by

−2l(h@ML )+2 (the number of parameters),

where l (h@ML ) is the loglikelihood of a model estimated by the maximum likelihood method.
The number of parameters is a measure of the complexity of the model. However, in

nonlinear models, especially models estimated by regularisation, the number of parameters
is not a suitable measure of model complexity, since the complexity may depend on both
the regularisation term and the observed data. The concept of number of parameters was
extended to the effective number of parameters by Hastie & Tibshirani (1990, Ch. 3),
Moody (1992), Spiegelhalter et al. (2002) and others.

In Example 1, the fitted value y@ is expressed as y@=S
b
y for given b, where S

b
is the

smoother matrix given by S
b
=B (BTB+nbDT

2
D
2
)−1BT. Hastie & Tibshirani (1990) used

the trace of the smoother matrix as an approximation to the effective number of para-
meters. By replacing the number of parameters in  and  in (7) by tr S

b
, we formally

obtain information criteria for the radial basis function network Gaussian regression
model (18) in the form

M=n log (2ps@2 )+n+2 tr S
b
, (23)

M=n log (2ps@2 )+n+ (tr S
b
) log n, (24)

where s@2=dy−S
b
yd2/n.
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Hurvich et al. (1998) gave an improved version of  for choosing a smoothing para-
meter in various types of nonparametric regression model; see also Sugiura (1978) and
Hurvich & Tsai (1989) for Gaussian linear regression and autoregressive time series
models. The version for the radial basis function network Gaussian regression model is
formally given by

C=n log (2ps@2 )+n+2n(tr S
b
+2)/(n−tr S

b
−1). (25)

An advantage of the criteria M , M and C is that they can be applied in an
automatic way to each practical situation where there is a smoother matrix. There is
however no theoretical justification, since  and  are criteria for evaluating models
estimated by the maximum likelihood method.

Recently, Spiegelhalter et al. (2002) proposed a measure for the effective number of
parameters in a model, as the difference between the posterior mean of the deviance and
the deviance at the posterior means of the parameters of interest, using an information
theoretic argument. They provided a nice review of various types of information theoretic
criterion (Akaike, 1973; Takeuchi, 1976; Murata et al., 1994) and the effective number of
parameters (Efron, 1986; Wahba, 1990; Hastie & Tibshirani, 1990; Moody, 1992) based
on the comparison of their Bayesian complexity measure. Murata et al. (1994) proposed
the so-called network information criterion, , for evaluating neural-network models
estimated by regularisation. A general theory for constructing information-theoretic criteria
based on the Kullback–Leibler (1951) information was given by Konishi & Kitagawa
(1996) and Konishi (1999).

We compare the criteria (N)P and (L)P with the -type criteria M , C ,  and
also the -type criterion M , using Monte Carlo simulations.

Example 4: Gaussian nonlinear regression models. In the simulation study, data
{(x
1a
, x
2a
, y
a
); a=1, . . . , n} were generated from the true model y

a
=m (x1a , x2a )+ea ,

where

(a) m(x
1a
, x
2a
)=0·5+0·001x

1a
+1·09x2

2a
+1·575x

1a
x
2a
,

(b) m(x
1a
,x
2a
)=sin (x

1a
+x
2a
) cos (x

2a
)

and the design points are uniformly distributed in [−1, 1]×[−1, 1]. The errors e
a

are assumed to be independently distributed according to the normal distributions with
means 0 and the standard deviations are taken as s=0·2R

w
with R

w
being the range of

m ( . ) over the input space.
We fitted the model described in Example 1. The adjusted parameters were determined

by the Bayesian information criteria (N)P in (19), M in (24), the -type criteria M
in (23), C in (25) and  (Murata et al., 1994).

Tables 1 and 2 compare the average squared errors =Wn
a=1

{m(x
a
)−y@
a
}2/n between

the true and estimated functions, and the means and standard deviations of the adjusted
parameters n, l and the number of basis functions. The values in parentheses indicate
standard deviations for the means. The simulation results were obtained by averaging
over 100 Monte Carlo trials.

Example 5: Non-Gaussian regression model. We generated 100 binary observations
according to models

(a) pr (Y=1|x)=1/[1+exp {−0·3 exp (x
1
) cos (px

2
)+0·3}],

(b) pr (Y=1|x)=1/[1+exp {−0·3 exp (x
1
+x
2
)+0·8}],
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Table 1: Example 4. Comparison of the average squared errors, ,
for true function

m(x)=0·5+0·001x1+1·09x22+1·575x1x2 ,

based on various criteria and using 100 simulated datasets. Figures
in parentheses give estimated standard deviations

(N)P M C M 

n=100  0·06155 0·06227 0·06283 0·07909 0·08712
(0·0196) (0·0208) (0·0210) (0·0307) (0·0352)

p 16·32 18·59 20·50 24·34 24·84
(1·548) (3·028) (4·382) (5·793) (5·515)

log (l) −2·124 −2·039 −2·846 −3·282 −3·659
(0·658) (0·791) (0·941) (0·866) (0·730)

n 18·15 20·18 18·40 15·84 14·68
(5·52) (4·66) (5·67) (6·48) (6·91)

n=200  0·02579 0·02691 0·02851 0·02902 0·02858
(0·0071) (0·0086) (0·0087) (0·0088) (0·0085)

p 16·08 18·82 22·26 24·08 24·12
(1·383) (4·250) (5·609) (6·505) (6·573)

log (l) −2·293 −2·389 −3·250 −3·386 −3·702
(0·694) (0·898) (0·971) (0·977) (0·906)

n 18·64 19·96 18·49 18·49 18·00
(4·87) (4·92) (5·45) (5·51) (5·34)

Table 2: Example 4. Comparison of the average squared errors, ,
for true function

m(x)=sin (x1+x2 ) cos (x2 ),

based on various criteria and using 100 simulated datasets. Figures
in parentheses give estimated standard deviations

(N)P M C M 

n=100  0·01502 0·01526 0·01568 0·01616 0·01774
(0·0067) (0·0065) (0·0068) (0·0077) (0·0086)

p 16·84 16·76 18·45 18·70 19·20
(0·687) (0·843) (1·365) (1·462) (1·505)

log (l) −0·688 −0·246 −1·147 −1·178 −2·739
(0·611) (0·493) (1·003) (1·114) (1·753)

n 16·98 18·96 17·34 16·27 15·32
(6·33) (5·02) (6·03) (6·30) (6·69)

n=200  0·00776 0·00798 0·00836 0·00860 0·00872
(0·0035) (0·0036) (0·0038) (0·0039) (0·0042)

p 16·92 16·84 18·65 18·82 19·24
(0·680) (0·823) (1·258) (1·332) (1·405)

log (l) −0·708 −0·335 −1·176 −1·186 −2·977
(0·599) (0·466) (1·011) (1·028) (1·844)

n 20·20 20·40 18·69 17·22 17·56
(4·30) (3·87) (4·54) (5·29) (5·08)
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Table 3: Example 5. Comparison of the average squared errors, ,
for true model

pr (Y=1|x)=1/[1+exp {−0·3 exp (x1 ) cos (px2 )+0·3}],

based on various criteria and using 100 simulated datasets. Figures
in parentheses give estimated standard deviations

(L)P M C M 

n=100  0·01203 0·01199 0·01446 0·01604 0·01790
(0·0076) (0·0075) (0·0090) (0·0104) (0·0117)

p 10·24 9·48 10·65 11·14 10·75
(2·140) (1·769) (2·306) (2·495) (2·367)

log (l) −0·347 −0·145 −1·101 −1·507 −1·546
(0·631) (0·345) (1·747) (2·110) (2·183)

n 21·40 25·92 20·88 19·62 21·00
(9·57) (6·72) (9·25) (9·18) (9·31)

n=200  0·00786 0·00788 0·00864 0·00886 0·00950
(0·0036) (0·0033) (0·0045) (0·0046) (0·0048)

p 11·00 9·41 11·47 11·58 11·51
(2·420) (1·892) (2·492) (2·458) (2·439)

log (l) −0·433 −0·193 −0·806 −0·913 −0·766
(0·571) (0·284) (1·039) (1·123) (1·384)

n 24·04 26·12 19·88 20·28 21·96
(8·70) (7·11) (9·01) (9·06) (8·84)

Table 4: Example 5. Comparison of the average squared errors, ,
for true model

pr (Y=1|x)=1/[1+exp {−0·3 exp (x1+x2 )+0·8}],

based on various criteria and using 100 simulated datasets. Figures
in parentheses give estimated standard deviations

(L)P M C M 

n=100  0·01329 0·01375 0·01485 0·01638 0·01664
(0·0080) (0·0076) (0·0087) (0·093) (0·0116)

p 10·18 10·08 10·85 11·08 11·44
(2·104) (2·012) (2·219) (2·235) (2·435)

log (l) −1·355 −1·234 −2·820 −2·532 −2·943
(0·074) (0·065) (1·261) (1·355) (1·844)

n 22·44 23·20 22·84 18·42 19·66
(8·63) (8·31) (9·45) (9·09) (9·61)

n=200  0·00459 0·00470 0·00583 0·00584 0·00639
(0·0026) (0·0027) (0·0039) (0·0043) (0·0048)

p 10·62 9·98 11·08 11·66 12·10
(2·026) (1·952) (2·174) (2·186) (2·383)

log (l) −1·386 −1·265 −2·873 −2·519 −2·886
(0·450) (0·335) (0·785) (0·799) (1·022)

n 23·04 23·32 23·36 18·54 19·16
(9·04) (8·44) (9·05) (9·15) (9·34)
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where the design points x
a
are uniformly distributed in [−1, 1]×[−1, 1]. We constructed

the radial basis function network logistic regression model (20), using the criterion (L)P
in (21), M in (24), the -type criteria M in (23), C in (25) and . The smoother
matrix is given by S

l
=B (BTWB+nlDT

2
D
2
)−1BTW , where W is an n×n diagonal matrix

with ith diagonal element w
ii
=p@ (x

a
){1−p@ (x

a
)}.

Tables 3 and 4 compare the average squared errors between the true and estimated
conditional probabilities, the means and standard deviations of the adjusted parameters l,
n and the number of basis functions. The values in parentheses indicate standard deviations
for the means. The simulated results were obtained by averaging over 100 Monte Carlo
trials.

It may be seen from the simulation results in both Example 4 and Example 5 that the
models evaluated by -type criteria are superior to those based on -type criteria in
almost all cases; they give smaller mean values with smaller variances for . The standard
deviations of l determined by (N)P are smaller than the others in Gaussian regression
models, while those determined by M are smaller in non-Gaussian regression models.
Criteria of the -type tend to choose fewer basis functions and larger values of l than
those based on -type criteria. It appears that -type criteria are generally more
variable and more likely to undersmooth than -type criteria.

Example 6: Robot arm data. Andrieu et al. (2001) proposed a hierarchical full Bayesian
model for radial basis function networks with Gaussian noise, in which the model dimension,
model parameters, regularisation parameters and also noise parameters are treated as
unknown random variables. They developed a reversible-jump Markov chain Monte Carlo
simulation algorithm for radial basis networks for computing the joint posterior distri-
bution of the parameters. Our method can be regarded as an approximate Bayesian
methodology, and we compare the Gaussian version of our approach with the full Bayesian
approach, by analysing the robot arm dataset which is often used as a benchmark dataset
in the neural network literature (Andrieu et al., 2001; Holmes & Mallick, 1998; MacKay,
1992; Neal, 1996; Rios Insua & Müller, 1998). MacKay (1992) originally introduced the
use of the Bayesian approach in the neural network literature. The dataset, created by
D. J. C. MacKay and available at http://wol.ra.phy.cam.ac.uk/mackay/bigback/dat/, is a
set of four-dimensional data {(x

1a
, x
2a

, y
1a

, y
2a

); a=1, . . . , n} generated from the following
model:

y
1a
=2 cos (x

1a
)+1·3 cos (x

1a
+x
2a
)+e
1a
, y
2a
=2 sin (x

1a
)+1·3 sin (x

1a
+x
2a
)+e
2a
,

where e
1a

and e
2a

are normal noise variables with means 0 and variances (0·05)2.
The first 200 observations are used to estimate the model, and the last 200 observations

are used to evalute the prediction accuracy. We fitted the radial basis function network
Gaussian nonlinear regression model given in Example 1. The values of l, n and p are chosen
as the minimisers of (N)P . As a result, we obtained p@=20, n@=31·81 and l@=2·46×10−7,
and the corresponding average squared error was 0·00509.

Table 5 summarises the results obtained by various techniques. Our strategy and the
full Bayesian approach yield almost the same results, and both give fitted functions that
capture the true structure. An advantage of our procedure is that it is easily implemented
in both its Gaussian and non-Gaussian versions.

The smoothness of a fitted curve or surface is mainly controlled by the hyperparameter
n, and the regularisation parameter l has the effect of reducing the variance of the weight
parameters. Note that the Bayesian information criterion P is not restricted to linear
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Table 5: Example 6. Comparison of the average squared errors,
, for the robot arm data. T he results, except for our modelling
strategy, are drawn from Andrieu et al. (2001), Holmes &
Mallick (1998), MacKay (1992), Neal (1996) and Rios Insua &

Müller (1998)

Methods 

MacKay’s (1992) Gaussian approximation with highest evidence 0·00573
MacKay’s (1992) Gaussian approximation with lowest test error 0·00557
Neal’s (1996) hybrid Monte Carlo 0·00554
Neal’s (1996) hybrid Monte Carlo with  0·00549
Rios Insua & Müller’s (1998)  with reversible-jump  0·00620
Holmes & Mallick’s (1998)  with reversible-jump  0·00535
Andrieu et al.’s reversible-jump  with Bayesian model 0·00502
Andrieu et al.’s reversible-jump  with  0·00512
Andrieu et al.’s reversible-jump  with  0·00520
Proposed modelling strategy 0·00509

, automatic relevance determination; , multilayer perceptron;
, Markov chain Monte Carlo; , radial basis function; , minimum
description length

estimators of regression functions, but may be applied to other nonlinear models such as
multilayer perceptron neural networks. We conclude from the numerical studies that
(N)P and (L)P perform well in practical situations.

5. D

The criteria  and  have been widely used for variable selection, mainly in linear
models such as autoregressive time series models. In this paper we concentrate on selection
of smoothing parameters in nonlinear models. The proposed criterion may be used for
selecting an optimal subset of variables in nonlinear modelling; optimal values of smoothing
parameters are obtained as the minimisers of the criterion for each model, and then we
choose a statistical model for which the value of the criterion is minimised over a set of
competing models. Further work remains to be done towards constructing nonlinear
modelling strategies of this nature in the context of areas such as neural network models,
which are characterised by a large number of parameters.
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