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Abstract: In maximum likelihood exploratory factor analysis, the estimates
of unique variances can often turn out to be zero or negative, which makes
no sense from a statistical point of view. In order to overcome this difficulty,
we employ a Bayesian approach by specifying a prior distribution for the
variances of unique factors. The factor analysis model is estimated by EM
algorithm, for which we provide the expectation and maximization steps
within a general framework of EM algorithms. Crucial issues in Bayesian
factor analysis model are the choice of adjusted parameters including the
number of factors and also the hyper-parameters for the prior distribution.
The choice of these parameters can be viewed as a model selection and
evaluation problem. We derive a model selection criterion for evaluating a
Bayesian factor analysis model. Monte Carlo simulations are conducted to
investigate the effectiveness of the proposed procedure. A real data example
is also given to illustrate our procedure. We observe that our modeling
procedure prevents the occurrence of improper solutions and also chooses
the appropriate number of factors objectively.

Key words: EM algorithm, factor analysis, model selection criterion, num-
ber of factors, prior distribution.

1. Introduction

Factor analysis provides a useful tool to draw information from data by ex-
ploring the covariance structure among observed variables in terms of a smaller
number of unobserved variables. Successful applications have been reported in
various fields of research including the social and behavioral sciences.

The factor analysis model is usually estimated by maximum likelihood meth-
ods under the assumption that the observations are normally distributed. In
practice, however, the maximum likelihood estimates of unique variances can
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often turn out to be zero or negative. Such estimates are known as improper so-
lutions, and many authors have studied these inappropriate estimates both from
a theoretical point of view and also by means of numerical examples (see, e.g.,
Jöreskog, 1967; van Driel, 1978; Sato, 1987; Kano and Ihara, 1994; Kano, 1998;
Krijnen et al., 1998). Various causes of improper solutions in structural equation
models, including confirmatory factor analysis model, have been also explored
(see, e.g., Anderson and Gerbing, 1984; Boomsma, 1985; Gerbing and Anderson,
1987; Chen et al., 2001; Flora and Curran, 2004).

In order to prevent the occurrence of improper solutions in factor analysis
model, we take a Bayesian approach by specifying a prior distribution for the
variances of unique factors. In Bayesian factor analysis, the choice of a prior
distribution is a fundamental issue. Martin and McDonald (1975) used a prior
distribution for the elements of unique variances. Press (1982) used a natural
conjugate prior distribution for factor loadings and unique variances. Akaike
(1987) introduced a prior distribution using the information extracted from the
knowledge of the likelihood function. Recently, a Bayesian approach based on
the Markov chain Monte Carlo (MCMC) algorithms has received an amount of
attention in the Bayesian factor analysis (see, e.g., Lee and Song, 2002; Lopes and
West, 2004). Basically, a conjugate prior distribution is used for MCMC-based
algorithm and estimates can be obtained via an algorithm based on the Gibbs
sampler.

Another important point in Bayesian factor analysis model is the choice of
adjusted parameters including the number of factors and hyper-parameters in
the prior distribution. Regarding selection of the number of factors, the AIC
(Akaike, 1973) and BIC (Schwarz, 1978) have been widely used, and some other
selection procedures have also been developed by several researchers (see, e.g.,
Bozdogan, 1987; Press and Shigemasu, 1999). However, these procedures cannot
provide suitable values of hyper-parameters included in the prior distribution. A
selection procedure via the MCMC algorithms has also been widely used in the
Bayesian factor analysis (see, e.g., Lee and Song, 2002; Lopes and West, 2004;
Dunson, 2006; Fokouè, 2009). Although the MCMC-based selection method is
certainly attractive, we take a different approach that selects both the number
of factors and the values of hyper-parameters in the prior distribution since the
MCMC-based procedure sometimes requires much computational load.

In this paper, we introduce a proper prior distribution for the variances of
unique factors by extending a basic idea given in Akaike (1987). The Bayesian
factor analysis model is estimated by EM algorithm, for which we provide the ex-
pectation and maximization steps within a general framework of EM algorithms.
We treat a selection of parameters, which include the number of factors and the
hyper-parameters for the prior distribution, as a model selection and evaluation
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problem, and derive a model selection criterion from a Bayesian viewpoint for
evaluating a Bayesian factor analysis model. The proposed modeling procedure
enables us to choose the number of factors and the values of hyper-parameters in
the prior distribution simultaneously.

The remainder of this paper is organized as follows: Section 2 describes the
maximum likelihood factor analysis and its related problems. In Section 3, we
introduce a prior distribution according to the basic idea given by Akaike (1987),
and provide a model estimation procedure using EM algorithm. Section 4 de-
rives a model selection criterion for evaluating a Bayesian factor analysis model.
Section 5 presents numerical results for both artificial and real datasets. Some
concluding remarks are given in Section 6.

2. Maximum Likelihood Factor Analysis and Its Related Problems

Let X= (X1, · · · , Xp)
′ be a p-dimensional observable random vector with

mean vector µ and variance-covariance matrix Σ. The factor analysis model is

X = µ+ ΛF + ε,

where Λ = (λij) is a p× k matrix of factor loadings, and F = (F1, · · · , Fk)′ and
ε = (ε1, · · · , εp)′ are unobservable random vectors. The elements of F and ε
are called common factors and unique factors, respectively. It is assumed that
E(F ) = 0, E(ε) = 0, E(FF ′) = Ik, E(εε′) = Ψ and E(Fε′) = 0, where Ik
is the identity matrix of order k and Ψ is a p × p diagonal matrix with i-th
diagonal element ψi which is called unique variance. Under these assumptions,
the variance-covariance matrix of X can be expressed as

Σ = ΛΛ′ + Ψ.

The i-th diagonal element of ΛΛ′ is called communality, which measures the
percent of variance in xi explained by all the factors. It is well-known that factor
loadings have a rotational indeterminacy since both Λ and ΛT generate the same
covariance matrix Σ, where T is an arbitrary orthogonal matrix.

Assume that the common factors F and the unique factors ε are, respectively,
distributed according to multivariate normal distributions

F ∼ Nk(0, Ik) and ε ∼ Np(0,Ψ).

Suppose that we have a random sample of N observations x1, · · · ,xN from the
p-dimensional normal population Np(µ,Σ) with Σ = ΛΛ′ + Ψ. Then the log-
likelihood function is given by

log f(XN |Λ,Ψ) = −N
2

{
p log(2π) + log |Σ|+ tr(Σ−1S)

}
, (1)
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where XN = (x1, · · · ,xN )′, f(XN |Λ,Ψ) is the likelihood function and S = (sij)
is the sample variance-covariance matrix

S =
1

N

N∑
n=1

(xn − x̄)(xn − x̄)′,

with x̄ being the sample mean vector. For convenience, let us consider the dis-
crepancy function given by

q(Λ,Ψ) = log |Σ|+ tr(Σ−1S)− log |S| − p. (2)

The maximum likelihood estimates of Λ and Ψ are given as the solutions
of ∂q(Λ,Ψ)/∂Λ = 0 and ∂q(Λ,Ψ)/∂Ψ = 0. Since the solutions cannot be
expressed in a closed form, some iterative procedures are required to obtain the
maximum likelihood estimates Λ̂ML and Ψ̂ML. In maximum likelihood factor
analysis, numerical algorithms have been proposed by several authors (see, e.g.,
Jöreskog, 1967; Jennrich and Robinson, 1969; Clarke, 1970).

In practice, the maximum likelihood estimates of unique variances can often
turn out to be zero or negative, which have been called improper solutions. van
Driel (1978) categorized the causes of improper solutions into the following three
types:

(i) sampling fluctuation,

(ii) there exist no appropriate factor analysis models for extraction of beneficial
information from the data,

(iii) indefiniteness of the model.

van Driel (1978) distinguished among the causes of improper solutions by using
the standard errors of diagonal elements of Ψ̂ML, whereas the theoretical method
for distinguishing the causes of improper solutions remains to be established.

What should be noted is how to prevent the occurrence of improper solu-
tions. In order to handle this problem, several attempts have been made for
parameter estimation. For example, the parameters are estimated (a) under the
condition that ψi ≥ 0.005 for i = 1, · · · , p (see Jöreskog, 1967), (b) after eliminat-
ing variables for which the estimates are improper and (c) by utilizing a Bayesian
procedure. Some problems still remain, however, in approaches (a) and (b). In
approach (a), the variances of unique factors are provided subjectively, whereas
those should be estimated. The approach (b) often yields inappropriate esti-
mates even when variables that cause the improper solutions are eliminated. We,
therefore, focus our attention on the approach (c) that estimates the parameters
included in the factor analysis model with the help of Bayesian procedure.
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3. Bayesian Factor Analysis Model

Akaike (1987) introduced a prior distribution using the information extracted
from the knowledge of the likelihood function. In this section we first give a brief
review of his prior distribution and its related problems, and introduce a proper
prior distribution according to the basic idea given by Akaike (1987). We then
develop an estimation procedure for Bayesian factor analysis model along with
the technique of EM algorithm.

3.1 Prior Distributions

First, we give a brief review of a prior distribution proposed by Akaike (1987).
Akaike (1987) showed that for a given Ψ, the minimum value of the discrepancy
function q(Λ,Ψ) in (2) with respect to Λ is given by

qk(Ψ) =

p∑
i=k+1

(θi − log θi) + (p− k), (3)

where θ1 > · · · > θp are the eigenvalues of Ψ−1/2SΨ−1/2. Note that the number
of factors k in (3) will be selected by using a model selection criterion given in
Section 4.

It can be seen from Equation (3) that qk(Ψ) is minimized when the values
of θk+1, · · · , θp are chosen as close to one as possible since a function x − log x
(x > 0) has a minimum at x = 1, and that the values of θ1, · · · , θk do not directly
affect the function (3). Therefore, there is a possibility that the larger eigenvalues

of Ψ̂
−1/2
ML SΨ̂

−1/2
ML turn out to be extremely large. This implies that some diagonal

elements of Ψ̂ML can become zero. In order to prevent the occurrence of improper
solutions, the parameter estimation should be done under the restriction that the
values of θ1, · · · , θk are not too large.

Akaike (1987) thus added a penalty term ρ
∑k

i=1 θi with ρ > 0 to the discrep-
ancy function q(Λ,Ψ) given in (2) and minimized the following function with
respect to Λ and Ψ:

q∗(Λ,Ψ) = q(Λ,Ψ) + ρ

k∑
i=1

θi.

The additional term prevents the occurrence of improper solutions because it
does not allow the values of θ1, · · · , θk to be infinite. Under the constraint
that Λ′Ψ−1Λ is a diagonal matrix which removes the rotational indeterminacy,∑k

i=1 θi is equal to tr(Λ′Ψ−1Λ+Ik) (see, e.g., Lawley and Maxwell, 1971), which
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leads to a prior distribution proposed by Akaike (1987) in the following:

K exp

{
−Nρ

2
tr(Ψ−1/2ΛΛ′Ψ−1/2)

}
, (4)

where K denotes the normalizing constant and ρ can be considered as a hyper-
parameter. Akaike (1987) considered this distribution as a standard spherical
prior distribution of the factor loadings and did not adopt the prior for Ψ.

This prior distribution has an advantage that it prevents the occurrence of
improper solutions if a value of the hyper-parameter ρ is suitably chosen. We
have, however, no prior convictions about factor loadings in exploratory factor
analysis, because Λ has a rotational indeterminacy. Hence it is natural to define
a prior distribution for the diagonal elements of Ψ rather than Λ.

We, therefore, propose adding a penalty term ρ
∑p

i=1 θi to q(Λ,Ψ) in (2) and
then minimize the function given by

q∗∗(Λ,Ψ)=q(Λ,Ψ) + ρ

p∑
i=1

θi

=q(Λ,Ψ) + ρ tr(Ψ−1/2SΨ−1/2). (5)

It is reasonable to add the term ρ
∑p

i=1 θi instead of ρ
∑k

i=1 θi to q(Λ,Ψ) in (2)
since the values of θk+1, · · · , θp are close to one and could be ignored relative to
the very large values of θ1, · · · , θk. From Equation (5), the prior distribution for
Ψ is thus given by

π(Ψ|ρ) = K

p∏
i=1

exp

{
−Nρsii

2
ψ−1i

}
. (6)

The inverses of the diagonal elements of Ψ have exponential distributions that
yield the normalizing constant K =

∏p
i=1Nρsii/2. In contrast, the normalizing

constant for the prior distribution in (4) is infinite. Note that it is difficult to
derive a model selection criterion, which will be described in the Section 4, with
the prior distribution given in (4) since the model selection criterion depends on
K.

Our proposed prior distribution is closely related to that of Martin and Mc-
Donald (1975) given by

K

p∏
i=1

exp

{
−Nαi

2
ψ−1i

}
, (7)

where α1, · · · , αp are hyper-parameters of the prior distribution. However, it is
difficult to specify these hyper-parameters when p is large. They recommended re-
stricting these hyper-parameters by requiring that αi = siiα, in which case their
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prior distribution coincides with the proposed prior distribution in (6). From
these descriptions, our proposed prior distribution seems to be a minor modifi-
cation of Martin and McDonald (1975). It is noted, however, that the proposed
distribution in (6) has the theoretical justification for preventing the occurrence
of improper solutions because the prior distribution is introduced according to
the theoretical scheme given by Akaike (1987), whereas the prior distribution
in (7) is heuristically provided. In addition, Martin and McDonald (1975) sub-
jectively selected a hyper-parameter α which controls the trade-off between the
log-likelihood and the penalty term, while a model selection criterion presented
in Section 4 enables us to choose the hyper-parameter objectively.

3.2 Estimation

For the prior distribution π(Ψ|ρ) defined by (6), the posterior distribution is
given by

π(Λ,Ψ|XN )=
f(XN |Λ,Ψ)π(Ψ|ρ)∫ ∫
f(XN |Λ,Ψ)π(Ψ|ρ)dΛdΨ

∝f(XN |Λ,Ψ)π(Ψ|ρ).

We estimate the parameters Λ and Ψ by a posterior mode. Taking the logarithm
of the equation gives the penalized log-likelihood function

lρ(Λ,Ψ) = log f(XN |Λ,Ψ)− Nρ

2
tr(Ψ−1/2SΨ−1/2), (8)

where the hyper-parameter ρ can be considered as a regularization parameter.
We estimate the parameters Λ and Ψ in the Bayesian factor analysis model by
maximizing the penalized log-likelihood function given in (8).

One of the beneficial methods to obtain the maximum penalized likelihood
estimates is an EM algorithm. Rubin and Thayer (1982) suggested using an
EM algorithm in maximum likelihood factor analysis. The advantage of the EM
algorithms is that even if the likelihood function is not concave with respect to the
parameters, the algorithm leads to a (local) maximization of the function. Bentler
and Tanaka (1983) pointed out the problems in the EM algorithm for factor
analysis, whereas Rubin and Thayer (1983) addressed the problem of Bentler
and Tanaka’s (1983) discussion.

We employ an EM algorithm to obtain the maximum penalized likelihood
estimates. We provide the expectation and maximization steps for the Bayesian
factor analysis model within a general framework of EM algorithms. We regard
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the common factors as missing variables, and maximize the complete-data log-
likelihood using a posterior distribution for the missing variables. The iterative
procedure is given by

Λ̂=(SΣ−1Λ)(B + Λ′Σ−1SΣ−1Λ)−1, (9)

Ψ̂=Diag
[
S− 2SΣ−1ΛΛ̂′ + Λ̂BΛ̂′ + Λ̂Λ′Σ−1SΣ−1ΛΛ̂′ + ρS

]
, (10)

where B = Ik−Λ′Σ−1Λ. For detailed procedure for estimation of factor analysis
models via EM algorithms, we refer to Rubin and Thayer (1982) and Tipping
and Bishop (1999).

In order to eliminate the rotational indeterminacy from Λ, we impose restric-
tions that λij = 0 (i > j) (see, for example, Anderson and Rubin; 1956).

4. Model Selection Criterion

In the Bayesian factor analysis model, we still have crucial issues to be solved:
the choice of a hyper-parameter ρ for the prior distribution and the number of
factors k. In this section we derive a model selection criterion for evaluating a
Bayesian factor analysis model.

The generalized Bayesian information criterion (GBIC), proposed by Konishi
et al. (2004), enables us to choose adjusted parameters including the hyper-
parameter ρ and the number of factors k simultaneously by extending the Bayesian
information criterion (BIC) proposed by Schwarz (1978). The basic idea of BIC
is to select a model from a set of candidate models by maximizing the poste-
rior probability. The BIC only deals with models estimated by the maximum
likelihood method, whereas the model selection criterion GBIC can be applied
to models estimated by the maximum penalized likelihood method. For model
selection criteria we refer to Konishi and Kitagawa (2008) and references given
therein.

Suppose that θ is a parameter vector given by

θ = (λ′.1,λ
′
.2, · · · ,λ′.k,Diag(Ψ)′)′,

where λ.i = (λi,i, λi+1,i, · · · , λp,i)′. We used the definition of λ.i which consists of
only the lower elements of Λ because it eliminates the rotational indeterminacy
as described in the previous section. Let f(XN |θ̂) be the estimated model by
maximum penalized likelihood methods. Then we have a statistical model

f(XN |θ̂) = (2π)−
Np
2 |Σ̂|−

N
2 exp

{
−N

2
tr
(
Σ̂−1S

)}
,
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where Σ̂ = Λ̂Λ̂′ + Ψ̂. The model selection criterion GBIC for Bayesian factor
analysis is given by

GBIC = −p∗ log(2π) + p∗ logN + log |Jρ(θ̂)|+N
{
p log(2π) + log |Σ̂|+ tr(Σ̂−1S)

}
−2

p∑
i=1

log

(
Nρsii

2

)
+Nρ

p∑
i=1

(siiψ̂
−1
i ), (11)

where p∗ is the number of parameters given by p(k + 1)− k(k − 1)/2 and Jρ(θ̂)
is a second order differential of the penalized log-likelihood function given by

Jρ(θ̂) = − 1

N

[
∂2

∂θ∂θ′

{
log f(XN |θ) + log π(Ψ|ρ)

} ∣∣∣∣
θ̂

]
.

We choose optimum values of the hyper-parameter ρ and the number of factors k
which simultaneously minimize the value of the model selection criterion in (11).
The derivation of the GBIC is given by Hirose et al. (2008).

Other traditional model selection criteria include AIC (Akaike, 1973) and
BIC (Schwarz, 1978). It should be noted that the AIC and BIC often select
a model which causes improper solutions because these model selection criteria
only evaluate models estimated by the maximum likelihood method. These model
selection criteria are given by

AIC=−2 log f(XN |Λ̂ML, Ψ̂ML) + 2p∗,

BIC=−2 log f(XN |Λ̂ML, Ψ̂ML) + p∗ logN.

5. Numerical Examples

Monte Carlo simulations and a real data example are used to examine the effi-
ciency of the proposed procedure. We investigate how well the Bayesian modeling
strategy with GBIC performs well in the sense that it prevents the occurrence of
improper solutions and can select the true number of factors.

5.1 Numerical Comparison

Monte Carlo simulations were conducted to investigate the performance of
our proposed procedure in various covariance structures and samples. In this
simulation study we focus on the choice of the number of factors and compare
the performance of GBIC with that of AIC and BIC.

We consider various datasets which are likely to produce improper solutions
due to sampling fluctuations. van Driel (1978) showed that improper solutions
sometimes occur when one of the diagonal elements of Ψ is close to zero. In
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addition, improper solutions often arise when the number of samples is small or
communalities are large. Taking these natures of improper solutions into account,
we considered four models, which are given in Table 1, and three variants for the
number of observations, N = 30, N = 50 and N = 100.

Table 1: Four models for simulated datasets

parameters (a1) parameters (a2) parameters (b1) parameters (b2)

i Λ Ψ Λ Ψ Λ Ψ Λ Ψ

1 0.95 0.0 0.10 0.9 0.0 0.19 0.95 0.0 0.0 0.10 0.9 0.0 0.0 0.19
2 0.00 0.7 0.51 0.0 0.9 0.19 0.00 0.7 0.0 0.51 0.0 0.9 0.0 0.19
3 0.70 0.0 0.51 0.8 0.0 0.36 0.00 0.0 0.7 0.51 0.0 0.0 0.8 0.36
4 0.70 0.0 0.51 0.6 0.0 0.64 0.70 0.0 0.0 0.51 0.8 0.0 0.0 0.36
5 0.00 0.7 0.51 0.0 0.8 0.36 0.70 0.0 0.0 0.51 0.7 0.0 0.0 0.51
6 0.00 0.7 0.51 0.0 0.8 0.36 0.00 0.7 0.0 0.51 0.0 0.8 0.0 0.36
7 0.00 0.7 0.51 0.0 0.7 0.51 0.00 0.7 0.0 0.51 0.0 0.7 0.0 0.51
8 0.00 0.7 0.51 0.0 0.7 0.51 0.00 0.0 0.7 0.51 0.0 0.0 0.8 0.36
9 0.00 0.7 0.51 0.0 0.6 0.64 0.00 0.0 0.7 0.51 0.0 0.0 0.7 0.51
10 0.00 0.7 0.51 0.0 0.6 0.64 0.00 0.0 0.7 0.51 0.0 0.0 0.6 0.64

The models (a1) and (b1) are constructed based on the simulations of close to
zero data in van Driel (1978) since the value of ψ1 given by these models is 0.10,
which is small compared with the other diagonal elements of Ψ. The difference
between models (a1) and (b1) is that we considered 2 factor model for model
(a1) whereas 3 factor model is used for model (b1). We also used models given
by (a2) and (b2).

When each dataset was generated 1000 times, we often obtained improper
solutions. The frequencies of improper solutions were

N = 30: (a1): 420 times, (a2): 416 times, (b1): 668 times, (b2): 540 times,
N = 50: (a1): 266 times, (a2): 237 times, (b1): 407 times, (b2): 266 times,
N = 100: (a1): 230 times, (a2): 89 times, (b1): 243 times, (b2): 78 times.

We chose the adjusted parameters including a hyper-parameter of prior dis-
tribution and the number of factors using the model selection criterion GBIC
given by (11). The minimum GBIC was selected for varying values of k and ρ.
We also selected the number of factors using AIC and BIC, which only deal with
the models estimated by the maximum likelihood method, to compare the per-
formance of AIC and BIC with that of GBIC. The maximum likelihood estimates
were obtained under the condition that ψi ≥ 0.005 for i = 1, · · · , p (see Jöreskog,
1967).

Table 2 shows that how many times the model selection criteria selected each
number of factors out of 1000 datasets. For example, the AIC selected the one
factor model 9 times out of 1000 datasets in model (a1) when N = 30.
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Table 2: Comparisons of model selection criteria for simulated datasets gener-
ated by (a1), (a2), (b1) and (b2). The bold text in the left column represents
the true number of factors.

N = 30 N = 50 N = 100

k AIC BIC GBIC AIC BIC GBIC AIC BIC GBIC

(a1):

1 9 139 27 0 16 0 0 0 0
2 712 853 964 776 982 989 776 1000 986
3 228 8 9 188 2 11 195 0 14
4 40 0 0 35 0 0 24 0 0
5 11 0 0 1 0 0 5 0 0

(a2):

1 4 146 36 0 19 0 0 0 0
2 714 844 958 766 981 993 784 1000 996
3 225 10 6 204 0 7 188 0 4
4 48 0 0 28 0 0 24 0 0
5 9 0 0 2 0 0 0 0 0

(b1):

1 2 170 5 0 8 0 0 0 0
2 77 395 265 7 248 28 0 7 0
3 700 433 730 786 741 964 793 993 990
4 184 1 0 184 3 6 196 0 10
5 37 1 0 23 0 2 11 0 0

(b2):

1 0 17 0 0 0 0 0 0 0
2 11 148 84 0 7 0 0 0 0
3 712 830 916 782 991 996 796 998 995
4 231 5 0 201 2 4 193 2 5
5 46 0 0 17 0 0 11 0 0

When N = 30, the AIC often selected the large number of factors, whereas the
BIC sometimes chose the small number of factors, which means the performance
of the AIC and BIC are poor. However, the GBIC performed well compared with
AIC and BIC since the GBIC most often selected the true number of factors for
all models. The BIC selected 1 factor 170 times and the AIC selected 5 factors 37
times for the model (b1). However, the GBIC rarely selected 1 factor or 5 factors
for this model. As a result, even if the GBIC does not select the true number
of factors, the outcome may not be significantly worse such as the result of AIC
and BIC.

When N = 50, the performance of the AIC is still poor. The performance of
BIC is not poor, but the GBIC brings better result compared with the BIC for
model (b1).

When N = 100, the performance of the GBIC and BIC is quite well, but the
AIC still often selects the large number of factors. The performance of the BIC
is slightly better than that of GBIC. It seems that the modeling procedure with
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BIC is preferable to our proposed procedure based on the GBIC when N is large.
However, the maximum likelihood procedure with BIC is not able to prevent the
occurrence of improper solutions whereas our proposed procedure with GBIC can
prevent the occurrence of improper solutions.

5.2 Job Application Dataset

We illustrate our modeling procedure through a job application dataset in
Kendall (1980). This dataset contains 48 applicants for a certain job, who have
been scored on p = 15 variables regarding their acceptability. The variables are

(1) Form of letter application, (2) Appearance, (3) Academic ability,
(4) Likeability, (5) Self confidence, (6) Lucidity,
(7) Honesty, (8) Salesmanship, (9) Experience,
(10) Drive, (11) Ambition, (12) Grasp,
(13) Potential, (14) Keenness to join, (15) Suitability.

We compared the performance of AIC, BIC with that of GBIC. The AIC
and BIC selected 7 factor model and 4 factor model, respectively, each of which
resulted in improper solutions since we obtained improper solutions when k ≥ 4.
The model selection criterion GBIC also selected 4 factor model. Hereafter we
focus on the 4 factor model.

Before we illustrate our procedure, we show how the choice of a hyper-
parameter is an important point. The maximum likelihood estimate of ψ14 was
−0.000, which is apparently inappropriate. To overcome this problem, we em-
ployed our modeling method. We obtained a maximum penalized likelihood es-
timate of ψ14, when ρ = 0.00001, 0.01 and 1, which is given by 0.005, 0.130 and
1.608, respectively. When ρ = 0.00001 the estimate of ψ14 was too close to zero.
This shows that we were not able to prevent the occurrence of improper solu-
tions. In comparison, the estimate of ψ14 was too large when ρ = 1. However,
when ρ = 0.01, we obtained an appropriate estimate of ψ14 compared with that
obtained when ρ = 0.00001 and ρ = 1.

It is important to identify the cause of the improper solutions. The maximum
likelihood estimates of Ψ and the standard deviation σ̂ψi

of N1/2ψi/sii (see (5.50)
in Lawley and Maxwell, 1971) for k = 2 to 4 are shown in Table 3. For k =
4, the maximum likelihood estimates ψ̂1, ψ̂3, ψ̂7, ψ̂13, ψ̂14 were less than the
corresponding estimates for k = 3. These results for the estimates of unique
variances suggest that we have identified some new common factors. Moreover,
van Driel (1978) found that the value of the standard deviation σ̂ψi

may be large
if the cause of improper solutions is the indefiniteness, whereas it is not especially
large for each i when k = 4. These results indicate that the improper solutions
are probably due to sampling fluctuations rather than indefiniteness of the model.
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Table 3: Maximum likelihood estimates of unique variances and the standard
deviations of N1/2ψi/sii for k = 2 to 4 in the job application data.

k = 2 k = 3 k = 4

i ψ̂i σ̂ψi
ψ̂i σ̂ψi

ψ̂i σ̂ψi

1 0.546 0.834 0.535 0.816 0.444 0.757
2 0.717 0.779 0.701 0.777 0.688 0.777
3 0.951 0.449 0.945 0.473 0.523 0.779
4 0.741 0.772 0.000 0.717 0.199 0.566
5 0.139 0.340 0.109 0.291 0.112 0.249
6 0.191 0.382 0.196 0.381 0.194 0.350
7 0.795 0.757 0.445 0.771 0.341 0.800
8 0.171 0.346 0.144 0.304 0.133 0.263
9 0.366 0.766 0.360 0.747 0.360 0.756
10 0.247 0.460 0.238 0.447 0.225 0.403
11 0.178 0.361 0.157 0.325 0.140 0.271
12 0.192 0.377 0.204 0.390 0.153 0.285
13 0.208 0.404 0.183 0.357 0.089 0.195
14 0.600 0.779 0.420 0.671 −0.000 0.001
15 0.190 0.553 0.188 0.534 0.250 0.569

The estimates of Λ and Ψ obtained by using the proposed method are given
in Table 4. The estimates of factor loadings Λ are rotated by varimax method
(Kaiser, 1958). It can be seen from Table 4 that the proposed procedure prevents
the occurrence of improper solutions and we can obtain the interpretable common
factors in the following: Career and Adequacy, Motivation and Ability, Academic
Capability and Character. For this reason, the proposed procedure performs well
in that case.

6. Concluding Remarks

In maximum likelihood factor analysis, there arise situations in which the
estimates of unique variances go to zero or become negative. To prevent the
occurrence of such improper solutions, we used a Bayesian approach by specifying
a proper prior distribution for unique variances. The proposed prior distribution
is based on the prior distribution given by Akaike (1987). In practice, an optimal
choice of the number of factors is also of importance for exploring the covariance
structure. We derived the model selection and evaluation criterion GBIC from a
Bayesian point of view, and used it to choose adjusted parameters that include the
hyper-parameter for the proposed prior distribution and the number of factors.
Monte Carlo simulations and a real data example were used to investigate the
efficiency of the proposed procedure. We observed that our modeling strategy
with GBIC prevents the occurrence of improper solutions and also selects the
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Table 4: The estimates of factor loading Λ and unique variances Ψ obtained
by the proposed method in the job application data.

i factor 1 factor 2 factor 3 factor 4 unique variances

1 0.717 0.130 −0.107 0.118 0.453
2 0.154 0.449 0.131 0.255 0.703
3 0.116 0.072 0.735 −0.018 0.451
4 0.242 0.226 −0.053 0.848 0.178
5 −0.092 0.915 −0.083 0.149 0.135
6 0.120 0.837 0.063 0.303 0.200
7 −0.211 0.248 −0.019 0.740 0.356
8 0.238 0.893 −0.072 0.084 0.144
9 0.777 0.090 0.180 −0.051 0.363
10 0.386 0.767 −0.052 0.174 0.240
11 0.180 0.899 −0.056 0.107 0.154
12 0.267 0.790 0.180 0.348 0.161
13 0.343 0.730 0.261 0.428 0.109
14 0.366 0.430 −0.509 0.549 0.130
15 0.781 0.362 0.103 0.059 0.254

suitable number of factors simultaneously.
As a future research topic, it is interesting to construct a modeling procedure

for preventing the occurrence of improper solutions in structural equation models
including confirmatory factor analysis.
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