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Bayesian inverse problem and optimization with iterative spatial resampling

Girégoire Mariethoz, " Philippe Renard,’ and Jeof Caers”

[ Measurements are often unable to migquely characterize the subsurface at a desired
maodeling resolution, In partioalar, inverse problems involving the characterization of
hydmulic properties are typically ill-posed since they genemally present mone un knowns than
data In a Bayesian context, solutions o such problems consist of a posterior ensemble of
models that fit the data (upto a certam precision specified by a likelthood function) and that
are a subset of o pror distributon. Two possible approaches for this poblem are Markov

chain Monte Carlo { McMC) technigues and optimzation {calibmtion ) methods: Both
frameworks rely on a perturbation mechanism to steer the search for solutions. When the
model parameters are spatially dependent variable fields obtained using geostatistical
realizations, such as hydmulic conductivity orporosity, i 1= not tivial to incur perturbations
that respect the prior spatial model. To overcome this problem, we pmpose a general
fransition kemel {iterative spatial ressmpling, ISR} that preserves my spatial model
produced by conditional simulation. We also present a stochastic stopping criterion for
the optimizations mepired from importance sampling. In the stdied cases, this vields
posterior distibitions reasonably close to the ones obtained by a rejection sampler, but
with a greatly reduced mumber of forward model mins, The technique is geneml in the sense
that it can be used with any conditional geostatistical simulation method, whether it

tex contimwons or discrete varables, Theretore it allows sampling of different priors
mnd conditioning to a variety of data types. Several examples are provided hased on either

multi-Ganssian or multiple-point statistics.

1. Inmtrodoctbon

[2] lmeprsting sste varishles in bydropological site cha-
scterization by solving sn mvese probklem continwes o be
& impontant topic of investigation [Correns o af, XS
Hendricks -Fransven e al | 2006, Lacer al | 2000 Simmerin
ef al, 1998, Indoed, mverse problems am a orucial sapoct of
eroumdwatsr mode ing sine e they sne wsad & validsie or bval-
idete cortam geologicsl scemanios [Romapne of al | W] =
will &5 e rodwes model uhoersinty G enginesring prediction
arid docision making probloms [déofen ar al | 20000, As such,
incadels woad to ot just makh the data, ey als moed o b
predictive, a property that & difficall to objoctively werify
[Beilin or af | 1993 Sebbey of o, 2], Conditioning models
iy povinds diste (localized messmetents of e varizble of .
cat) iy addressad vory efficiently by most gecstafistical sinu-
kafion algoritms [Deutsch and Souwmel 1992 Remy of al,
AHHY]. Tn this paper, we refer to conditioning models to indi-
roct st variable deta (zuch s hesds)
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[5] Problems invelving Oow in underground media typi-
cally present mwse unknowns than data Por example,
modeling hydraulic conductivity o ponosity on an entise
domnadn, hased oaly on local bead messirements oF e o
tesis, i3 typically =n ill-posed imverse problem [Carrera
ar al | M5, De Maraly er ol 20005 Yeh, 1988]. 0
posadness means that multiple sohdicns ame possible, and
characEerizing the wmcentsinty spennad by these multiple So-
lwtions is often critical it eal Geld enmnosring wae of thess
mndels, Oiher consequences of ill-posedness can be that 2
aolution does oot exist or i3 insteble with regerd & amall
variationsin the input daa [Carrera and Nedonga, 1986]. In s
Bayesian franewor, these sanes are dealt with by obtaining
& poaterios distribution givon & cortain prios distrilutiodg =nd 2
lidae liteood fumection., Inithis seapect, only Markoy chain Monte
Carle (MeMC) methods have batn shown o sample with
reaspnable accursey from this posterior [Mosegaard and
Turansoks, 1995 Omre and Tedmolond, 1996], 12, o gen-
arate mode | realizations that { 1) match the podnts dats and the
indirect state data, {2) mpoeduce for cach mvense sodution
Rt pricy stabiatic s e 2., & spatial oo amce)and (1) smple
carrectly from the posterion 22 mposed by Bayes" nule. Most
g sdient-Easedioptimization techigues [De Marsdfy of ol
1984 (Fomesz-Heraandez of al, 1997, Hernandesz ef al |
20 RomaBae ef al, 1995 Fesslnov e al |, 2001] do mot
completely ful All these thres requinemens.



{4] However, in mamy rezl-case problems, geosististical
simitlations and evalestions of e frwand problem &e 5o
CPU demanding that iraditionsl MdMC methods s not
applicahle. Some models wsed i hydrogeclopy contsin
millions of celk [Marefios of ol WEW]. In petoloan
enginocring, the problem is aven more acuie since high-
resolution models are used to simalste complex phenpanena
of multiphsse, density-driven flow. The approsch often
sdopited i then to calibrste {optimize) ong reslization &t 2
titie using oflim izstion teclmiques.

[5] Therefore, depending on the computstional burden
imvolwed, it may be approprias to perform elther Havesian
imersion { MchMO) or optimization of one realization at a
time (less CPU demanding bat not consisbent with Bayes'
mle) The framework wo present i this paper (iterstive
apatial resampling, ISR allews desling with both Bayesian
imversiat aud optimizstion sapecs. [tis emphaiized that oo
methad B spplicable in conjunction with any conditional
poostatistical  simulation methed, whether it melies on
hypothases of mult-GCausizsmity of not, svd whether it
genira s contmuous of cateporical variables, In addition,
wi present & sopping oriterion For optimizations, nspirod
froam imporiaies sampling, which allows appteximating the
poserior distribution 3l 2 lesser cost,

[5] Thizs paper is organized & follows Soction 2 intro-
duces the concept of perinrhation by ISE, axpleres its poop-
erties for both Bayesian inversion and oplinizatioon, &md
porforms numerical tests, Section 3 applies the method on a
syndhetic heteroponorns channelized aquifor o evalusg the
postrins distribution using both Bayosiz aad optimizstion
approaches.

2. Methodology
2.1, Bayesian Framework

] Formulaied. in Bayvesisn woms, the hydeogeol oical
uwerse problem consists of ohigining sanples from 2 pos-
tefiod distribution of models {mld) conditioned & a set of
ohservad stste dats o

i)
AR=="r

I that Feemulation, the prioe distribution 7 m) can be sam-
plod by perfirming stochestic realizationg mot conditioned 1o
ihe sabe varisbles d. The ke libood function f{m) = f{dlm)
defines the prohability of observing the actusl messrod
st variables d (the dam) givwen & contain model m. It i &
meaure of how good e model mois in fitling the data,
Computing the lkelihood of 2 mode] L{m) gemerally reguines
uing & forwand problem, denoted d = g ). Cheosing 2
particular likelihood fune tion essentially mnounts o deciding
what s mesnt by “gocd-enough it [ iz e medeling decision
that can be based on the distribution of messprement eomm
{whvich can e known fod centain messeerement device ) of can
ke subjectively taken The very exidonce of the posterion
relies ona lkeliweod Amction being defined, and thiz & the
prerequisie of any Bayesian inversion. Hence, all mathods
prezentod in this paper ssume that the lilel hood funetion is
given Mote that all optimization methods (Bavesizn of not)
moed to dofine what & “good-enogh A0 is, either under the
fisrin of & lkolihood fwction or by choosing some kind of
SOpRing criterion for soarch algositms,

{n

2

3] Toraarsds [20605] grees @ comprehensive overviow of

e availahle exact methods (o ohtain samples repreentatieg
af fmld )L Asmoeng them, rejection sampling [ven Maomann,
1951] and Metropolis sempling [ Mesmpaoliy of al | 1953] are
often wred. None of these methods requires the defisition of
the demsity f{d), Bejection sampling i basod on the fact that
Simld) i5 2 submet of f{m), and therefore it can be evalaied
by subsampling the prior. The sppecech congists o goner-
sting candidate modols m® thet sre samples of [m) ad io
aocept asch of them with 2 probahility:

ity L)

) 2

whars Lo denotes the supromum, which can be any
number oqual o or shove fthe highest likeliood valie that
cant e taken by Lim). Note dthst & higher supremnm does nod
affect the acourscy of the sampling, bud it can dramatically
affect ik performence. The distribution of thé resulling
smmples fellows fmild) S@oee if mquires 2 l=ge nuember
aof evalustions of mm], the rejection method is incfficient,
bat it will serve &8 & refeence sampler in this paper.

[a] The Metropoeliz sleesithm [Adefmpeliv e o | 1953] is
ahle to perform & reasomably aguivalent sampling by form-
ieg & Matkov chain of models, such thal the seady-stae
ditributicn of the chain is precisely the posterior distribu-
tion that ene wishes o sample from: I is similar to 2 rendom
walk that would preferontially visit the e where ({mld)
iz high Ome issue with Metropelis samplers is that it is dif-
fleult & smeis whether miking of the chain (converpence)
accurred. In addition, to onsune uniform sampling, each
arple should come from a diffeent Markov chedn, and
eat b independent chain should be carniad onuntil 2 bumn-in
peerioad i3 over. Since this requirenent dramaticelly increases
the cost of cach sample, Toranida [205] augpests keoping
anly | every o sanples, where mshould be ler e avough for
the chain v “forget” the previcusly scoopied models,

(] In thiz paper, we uwse & vemion of the Mewroqolis
algorithen proposed by Afvsepaard and Taraniela [1¥5]
To apply it, one needs o desigy 2 random walk thet samples
e priod. At cach step 4, itmovies acceading to the fellowing
nules

] (U I Lm* ) = D, meve Promm g Do .

2] (20 B Edm®*) < Edimy), random by cloose i move to m®*
of slay & my, with the probabiity L 3 {my) of moving
kr m®.

D3] The movement (or transition) from & model my o
& model m, s sccomplished by drawing 2 candidse
mickal m* o the proposal dissibaticn O m* lmy), which
demeeizg the probahdlity density function of the - transition
from. the model m, 10 the model m®*. The mathod fequines
that the proposs] density is symmetric {or reversible), such
feat (Medm™*) = Om™ lmg.

D4] Previous stodies have investigated Merkow chains
appliod to apatially dependent variables, using different
proppaal (o penturbation) mechatisma fver of af. [199T]
crepie an MeMC by updsting ane orid noda of 2 geo-
satistics]l mealization &t esch step. The method iz very
e fficient because it asks fe 2 forwad peobkem nin
after upsdating cach node, which iz not fessihls for neal-
wpdld grids. Fu and Gomes FHernundes [2008] dramatically



sooelerate e method by oplating meny gnd wodes 2t
the same fime, They inreduce the blocking Markov chain
Mente Cale (BMcMO) mothod that mowrs local peris-
hationa by swecessively nesimulating a square area of the
mealizstions {2 bleck). The BlichC method has bomn wsad
for smpling the poseaior digribution of syathetic. inverse
problens in & muli-Ueussia Fanework [Fu and Gowmez-
Hernargez, 20647,

[15] Optimization medthods aim at Anding realizstions that
meRimize the likelibond M{dlm) They do not allow ches-
acterizing {mld) but are often weed since they se much
more: efficient than sempling slgorithms. These methods
repesiedly wpdae an initial solution 1o minimize an objec-
tive function, offen measring & misft 1w mezsuned data,
Althoueh rogulsrzstion s can be added i make the
pemirhod modelz look more realistic, prior constramts s
afien muinimal. One can use either gradient-basad [Carmera
ard Nesman, 1986] or gradiont-free [Rarpouzoes ef al.,
K1) methods. Sice they soanch in & sochastic mamer,
wradieni-froe methods ane leis prone to be trapped in kcal
mifima (Le, it 14 gusrsndesd that the global susirwm is
foumd &fer & infinite number of iterations). Upm conye-
gence; & single calibeated splution s obtained, When severzl
kel mindma are presont, oone can obdain altemstive sohu-
ey by repeating the oplimization procaduse wsing different
AErting paomis.

[15] Among the optimization Echnigues, amulsted -
nealing [Kirkpirick ef al ) 1983] has boon exeomively woed
i solwe invene groundwater modeling problems [e.g., Pan
ad Wi, 1998 Zheng and Wang, 1996] onotic algn-
vithms [Frases, 1957 Goldberg, 1989] havve boon usad for
ientifrieg  structures  in hydraalic  conductivity  fields
[Rurpomizan e al , 2EN Y Alades and Benard [2000] spply
i BhMeMC method and simulsted smealing o optimize
mon-mnhi-Genssisn  andom felde  generstod uwsing  the
et muliple-point sinrmdlation code (1. Straubhear of 2l
A inmproved parallel maltiple-point algosithm, submited o
Muateematical Gecseiences, 2000%

[17] The gradual deformation medhod (GEXMD [ A, 206040,
Hi of of | M01] and the probebility perferhation method
(PPRD [Caers, 2003 Caers and Hoflmaa, 20668, Johanren
af al, YY) proceed by combining wifemly sampled
mealizations. By adjusting a single pamamets:, they allow
o sing & smood tramsition T one simulation W 2wl
while preserving a prioe soctursl model. There fore, Anding
a calibraied realizstion o be accomplishad by & serics of
1D} optinizstions. These methods bave boon succesfully
spplied m hy drogeology amd potrodeusn engineering [Le
Fervalee-Thipin and Huw, 206, Le RBowlee-Dupin, 2000,
Llopds -A Bt and Cabrera, 2000, Rongpne of ol | WER]

[12] I this peper we present & tesnsition kemmel (iesative
apatial ressmpling, ISR that can b used either &5 3 proposal
digtribution with MehC sampling methaeds or a5 & porioerbs-
tipnstratery when optisd zation i used, We show that | in hath
catet, it yiekls ascurste ssmpling of the postenior. To valida
the resultz, we we the rojection sampler &8 arefemace,

L1, Heproduction of the Frior
[19] A premise of both rgjoction am] Metropolis samplers
ti that proposal models m® bave a noneene prios probahility,

[tiz mot possible for & rejection sampler o produce samples
with zefo prior probability. 'We will define 2= & bounded

3

prios aprios probability density o which there exst modal
m that have zero probability density, For exanple, in 2
Bookan model whee simulaed object all exhibit the same
(dewmuinisic) direction, any model with different ohject
directions has zern probability of ooowrrence, On ihe other
hadd, eseamiples of mnboundsd prior densities se dee multi-
Craussian msdel and the Markoy random fleld model [Besg
and Kegpperbery, 1995, Tieknelond and Bevoy, 1998]. Wit
unhounded prioms, all moedels ane posaible, even those with
extramely low pricr density. For exsample, in the standsd
il -Cesuasizn, the mudel w o= 0 (& model with zera
averywhere and henoe varienoe = () & highly improbahle
bt nod inpossible. Actuslly, this very anall probability can
e mgandod 25 2 mathematical antifect became the chamee of
sampling it iz negligible,

[2] Application of Bayes' mle (eguation (1)) &ssumes
that an intersection betwadm prics amd likalihood exiss. In
ather rms, i all smmples that have a (practically) noneeno
prior probabiity ake hawe & (practically) Zaw likelihaod,
s mesns that prior snd hkeldvood ane ncompatible and the
aoluticn i nonidentiffable [Corrers and Newoman, 1988]
The posterior & then undetsmined e i result, afle
normalization, in & division of z2ero by rere. In such czes,
prior =nd likelibood do oot inemect, Bays' mule is not
applicable, amd a modeling decidon has to be taben wihethes
o pul in question the data the ldeliheod model, or the
prior. This decision should be motivaied by reconsidering
the: bagis adopied to deflne the price &5 well as the confl-
dence given 10 the data,

[2] I the shaenoe of ineraction betwasn prios and like.
lihosesd, date-deiven inverse modeling edmiques match the
datz at the price of producing models with 2or0 o8 very bow
prioe prohabidity (for oxamph, ot presaving the spocified
spatial dependeneg). Chthe other hend, prios—driven toc bmi-
quees Bavor the prior and hence the statistics reflected in prics
muoadals (such 25 2 variogram ), but may bo inable 1o achieve
g fis o confliching dats. By opling for 2 certain inverse
miedeling tochnigues, the modeler decides which piece of
information shoald peevail in cate of incompatibility,

[2] Among dam-driven methods, we mention the gradusl
defrmation mothod (GOM) [Caers, 2007; Hu and Le
Ravalee -Dupin, 206 Lo Bavabe-Dupin and Noetinger,
2002 Lar and Ofiver, 2EM], the quesi-lines medhod
(& iganddin, 1995; Zanind aid Kismidie, 20097, and the mg-
ularizad pild points method (RPPM) thet considers con-
atrzind imposed by bath dats and prior and adjusts these
consramts using 3 weighked regalarizstion B [dladea
af al, MWW Doherse, 2003, Hendricks-Franssen e al |
2] In the class of prior-driven methods, one can find
ithe probability periurbation method [Coers dndd Hoffimen,
2006] 2nd the Bloding moving window [Aleoles wad
Renard, 2010]. ISR, the techmique we present in this paper,
abo helongs to fhis ass of piee-dsivien meathods,

LA Dterative Spatial Besampllng

[m] Letamodel my = {Zx;h, .., D) bea reslizstion
of 2 random varishle 2 discrotized on 2 grid with M wodes,
Uneomditional sealizationz of T s considered smmples of
thae prxer, whother this prior is expliciily stated such as is the
g of a muli-Gassian modal or whether this prior is defined
by a given stochastic algorifun with & set of parametens
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Flgure 1. Sketch of the ISR method. An mitia] nes

lization my is sampled rendomly o obdam the subset

£y, which iz used a5 conditioning dats for genersting another reslization m,. m. displays locs] featunes
simniler oy thads of oy due b0 the comtraints mposed by the comditioning data, but it is aleo different since
the simnulation has produced new values 2t s onditicned loc ations,

(A, Boucher, Stenifoed Conter for Reservodr Forocasting,
unpuhlished, 20T

[24] To inplement sampling amd searching strstepies, o
neads to creste 2 chain of dependat realizations. Conse-
quendly, one wank to draw progosal models m* aot from
Am) bt From Q0 mlog), whene m, ia the grovieus maodel
in the chain, To preserve the spadisl continuity defined by
the geostatistical smulstion slgosithm, the conditionsl term
should ideally be inconporated in the method wsed 0 gen-
emate e reslizations. Since moea smulation methods also
allow ponersting realizations conditioned to peants data we
propoas Lo use this conditicnme capability to impose &
conditional term on the prics. Mose spocifically, dependence
hetwesn m* &wd my B intodeced by extracting & subset of
realization mi & a0 rEwdomly locaed points g = {5 (3],
a= 1, . n} and to impose these prints 28 conditioning
dats (o peperste m®. The smownt & & & tining peramoter,
Propossl models are drawn from ), but & the sane
timg dhey depend on 6y, isell 2 subset of me.

[28] Creating & Markoy chain using ISR i3 socomplishod
by performing the follow e steps:

[2] 1. Grengrste an initia] moded my uging a geostsdiatical
adnulation agosithm, and evaluste s 1delibond fm, L

2] 2. lerste o &

(=] a Select rendomly & mitsetr, = (S a=1,. .., a)
of o points belonging to m,.

[=2] b. Gonerste 8 propos] realrmtion m* by conditional
aimnulation uming ¢, and the sane gecstatistica] mode] with 2
e famdom sead.

[#] ¢ Evalusie Lin*},

[x] 4 Accept or seject . If sccepled, sot my,, = m*,
otherwize po buck tooa (Le, do oot increment i Tf dhe
EocoptEnces oFilerion & the one proposod by Movepaard and
Taransela [1995], the chain is 2 Mewopolis sampler.

[2] The mothod & ihstsated in Figure 1, whene an initizl
soquintizl Censsian sonlation (908 nealization is iters-
tively pemurbed. However, any simulation method can b
used, ax g &2 it i #bleto produse conditionsl sismilations,
sing ISR when actes] conditioning points dats se present
{for example, corresponding o feld measuremena) can b
ot anplished in a straightforwand manner by adding, st each
ierating, the “real’ conditioning dats to the sampled ot r.



[#] The tal amoumt of condifioning dsta setsined,
mamely A, allows determining the strength of the dopon-
dency hetween two succsssive members of the chain my 2md
il . Mode that ihis amount cam be comanion]y defined =23 2
Eaction ¢ of the total number of modes in my,

[1] It is impostant & node that the selected dats set ¢ ol
lowes by constrection the same spatisl cominuily a5 imposad
by the peostatistical algositlm hence the senilting perurhed
realization will, by construction, have the same spatial con-
timity =5 the initis] realization. Both have 2 sonzeng prios
prohabiing. The cnly neguiretent i tat the conditioning oda
T i cofeect of, in other wonds, that the conditioning method
dives pod imnoeduce stifectr into the simulation, nor does it
antificizlly affect uncotinty in the noighbothood of fhe
points dats

[us] IF f{m) iz 2 nonstaticesary model (for example, con-
tEning 2 trend), the methed applics aqually well bocsuse
imifoamly sampling & wonststionany realization seulis in a
nstationay set of sampled point v, It is obvious that fhe
mithod works for both catoporicsl and continwous varizhles,

[3] Mot that methods previously noed in tha context of
MM [Albalea and Beaard, 2000 (Fiver af af | 1997] alao
fely on the e of condifioning points data, bt they e
Escttsad oan local porturbations botween the realimafions in
the Madow chain The main difference i3 that they updais
amve- grid node o bl group of nodes at one step, and than
update avother e at the nexl step, Because the uypdaed
aes i often different & esch s, the search patem in the
slution spece &t sep d tends tobe onthogonal to the seach
dizection a1 step { — 1 (in fact, it is not onhogonal when
mpdaied seas overdap, but thiz & not often the case), When
high-dimenzioml spaces are exphwed; searching in onthog-
amal directions can b imefficient. In adfition, with some
amulation methods, and depending on dhe conditioning
chnigwe, resinmlating kecal aress i prose i creste an-
fects in the simulations.

24, Sampling Properties of ISR

[#] Sevesal faciws may affect the accuracy of the
Metropolis sampler. We mentioned above that cach sample
should be obtained from a - differert, independent chain,
Obtzining them from & single Mardooy chain, aven iF ihe
smirples ahe for apant i the chain, & = sppeovimation.
Morcover, conver gendce of the chaln most be reachad before
perfpaming sy sampling, and this iz difficull to caes,

[#] In theery, the proposal distribotion (O mlm*) is
gpmmeiric. In Floure |, consider the set of points vy If ome
would e it s conditioning dats for & new realizafion, all
poasible oetoemes would have an aqueal likcelilood of baing
drawn = kaig a5 the conditional simelation samplks un-
forraly. Thersfore, the ouicome has an identical probahiliny
of bating my, my, or 282t of other poasible models. Howewer,
sincr geesistiztical simulstions ae algosifunically defmad
(A, Boucher, unpublished, 20007, they may mot offer perfect
comditioning, thas mading fhe proposal distribution possibly
mnsymmetnic, Forexample, conditioning with kriging in the
sl -Cranasian case is & very securste conditioning method,
hut it iz mod the case for 8058 with 2 limied seighborhood
[Emery, 20d4].

[#] We st up a smple synthetic oxample & illusrate
e properties of ISR within the Metropolis algorithm, The
sarizble of imerest & presents 8 gl t-Ceassian eponentis]

5

covariamnce. model with an isstropic range of 10 grid nodes,
& mean of 0, and & varisnee of | These cheracteristies
constitute the price distsibution Tm). The grid size & 50
by 50 nodes, ad SGS [Reeye af al, 2009] iz used 0
genarate the realizstions. Four numernicsl experiments an
porformed. Thete essentislly sim sl canparing the resulis
of the Metropolis samnpler deseribod in the previows stetion
with rejection smpling, which & khowa to e accoraie,
The nummerical experiments condift of characterizing the
price by (1) unconditions]l sampling swd (2) MO zam-
pling and cheracierizing the posterior by (3) mejection snd
4 Metropolis sswpling These nibnenice] expesitients an
deseribed balow,

[#] 1. We cheracterize fhe pricor numesically by gonor-
ating sn ensembla M of 20,006 unconditional nealizations,
untifpemly smmpled from fim), and observe fthe varianee of
the simulated vales (Figure 2a, Wack dashed line). The
variance fanges approximaily betwesn 07 =d 13, The
variation in the reslizstions variznce & dus to statistics]
fluctusiions.

[a] 2. We use @ shernative way of clarscerizing the
priod that uses the proposal density. It consist in perfomming
& random walk wing TSR where proposz] maodels are ays-
tematically aceepted (e, dlm*) = f{dlmg), Vi, In et it
i a Mewopolis alporithm that igmoses the likeliuod. IF the
mequirements for 8 Metropolis alposithm e fulAllad, the
atoeady aate of such & cham should yield samples of the prios
(= methed sugpesied by Mosepaurd and Taraniela [19957),
We gemrate another ensemble of 20006 realizations Wy
uzing such a Markor chain, with 2 faction of ressmpled
tipdes of o= (L1 {ie, a =250 genpled nodos 2t each iey-
ation) and kecping only ome every mi= K acceptad models,
Mode that m = 10 iz & large value that was chosen to have
conditions closg to-an idesl sampler, bt coming at 2 high
CHU eoat. The varianee of the realizations in My and M,
have very simils disteibutions (Flouwe 23 red and black
dashad linos), showing that SR did not induce significand
devistion n the sampling.

[€] In the next numerical experiments, we wse a likeli-
hood thet containg contradicteny information with the prior
(iie, we purpodely forge & cese where likelivond and pos-
tegios do not ndemmoect). We show that our sampling mefhod
is prior driven and  therefore cannod creae samples with
(practically) sero peior probability. The am in these
exparmmenis i o maich & uniform referonce feld whese
Z = pn the entise domain. To thiz end, we dofine 2 like-
lihood fumetion fhst B maximal when the varismes of all
2 valwes iz (1 1 B expressed &

vir|m)
i } B

We set o = (12 s that the likelihood quickly decresses with
lager variznees and appreaches: (0 when the varnisnce cquab
the prior value of 1. This constramd of minimal variznce @
ot compatible with the prios that imposes & unit varianes,
although fluctustions ae posaible within 2 certain rangs,
ISR, = a priod-driven mathod, should be unshle to prodwcs
samples with goro prior probebdlity (e, ot representad
M) Mok that datz-driven mefhods could maich such a
constraint bacauss £ = 0 is pant of the Gaussian prios (it iz an
unbounded priod), bat i very unlikely.

L[mﬁd-m{:—
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Comparison of different sampling methods with [SE. (2) Varanes of realizations under syatem-

atic acooptance (deshed lises) and ussder wisd oy varianes constraing {eolid lines). The histegrans ane
basdon 243 mmples for eachensemble, (b)) Vaniograns of the st realizations of the chain, {c)Varograms
af e kst ealizstions of the chain, {d) Vareorans of the realizations sampled by rejection. { ¢) Varograms
of the realizstioe semplod by interruplod Merloow chains.

{a7] 3. Similerly to experiment |, wo want & scourstely
charactarize the postirior distribution of the problem by
mejection sampling. 'We apply mjection sampling & the
realizations of M_, with the supremmm Lim_ . chaven such
st it corresponds o & varienoe of (L6, and 243 samples are
sotepted that comstitiie the referencs posteior ensemblé
MF, reprosentstive of fmld) (Figuse 22, solid Hack line).

[44] 4. For the last numerical expesiment, we porfinem - 3
chain with the scceptanee aiterion of Mosegaend and Tar-
sninl and the lkelibood equation (31 Ddeally, i should
conmverge to MY, After 2 burn-in period ensuring that seady
staie of the Markov chaim iz reacved, we perfonn iterations
unfil = emssmble MY of 20006 samples is obined

and we keep only one every s = 1 sceeped models
(Figure 2a, fod solid line). Figuse 3 ehows that the numiber
of iterations is large Gwough & onsune convergemes:, Th
vananes digributions of MY and MY are dmilar, showing
that the poaterios i accorstely ssmplod To o mele sue
fat the prior spatial model & presarad, we onpas in
Figures 2h and 2c the experimental variograms of the ros-
lizations ai the beginning and end of fhe Marlov chain,
Variogien shapes and mnges e preserved thepughouwt the
terztions, and themfore the Madow chain did not drifi
wwand modek with 3 (practically) mem prior probabdity.
Mot - that the variograms prosent lower sills (sneller var-
tamops) than the variogran model wsed = input for 2GS (red
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Figure 3. Convergence of the Mewopoliz chaing uaad 1o
ohtain My, and MY,

line). Iudead, the posterior models ae mot the same & the
e models snce the nclugion of dats velds 2 diffaent
cnsernible, This is coherent with Bayes' rule that acknow]-
edges the influence of the likeliloed In thiz cae, prior
sl s with 2 low variznos Heve been sampled more often,
it 2 rerp varbmoe cannod be resched simce [SE B prios
driven For comparison, Figure 2d shows the eaxperimeniz]
vanograns of the models sampled by sgjection (M}, which
arg Aimiler o the ones ssmpled by Mettopolis (ME ). Thesa
fralr mpmerica] experiments show that, in this case, both
rejectimn micthod and Metsopolis sampling with ISR give
similar resuhs.

25, Using ISK for Ciptimization

[45] Mowepaard and Tansarely [1995) indicate that their
sampling method can alse be wsed for optimization. To this
end, odqe can crese & chain of ever-mnproving feslizations
wwing for scoeplance crignion {sep 2d of the ISR algorithm
& describad in section 2 3):

if Dim®) = L)my), aocept m®. (4]

[#] The realtng McMC process & & stochestic search
for & aingle calibrated moadel. The search strategy of TSR
performs: by sucoessive seps in endom directions and of
radoan gize (Rep size B raadem, but ik digribution is
contrallad by @ When large steps ooeus, it allows axplos-
beg various fegions of the solution space. Large steps ae
s an opperiuity to leap out of local minima. On the other
hand, the occomence of ansll steps allows fne tuning
subopimial aoluions. Since the seanch b sochsstic, e
globeal i will eventually be resched after an mfinitz
mimbe of iestions. However, in most practica]l applice-
tions, i will remain m & kecal minismen (Le, athoptonal ),
Figiwe 4 schematically depicts how 2 logal miminum is
searched in & smple 20 aolution apece. The background
mhage represents the neal, unknown schtim space, with 2
kcx] minamuen: i the center of the mage and the glohsal
minisian i the e fight Inthis cate, the sesrch remaing in
the local winimum bocsuse cnlerion () is pged ad the
minber of itorations i finite. Since (4) only considers
e rank of & proposa)] solution compared @2 provicus one,
the sesrch ia dmisr to the mindmization of =@ objective
function. In this sens optimization with ISR ia similar
i eyoluionery sirsiegies whene probabilistically genersted
mdividuzls &ro soquentially impeoved while only the best
one ia proserved [Bayer and Finkel, 20647, The likelihweod of

Iteratrve '.':"-'I:I.:II :::I-"-.-Il:'ll.i ]

» Simulations decreasing fitness

0 SlirvalatEnn i smpng rg e

Figure 4. Schemaltic reproseniation of the scarch strsteny
wsed by [SR i 2 aimple selubion space having two degroes
of freedom. The background color represents the actua)
witkmovwent a0 ution spece, with values ranging from black
i had aelutien) to white (good sclution). A locs] minimum
lies in dhe center of the domain, while the global minimusn
is in dhe tog right.

the fina] zohution depends oo slgosithinic parsmeten such 2
the atofing eriterion used.

[#] 5o for 2 constand frsction of resampled nodes has
been comidered, b slemstives can be envisionad fior
optimization. Forexample, ¢ can incresse af sach iteration £,
The optimization stans with lrge stepa {Le., the soludion i
lergely perturbed 2t the exploration phase) and findshes

Problem setting and reference log, K

* 3 £ d
A
60 80 100

Figure 5. Reference logarithm of hydraulic conductivity
feld in meters per second. The blue cincle depicts the Joca.
tion of the pumping well, mnd the red crosses indicaie the
locations of the ohservation wells.
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Flguren, Optimization performance asmessment for six different values of @, The evolution of each opti-
mization iz marked by & fhin black line, snd the mediznn evolution compuied from 25 optimizations i3

depicted by 2 red bold line.

with snall seps (nerowig phate) One possible way 1o
socoaplish this B with a power law,
ﬂ]j_pmi]—ﬁ‘r:], {1 . B |_5:|
[44] The b ger & iz, dee slower @) will resch @ . Thiz
13 similar to amulsted amcsling, with te perameir o
defining the cooling schodule and g i the mEximmm
valua of @ (afer s infinie member of ierations) Yet, slike
ofher dmulied amealing algorithma, sdjsting ¢ can ba
tadiocus. Moverheles, we will soe in section 26 that using
(5 can accelerate the convergence compared to keeping ¢
coastant Mote that avanying ¢ cannod be wsed inthe contest
of a Bayesian inverse problem (Metropalis acceptance ori-
terion) becwss i would make the propossl dengity. non-
symunetric. In the cotest of optimization, (5) is applicakle
since the problem is nod & sample the posterior, but & reach
& kecal monima guickly.

26 Semitivity g

[#] e is the only parametes redguined when ISR i3 wed for
opimization. In order & evaluste 6 soositivity o dhe
aftimization convergonce spesd, wo sel a smpk flow
problem and perform several oplimizations with different
values of g

Tahle 1. EMEE of the Dhifferent Optimimdion Rums Afler 200
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Figure 7. Trining imege med o model for the sand and

clay apatia] distriboation.

(5] The problan setting consists of a sqmne aquifer of
e m by 10 my digcretized in 10 by 106 elements
{Figure 51 A meference ko K feld s genersted nsing 545,
The spatiz]l model for lydraulic conductiviee s muhi-
Cranasian, with an otropic exponentia] varioesam of raneé
% m, The mean logarithm of the hydraulic conductivty is
—3, with a variance of 2. The upper amd lower sides of the
midel wre wo-flow boundaries, a fized hosd  boussdary
conditicss of 1 m is 52t on the lefl sde, and. & fixed hesd
boundery: condition of 0 m B8 set on the rght side. A
punping well exracting 00003 mYs is setin the center of
e domain (e cicle), 2nd nine obsorvation wells e
positionad &t the locations of the red crosses in Figune 5 {fhe
pumping well iz aso an observation well). The problem is
anlved in siosdy siein. The nine head messprements are tha
nly cmEraints wed to solve the invese problam, i, to

5 Refarenis daces

1Kl

LH

a4

L1 20 40 &l A 10

9

find log K fields dhat makch these date. We do mot impose
amy conditioning points dets o onder 10 gt over-Goasnain
thee i

[51] Propossal solutions are gondrated using SGS with the
true variopran modol. The apceptance oriterion is (4), and
there fore: the likel thood has the role of an objective funetion
to minimize, Thia objective funclion messures o foot-
mes-squate affor (RMSE) botwesn calaulsted mmd mes-
sured leads at the nine of stion wells. With such leose
Comirainty, we ennee tuat the problem is sevancly ill posed
and that the solution spéce e puliple locsl minma,

[52] Six zesies of nns sne porformed. The first for series
(ISR use fized @ valees of (2) &1, (B 065, {e) (U], and
() (ueS. The last two swic (ISR-5A) use & vanying
sanpled fraction ¢ according o (5) For each senics, 25
optimizations se perfoomad with ISR each optimization
is carflod out for § = XM iwrations Figore & displyys
the ewilution of cach optimizmtion (thin Mack line) and
the moedizn of cach series (bold red line), The parameterns
of the sinmlated mnealing conling scheduls are (Figure &)
¢ = (L) and (Fipwre &) ¢ = (0095, with ¢ _ = (L1 fba
both series. Figura &g shows the evehtion of ¢ 23 2 funetion
of the iterations for both cooling schemes, with & = (L9
mepreienting & fast cooling and ¢ = 0995 reporessnting a
slower conling. Table | rovides & summary of the RMSE
values obtained with esch sevies of mns Medisn values
illstrate the overall perfommeance for cach series ad mind-
mum'maxinun values hely identify the stabiline of the
optimization bohavior,

[53] Wearly zll parsmeters ane, on ayverage, shle i reduwos
the RMSE by mwwe then | order of mospsitude in 200
iterations. The only excepbion i ¢ = (L1, whoss paoor per-
formance can bi explainad by B0 small Seps bebyveen one
anlution and snother (large Faction of eampled aodosh
Althaugh thiz does not prevent nesching a Jecal mindsmm, it
can significantly seduce the convergence sate iF the pog
raphy of the objective function is way flat. All odher @
values tested schiove similesr medisn fits. Constant ressm-
pling with @ = 005 porfonms slightly betier for the madian
and the bost i than smeller ¢ values, bt this comes a1 the
price of having soms optinirstions that did mot converss,

bl Befirence heads

Tie

Flgure 8. Refesence field used for the gmthetic test case The blwe circk merks the location of fhe
pusrping well, and the rod oosses indicate observation wells, (3) Referonce facies, (b) Commeaponding ref-
ergnoe heads.
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aain due & the relatively seall seps This i shown by the
mmxonwmn RMSE that iz larger for p= (L05,

[54] The same phenomenon oocurs with ISR-SA. T tha
latge stops at the heginning of dwe optimization do wot yield
madels close to & good fit, the smaller steps that oocn
later cam ondy provide limdted improvements. The search
then remaing sway from good aness, and the corresponding
aolutions  show poor fits, even afier & lrge nomber of
irations. Comversely, if 2 subopdimal solwion is reached in
the indtial phese of de optevization, the sraller steps et
coor later allow fine sdjistment This dual and unstahle
behavior explaing the presmce of both the hest and wodst
fits of all series when TSE-5A ia used with 2 quick cooling
schoedule (o = (90N, With 2 slower cooling [ = 0.9%35), it
iz les prospotnced. Daee to this kgh sensitivigy to e initial
sanple, & possible strateny could be to chopss the aterting
poa of the optimization & the best of 2 small set of ran-
domly wemerated nealizstions.

[55] ISR-SA hes the potentis] of schioving beties G, but
it provides only slightly better median comverngemss. Tha
price to pay © & high sasitivity & the cooling peramoir
theat meay b difficult to adjust in practice, Conversely, ISR
does not fequire the adjosiment of epoling paramatens, snd
wr think this iz & major advantape o 2 practicsl pobit of
wiew. We testad 2 larpe sray of ¢ valoes, with 2 fctor 20
between the lwest and highest ¢ values, Corresponding
BMSE values vary only with a factor 2, therefore, it soems
that [SR i3 mod very sensitive @ the parameter ¢, at lezst for
the prosent cxe. This iz fortnste because it eases the
adjnstment of optimizstion parametons,

2.9, Approimating s Pesterbor with Meltipk
Oiptimiations

6] Comsider s indopondent Markoy chaing, each using
accepiance criterion {4) to define the models that are
socepted in the chain, Taking one opiimized model per
chadn yields an ensemble of o ssmples, ] of teem having
& monzerno priod prohability and fiting the deta. However,
Bayes® mle may mol have boon obscrved since models are
sampled from a subset of the prior that may nod refloct the
exaci porterios. Samples can helong 10 the posterior {in the
songe that fhey match the dats welll, ot they s not
mecesarnly distribuied acconding to the posEnies. Tee-
fowe, & hizs is inroduced on the modelivg of uncenainty
(here we wse the o “hing” in the sense of a2 fuliy

sampling design),

[5] Such a procedurs s 2 form of imporance sampling.
The central ide of Enporance sampling is that certain seas
of the grier distribufien have mose impact on the postaniorn
than olvers Henes it may e preferable o avoid proposing
smmpley m regons of low 6t {see Smich [1997] for a
coampr ehensive review L I st of uniformly sampling from
Am), ene wishes o sanpk model from 2 biased dis
wributicn ™ {m) that excludes asess of low 1. As & resuli,
smpling is not & impoesed by Bayes” role, but seconding
i @ hizsad poslerior, Imponiance sampling techmdques pro-
wide an approximate compensation for such bias by intno-
ducing a weighting term in the probahility of acceptancs
of a model m, weights being given by the ratio of the pricss
S ).

[m] Since imporance sampling can grestly accelerste tha
mampling  process, il me in the coniest of the lpydro-
gorlgical inverse problem i sppealing. However, applying
the bz cormoction n practical ¢ases iz problematic bocsisa
the ratio of prioes is difficalt 10 defing. Without hizs oo-
mection, there i3 no pearmics that sawples oltained by
mltiple optimizations ae oven appraimately  disribued
accarding to Bayes' mule, The distribution of the samplad
mindels s dependent on the stopping critefion of the opti-
s Estion procaes, IF the mmmber of igrations i too large, 2l
aptinizations coaverge 1o the glebal minmum. In sddition
i wasting TP time, it results inan uncertainty amaller than
desired. If the member of Rerations & 0o small, a very large
pertipn of the prior & sanpled, vielding oo high wnoer-
winty, [n other words, detemministc sopping crikeria give
litfle comtral of whether the dats s ower- or undesAtted. "We
llustrate this problem with the aample of vaiaoe mini-
mizstion (Figure 5. We perform 243 optimizstions using
aoteptancs criterion (4), and we 2ot 25 2 Stopping criterion a
wial of i, = 10 scoopted models. The resuling ensemble
M| * (Figure 22, blueline) presents a distritution of varisnce
mmch narmower than what & foond with ngjection sampling
(Figure 22, black solid ling), Moreover, the large amount of
forward model evalistions (35 92T represents a waste of
COTPALDET FESOUTca s

[=] In the case of ISR uwsing socepiance criterion (4], the
msdels in the Warkoy chain &e dravmn Froan the hizsed prios
Smd = mlm), which i fhe ensemble of &l realizations
ohtzined by extracting & subset £y from the previges member
of the chain m, At exch iesstion, M™{m) s more bizsed
wwand high fits but &ill remaing 2 subset of the prios, a3
shown in section 23 Therefore, 2 first hias ia that dhe
likelfwod of the models iz too hich,

Figure 9.

Representation of the ensembles of models obtzined with ditffarent mothods {150 models per method). Each

eoluvm represants the resulls of a sampling method (unconditional prios, fejection sampler, Metropolis semplar, inercupied
Markoy chaing), BEach row cornesponds toa different representation of the snsemble (mean heads, standad deviation of
heads, probability of channel:, mulidimensionsl scaling mapping).
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[50] Az & posctical hias comection, we propose. o poe-
madely ingorupt and sample tee chain, with & oriterion
besad oo the likelibood. Our jdes selies on the Fact that Tor &
proposz]l model m* i be submitted @ the possibiity of
soteptanes, 2l previeds models in the chein mg, ..., m,
must ako have beon submitted to this same  possibility
and rejected. In other words, the cxistence of a mesdel s
conditionad to- the nejection of all of its predecessors,
Henee, the probahility fhat 2 model i oven considered
& sample decresses with the iestions, which is 2 seennd
himz on M{m), but in the opposite direction, Models e
increasingly likely to be asccepied, bot they e less snd
less likely to b submided to the acceplance  enitrion,
Although they ang difficult w define precisely, boads ef focts
& opposite snd may compensate sach other,

[#1] To ohizn e sample by nterupied Markow ¢hain,
one neads o design an ever-improving Markov chain that
&ocopts mow e mbers unddr conedition (4. The chain should
bo intermupted following 2 stochastic stopping  oriterion
gimilar bo the secoptancs mila of mejection smmpling. This is
can be accomplishad in the fellowing steps:

[s2] 1. Dhefine the spranmen L{mi, ..

Tsa] 2. Cremerste an initizl model mgy asing & geostatistical
smnulafion algosithn, and evalese is likzbiheod L),

[54] 3. Derate on J unti] isberruption:

[55] & Seleft rendomly & subset fr,=Sx J ae=1, ..., a)
aof m points bolenging (o my,

[s6] b, Generate a proposal realizstion m* by conditionsal
shnulstion using r; 2nd fhe sane geestatistical model with 2
o Famudom sood.

57 «. Evalusie Lim*)

[5a] 4. Decide whether or not to intermupt the chain:

[s0] i Comparke Mm™) = Lim*Vi{mL...

[ra] i, Dwvaw o in D017

[ idi, If s = P{m*), acoe m™ &5 & saanple of the pos-
terior distribution and intesrapt the chadn, If u = Pim*),
cofitinue the chain,

[2] e, Atempd & namow down M imd, if L0m™) = Lim),
el gy = m*, chewie po badk bo a2 (e, do mol
inerement £

3] The algosithm above B & foem of rejection sempler
that samples froan the propessal models of a chain inssad of
unifirmly sampling the prics, I is indeed & hised sempler
comparad o oa rejection semplar {except fior the fist fters-
tid, wleede it i exactly & rejection smpler). 11 iz a heuristic
way i quickly obmin an spproximation of the posterios,
and it doss not roplace exact mmplas, Howewe, it still
accouns for the licelilhood function, which is nod the case
with defenministic siopping criteria such 2z 2 fived numn-
baf of iterations, & mavimun sumbes of iterations withou!
improvanent, or 2 theeshold in the objective fonction,
Mo impontantly, interrapting the chains reduces oom-
putaticnal burden by skipping the unnecmssry nmns that
incor overfiting. Ineidentslly, since esch Markov chain is
independent, the sppeosch i streighiforwand to parallelize
[Mariate=, 2010].

[r4] ‘As a proliminery tesi of ihe intemopted Mooy
chaing, we use it i ovaluste the peaterior distribution of
the miinmsn vaniznes: problem (Figure 20 We soner st
243 samples with indermupted Markey chaing, using like-
lihesod (3) -and the seme supsanen valus thet was used for
rejection sampling. The varance distribution of the resulting

12

engertible M, i displod n Figore 22 {green line ), amnd fhe
varigprams of all medek ae shown in Figere 2o, As
expocted, WL does not display exactly the same distrilution
of variancs ad vanograms as the ensembles obiained with
rejection and Metropolis samplers. However, the s iz less
fhan with 2 fised mmber of 10 iesstions (M'Y), and it
rogrites much less model evahmtions The algoritlm of
i Markoy chaing iz able to obtsin 2 ressmabl
ensemble with only 3871 ovalustions, wheneas rejection and
Moropoliz mmpling aéed 20,000 evalations and a fived
munber of 10 iterations requines 35,927 avalmtions.

3. Test Case
A0 Probkem Serthng

{27 O of the ey festures of ISR is tat its principle is
i Emaoeiaed with & specific simulation mothod or 2 centain
type of spatial variability. In section 2, we presented [SE
with multi-Graussian examples, To demonsteate the general
applicabdity of ISR, we define 2 new problem invdving
saind chanmels in & clay motriv and we use the direst sam-
pling method {DSY 1o moda] it [Mariahoz and Benard,
20y, Mariethaz ef al, 200007, This technigue wmes multiple-
poand statistics, which ae well-suizd o madsl a wids
ragige of stroctura] models, moli-Ceussizn o ot [Caers,
QA 205 Guardiaase and Seivastova, 1993 By and
Chaigroneva, M, Fowrne! and Shang, 2066 Sirelelle,
202, DS has the particularity thiat it o not detonmine
the values of the sinulsted nodes by drawing them from
Jocal probability distsibutions. Testesd, values are disectly
samipled fom 2 training image, Tharefmre, inverss modeling
e thonds that rely on the perfurbation: of the kecal distribu-
tipat, much & GDM and PPM, oot be applied. Since DS
allows conditioning 1o podnts dats, we show that ISR can
b applied.

(] The spatial model of the sandfclay pattoms is defimad
by the cateposical traingyy image displayed in Figure 7,
reprcteiing sand channels inaclay matrix [Srebelle, 20027
With this waining image ad the parameles descoribed
below, one mealizstion is senersted on 2 grid of 100 by
100 modess, which is thereafter considerad =5 the refermes
field (Figore 8a), Porameters of the smulation ae & neigh-
hwhood of n = 25 nodes and 2 distance threshold set fo
= (M. The meaing of these parametens is that, for any
simnulaind mode; the dats event | pattern) made of thee 25 clogest
naighthors iz congiderad. Starting from a random location,
the waiming mage & scamed until encountring a wwls
whase el ghborhaod matches at lesst 24 out of the 25 nedes
searched fior, (The parameter ¢ ropresents the fraction of
mismwiching nodes allowed, which here oguals | sines
Ol = 29 = | Hemoe op to one mismatching node 18
albwed) The vahe of this node is then sssigned & the
amitleed beation. The method reproduces the statistics
of the training maes wp 1o the ath order [Thannon, 1948].

[n] Althouwgh maltipl-point algorifhims  guesrsntes that
conditioning dats s locally honorad, there may be atifacts
i the neighborhoed of the conditioning deta [Kjwnsberg
and Kollyrrngen, 2006, Convensely, kriging offers per-
foct conditionine st fhe dats locafions and in the spatial
relatipnahipn between conditioning dats sd  susmounding
lecations. In the case of [N, whin a dats configusstion
alrerved in the amulation is sl found in the teaiming



Figure 11
fits to datz and the RMSE &ro shown on the sight of cach realizetion. The axes and bels e e semme
for all realizations, bat they e only displayed for the op left mape,

mmape, [ seleds the beat matching configurafion of tha
trabting mmage. In such cases, pattems that are ncompatible
with the pricor can cocur in the sinmlation. T thase patems
&g in the neighborthood of date sntifacts may appear,
crpocially when large amounts of conditioning dsts s
prosent, which is the case with ISR, Consistency among 2]
patern: camuld be enforend wding syn processing [Marfethas
ef af, A0, which recursive ly unsimalstes and resimulass
noibe s untll &ll of them are compatible, bat the method has &
seap CPU cost Tnstesd, we wse here a specific distsnes
between data events (also deseribod by Mariethos of al
(A1) that gives 3 larmer selative weight © e nodes
commeapoiding 1o data. However, perfoct conditioning & nod
U rantiend,

[m] A uniform hydesulic conductivity value of 107° m/s
i i gl a0 smeed channels (Figuse 7, white)and & valwe of
10 mis to clays (Figure 7, black), The resulting hydraulic
comductivity field is med in the same sotting & the example
i gection 26 (Figue 5 one pumping well and nine
obdervation wells, and the ssné bousndary conditions). The
resulting seferencs heads are displayed in Figure 8h. The
hesd is kaown af the nine observation wells, and the RMSE
of the caleulated wersus olmerved head i considered to
cvaluste & given solution,

AL, Eusemble Soluthoos with THFerent Samplers

[#] The posterier distribution iz charseterized using
different echniques. Tahle: 2 provides the RMSE of the
calculated heads and the number of forwand probem ove
histions for cxch sampling method. Figure 9 summmarizes
he resulie praphicaly. Bach columnn reprosents a sampling
method, snd esch row represents & different representation
of the enzembles of models considesed. The first row i fhe
engamble thesn hesd, the second row & the head standard
doviation, amd the thicd row iz the probahlity of ooousrence
of chamnels.
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FRAGE o2 i

el

it ol

0 I

Six realizations (rasdomly chosen) out of the 150 samplad with the rejection method, The

[a] In the founh row, we uwse the mulidimensional
ack ling { MDS ) technigue [Bory and Grsenen, 1997, S heid
and Coers, 2WW] to vismlize the warisbility in the
cmamble of mmpled moedels. Given a dissimdlarity mair
D between fhe models, such a representation displays an
ememble of models my &2 2 set of points o 3 posibhy
high-dimonsional Buclidean space; afsanged in such 2
way that their respoctive distances ae preserved, T can
b computed using any sppropriate messune of distenee,
The ooordinates of the pois sre in high dimension, ot
for ropresentation they e prgosted on saces of lower
dimensionality (2D or 30, where the distances s then
only approximetdly preserved. In the present case, the
distance belween zny two models d{m, m] iz he poce
wize Fuclidesn digses between the hesds cslenlsted on
the entire domain wing both moedels. D is compuied wsing
6l models (150 models for cach of the four sampling
mgthids, plus dhe reference, represenied by & rod dot), and
each ensemble of models iz repretented on a diffesent
colusn for more clarity. In this ease nopresentation of the
point 25 20 proections B adoquste sivce the fist owo
dimensions cary 6% of tha infosmat oo
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Figure 11. Conwagence of the Metrogsolis sampler in the
synihetic s case



{1
= = = = Mipgnuem ol 100 ursomci ioral suak
1 == Fvalution of ;ndividual optmizations
o m Intemugtion of oplimizations
W
(¥n]
=
G
=
-1
-1,
o 50 100
Mb ot evad viatines
Figure 12, Evelution of the 150 individoal optimizations

wied for intermapied Madowy dhisins,

[11] The first column of Figare % represaents the o valeation
of W () unconditionsl realizations. This ensenble cher-
ascterizes the prios m). On sverage a large deawdown is
obserwed 2t the purping well, indicsting that most of tha
prior mode s have no chennel &t iz location, The sandand
devistion iz lage exoopt noar the boumdany conditiens (note
thet, to keep the fowse readshle, the stsndesed deviation
iz ol repwesened above (1 snd heads e not repee-
santed below —1 ml Since a0 conditioning point date &re
i, the prohahility of diannels & undfioem., The models
&g very scattered in the distanee space, which confirms the
high vanishiity of moede] responses,

Figure 13,
The fits to dats and the RMSE are shown on the right of each realizstion. The axes and labels e the same
for all realizations, but they are only displayed for the top left image.
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[2] We astan by solving this invesme poblom usin
rajection sanpling, The likelihood function used iz

4 | i RHEF;'TB::F) &)
J.:I'ﬂ;_!—l:l.illl\'—, | &)

¥ o
with & = (03 m, which can ressonably cormespoand o i

hesd moammemen emof, The supremumn value i3 st 1o
(e Y, which cornespomds toa BMSE of (U030 {2 higher i
fean any of the smmples). After WK (HE) evalustions, 150
realizations are sampled, representative of Mmld). Six of
these realirstions anre displayed in Figure 10 with their
respactive fits to date, Although good fis e fomd, reali
zations ame wiry different. Thiz is an indicaticn of the won-
umiquensss of the solations and of muliple local minima in
the solution space,

[71] Compared to the prior models, the stands nd devistion
af heads displavs roduwced uncenainty, especially &t he data
kecatioats, The prohability of sccurmencs of sand slows thset
the hesd messpoment captied some esential featings
goveming flow behavior, One such festure is the preseed
of 2 channel @ the well location, slighly tilied downward
and that does ot branch in the immnediate viemity of the
wall, Another festure i3 the absence of chamels at i
becation of the four observation wells close to the conter, In
e distanoe spece, the peaterior models represant & o
subast of the prios. Note that more infomnative date, such as
ransdent hesds or concentration dats, would =llow 2 mone
detailad cheracterization of the channe] ke ations.

[34] Mow that e posterior distribution s entinely s
acterized with rejection, we perform another sanpling using
[SR 2z a Metropolis spler ax deseribed in soction 23,
with likelihood (&) A comstant resampling factar of ¢ = 0.0
it wead. The chain i carmied on until 20K models e
accepied. Becsuse of the high mejection rsta, 26,753 pro-
pifa] zolutions are evaluated in todal The convergence of
the chain i displayed i Figure 11 Upoa convergence,

B o DL T

Fast S Lo DU

Six réalizations {randomly chosend aut of the 150 sampled with intesmupied Maskov chains,
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Figure 14, Distsnce-besed repressntation of ensembles obtsined with dewrministic stopping ofiteria,
{2) Fixad numnber of 15 jerstions. {b) Fixed number of 150 jesstions,

ariationg betwoeen the RMSE: of samples se axpocied
i cacel out and the mean RMSE should sehilize Using
Figme 11, we define the hum-in period a5 the initizl 20
sccepied models, and we romove thaee from e chain,
Then, one eyery 12 medels accepiad in fe Markoy chain iz
retaised 23 & sanple of the psterior diswbution. As a
resuht, 150 ssmples are obdained,

[#5] The third cohmn of Figure 9 shows that dhese
15 smmples ae gimilsr to the oulcomes of mjection @m-
ping. The mesn heads and the prohability of oocurencs of
channels ane fuirly closs o the ones ohiained by mjection.
Slight differences ane ohserved for the dawdterd devistion of
heasds. In the distence-based ropresentation, both rejection
end Matropodizasmplers produce miodels that sne represenied
i the distsncee specs =9 2 main clster with & few outlies.
While the main clusier is similsr for both samploss, rejection
prodducad seven autliers and Metropolis produced oaly fous,
Moreows, Metropolis sampling resulss in 2 higher median
BMSE. Although bodh samplings are fdrly similar, the df
ferences can be attributed o the relatively emall sumiber of
mmples (1500, but also o the impoerfert conditioning of the
[ simulation method,

[#] The fourth column of Figure 9 mpresents 150 sm-
ples obained by imermepied Markoy chaing, with 2 coestan
Fraction of resmplad modes of @ = (00]. Likelilood (&) iz
mmed, and the supremum is the ssne = for mjection sm-
ping. The msuls ae relatively simis o the ensemble
abtained by rojoction sampling, using only 8108 forwerd
preblem evalustions (shout 54 forward sinmlstion muns for
cach mathed modell The hesd stendard devistion iz
noticeahly redwoed in the upper pan of the imege. In e
distamee-based representation, fve models lic out of fhe
et cluser, which 15 similar o what was obsonved with
rejection sampling, Howeves, the main cluseris o namow
(se zogmed-in pat), Figure 12 shows the evolution of ihe
150 optimizations and their indarmptions. The number of
iterations § hetore inemuption mags botweon 4 ad 144,
with 2 average of 54 iterstions. Six oplimized realizs-
tinns obtzined by inerupted Markov chaing se shown in
Fipme 13, Similaly o the coe of rejection smpling, e
mosence of diversity in the populaticn of solions indicags
st difforent kecal minima bave hoen explorad.

[#] Por comperison, Figuee 14 displays the distance-
hased mopresentation of models obtained with deterministic
Aopping critefia, sfter & fxed number of Roations L., =
150 sl i = 15, Clearly, 15 iterations &re not anough and
produce & ensemble that & oo spresd, while 154 iterations

afe too mach, only fepretenting 2 nefrow sohest of the
desired posterion. Mote that the correct nusnber of ikrations
camiot be kisrwm & priori,

4. Conclusion

[&] We peesentad the iterative apatia) sesampling meifhod
(I5R) o perturh realizations of 2 spatially dependent vari-
ahle while preserving its spatis] stroctuse, The methed i
wped &3 & transtion kemmel o produce Makov chains of
peoastatistical reslizstions. Depending  on the aceeptanoes’
mjection oriteriod in the Markoy process, it is possible
obtain & chain of realizations amed cither at charactorizing a
cortain posterior distribution with Metropolis sampling or 21
calibrating one realization st 2 time SR e therefore be
appliad in fthe context of Bayestan inmvefsion or &1 a0 opti-
mization method. For the latier case, we present & stopping
criterion for optimizations inspaed from imporawe sam-
pling. Tn the studied cases, it vields poserios distributions
rasennably close i the ones obtained by rejection sampling,
with mporiant redwction in CPL apst,

[#] The method is besed sodely on comditioning data;
hemce it can be wsed with &y genstatistical technigue
able {0 produce conditional simulations. Moseover, ISR can
e arsightforwandly impemented withot modification of
existing somputer codes. The method iz simple in i con-
copl and neads very litle parame Erization,

[m] The Faction of reampled wedes ¢ i e oaly
parameter reguired for optimization with [SE. Tt has boen
showi that the metod is efficient for & wide range of ¢ Thia
low sensitivity i & major sdvantzpe from a practical point of
view because it saves the user the lessk of performing
lengthy sensitivity swalysis @ And optinal parametens.

[n] The spproechiz ilustaied with both continmas amd
discrete variables. We wse head dats and groundwater flow
problems, but the principle & gemeral ad can be applied
ter oihir inversion problams such & the ones nvolving
geophysical applicstions, Fumre mesearch will focus on
extending the concept of ISR. For exsmple, local perturhs.
tins can be obdined by fesepling cenbin aress mon: then
athers of Toy using quasirsndem sesampling [eg., Do er al |
2R This could be wmed whin the forwand problem
prevides local fimess or sensitivity information, Anotler
aspadt is the integration of preforential seanch directions. In
this paper, wa investieated sesreh patterns that use random
seanch divections, obined by sampled locations that are not
correlatod between an iterstion and the next one. It may be



possibde 1o continue the search in the same direction &3 the
previeus iteration by adopting sampling locations that are
dependend on the sampling at the previous ieratio,

[92] Ackmewbedpgmentn  This wodk was fumdsd by a posad coneeal
fellmsiin of de Sems Nadomal Sceemes Fowsdeice (grast PENEPZ
L3433 wwardad o G We tank Kl Mosegaand for poec s maighes
o B wodr o Amdind Tossme ] for comsinar e ot i, as well as A mdey
Alcodea and reo aRonyvEes mvicwars D Ser posnive Tfeedback.
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