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1. Introduction

1.1. Outline

In this paper, we consider the problem of using Bayesian methods to estimate
an unknown parameter f from an observation Y generated from the model

Y ≡ Y (n) = Af +
1√
n
Z. (1.1)

Here we assume that f is an element of a separable Hilbert space H1, A :
H1 → H2 is a known, injective, continuous linear operator into another Hilbert
space H2 and Z is a Gaussian white noise. Many specific examples of regression
fall under this general framework, such as deconvolution, recovery of the initial
condition of the heat equation and the Radon transform (see Section 1.3 for
details).

In the Bayesian framework, we treat the unknown element f as a random
variable and assign to it a prior distribution Π, defined on a σ-algebra B of (a
subset of) the parameter space H1. We then condition on the observed data Y to
update this distribution to obtain the posterior distribution Π(·|Y ) and thus ob-
tain a sequence of data-driven random probability distributions. The Bayesian
then draws his inference about f based entirely on the posterior distribution.
Recently, much focus has been given to the development of nonparametric pro-
cedures, where the support of Π is infinite-dimensional.

We wish to study the asymptotic behaviour of the posterior distribution under
the frequentist assumption that the data Y is generated from the model (1.1)
for some true parameter f0. We shall measure this behaviour by considering if
and at what rate the posterior contracts to the true f0 as n → ∞ as defined
in [11]. This question has been the object of much study in recent years (see
e.g. [11, 13, 16, 29, 31] for some examples), but the situation of inverse problems
has only recently been considered and then only in the conjugate setting [1,
20, 21], where explicit posterior expressions are available. We shall use a novel
approach to study possibly non-conjugate priors; we also recover some of the
results from [20, 21].

While it is of considerable theoretical interest to understand the behaviour of
Bayesian procedures in the non-conjugate setting, there are also strong practi-
cal reasons to do so. Although non-conjugate priors are more involved from
a computational perspective, they are increasingly finding use due to their
greater modelling flexibility and interpretability [15]. Meanwhile, advances in
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Markov chain sampling methods have meant that such procedures are increas-
ingly tractable in practice (e.g. [26]). For example, in the case of sieved priors
discussed below we have that, conditional on the random truncation levelM , the
problem reduces to the case of a finite-dimensional model with Gaussian noise.
When the prior product marginals are non-Gaussian, it is therefore possible to
sample from the conditional posterior distribution using a finite dimensional
MCMC scheme.

Our method of proof follows the testing approach introduced in [11] and thus
does not rely on explicit computation of the posterior. A key ingredient to using
this approach is the construction of suitable tests for the problem

H0 : f = f0 HA : f ∈ {f : ||f − f0||H1
≥ ξn} (1.2)

with exponentially decaying type-II errors for some sequence ξn → 0. We follow
the approach of [13] of using the concentration properties of appropriate centred
linear estimators to construct suitable plug-in tests. If the operator A in (1.1) is
compact, it effectively “smooths” f and so makes it more difficult to distinguish
between the alternatives H0 and HA based on the observation Y . To deal with
this, we use general analogues of the Fourier techniques used in constructing
linear estimators in the case of density deconvolution [24]. Due to the inverse
nature of the problem, it is natural to construct such estimators using a diago-
nalizing basis for A. Moreover, since our approach requires good approximation
properties within the support of the prior, we consider priors that are naturally
characterized by (small modifications of) such a basis.

A key requirement of this testing approach is that the prior distribution
assigns sufficient mass to a neighbourhood of the true parameter f0. In this
framework, this corresponds to establishing lower bounds for the probability
that Af is contained in small-ball centred at Af0 (the “small-ball problem”)
under the prior. The inverse nature of the problem turns out to be of assistance
with this condition, since A shrinks f towards the origin. In effect, A changes
the geometry of the problem by converting an H2-ball into a larger H1-ellipsoid,
whose precise size increases with the level of ill-posedness. We shall rely on this
notion in our proofs and expand upon the details below.

We apply our general result to prove contraction rates in a number of sit-
uations commonly arising in Bayesian inference, some adaptive and some not.
For instance, in the case of sieve priors with random truncation, we show that
under weak conditions in the mildly ill-posed setting, the procedure is fully rate
adaptive (up to logarithmic factors) over Sobolev classes as in the direct case [2].
In the mildly ill-posed setting, similar adaptation results are obtained in the re-
cent work of [19] using direct methods in the case of a hierarchical, conditionally
Gaussian prior and an empirical Bayes approach. In the severely ill-posed case,
our results suggest that one should calibrate the prior according to the operator
A at hand. In this case, oversmoothing the prior by a suitable factor is sufficient
to obtain a minimax rate of contraction. This is not surprising since centred
linear estimators in the severely ill-posed case are often adaptive (see [24] for
results on density estimation) and our tests are built around such estimators.
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In this setting, unless the prior satisfies an analytic smoothness condition, the
bias of the linear estimator dominates its variance [5, 24] and consequently the
minimum of the prior smoothness and the unknown true smoothness determines
the rate. Since we construct our tests using a bias-variance decomposition of a
linear estimator, it seems reasonable that our rate will reflect this.

When considering the specific example of deconvolution, we also consider a
wavelet series prior on [0, 1]. While it is canonical to work in the diagonalizing
basis of A, in this case the Fourier basis, our results allow some flexibility in
considering different yet closely related bases; in particular, this allows us to
consider priors constructed using band-limited wavelets. This turns out to have
useful consequences since we can use the functional characterization properties
of wavelets to reflect a greater variety of prior assumptions - notably we consider
Hölder smoothness assumptions in addition to Sobolev ones.

Unless otherwise stated, 〈·, ·〉i and ||·||i denote the inner product and norm
of the Hilbert space Hi, i = 1, 2. For x, y ∈ R we use the notation x . y to
denote that x ≤ Ky for some universal constant K. For sequences {an} and
{bn} we write an ≃ bn to mean that there exist constants C1, C2 > 0 such that
C1an ≤ bn ≤ C2an for all n ≥ 1. We may also sometimes use the same letter to
denote a constant that varies from line to line.

1.2. Linear inverse problems

The Gaussian white noise Z in (1.1) is the iso-normal or iso-Gaussian process
for H2. Since Z is not realisable as a Gaussian random element of H2, we inter-
pret the model in process form (as in [3]), that is we consider Z = (Zh : h ∈ H2)
as a mean-zero Gaussian process with covariance EZhZh′ = 〈h, h′〉2. In this
form, (1.1) is interpreted as observing the Gaussian process Y = (Yh : h ∈ H2),
where

Yh = 〈Af, h〉2 +
Zh√
n
.

It is statistically equivalent to observe the subprocess (Yhk
: k ∈ N), for any or-

thonormal basis {hk}k∈N ofH2. This corresponds to observing the sequence (Yhk
),

where Yhk
are distributed as N(〈Af, hk〉2, n−1) independently.

As is natural in inverse problems we consider bases {ek} of H1 that diag-
onalize A. Denote by A∗ the adjoint of the operator A. If A is a compact
operator, then we can use the singular value decomposition (SVD) to obtain
such a basis. Applying the spectral theorem to the compact self-adjoint oper-
ator A∗A : H1 → H1, we know that A∗A has a discrete spectrum consisting
of positive eigenvalues {ρ2k}k∈N (possibly together with 0) and a corresponding
orthonormal basis {ek} of H1 of eigenfunctions (see e.g. [28]). We then have a
conjugate orthonormal basis {gk} of the range of A in H2 defined by the equality
Aek = ρkgk. Letting fk := 〈f, ek〉1, the action of A on f has a simple form when
considered in this basis: Af = A(

∑

k fkek) =
∑

k ρkfkgk. Writing Yk := Ygk ,
(1.1) is statistically equivalent to observing the sequence (Yk) of independent
observations, where Yk has distribution N(ρkfk, n

−1). The task of estimating
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f thus reduces to that of estimating the sequence {fk} from the sequence of
independent observations (Yk).

Whilst priors based on a decomposition of f in the {ek} basis are frequently
natural, it is often of interest to consider slightly more general types of bases. We
therefore consider any basis whose elements consist of finite linear combinations
of the {ek}.
Condition 1. Suppose that {φk} is an orthonormal basis for H1 such that for
each k, the set {l : |〈φk, el〉1| 6= 0} is finite.

This seemingly small extension actually has large implications for the possible
choice of priors. For example, if the SVD is the Fourier basis (e.g. deconvolution -
see Section 1.3.1 for more details), then Condition 1 corresponds to a band-
limited basis. Band-limited wavelets have been used in the deconvolution setting
(e.g. [17, 27]), and this allows us to use the superior characterization properties
of wavelets to create priors that model Hölder smoothness conditions rather than
Sobolev smoothness conditions, which we do using periodized Meyer wavelets
in Section 3.3.

In any case, we shall assume the existence of such an orthonormal basis {ek}
of eigenvectors of A∗A, though we do not necessarily assume that A is compact.
The principle additional case we include is the white noise model, when A is the
identity operator. If ρk → 0, the problem is ill-posed since the noise to signal
ratio of the components tends to infinity as k → ∞. Recovering f from Y is
then an inverse problem. The severity of this ill-posedness can be characterized
by the rate of decay of ρk → 0; the faster this rate, the more difficult the
estimation problem. We shall classify the problem using the following classes
that are standard in the statistical literature.

Condition (M). We say that the problem is mildly ill-posed with regularity α
if

C1(1 + k2)−α/2 ≤ |ρk| ≤ C2(1 + k2)−α/2 as k → ∞
for some constants C1, C2 > 0 and α ≥ 0.

Condition (S). We say that the problem is severely ill-posed with regularity β
if

C1(1 + k2)−α0/2e−c0k
β ≤ |ρk| ≤ C2(1 + k2)−α1/2e−c0k

β

as k → ∞
for some constants C1, C2, β > 0 and α0, α1 ∈ R.

The polynomial terms in Condition (S) are included to add flexibility, but
do not characterize the problem since they are dominated by the exponential
terms.

1.3. Examples

Note that if H1 = L2([0, 1]) and H2 = H1([0, 1]) then we can rewrite (1.1) in
the more classical white noise form

dY (t) = Ãf(t)dt+ n−1/2dW (t),
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where W is a standard Brownian motion on [0, 1] and Ãf(t) = d
dtAf(t). In this

setting, the direct case corresponds to taking A to be the identity operator, so
that Ãf(t) = f ′(t). Our results apply to the following situations amongst others
(see [7] for a general overview of inverse problems).

1.3.1. Deconvolution

A common problem in signal and image processing is periodic deconvolution
(see e.g. [17]). Consider the 1-dimensional case on the torus T = [0, 1) and,
assuming that f is a 1-periodic function, define

Af(t) =

∫ t

0

f ∗ µ(s)ds, t ∈ [0, 1], (1.3)

for some known finite signed measure µ, where f ∗ µ stands for convolution on
T and where addition is defined modulo 1. This fits into the above framework
since ||f ∗ µ||L2 ≤ ||f ||L2 ||µ||TV by the Minkowski integral inequality and where
||·||TV denotes the total variation norm for measures. For such a µ, we can
therefore consider A as a map from L2([0, 1]) to H1([0, 1]). We observe Y arising
from the model dYt = f ∗ µ(t)dt+ n−1/2dWt, where W is a standard Brownian
motion on [0, 1]. The SVD basis is the Fourier basis ek(x) = e2πikx, k ∈ Z,
with associated eigenvalues given by the Fourier coefficients of µ, namely ρk =

µ̂k =
∫ 1

0
ek(x)dµ(x). The problem can be either mildly (e.g. [17]) or severely

ill-posed depending on the choice of measure µ. Note that the Dirac measure δ0
is admissible under this model and corresponds to the direct observation case.
This situation can be generalized to higher dimensions.

1.3.2. Heat equation

Consider the periodic boundary problem for the 1-dimensional heat equation

∂

∂t
u(x, t) =

∂2

∂x2
u(x, t), u(x, 0) = f(x), u(0, t) = u(1, t),

where u : [0, 1]× [0, T ]→ R and the initial condition f ∈ L2([0, 1]) is 1-periodic.
The task is to recover the initial condition f from a noisy observation of u at
time T . The solution to this problem is given by

u(x, T ) =
√
2

∞
∑

k=1

fke
−π2k2T sin(kπx),

where fk = 〈f, ek〉L2 with ek(x) =
√
2 sin(kπx). Thus we can express u(·, T ) =

Af with ρk = e−π2k2T . Recovering f from an observation u(·, T ) corrupted by a
white noise of intensity n−1/2 thus leads to a severely ill-posed inverse problem
satisfying Condition (S) with β = 2. This problem has been studied in the
Bayesian context under conjugate Gaussian priors in [21].
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1.3.3. Radon transform

Another example is given by the Radon transform, which is used in computerized
tomography (see [18] for more details). Let D = {x ∈ R2 : ||x|| ≤ 1} and
suppose that f : D → R is some function in L2(D) (with Lebesgue measure)
that we wish to estimate based on observations of the integrals of f along all
lines intersecting D. Parametrize the lines by the length s ∈ [0, 1] of their
perpendicular from the origin and the angle ϕ ∈ [0, 2π) of the perpendicular to
the x-axis. The Radon transform is defined as

Af(s, ϕ) =
π

2
√
1− s2

∫

√
1−s2

−
√
1−s2

f(s cosϕ− t sinϕ, s sinϕ+ t cosϕ)dt,

where (s, ϕ) ∈ S = [0, 1] × [0, 2π). The Radon transform can be considered as
a map A : L2(D) → L2(S, µ), where dµ(s, ϕ) = 2π−1

√
1− s2 ds dϕ and conse-

quently fits into the framework of (1.1). Considered as such, A is a bijective and
bounded operator with SVD that can be computed using Zernike polynomials,
leading to a mildly ill-posed problem satisfying Condition (M) with α = 1/2
(see [18] for more details).

1.4. The posterior distribution and other preliminaries

In the non-conjugate situation, it is in general not possible to obtain a closed
form expression for the posterior distribution. For f ∈ H1, let Pf denote the law
of the model (1.1) so that Y is an iso-Gaussian process with drift Af under Pf .
Using the sequence space model, Pf is statistically equivalent to

∞
⊗

k=1

N
(

ρkfk, n
−1
)

.

Kakutani’s product martingale theorem (c.f. Theorem 2.7 of [8]) shows that
for any f ∈ H1, this measure is equivalent to

⊗∞
k=1N(0, n−1) with affinity

exp(−n
8

∑

k ρ
2
kf

2
k ) > 0. The family of distributions (Pf : f ∈ H1) is therefore

dominated by the law P0 (denoting here the law of a pure white noise rather
than the “true” law Pf0) with density

dPf

dP0
= exp

(

√
n

∞
∑

k=1

ρkfkZk −
n

2

∞
∑

k=1

ρ2kf
2
k

)

,

where Zk = Zgk . This is “almost” the Cameron-Martin theorem and if Z were
realizable as a Gaussian element in H2, then this expression would reduce to
exp(

√
n〈Af,Z〉2 − n

2 ||Af ||22). Since under P0, Zk =
√
nYk, we can express the

posterior distribution via Bayes’ formula:

Π(B|Y ) =

∫

B
en

∑
k ρkfkYk−n

2 ||Af ||22dΠ(f)
∫

P e
n
∑

k ρkfkYk−n
2 ||Af ||22dΠ(f)

, B ∈ B, (1.4)
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where P is the support of the prior Π. Obtaining an expression of this form for
the posterior makes it possible to use the approach of Theorem 2.1 of [11], a
fact that we shall use implicitly in the proof of Theorem 2.1.

We shall classify the smoothness of functions via the Sobolev scales with
respect to the basis {ek}. For s ≥ 0 define

Hs(H1) :=

{

f ∈ H1 : ||f ||2Hs(H1)
:=

∞
∑

k=1

f2
k (1 + k2)s <∞

}

,

where fk = 〈f, ek〉1. We shall generally omit reference to the underlying space
H1 when there is no confusion possible. For s > 0 we define the dual space

H−s(H1) := (Hs(H1))
∗.

It can be shown (Proposition 9.16 in [10]) that the operator norm on (Hs(H1))
∗

is equivalent to the ||·||H−s(H1)
-norm defined above (extended to negative in-

dices), so that H−s consists exactly of the linear functionals L acting on Hs

for which ||L||H−s is finite. In particular, since every f ∈ H1 yields the contin-
uous linear functional g 7→ 〈g, f〉1 on Hs, we can consider H1 as a subspace of
H−s(H1).

Note that this concept of smoothness is intrinsically linked to the operator
A through the choice of the basis {ek}. To be precise, the space Hs should be
indexed by both H1 and A, since it quantifies smoothness with respect to the
operator A, but we omit this explicit link to simplify notation. For γ > 0, it
is known [7] that the minimax rate of estimation over any fixed ball of Hγ is
n−γ/(2α+2γ+1) under Condition (M) and (logn)−γ/β under Condition (S). Min-
imax rates are attained by a number of methods, such as generalized Tikhonov
regularization amongst others [3, 7]. In general, we shall use α and β to refer to
parameters quantifying the ill-posedness of the problem (1.1), γ to refer to the
smoothness of the true function f0 and δ to quantify the prior smoothness.

A key ingredient in proving contraction rates is establishing lower bounds
for the small-ball probability of Af about Af0 (see (2.6) below). As mentioned
above, if A is compact then it changes the geometry of the problem by converting
it into a small-ellipsoid problem in H1. Under Condition (M),

||Af ||22 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

k=1

ρkfkek

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

=

∞
∑

k=1

ρ2kf
2
k ≤ C2

∞
∑

k=1

f2
k (1 + k2)−α = C2 ||f ||2H−α ,

so that we are actually considering the small-ball probability of f under the
weaker negative Sobolev norm H−α, since the dimensions of the ellipsoid corre-
spond to the singular values of A. To establish (2.6) in the mildly ill-posed case,
it is therefore sufficient to prove

Πn(f ∈ P : C2 ||f − f0||H−α ≤ εn) ≥ e−Cnε2n . (1.5)

In fact, the greater the ill-posedness of (1.1), the greater the prior mass assigned
to an H2-neighbourhood of Af0, and consequently the “nicer” the geometry of
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the problem. As a concrete example, if {ek} is the Fourier basis acting on the
torus T = [0, 1), then the singular values {ρk} act as Fourier multipliers and we
recover the usual definition of (negative) Sobolev smoothness via Fourier series
on T. Using the same notion, Condition (S) induces an even weaker norm with
exponential weighting.

2. General contraction results

To prove posterior contraction in a number of settings, we prove a general re-
sult along the lines of Theorems 2 and 3 of [13] adapted to inverse problems.
We quantify the effects of the operator A through a sequence of factors {δk}.
Consider the set of indices

Ak = {l : |〈φm, el〉1| 6= 0 for some 1 ≤ m ≤ k} (2.1)

and define
δk = inf

i∈Ak

|ρi|, (2.2)

that is we take the smallest ρi such that one of the first k basis elements
φ1, . . . , φk has a non-zero component in the ei direction. By Condition 1 and
since A is injective, we know that for any k ∈ N, Ak is finite and consequently
δk > 0 and the {δk} form a decreasing sequence. Note that if we are working
directly in the spectral basis {ek} with the singular values {ρk} arranged in
decreasing order, we simply recover δk = ρk.

Theorem 2.1. Consider the white noise model (1.1) and let {φk} be an or-
thonormal basis of H1 satisfying Condition 1. Let P ⊂ H1 and let Πn denote
a sequence of priors defined on a σ-algebra of P. Let εn, ξn → 0 be sequences
of positive numbers and kn → ∞ be a sequence of positive integers such that√
nεn → ∞ as n→ ∞,

kn ≤ cnε2n and
εn
δkn

≤ C1ξn (2.3)

for some c, C1 > 0 and all n ≥ 1, and where δk is defined by (2.2) with respect
to {φk}. Denote by Pm the projection operator onto the linear span of {φk : 1 ≤
k ≤ m} and let Pn be a sequence of subsets of

{f ∈ P : ||Pkn(f)− f ||1 ≤ C2ξn} (2.4)

for some C2 > 0. Moreover, assume that there exists C > 0 such that, for
sufficiently large n,

Πn(Pc
n) ≤ e−(C+4)nε2n , (2.5)

Πn(f ∈ P : ||Af −Af0||2 ≤ εn) ≥ e−Cnε2n . (2.6)

Suppose that Y has law Pf0 , where f0 ∈ H1 is such that ||Pkn(f0)− f0||1 =
O(ξn). Then there exists a constant M <∞ such that

Π(f ∈ P : ||f − f0||1 ≥Mξn|Y ) → 0

as n→ ∞ in Pf0-probability.
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In an analogy to the frequentist approach, the quantity εn/δkn in (2.3) rep-
resents the variance term of the centred linear estimator used to test (1.2),
while ξn represents its bias. In the mildly ill-posed setting of Condition (M), the
optimal outcome is to balance these terms so that (2.3) is an equality (up to
constants). Taking kn ≃ nε2n gives the optimal result using this method, yielding
rate ξn ≃ nαε2α+1

n .
In the severely ill-posed setting of Condition (S) it is known (see [5] for the

case of density deconvolution) that the bias strictly dominates the variance as
long as the true function is “rougher” than the operator A. By this we mean that
if f0 strictly falls within some Sobolev class, or satisfies some weaker analytic
condition than Condition (S), then ξn will be of strictly larger order than εn/δkn

so that (2.3) will be a strict inequality (which must be verified in practice) and
we take kn = o(nε2n) as n → ∞. Since our method relies on the approximation
properties of the prior, the prior bias is equally important as the true bias in
determining the contraction rate in this case.

3. Main results

We analyse the contraction properties of a number of priors in the inverse prob-
lem setting under the assumption that Y has law Pf0 for some unknown f0 ∈ H1.

3.1. Sieve priors

Consider a sieve prior in the orthonormal basis {ek} that diagonalizes the op-
erator A∗A. We take

f =

M
∑

k=1

fkek, (3.1)

whereM has probability mass function h on N with distribution function H . We
take the {fk} to be independent (real or complex as required) random variables
with density τ−1

k q(τ−1
k ·), for some sequence {τk} to be specified below, and for

q some fixed density. The prior can thus be expressed as

Π =

∞
∑

m=1

h(m)Πm,

where Πm(x1, . . . , xm) =
∏m

k=1
1
τk
q(xk

τk
). Priors of this form have been studied

(e.g. [29, 34]) and, under suitable conditions on h and Πm, are adaptive over
Sobolev smoothness classes in the non ill-posed case [2, 16]. Upon suitable cali-
bration of the prior with respect to A, this adaptation property extends to the
ill-posed case when considered over the classes Hγ(H1) for γ > 0. We firstly
make the following assumption on q.

Condition 2. The density q : R(or C) → [0,∞) satisfies

De−d|x|w ≤ q(x)

for all x ∈ R (or C) and some constants D, d > 0 and w ≥ 1.
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Condition 2 is very mild and requires only that q is is supported on the whole
of R (or C) and does not decay faster than any exponentiated polynomial; this
includes many standard densities, such as the Gaussian, Laplace, Cauchy and
Student’s t-distributions. Our first result shows that if the true parameter is
actually of the form (3.1), then in the mildly ill-posed case we recover a

√
n-rate

up to a logarithmic factor.

Proposition 3.1. Suppose that A satisfies Condition (M) with regularity α and
that the true function f0 is a finite series in the {ek}-basis. Let 0 < h(m) ≤
Be−bm for some constants B, b > 0 and all m ∈ N and suppose that the density
q satisfies Condition 2 for some w ≥ 1. Then for a sufficiently large constant
C > 0,

Π

(

f ∈ H1 : ||f − f0||1 > C
(logn)α+1/2

√
n

∣

∣

∣

∣

Y

)

→ 0

in Pf0-probability as n→ ∞.

When the true regression function is not exactly of this form, we naturally
expect a nonparametric rate of convergence. The next result deals with the case
where we consider a general function lying in some Sobolev class Hγ , γ > 0. We
introduce a parameter γ0 ≤ γ that represents a known a-priori lower bound on
the unknown smoothness and allows use of a more tightly concentrated prior.
Note that the choice γ0 = 0 is valid in the following theorem and so a non-trivial
lower bound is not necessarily assumed.

Proposition 3.2. Suppose that the true function f0 is in Hγ(H1) for some
γ > 0 and that A satisfies Condition (M) with regularity α. Consider the
prior Π described above with B1e

−b1m ≤ h(m) ≤ B2e
−b2m for all m ∈ N,

for some constants B1, B2, b1, b2 > 0, and with density q satisfying Condi-
tion 2 for some w ≥ 1. Suppose moreover that the scale parameters satisfy
B3(1 + k2)−γ0/2(log k)−1/w ≤ τk ≤ B4(1 + k2)(α+1)/2 for some B3, B4 > 0 and
γ0 ≤ γ. Then for a sufficiently large constant C > 0,

Π

(

f ∈ H1 : ||f − f0||1 > C
(logn)η

nγ/(2α+2γ+1)

∣

∣

∣

∣

Y

)

→ 0

in Pf0-probability as n→ ∞, where η = (2α+1)(α+γ)
2α+2γ+1 .

We firstly note that this prior gives a fully adaptive convergence rate over all
the Sobolev classes Hγ up to a logarithmic factor, with this rate being uniform
over f0 in balls in Hγ . Expressed in classical regularization terminology, we have
that the rate does not saturate as the truth becomes smoother.

It is worth commenting on the bounds needed on {τk}, both of which are used
to establish the small-ball condition (2.6), and which depend on the operator A
and the lower bound γ0. Note that the choices τk ≡ τ for all k, corresponding
to the {fk} being i.i.d., or decaying coefficients τk ≍ (log k)−1/w both satisfy
the conditions of Proposition 3.2 and require no assumptions on the unknown
smoothness. The requirements on {τk} are therefore no real imposition, merely
adding flexibility when calibrating the prior, and the resulting procedure is
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truly rate adaptive. The lower bound reflects that the prior cannot (up to a
logarithmic factor) pick coefficients that decay faster than those of f0. If a
non-trivial lower bound γ0 > 0 is a-priori known, then smoothing the prior
to incorporate this information would yield a more concentrated prior, thereby
reducing the size of credible sets whilst not affecting the rate. The upper bound
is extremely mild and actually allows the size of the components to increase
with k. It ensures that the moments of (Af)k (assuming they exist) are O(1)
as k → ∞, so that the prior component moments cannot grow faster than the
operator A can regularize them, thus allowing the use of larger variances than
would be possible in the direct case (α = 0). The conditions on h require it to
be of exponential type and are needed both to control the prior mass for the
bias condition (2.5) and to establish the small-ball condition (2.6). They are of
the same form as in the direct case (c.f. Condition A5 of [2]).

When working in the severely ill-posed case, we must calibrate our prior to
the degree of ill-posedness (i.e. the parameter β). When the true parameter is
a finite series in the {ek} basis, we again recover a

√
n-rate up to some strictly

subpolynomial factor that grows more quickly than the logarithmic factor arising
in the mildly ill-posed case in Proposition 3.1.

Proposition 3.3. Suppose that A satisfies Condition (S) and that the true func-
tion f0 is a finite series in the {ek}-basis. Suppose that q satisfies Condition 2 for

some w ≥ 1, let h(m) > 0 for all m ∈ N and suppose that 1−H(m) . e−bmβ+1

as m→ ∞ for some constant b. Then for a sufficiently large constant C > 0,

Π

(

f ∈ H1 : ||f − f0||1 > C
wn√
n

∣

∣

∣

∣

Y

)

→ 0

in Pf0-probability as n→ ∞, where wn = (logn)
2α0+β+1

2(β+1) exp(c(log n)
β

β+1 ) grows
more slowly than any power of n.

Since the bias strictly dominates the variance in the severely ill-posed case,
the bias resolution level kn grows more slowly than the balancing term nε2n
in (2.3) (which is a strict inequality). This reduces the size of the approximating
sets Pn in Theorem 2.1, so that we need a sharper control on the tail of the
distribution H of M to establish the bias condition (2.5). Since we take kn ≃
(logn)1/β to account the second part of (2.3), we must calibrate H according to
the ill-posedness of the problem; indeed the more difficult the problem (larger β)
the thinner tails we require.

From a frequentist perspective, it is entirely reasonable to calibrate the prior
according to the inverse problem, since the operator A is assumed known. While
from a pure Bayesian perspective this may seem unduly restrictive, the depen-
dence of the prior on the ill-posedness factor β seems reasonable in this instance,
given that the prior already makes implicit use of knowledge of the operator A
through the choice of a diagonalizing basis. To the best of our knowledge, the
Bayesian procedures thus far analysed from a frequentist perspective in both
the mildly and severely ill-posed settings [19, 20, 21] all make strong use of
knowledge of A through the choice of diagonalizing basis.



2528 K. Ray

In the general case where f0 ∈ Hγ , the dominating behaviour of the bias
means we need a more careful control of the approximation error. We therefore
assume that the density q is a standard Gaussian distribution. Note that δ in the
following proposition corresponds to the Sobolev smoothness of a prior element.

Proposition 3.4. Suppose that the true function f0 is in Hγ(H1) for some
γ > 0 and that A satisfies Condition (S). Suppose that the prior Π satisfies

h(m) ≥ B1e
−bmβ+1

for all m ≥ 1 and that 1 − H(m) ≤ B2 exp(−bmβ+1) as
m → ∞ for some constants B1, B2, b > 0. Suppose moreover that the density q
is standard Gaussian and that the scale parameters satisfy τk = (1+k2)−δ/2−1/4

for some δ > β/2. Then for a sufficiently large constant C > 0,

Π
(

f ∈ H1 : ||f − f0||1 > C (logn)−
(δ−β/2)∧γ

β

∣

∣

∣Y
)

→ 0

in Pf0-probability as n→ ∞.

Note that the two conditions on H are mutually satisfiable and that the
exponential tails used in Propositions 3.1 and 3.2 satisfy this tail condition
corresponding to β = 0. In the severely ill-posed case, oversmoothing the prior
by a factor of β/2 yields the minimax rate of convergence. This factor increases
with the ill-posedness of the problem and arises from the lower bounds used for
the small-ball probability of Af . The lack of adaptation in this case results from
the combination of the constraints (2.3) and (2.5), which are more stringent in
the dominating bias case.

3.2. Gaussian priors

Consider now the conjugate situation where we take Π to be a Gaussian mea-
sure on H1. The conjugate situation provides a canonical example in that the
posterior distribution can be computed explicitly in this situation, and so pro-
vides a useful reference point for the accuracy of our approach. Recall that a
Gaussian distribution has support equal to the closure of its reproducing kernel
Hilbert space (RKHS) H (see [32] for more details); since the posterior has the
same support, consistency is only achievable when Af0 is contained in this set.

A Gaussian distribution N(ν,Λ) on H1 is characterized by a mean element
ν ∈ H1 and a covariance operator Λ : H1 → H1, which is a positive semi-
definite, self-adjoint and trace class linear operator. A random element G in H1

has N(ν,Λ) distribution if and only if the stochastic process (〈G, h〉1 : h ∈ H1)
is a Gaussian process with

E〈G, h〉1 = 〈ν, h〉1, cov(〈G, h〉1, 〈G, h′〉1) = 〈h,Λh′〉1.

We now take the prior to be a mean-zero Gaussian distribution so that f ∼ Π =
N(0,Λ). We shall make the following assumption as in [20, 21].

Condition 3. Suppose that the operators A∗A and Λ have the same set of
eigenvectors {ek} with eigenvalues {ρ2k} and {τ2k} respectively, with τ2k = (1 +
k2)−δ−1/2 and ρk satisfying either Condition (M) or (S) as specified.
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The parameter δ represents the smoothness of the prior in that f ∈ Hs(H1)

for all s < δ almost surely. In particular, E ||f ||2Hs =
∑∞

k=1(1 + k2)s−δ−1/2 <∞
if and only if s < δ. The mildly ill-posed case is dealt with in [20] using the
conjugacy of the prior and we recover the same rates using our testing approach
combined with the results of [31] (though we do not consider the case of scaling).
We firstly obtain (a subset of) the results of Theorem 4.1 of [20].

Proposition 3.5. Suppose that A satisfies Condition (M), that f0 ∈ Hγ(H1)
for some γ > 0, and assign f the Gaussian prior distribution N(0,Λ), where Λ
satisfies Condition 3. Then for a sufficiently large constant C > 0,

Π
(

f ∈ H1 : ||f − f0||1 > Cn− δ∧γ
2α+2δ+1

∣

∣

∣
Y
)

→ 0

in Pf0-probability as n→ ∞.

We therefore obtain the minimax rate of convergence only when the prior
smoothness matches the true unknown smoothness. While this prior is not adap-
tive, it is reassuring that if the true smoothness is known then the optimal rate
of convergence is attainable. Given that this result is obtained using the testing
approach introduced in [11], it should be possible to apply the ideas of [33] in
using a Gaussian random field with inverse Gamma bandwidth to construct an
adaptive Gaussian prior. However, we do not pursue such an argument here
since it is beyond the scope of the present article. Consider now the severely
ill-posed analogue.

Proposition 3.6. Suppose that A satisfies Condition (S), that f0 ∈ Hγ(H1)
for some γ > 0, and assign f the Gaussian prior distribution N(0,Λ), where Λ
satisfies Condition 3 for some δ > β/2. Then for a sufficiently large constant
C > 0,

Π
(

f ∈ H1 : ||f − f0||1 > C (logn)
− (δ−β/2)∧γ

β

∣

∣

∣Y
)

→ 0

in Pf0-probability as n→ ∞.

A gap arises in our rates when the prior undersmooths (i.e. γ + β/2 < δ),

since in the case of the heat equation (β = 2), [21] obtain rate (logn)−
δ∧γ
2 . This

gap appears to arise in Lemma 5.2 from our bound for the covering number of
the unit ball of the RKHS of Af , which is used to lower bound the small-ball
probability of Af using the techniques of [22]. This lower bound seems difficult
to improve and so this gap may be an artefact of our proof.

3.3. Uniform wavelet series

The approach used in this section can be generalized to any band-limited or-
thonormal basis for a general inverse problem in the sense of Condition 1. How-
ever, for ease of exposition, we restrict ourselves to the specific case of periodic
deconvolution using wavelets. Therefore, consider the case of deconvolution un-
der the standard white noise model on [0, 1] described in Section 1.3.1 so that
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A is given by (1.3) with SVD given by the Fourier basis. Suppose that we have
an a-priori belief that the true function f0 satisfies some Hölder smoothness
condition rather than a Sobolev condition. We shall expand upon the uniform
wavelet series introduced in [13] by creating a hierarchical prior that uniformly
distributes the wavelet coefficients on a Hölder ball of random radius.

Let (Φ,Ψ) denote the Meyer scaling and wavelet function (see [25] for more
details). As usual, define the dilated and translated wavelet at resolution level
j and scale position k/2j by Φjk(x) = 2j/2Φ(2jx− k), Ψjk(x) = 2j/2Ψ(2jx− k)
for j, k ∈ Z. The system of wavelet functions provides a multiresolution analysis
of L2(R). By periodizing the wavelet functions

φjk(x) =
∑

m∈Z

Φjk(x+m), ψjk(x) =
∑

m∈Z

Ψjk(x+m),

we obtain a natural multiresolution analysis for periodic functions in L2([0, 1]).
We thus have the following expansion for any periodic function f ∈ L2([0, 1]):

f =

2j0−1
∑

k=0

αj0kφj0k +

∞
∑

l=j0

2l−1
∑

k=0

βlkψlk,

where the wavelet coefficients are given by αjk = 〈f, φjk〉L2 and βlk = 〈f, ψlk〉L2 .

Meyer wavelets are band limited: in particular the Fourier transform
FR[Ψ](w) =

∫

R
Ψ(x)e−2πiwxdx over R satisfies supp(F [Ψ]) ⊂ {w : |w| ∈ [1/3,

4/3]}. This implies that the periodized wavelets are themselves band-limited
with supp(FT[ψ]) ⊂ Z∩ {w : |w| ∈ [1/3, 4/3]} (c.f. Theorem 8.31 in [10]), where

FT[ψ](m) =
∫ 1

0
ψ(x)e−2πimxdx denotes the mth Fourier coefficient of ψ. In par-

ticular, each wavelet function has finite Fourier series and so the periodized
Meyer wavelet basis satisfies Condition 1. As mentioned in the introduction,
band-limited wavelets have been employed to great effect in the deconvolution
problem by a number of authors (see for example [17, 27] for references).

In [13], it is assumed that a quantitative upper bound is known on the Cδ-
norm of the unknown function. We shall relax this to the case where it is simply
known that ||f0||Cδ <∞. A natural way to circumvent this problem is to treat
the unknown radius B of our Hölder ball as a hyperparameter and assign to it a
prior distribution, thus creating a hierarchical model. Assign to B a probability
distribution H , which for simplicity we restrict to the natural numbers N, with
probability mass function h. Given B, we then consider the periodic function

Uδ(x) = uφ(x) +

∞
∑

l=0

2l−1
∑

k=0

2−l(δ+1/2)ulkψlk(x),

where u, uk ∼ U(−B,B) are i.i.d. Now by the wavelet characterization of the
Besov spaces Bs

pq([0, 1]) (see for instance Definition 1 of [13]), we have that

Uδ ∈ Cδ([0, 1]) = Bδ
∞∞([0, 1]) almost surely and in particular ||Uδ||Bδ

∞∞

≤ B.
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Denote the law of Uδ given B by Πδ,B so that our full prior can be expressed as

Πδ,H =
∞
∑

r=1

h(r)Πδ,r ,

giving a sieve-type prior. We consider only the mildly ill-posed case.

Proposition 3.7. Suppose that A is of the form (1.3) and satisfies Condi-
tion (M) and that f0 is periodic and in Cγ([0, 1]) for some γ > 0. Suppose that
the distribution H satisfies h(r) ≥ e−Drν for all r ∈ N and 1 −H(r) . e−Drv

as r → ∞ for some constants D > 0 and 1/δ < ν ≤ ∞. Then there exists a
finite constant C such that

Πδ,H (f ∈ P : ||f − f0||L2 ≥ Cξn|Y ) → 0

in Pf0-probability as n→ ∞, where

ξn =

{

n− δ−1/ν
2α+2(δ−1/ν)+1 if δ < γ + 1

ν

n− γ
2α+2γ+1 (logn)η if δ = γ + 1

ν

,

where η = (2α+1)(α+γ)
2α+2γ+1 . If H satisfies the sharper tail condition 1 − H(r) .

exp(−eDrν ) as r → ∞ for some constants D > 0 and ν > 0, then the rate
improves to

ξn = n− δ
2α+2δ+1 (logn)η

′

for all δ ≤ γ, where η′ = (2α+1)((α+δ)∨(1/ν))
2α+2δ+1 .

As well as the prior smoothness, the thickness of the tail of H , as mea-
sured by ν, affects the rate. When δ < γ + 1

ν , we attain the optimal rate of
convergence for a (δ − 1/ν)-smooth function, that is we lose 1/ν degrees of
smoothness. This is entirely due to the bias constraint (2.5): the bias of a typi-
cal element arising from Πδ,B is proportional to B, and the approximation errors
therefore grow on average with the thickness of the tail of H . Note that this
penalty disappears (or is relegated to logarithmic terms) if we take H to have
compact support (ν = ∞) or a double exponential tail. We obtain the mini-
max rate of convergence, up to logarithmic terms, only if the prior smoothness
matches the underlying smoothness of f0 up to the correction term 1

ν . Finally,
note that if we take ν = ∞ and the prior oversmooths the true parameter f0,
then we do not have posterior consistency since f0 does not lie in the support
of Πδ,H .

The assumptions on H mirror those sometimes placed on the prior distribu-
tion of the scale parameter in a Dirichlet mixtures of normal distributions [12].
Our results therefore mirror those in Theorem 1 of [12] in that we lose a factor
in our rates due to the hierarchical prior needing to be able to approximate the
true parameter f0. We finally note that a sharp rate is also only attained in
that situation when the hyperprior on the scale parameter has compact sup-
port.
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4. Proof of Theorem 2.1

A key step in the proof of Theorem 2.1 is the construction of nonparametric
tests for suitably separated alternatives in H1. The tests are constructed based
on the norm of a simple plug-in estimator of f0, which is then split using a
standard bias-variance decomposition. We require an exponential bound on the
type-II error of our test and can attain this using Borell’s inequality [4]. We
can construct a suitable linear estimator for f0 using band-limited (in the sense
of the {ek}-basis) elements in a similar fashion to the deconvolution density
estimators based on Fourier techniques studied in [17] and [27].

Suppose that {φk} is an orthonormal basis of H1 satisfying Condition 1.
Writing φk,i = 〈φk, ei〉1 and using that {gk} is the conjugate basis to {ek}
for A,

〈f, φk〉1 = 〈f,
∑

i

φk,iρ
−1
i A∗gi〉1 = 〈Af,

∑

i

φk,iρ
−1
i gi〉2 =: 〈Af, φ̃k〉2,

where
φ̃k =

∑

i

ρ−1
i φk,igi.

Recall that by Condition 1, only finitely many of the φk,i are non-zero. In

particular, note that if φk = ek, then we simply have φ̃k = ρ−1
k gk. In this

way, we derive a (not necessarily orthonormal) basis of the range of A that is
conjugate to {φk}. We can therefore express the coordinates of f in the {φk}
basis of H1 in terms of the action of {φ̃k} on Af . Considering this action, define

ỹk := Yφ̃k
= 〈f, φk〉1 +

1√
n
Z̃k,

where Z̃k = Zφ̃k
are (not necessarily independent) mean-zero Gaussian random

variables with covariance EZ̃kZ̃l = 〈φ̃k, φ̃l〉2. Thus the sequence {ỹk} provides
an unbiased estimator of the coefficients of the true regression function f in
the basis {φk}. The sequence (Z̃k) is independent if and only if {φ̃k} forms an
orthogonal sequence, which is the case when φk = ek. This suggests a natural
linear estimator of f :

fn =

kn
∑

k=1

ỹkφk,

where the resolution level kn is to be specified. Recall that we write Pk for the
orthogonal projection operator onto the linear span of {φl : 1 ≤ l ≤ k}. The
estimator fn then decomposes immediately into its bias and variance parts

fn = Pkn(f) +
1√
n

kn
∑

k=1

Z̃kφk.

We now construct an exponential inequality for the fluctuations of the random
part of fn, that is the centred term fn − Efn, following the method presented
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in Section 3.1 of [13]. By the Hahn-Banach theorem and the separability of H1,
there exists a countable and dense subset B0 of the unit ball of H′

1 = H1 such
that

||f ||1 = sup
h∈B0

|〈h, f〉1| .

The norm of the variance part of our estimator can thus be written

||fn − Efn||1 = sup
h∈B0

1√
n

∣

∣

∣

∣

∣

kn
∑

k=1

Z̃k〈h, φk〉1

∣

∣

∣

∣

∣

=: sup
h∈B0

|G(h)|,

whereG = (G(h) : h ∈ B0) is a centred Gaussian process indexed by a countable
set. Applying the version of Borell’s inequality for the supremum of Gaussian
processes ([23], page 134) gives

e−x2/2σ2 ≥ P

(

sup
h∈B0

|G(h)| − E sup
h∈B0

|G(h)| ≥ x

)

= P (||fn − Efn||1 − E ||fn − Efn||1 ≥ x) , (4.1)

where σ2 = suph∈B0
EG(h)2 is the weak variance of G. By Jensen’s inequality,

the expectation can be controlled as

E ||fn − Efn||1 ≤ 1√
n

(

kn
∑

k=1

EZ̃2
k

)1/2

=
1√
n

(

kn
∑

k=1

||φ̃k||22

)1/2

.

Recall the definitions (2.1) and (2.2) of the sets Ak and quantities δk. Since the
{δk} form a decreasing sequence

||φ̃k||22 =
∑

i∈Ak

ρ−2
i φ2k,i ≤

1

δ2k

∑

i∈Ak

φ2k,i ≤
1

δ2kn

,

so that

E ||fn − Efn||1 ≤
√
kn

δkn

√
n
.

Considering the weak variance σ2, we have that for h ∈ B0,

nEG(h)2 =

kn
∑

k=1

kn
∑

l=1

〈h, φk〉1〈h, φl〉1EZ̃kZ̃l

=

kn
∑

k=1

kn
∑

l=1

〈h, φk〉1〈h, φl〉1〈φ̃k, φ̃l〉2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

kn
∑

k=1

〈h, φk〉1φ̃k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

.

While the basis {φ̃k} is in general not orthogonal, it is sufficient that each
finite sequence forms a Riesz sequence (whose constants vary with the number
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of terms). Since the Ak’s form an increasing sequence of sets and using the
definition of φ̃k,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

kn
∑

k=1

〈h, φk〉1φ̃k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

kn
∑

k=1

〈h, φk〉1
∑

i∈Ak

ρ−1
i φk,igi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

=
∑

i∈Akn

(

kn
∑

k=1

〈h, φk〉1ρ−1
i 〈φk, ei〉1

)2

≤ 1

δ2kn

∞
∑

i=1

∣

∣

∣

∣

∣

〈

kn
∑

k=1

〈h, φk〉1φk, ei
〉

1

∣

∣

∣

∣

∣

2

=
1

δ2kn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

kn
∑

k=1

〈h, φk〉φk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

1

≤ 1

δ2kn

||h||21 .

Combining these yields

σ2 ≤ 1

nδ2kn

sup
h∈B0

||h||21 ≤ 1

nδ2kn

.

Substituting these bounds into Borell’s inequality gives

P

(

||fn − Efn||1 ≥ x+

√
kn

δkn

√
n

)

≤ exp

(

−1

2
nδ2kn

x2
)

,

which, upon letting x =
√
2Lεn
δkn

for some constant L, gives

P

(

||fn − Efn||1 ≥ 1

δkn

(

√
2Lεn +

√

kn
n

))

≤ e−Lnε2n .

Since kn ≤ cnε2n for some constant c > 0, we have that for all n ≥ 1,

P

(

||fn − Efn||1 ≥M
εn
δkn

)

≤ e−Lnε2n (4.2)

for some constant M =M(L, c) large enough.

Proof of Theorem 2.1. Following the proof of Theorem 2.1 in [11] almost exactly
line by line, but using formula (1.4) for the posterior distribution in the inverse
setting, we recover an analogous theorem for the sampling model (1.1). In par-
ticular, it is sufficient to construct tests (indicator functions) φn = φn(Y ; f0)
such that

Ef0φn → 0, sup
f∈Pn:||f−f0||1≥Mξn

Ef (1− φn) ≤ e−(C+4)nε2n , (4.3)

where the constant C > 0 matches that in (2.6) (the analogue of (2.4) in [11]
for (1.1)). Recall that we are testing the hypotheses (1.2).
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We can now consider the plug-in test φn(Y ) = 1{||fn − f0||1 ≥M0ξn}, where
the constant M0 is to be selected below. Recall that we have assumed that the
contraction rate ξn satisfies εn

δkn
≤ cξn for some c > 0 and all n ≥ 1. The type-I

error satisfies

Ef0φn = Pf0(||fn − f0||1 ≥M0ξn)

≤ Pf0(||fn − Ef0fn||1 ≥M0ξn − ||Ef0fn − f0||1).

By hypothesis, the bias of f0 satisfies ||Pkn(f0)− f0||1 ≤ Dξn for some D > 0.
Letting L1 > 0 be some constant, we can take M0 sufficiently large so that
applying (4.2) gives

Ef0φn ≤ Pf0

(

||fn − Ef0fn||1 ≥ (M0 −D)ξn
)

≤ e−L1nε
2
n → 0

as n→ ∞.
Now consider f ∈ Pn such that ||f − f0||1 ≥ Mξn. Letting L2 > 0 be some

constant, we can pickM sufficiently large so that applying the triangle inequality
and (4.2),

Ef (1− φn) = Pf(||fn − f0||1 ≤M0ξn)

≤ Pf(||f0 − f ||1 − ||f − Efn||1 − ||Efn − fn||1 ≤M0ξn)

≤ Pf((M − C −M0)ξn ≤ ||Efn − fn||1) ≤ e−L2nε
2
n ,

since by assumption supf∈Pn
||f − Efn||1 ≤ C2ξn. This verifies (4.3).

5. Other proofs

Before proceeding, we recall some facts that will be used when applying The-
orem 2.1 to the examples presented in Section 3. Recall that both the sieve
and Gaussian priors of Sections 3.1 and 3.2 are defined directly in the spectral
basis {ek}. For simplicity, we assume below that the singular values {ρk} are ar-
ranged in decreasing order so that the ill-posedness factor (2.2) takes the simple
form δk = ρk.

Establishing contraction results in these cases therefore reduces to verifying
the conditions of Theorem 2.1: the bias conditions on the prior (2.5) and true
parameter f0, the small-ball condition (2.6) and balancing the rate (2.3). Recall
also that in the mildly ill-posed case (Condition (M) with regularity α), it is
optimal to balance the terms in (2.3) so that we take resolution level kn ≃ nε2n
yielding contraction rate ξn ≃ nαε2α+1

n . In the severely ill-posed case, (2.3) is
generally a strict inequality, which must be verified in practice.

5.1. Proofs of Section 3.1 (Sieve priors)

Proof of Proposition 3.1. By hypothesis, the true regression function takes the
form f0 =

∑m0

k=1 f0,kek for some m0 ∈ N. We first verify the small-ball condi-
tion (2.6). Let f be a finite series generated from Π, conditionally on M = m0.
As noted in Section 1.2, since A satisfies Condition (M), it is sufficient to prove
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(1.5) to establish (2.6). Therefore,

P (||f − f0||H−α ≤ εn) = P

(

m0
∑

k=1

|fk − f0,k|2(1 + k2)−α ≤ ε2n

)

≥ P

(

|fk − f0,k|2(1 + k2)−α ≤ ε2n
m0

, for k = 1, . . . ,m0

)

=

m0
∏

k=1

P

(

|fk − f0,k| ≤
εn(1 + k2)α/2√

m0

)

(5.1)

by the independence of the fk’s. Now if X is complex-valued with density q :
C → [0,∞) satisfying Condition 2, then for all z ∈ C and t > 0,

P (|X − z| ≤ t) ≥
∫ t

0

∫ 2π

0

De−d|z+reiθ|wdr dθ

≥ 2πD

∫ t

0

e−d(|z|+r)wdr ≥ 2πDte−d(|z|+t)w . (5.2)

If X is real-valued, then the same estimate holds without the π term; we shall
therefore stick to the real-valued case, but note that everything below holds also

in the complex case with slightly different constants. Let αn,k = εn(1+k2)α/2

√
m0

and

note that for fixed k, αn,k → 0 as n→ ∞ since εn → 0. Thus there exists E > 0
such that αn,k ≤ E for all 1 ≤ k ≤ m0 and n ≥ 1. Using (5.2), we lower bound
the right-hand side of (5.1) by

m0
∏

k=1

2D
αn,k

τk
e−dτ−w

k (|f0,k|+αn,k)
w

≥ C1 exp

(

m0
∑

k=1

log

(

αn,k

τk

)

− d

m0
∑

k=1

τ−w
k 2w−1

(

|f0,k|w + αw
n,k

)

)

≥ C2 exp

(

m0 log εn +

m0
∑

k=1

log
(1 + k2)α/2

τk

)

≥ C3e
C4 log εn ,

where we have used that (a+ b)w ≤ 2w−1(aw + bw) for a, b ≥ 0 and w ≥ 1. Now
since m0 is fixed and h(m0) > 0 by assumption,

Π(f ∈ P : ||Af −Af0||2 ≤ εn) ≥ h(m0)C3e
C4 log εn ≥ eC5 log εn

for some constant C5 > 0. The choice εn = ( log n
n )1/2 then satisfies (2.6).

Consider now the bias constraint (2.5). Take kn to be an integer satisfying
L1nε

2
n ≤ kn ≤ L2nε

2
n for some constants L1, L2, and let Pn = {f ∈ H1 : f =

∑kn

k=1 fkek}. By the assumptions on h, we have Π(Pc
n) ≤ Ce−bkn ≤ e−Lnε2n ,

where L is a constant that can be made arbitrarily large by choosing L1 suffi-
ciently large. Now for all f ∈ Pn, we have the trivial bias result ||f − Pkn(f)||1 =
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0, so that choosing L large enough to match the constant used to establish (2.6)
above, we verify (2.5). Finally, for the true function f0 the bias condition follows
immediately since ||f0 − Pknf0||1 = 0 for kn ≥ m0. Applying Theorem 2.1 with

ξn =
εn
δkn

≤ Cεnk
α
n = C′nαε2α+1

n = C′ (log n)
α+1/2

√
n

completes the proof.

Proof of Proposition 3.2. By the triangle inequality

||f − f0||H−α ≤ ||f − Pjn(f0)||H−α + ||Pjn(f0)− f0||H−α ,

where jn is to be selected below. Since f0 ∈ Hγ ,

||Pjn(f0)− f0||2H−α =

∞
∑

k=jn+1

|f0,k|2(1 + k2)−α ≤ Cj−2(α+γ)
n ||f0||2Hγ .

Taking jn ≃ ε
− 1

α+γ
n gives

P (||f − f0||H−α ≤ εn) ≥ P
(

||Pjn(f0)− f ||H−α ≤ c′εn
)

for some c′ > 0. Let αn,k = εn(1+k2)α/2

√
jn

, and suppose that f is a finite series in

the {ek} basis of degree jn. Then using (5.2) as in the proof of Proposition 3.1,

P
(

||f − Pjn(f0)||H−α ≤ εn
)

≥
jn
∏

k=1

D′αn,kτ
−1
k e−dτ−w

k (|f0,k|+αn,k)
w

≥ exp

(

jn logC1 +

jn
∑

k=1

log

(

αn,k

τk

)

−C2

jn
∑

k=1

τ−w
k

(

|f0,k|w + αw
n,k

)

)

. (5.3)

By the hypotheses on {τk},
∑jn

k=1 log(τ
−1
k (1 + k2)α/2) ≥ −E1jn log jn for some

E1 > 0. Since f0 ∈ Hγ , we have |f0,k| ≤ (1 + k2)−γ/2 ||f0||Hγ ≤ C(f0)k
−γ for

all k ≥ 1. Moreover, for k ≤ jn, note that αn,k ≃ j
−α−γ−1/2
n (1 + k2)α/2 ≤

E2j
−γ−1/2
n . Substituting these bounds into (5.3) and using that τk ≥ B3(1 +

k2)−γ0/2(log k)−1/w yields the lower bound

exp

(

C3jn log εn − C4jn log jn +

jn
∑

k=1

log

(

(1 + k2)α/2

τk

)

− C5

jn
∑

k=1

τ−w
k (k−γw + j−(γ+1/2)w

n )

)

≥ exp

(

−C6jn log jn − E1jn log jn − C7

jn
∑

k=1

log k

)

≥ exp (−C8jn log jn) ,
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where we have also used that log εn ≃ − log jn. In conclusion, using the lower
bound on h, we have shown that

P(||f − f0||H−α ≤ εn) ≥ h(jn)e
−C9jn log jn ≥ e−C10ε

−1/(α+γ)
n log 1

εn .

Condition (2.6) is then satisfied by the choice εn = ( log n
n )

α+γ
2α+2γ+1 .

Again take Pn = {f =
∑kn

k=1 fkek}, where kn is an integer satisfying L1nε
2
n ≤

kn ≤ L2nε
2
n. Proceeding as above, we get ||f − Pkn(f)||1 = 0 for all f ∈ Pn and

Π(Pc
n) ≤ e−Lnε2n for a suitable constant L, thereby verifying (2.5). This yields

contraction rate

ξn =
εn
δkn

≤ Cεn(nε
2
n)

α = C(log n)
(2α+1)(α+γ)

2α+2γ+1 n− γ
2α+2γ+1 .

Finally, for the true regression element f0,

||f0 − Pkn(f0)||1 ≤ Ck−γ
n ||f0||Hγ ≃ (nε2n)

−γ = (logn)−
2γ(α+γ)
2α+2γ+1n− γ

2α+2γ+1 ≤ ξn

as required. Applying Theorem 2.1 completes the proof.

Proof of Proposition 3.3. By exactly the same reasoning as in the proof of Propo-
sition 3.1, (2.6) is satisfied with εn =

√

(logn)/n. Take kn to be an integer sat-
isfying (L1 logn)

1/(β+1) ≤ kn ≤ (L2 logn)
1/(β+1) for some constants L1 and L2.

Again taking Pn = {f =
∑kn

k=1 fkek} yields Π(Pc
n) . e−bkβ+1

n ≤ e−Lnε2n for
some constant L that can be made arbitrarily large by increasing L1. This ver-
ifies (2.5) and the bias condition on f0 follows exactly as above. Since the bias
in both cases is equal to 0 for sufficiently large n, we can apply Theorem 2.1
with contraction rate

ξn =
εn
δkn

≤ Cεn(1 + k2n)
α0/2ec0k

β
n ≤ C′ (logn)

1
2+

α0
β+1 ec0(L2 logn)β/(β+1)

√
n

=
wn√
n
.

Proof of Proposition 3.4. The proof is similar to that of Proposition 3.2, though
we must notably keep more careful track of the constants involved due to the ex-
ponentiation resulting from the severe ill-posedness. If A satisfies Condition (S),
consider the norm induced analogously to the Sobolev norm H−α in the mildly
ill-posed case:

||f ||2A :=

∞
∑

k=1

|fk|2(1 + k2)−α1e−2c0k
β

.

Taking j
−(α1+γ)
n e−c0(jn+1)β ≃ εn and using the same truncation argument as

in the proof of Proposition 3.2 gives ||Pjn(f0)− f0||A ≤ cεn for some constant
c > 0. Thus for f a finite series of degree jn in the {ek} basis (and using that
q standard normal satisfies Condition 2 for w = 2), we can lower bound the
probability P(||Pjn(f0)− f ||A ≤ cε) by

exp

(

jn logC1 +

jn
∑

k=1

log

(

α̃n,k

τk

)

− C2

jn
∑

k=1

τ−2
k

(

|f0,k|2 + α̃2
n,k

)

)

, (5.4)
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where α̃n,k = j
−1/2
n εn(1 + k2)α1/2ec0k

β ≤ Cj
−γ−1/2
n ec0(k

β−(jn+1)β) ≤ Cj
−γ−1/2
n

for k ≤ jn and by the definition of jn. Now since τk = (1+k2)−
δ
2− 1

4 and f0 ∈ Hγ ,
we have that

jn
∑

k=1

log(τ−1
k α̃n,k) ≥ jn log εn − 1

2
jn log jn ≥ E1j

β+1
n ,

j
∑

k=1

τ−2
k |f0,k|2 =

j
∑

k=1

k2δ+1−2γk2γ |f0,k|2 ≤ j(2δ−2γ+1)∨0 ||f0||2Hγ ,

jn
∑

k=1

τ−2
k α̃2

n,k ≤ Cj−2(γ+1/2)
n

jn
∑

k=1

k2(δ+1/2) ≤ E2j
1+2(δ−γ)
n

for some constants E1, E2 > 0. Substituting these into (5.4) gives the lower
bound exp(−C3j

1+θ
n ), where θ = max(β, 2(δ− γ)). In conclusion, the small ball

probability satisfies

P (||Af −Af0||2 ≤ εn) ≥ h(jn)e
−C3j

1+θ
n ≥ B1e

−C4j
1+θ
n ≥ e−C5(log 1

εn
)

1+θ
β

,

so that (2.6) is satisfied by the choice εn = (logn)
1+θ
2β n−1/2.

Take kn to be an integer satisfying (a1 logn)
1/β ≤ kn ≤ (a2 logn)

1/β for
some constants a1 and a2. For this choice of kn, (2.3) is verified for the choice

ξn = (logn)−
δ−θ/2

β :

εn
δkn

≤ Dεn(1 + k2n)
α0/2ec0k

β
n ≤ D′(log n)

2α0+β+1
2β e(c0a2−1/2) log n = o (ξn)

as long as we take c0a2 < 1/2. Recall that for f ∈ supp(Πm) we have Karhunen-
Loève expansion f =

∑m
k=1 τkζkek, where {ζk} are i.i.d. standard normal ran-

dom variables. Thus for any such f , we can bound the bias by ||Pkn(f)− f ||21 ≤
∑∞

k=kn+1 τ
2
k ζ

2
k . We verify (2.5) by applying Borell’s inequality in a similar

fashion to that used in the proof of Theorem 2.1. Using the same notation,
write ||Pkn(f)− f ||1 = suph∈B0

Gn(h), where B0 is a weak*-dense subset of
{h ∈ H1 : ||h||1 ≤ 1} and Gn is the Gaussian processes

Gn(h) = 〈h, Pkn(f)− f〉1 =

∞
∑

k=kn+1

τkζk〈h, ek〉1.

We can control the bias and weak variance terms as follows. Using that
∑∞

k=kn+1 k
−w ≤ k1−w

n /(w − 1) for w > 1 and applying Jensen’s inequality

to the bias gives E ||Pkn(f)− f ||1 ≤
√

∑∞
k=kn+1 τ

2
k ≤ k−δ

n . For the variance,

note that for any h ∈ B0,

EGn(h)
2 =

∞
∑

k=kn+1

τ2k |〈h, ek〉1|2 ≤ τ2kn+1 ||h||21 ≤ τ2kn
≃ k−2δ−1

n .
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Using these bounds, apply Borell’s inequality for the supremum of a Gaussian

process as in (4.1) with x =
√

2Lnε2nk
−2δ−1
n to obtain

P

(

||Pkn(f)− f ||1 ≥ L′
(

k−δ
n +

√

nε2nk
−δ−1/2
n

))

≤ e−Lnε2n , (5.5)

where L′ is some constant that increases with L. Substituting in our choices of
εn and kn yields that for n ≥ N ,

P

(

||Pkn(f)− f ||1 ≥M(N,L)(log n)−
2δ−θ
2β

)

≤ e−Lnε2n ,

where the constant M increases with L. Let Pn = {f ∈ H1 : ||Pkn(f)− f ||1 ≤
Mξn} for a sufficiently large constant M , so that Π(Pc

n) ≤ e−Lnε2n for ξn =

(logn)−
δ−θ/2

β . This is satisfied by our above choice of εn and so, choosing L
sufficiently large to match the constant obtained in the small-ball probability
above, this verifies (2.5). Lastly, as f0 ∈ Hγ , then ||Pkn(f0)− f0||1 ≤ Ck−γ

n =
O(ξn) exactly as above. Apply Theorem 2.1 to finish.

5.2. Proofs of Section 3.2 (Gaussian priors)

The small-ball asymptotics of a Gaussian measure in a Hilbert space have been
exactly characterized by Sytaya [30] and using the techniques of large deviations
in [9]. However, while exact, the asymptotic expression is rather complicated and
relies on the solution of an implicit equation that does not yield an explicit rate
in terms of the radius of the shrinking ball. We therefore obtain suitable lower
bounds using either direct lower bound methods [14] or the link with the metric
entropy of the unit ball of the RKHS [22] (both of which yield the same result).

As mentioned above, a Gaussian distribution has support equal to the clo-
sure of its RKHS H and so posterior consistency is only achievable when Af0 is
contained in this set. Since f is a Gaussian random variable in a Hilbert space
with Karhunen-Loève expansion f =d

∑

k τkζkek, where the {ζk} are i.i.d. stan-
dard normal random variables, we can easily characterize its RKHS in terms of
ellipsoids (see [32] for more details). Letting Hf denote the RKHS of f , we have
that if a =

∑

k akek, then

a ∈ Hf ⇔ ||a||2
Hf

:=
∞
∑

k=1

a2k
τ2k

<∞.

The RKHS norm therefore consists of a weighted ℓ2-norm, weighting the eigen-
vectors of Λ with the inverse of its eigenvalues. Recall that the concentration
function of a Gaussian random variable W in a Banach space (B, ||·||) with
RKHS H is defined as

φw0(ε) := inf
h∈H:||h−w0||<ε

||h||2
H
− logP(||W || < ε).
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By Theorem 2.1 of [31], choosing εn to satisfy φw0(εn) ≤ nε2n is sufficient to

obtain the lower bound P(||W − w0|| ≤ 2εn) ≥ e−nε2n , and consequently estab-
lish (2.6).

We firstly establish upper bounds for the concentration function φAf0 of the
Gaussian random variable Af . When the prior oversmooths the true parame-
ter, the approximation error in φAf0(ε) dominates as ε → 0, whereas when it
undersmooths the centred small ball probability dominates. This is quantified
by the following lemma.

Lemma 5.1. Suppose that f ∼ N(0,Λ), where Λ satisfies Condition 3, and
let f0 ∈ Hγ(H1) for some γ > 0. Then Af is Gaussian random variable in
the Hilbert space H2. If A satisfies Condition (M), then Af has RKHS equal to
Hα+δ+1/2(H2) (where H

s(H2) is the Sobolev scale with respect to {gk}) and the
concentration function of Af satisfies

φAf0(ε) ≤ C

{

ε−
2δ−2γ+1

α+γ if γ ≤ δ

ε−
1

α+δ if γ ≥ δ

as ε → 0 for some C = C(α, δ, f0). If A satisfies Condition (S) then Af has
RKHS equal to

HAf =

{

b =

∞
∑

k=1

bkgk ∈ H2 : ||b||2
HAf

=

∞
∑

k=1

b2k(1 + k2)α0+δ+1/2e2c0k
β

<∞
}

and the concentration function of Af satisfies

φAf0(ε) ≤ C

{

(

log 1
ε

)
2δ−2γ+1

β if γ + β
2 ≤ δ

(

log 1
ε

)1+1/β
if γ + β

2 ≥ δ

as ε→ 0 for some C = C(α0, β, δ, f0).

Proof. It is obvious that Af is a Gaussian element inH2 with Af ∼ N(0, AΛA∗).
By Condition 3, AΛA∗ has eigenvectors {gk} with corresponding eigenvalues
{τ2kρ2k}. Consider firstly the case where A satisfies Condition (M). Using the
above remark about Gaussian measures in Hilbert spaces, we have that for any
b =

∑∞
k=1 bkgk ∈ H2,

||b||2
HAf

=
∞
∑

k=1

b2k
τ2kρ

2
k

≃
∞
∑

k=1

b2k(1 + k2)α+δ+1/2 = ||b||2Hα+δ+1/2(H2)
,

so that HAf = Hα+δ+1/2(H2).

Letting f0 =
∑∞

k=1 f0,kek, define hj =
∑j

k=1 ρkf0,kgk to be the projection of
Af0 onto its first j coordinates in the conjugate basis {gk}. Then

||hj −Af0||22 =

∞
∑

k=j+1

ρ2k|f0,k|2 ≤ C

∞
∑

k=j+1

(1 + k2)−α|f0,k|2 ≤ C(f0, A)j
−2α−2γ ,
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since f0 ∈ Hγ . Taking j ≃ ε−1/(α+γ) gives ||hj −Af0||2 ≤ ε and

||hj ||2HAf
≤

j
∑

k=1

τ−2
k f2

0,k ≤ C′(f0, A)j
(2δ−2γ+1)∨0 ≃ ε−

2δ−2γ+1
α+γ ∧0,

thereby giving a bound on the first term of φAf0 . For the second term we use
the explicit lower bound (4.5.2) from Example 4.5 in [14]:

P (||Af ||2 < ε) = P

( ∞
∑

k=1

(1 + k2)−α−δ−1/2ζ2k < ε2

)

≥ Bερ(3−w) exp
(

−w(1 + ρ)ρε−2ρ
)

,

where ζk are i.i.d. standard normals, B > 0 is a constant, w = α+ δ + 1/2 and
ρ = (2w − 1)−1 = (2α+ 2δ)−1. Using these values gives

φ0(ε) ≤ − logB − ρ(3− w) log ε+ w(1 + ρ)ρε−2ρ ≤ Cε−1/(α+δ)

as ε → 0 for some constant C = C(α, δ, B). Comparing these two rates, we see
that the approximation term dominates when γ ≤ δ while the centred small-ball
term term dominates when γ ≥ δ, thus giving the desired form for φAf0(ε).

In the case of Condition (S), substituting in the lower bounds for the eigen-
values {ρk} gives the specified HAf . If we repeat the approximation argument
above, taking hj with j ≃ (log 1

ε )
1/β , then ||hj −Af0||2 ≤ ε and

||hj ||2HAf
≤

j
∑

k=1

|f0,k|2(1 + k2)δ+1/2 ≤ Cj(2δ−2γ+1)∨0 ≃
(

log
1

ε

)

(2δ−2γ+1)∨0
β

.

The centred small-ball probability can be dealt with using results on Gaussian
processes that link this quantity to the metric entropy of the unit ball of the
RKHS [22]. Applying Theorem 2 of [22] and using Lemma 5.2 below, we get
φ0(ε) . (log 1

ε )
1+1/β . It is also possible to derive this result using a careful

rearrangement of the lower bounds proved in [14]. Balancing these terms we
have that this quantity dominates when δ ≤ γ+ β

2 and the approximation term
dominates otherwise, hence the result.

Lemma 5.2. Consider the RKHS HAf of Af under Condition (S) as described
in Lemma 5.1, and let KAf denote the unit ball of HAf . Then the covering
number N(KAf , ||·||H2

, ǫ) of KAf with the usual Hilbert space distance satisfies

logN(KAf , ||·||H2
, ǫ) .

(

log
1

ǫ

)1+1/β

.

Using this result and Theorem 2 of [22], we obtain the bound− logP(||Af ||2 <
ε) ≤ C(log 1

ε )
1+1/β . This matches the bounds obtained in [6] when considering

the general setting of heat kernels (β = 2) on manifolds.
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Proof. Writing b =
∑∞

k=1 bkgk, we know that for any b ∈ KAf we have |bk| ≤
C(1 + k2)−α0−δ−1/2e−c0k

β ≤ Ce−c0k
β

, so that KAf is contained in the infinite
rectangle

∞
∏

k=1

[

−Ce−c0k
β

, Ce−c0k
β
]

.

Taking J = D(log 1
ǫ )

1/β for a suitable constant D, we that for k ≥ J , the width
of the above intervals is smaller that ǫ/2. Thus any point in the infinite rectangle

is within ǫ/2 of the finite dimensional cube X =
∏J

k=1[−Ce−c0k
β

, Ce−c0k
β

] and
so it suffices to construct an ǫ/2 cover for this latter set. By considering a J-
dimensional cube, we see that it is enough to cover this set by a considering a
regular lattice with distance ǫ/(2

√
J) between adjacent vertices. Therefore

N
(

X, ||·||eucl ,
ǫ

2

)

≤
J
∏

k=1

2Ce−c0k
β

ǫ/(2
√
J)

=

(

C′√J
ǫ

)J

e−c0
∑J

k=1 kβ

.

Now by a simple integral comparison test,
∑J

k=1 k
β ≥ Jβ+1/(β+1), so that the

logarithm of the right-hand side is bounded above by

C′′J

(

log J + log
1

ǫ

)

− c0
Jβ+1

β + 1
≤ C′′′

(

log
1

ǫ

)1+1/β

.

Proof of Proposition 3.5. Let us verify the small ball Condition (2.6). Let HAf

denote the RKHS of Af and φAf0 denote the concentration function of Af
at Af0. Since Af is a Gaussian random element in H2, we have by Theo-
rem 2.1 of [31] that if Af0 is contained in the H2-closure of HAf and εn satisfies

φAf0(εn) ≤ nε2n, then P(||Af −Af0||2 < 2εn) ≥ e−nε2n . By Lemma 5.1, the

choice εn = n− α+γ∧δ
2α+2δ+1 satisfies this condition in both the cases γ ≥ δ and

γ ≤ δ, thereby verifying (2.6).

Recall that we have Karhunen-Loève expansion f =
∑∞

k=1 τkζkek, where
{ζk} are i.i.d. standard normal random variables. Proceeding as in the proof of
Proposition 3.4 and taking kn ≃ nε2n in (5.5), we obtain that for n ≥ N ,

P
(

||Pkn(f)− f ||1 ≥M(L,N)(nε2n)
−δ
)

≤ e−Lnε2n ,

where the constant M increases with L. Let Pn = {f ∈ H1 : ||Pkn(f)− f ||1 ≤
Mξn} for a sufficiently large constant M , so that Π(Pc

n) ≤ e−Lnε2n as long as
(nε2n)

−δ ≤ Cξn for some C > 0. This is satisfied by our above choice of εn and
so, choosing L sufficiently large to match the constant obtained in the small-ball
probability above, this verifies (2.5). Finally, since f0 ∈ Hγ , we again recover
that ||Pkn(f0)− f0||1 ≤ Ck−γ

n ||f0||Hγ ≃ (nε2n)
−γ , which is smaller than ξn =

εn(nε
2
n)

α for our choice of εn. Applying Theorem 2.1 completes the proof.
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Proof of Proposition 3.6. Consider firstly the case where γ + β
2 ≤ δ. As above,

(2.6) is verified if φAf0(εn) ≤ nε2n. By Lemma 5.1, the choice εn =

(logn)
δ−γ+1/2

β n−1/2 satisfies this condition. Now let kn be an integer satisfy-
ing (L1 logn)

1/β ≤ kn ≤ (L2 logn)
1/β for some constants L1, L2, and which

therefore satisfies kn ≤ cnε2n for some constant c and the above choice of εn.
The quantity in the left-hand side of (2.3) then satisfies

εn
δkn

≤ Cεn(1 + k2n)
α0/2ec0k

β
n ≤ C′(logn)ηnL2c0−1/2 = o

(

(logn)−γ/β
)

as n → ∞ provided that L2c0 < 1/2. To verify (2.5), substitute our choices of
εn and kn into (5.5) to get

e−Lnε2n ≥ P

(

||Pkn(f)− f ||1 ≥ C(log n)−
δ
β + C′(logn)−

γ
β

)

.

Since δ ≥ γ + β
2 the second term is asymptotically larger, so that taking L

sufficiently large, we obtain the required exponential inequality (2.5) with rate
(logn)−γ/β . Since f0 ∈ Hγ , we have that exactly as above ||Pkn(f0)− f0||1 ≤
Ck−γ

n ≤ C′(logn)−γ/β, so that we can apply Theorem 2.1.
Consider now the case where γ + β

2 ≥ δ. Arguing as above, the choice

εn = (logn)
β+1
2β n−1/2 satisfies the small-ball condition (2.6) and for the bias

we recover the exponential inequality

e−Lnε2n ≥ P

(

||Pkn(f)− f ||1 ≥ C(logn)−
(δ−β/2)

β

)

.

By our choice of δ, the above rate is larger than the bias of f0 and so yields the
contraction rate.

5.3. Proofs of Section 3.3 (Uniform wavelet series)

Since we are working the deconvolution setting described in Section 1.3.1 we
firstly note that the Sobolev scale with respect to the Fourier basis corresponds
to the classical notion of Sobolev smoothness on T, so that Hs(H1) = Hs([0, 1]).
As mentioned above, periodized Meyer wavelets are band limited and so satisfy
Condition 1 which is needed for Theorem 2.1. Moreover, since supp(FT[ψ]) ⊂
[−a, a] for some a > 0, we have by the standard properties of the Fourier
transform that the dilated and translated wavelets satisfy supp(FT[ψjk]) ⊂
[−2ja, 2ja]. Recalling definition (2.2), we therefore have that under Condi-
tion (M),

δ2j = inf
m∈Z:|m|≤2ja

|FT[µ](m)| ≤ C(1 + 22j)−α/2.

Since the ill-posedness affects the rate ξn through (2.3), we see that using the
periodized Meyer wavelet basis rather than the SVD (Fourier basis) only affects
the constants and does not negatively affect the rate. In this section note that
||·||2 refers to the L2([0, 1])-norm rather than the H2-norm.
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Proof of Proposition 3.7. We firstly verify the small-ball condition (2.6). Con-
sider the case where δ ≤ γ. Using the wavelet characterization of the periodic
Besov space Bs

22([0, 1]) = Hs([0, 1]) for s ∈ R gives

||h||2Hs =







|ᾱ(h)|+
( ∞
∑

l=0

(

2ls ||βl·(h)||ℓ2
)2

)1/2






2

≤ 4max







|ᾱ(h)|2,
∞
∑

l=0

22ls
2l−1
∑

k=0

βlk(h)
2







. (5.6)

Let ᾱ, βlk denote the wavelet coefficients of f0 and note that if ||f0||Cγ ≤ B
then |ᾱ| ≤ B and |βlk| ≤ B2−l(γ+1/2) for all l, k. By (5.6), we lower bound
P(||f0 − Uδ||H−α ≤ εn) by

P



max







|ᾱ− u|2,
∞
∑

l=0

2−2lα
2l−1
∑

k=0

|βlk − 2−l(δ+1/2)ulk|2






≤ c1ε
2
n





= P
(

|ᾱ− u|2 ≤ c1ε
2
n

)

P





∞
∑

l=0

2−2lα
2l−1
∑

k=0

|βlk − 2−l(δ+1/2)ulk|2 ≤ c1ε
2
n



 (5.7)

using the independence of u and the ulk’s. The first probability satisfies

P (|ᾱ− u| ≤ √
c1εn) ≥

(√
c1εn
2B

)

= ec2+log(εn/B) ≥ ec3 log(εn/B)

for some constant c3 = c3(Φ,Ψ). Let blk = 2l(γ+1/2)βlk and pick J = J(n) as
defined below. The second probability in (5.7) becomes

P





∞
∑

l=0

2−l(2α+2γ+1)
2l−1
∑

k=0

|blk − 2−l(δ−γ)ulk|2 ≤ c1ε
2
n





≥ P

( ∞
∑

l=0

2−2l(α+γ) sup
0≤k<2l

|blk − 2−l(δ−γ)ulk|2 ≤ c1ε
2
n

)

≥ P

(

J
∑

l=0

2−2l(α+γ) sup
0≤k<2l

|blk − 2−l(δ−γ)ulk|2 + CB2
∞
∑

l=J+1

2−2l(α+δ) ≤ c1ε
2
n

)

.

Pick the truncation level J = J(n) so that B22−2J(α+δ) ≃ ε2n, that is 2J ≃
(εn/B)−1/(α+δ). Note that since |blk| ≤ B and δ ≤ γ, we can lower bound the
individual probabilities via

P

(

|blk − 2−l(δ−γ)ulk| ≤ cεn

)

≥
( cεn
2l(γ−δ)+1B

)

> 0.
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Then, choosing the constants defining J(n) appropriately, we have

P

(

J
∑

l=0

2−2l(α+γ) sup
0≤k<2l

|blk − 2−l(δ−γ)ulk|2 ≤ c1ε
2
n − c(α, δ)B22−2J(α+δ)

)

≥ P

(

max
0≤l≤J

sup
0≤k<2l

|blk − 2−l(δ−γ)ulk| ≤ c4εn

)

=
J
∏

l=0

2l−1
∏

k=0

P

(

|blk − 2−l(δ−γ)ulk| ≤ c4εn

)

≥
J
∏

l=0

2l−1
∏

k=0

( c4εn
2l(γ−δ)+1B

)

≥ exp

(

c5 log(εn/B)

J
∑

l=0

2l − c6

J
∑

l=0

l2l

)

≥ ec7(εn/B)−1/(α+δ) log(εn/B),

for n ≥ N(α, δ, B, ψ) and we have used that J ≃ − log(εn/B) in the last line.
Using (5.7) and that h(B0) > 0 for some B0 ≥ ||f0||Cγ , we have that for
n ≥ N(α, δ, B0, ψ),

P(||f0 − Uδ||H−α ≤ εn) ≥ h(B0)e
c3 log(εn/B0)ec7(εn/B0)

−1/(α+δ) log(εn/B0)

≥ ec8ε
−1/(α+δ)
n log εn , (5.8)

so that (2.6) is satisfied by the choice εn ≃ ( log n
n )

α+δ
2α+2δ+1 .

Consider now the case γ < δ ≤ γ + 1
ν , where we can establish (2.6) in a

similar fashion by using an approximation argument. Recall that f0 ∈ Cγ([0, 1])
and let hr be the best H−α-approximation of f0 such that ||h||Cδ ≤ r. Write

hr = θ0φ+
∑∞

l=0

∑2l−1
k=0 θlkψlk, where |θ| ≤ r and |θlk| ≤ r2−l(δ+1/2), and recall

that the wavelet coefficients of f0 satisfy |βlk| ≤ B02
−l(γ+1/2) for B0 ≥ ||f0||Cγ .

Let lr be the smallest integer such that 2lr(δ−γ) > r/B0, so that in particular
θlk = βlk for all l < lr. Then

||f0 − hr||2H−α ≤
∞
∑

l=lr

2−2l(α+γ)
(

B0 − r2−l(δ−γ)
)2

≤ CB2
02

−2lr(α+γ),

so that ||f0 − hr||H−α ≤ C(f0)r
−α+γ

δ−γ by the definition of lr. Pick rn to be

the smallest integer such that r
−α+γ

δ−γ
n ≤ εn

2C , so that by the triangle inequality,
P(||f0 − Uδ||H−α ≤ εn) ≥ P(||hrn − Uδ||H−α ≤ cεn) for some 1/2 ≤ c < 1. Since
||hrn ||Cδ ≤ rn, we use (5.8) to obtain

P (||f0 − Uδ||H−α ≤ εn) ≥ h(rn) exp

(

c1

(

εn
rn

)− 1
α+δ

log
εn
rn

)

.

Since δ ≤ γ + 1
ν , h(r) ≥ e−Drν for all r ∈ N, and rn ≥ c2ε

− δ−γ
α+γ

n for some

c2 > 0 and sufficiently large n, we obtain the lower bound exp(−d2ε
− 1

α+γ
n log 1

εn
).

Bounding this from below by e−Cnε2n yields the choice εn = ( logn
n )

α+γ
2α+2γ+1 .
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Consider now the bias condition (2.5) and, using the notation of wavelets,
take kn = 2Jn ≃ nε2n. Let Br = supp(Πδ,r) denote the Cδ([0, 1])-ball of radius r.
Let rn be an integer satisfying (L1nε

2
n)

1/ν ≤ rn ≤ (L2nε
2
n)

1/ν for some constants

L1, L2 and take Pn = Brn . Then Π(Pc
n) = 1−H(rn) . e−Drνn ≤ e−Lnε2n , where

L is a constant that can be made sufficiently large by increasing L1. Now for all
functions f ∈ Br, supk |βlk(f)| ≤ r2−l(δ+1/2) for all l ≥ 0. Consequently,

||KJn(f)− f ||22 =

∞
∑

l=Jn

2l−1
∑

k=0

|βlk(f)|2 ≤
∞
∑

l=Jn

2l−1
∑

k=0

r22−l(2δ+1) ≤ Cr22−2δJn ,

so that for all f ∈ Pn,

||KJn(f)− f ||2 ≤ C′(nε2n)
1/ν−δ ≤ C′′ξn = C′′′εn(nε

2
n)

α,

which is verified with the choice εn = n− α+δ−1/ν
2α+2δ−2/ν+1 . Comparing this rate to

the rates obtained when verifying (2.6) we obtain the minimal choices εn =

n− α+δ−1/ν
2α+2δ−2/ν+1 when δ < γ + 1

ν and εn = (logn/n)
α+γ

2α+2γ+1 when δ = γ + 1
ν . For

the true function f0 ∈ Cγ([0, 1]), using a standard approximation bound gives
||KJn(f0)− f0||2 ≤ C(f0)2

−γJn ≃ (nε2n)
−γ = O(ξn) for all the above choices

of εn. In both cases, apply Theorem 2.1 to obtain rate ξn = εn(nε
2
n)

α.
Consider now the stronger tail condition 1 − H(r) . exp(−eDrν ) as r →

∞ for some ν > 0. When δ ≤ γ, (2.6) is satisfied as above by the choice

ε ≃ ( logn
n )

α+δ
α+2δ+1 . Letting rn be an integer satisfying (log(L1nε

2
n))

1/ν ≤ rn ≤
(log(L2nε

2
n))

1/ν for some constants L1, L2 and taking Pn as above we obtain

Π(Pc
n) . exp(−eDrνn) ≤ e−Lnε2n for some constant L that can be made arbitrar-

ily large by increasing L1. Using the above bias calculations, ||KJn(f)− f ||2 ≤
Crn2

−δJn ≤ C′rn(nε2n)
−δ and so setting this equal to ξn = nαε2α+1

n yields that

(2.5) is satisfied by the choice εn = (logn)
1/v

2α+2δ+1n− α+δ
2α+2δ+1 . Substituting this

expression into that of ξn gives the desired contraction rate.

Acknowledgements

The author would like to thank Richard Nickl for suggesting the problem and for
his assistance throughout. The author would also like to thank Ismaël Castillo
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