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S U M M A R Y

The estimation of finite fault earthquake source models is an inherently underdetermined

problem: there is no unique solution to the inverse problem of determining the rupture his-

tory at depth as a function of time and space when our data are limited to observations at

the Earth’s surface. Bayesian methods allow us to determine the set of all plausible source

model parameters that are consistent with the observations, our a priori assumptions about the

physics of the earthquake source and wave propagation, and models for the observation errors

and the errors due to the limitations in our forward model. Because our inversion approach

does not require inverting any matrices other than covariance matrices, we can restrict our

ensemble of solutions to only those models that are physically defensible while avoiding the

need to restrict our class of models based on considerations of numerical invertibility. We

only use prior information that is consistent with the physics of the problem rather than some

artefice (such as smoothing) needed to produce a unique optimal model estimate. Bayesian in-

ference can also be used to estimate model-dependent and internally consistent effective errors

due to shortcomings in the forward model or data interpretation, such as poor Green’s func-

tions or extraneous signals recorded by our instruments. Until recently, Bayesian techniques

have been of limited utility for earthquake source inversions because they are computation-

ally intractable for problems with as many free parameters as typically used in kinematic

finite fault models. Our algorithm, called cascading adaptive transitional metropolis in parallel

(CATMIP), allows sampling of high-dimensional problems in a parallel computing frame-

work. CATMIP combines the Metropolis algorithm with elements of simulated annealing and

genetic algorithms to dynamically optimize the algorithm’s efficiency as it runs. The algo-

rithm is a generic Bayesian Markov Chain Monte Carlo sampler; it works independently of the

model design, a priori constraints and data under consideration, and so can be used for a wide

variety of scientific problems. We compare CATMIP’s efficiency relative to several existing

sampling algorithms and then present synthetic performance tests of finite fault earthquake

rupture models computed using CATMIP.

Key words: Inverse theory; Probability distributions; Computational seismology.

1 I N T RO D U C T I O N

To study the physics of earthquakes, we need observations of earth-

quake ruptures, but the earthquake rupture process can only be

inferred from measurements taken at the surface of the Earth. Us-

ing limited surface observations to constrain a possibly complex

and heterogeneous source process is a fundamentally ill-posed in-

verse problem. Conventionally, regularization is used to transform

such inverse problems into a well-conditioned optimization problem

for a single source model. Typical regularization schemes include

Laplacian smoothing, minimizing the length of the solution (which

is equivalent to moment minimization for finite fault earthquake

models), positivity constraints, and sparsity constraints (e.g. Du

et al. 1992; Arnadottir & Segall 1994; Ji et al. 2002; Evans &

Meade 2012). Some of these constraints, such as positivity, can be

defended based on the physical processes being modelled. How-

ever, other forms of regularization are often employed to make the

inversion numerically stable or to prevent overfitting the data due

to limitations of the forward model. The choice of which form and

strength of regularization to use is often arbitrary. Yet even a slight

change in inversion design can lead to different solutions, thereby

limiting our ability to distill the physics of the rupture process from a

given source model. When different inversion methodologies yield

very different rupture models for the same earthquake (e.g. Fig. 1),

it is not obvious what conclusions, if any, can be drawn about the

source process.
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1702 S. E. Minson, M. Simons and J. L. Beck

Figure 1. An illustration of the variability in earthquake source models.

Small differences in inversion techniques and data can lead to large dif-

ferences in inferred earthquake slip models. We show here four published

slip models for the 1992 Mw 7.3 Landers, California earthquake available

through the ETH Zurich (Swiss Federal Institute of Technology, Zurich)

Finite-Source Rupture Model Database (Cohee & Beroza 1994b; Wald &

Heaton 1994; Cotton & Campillo 1995; Hernandez et al. 1999).

In a Bayesian inversion framework, the regularization of the in-

verse problem is accomplished by the choice of prior distribution

and different choices can be assessed by their posterior probabil-

ity based on the data (e.g. Tarantola 2005; Beck 2010). Further,

the choice of the prior can be based purely on knowledge about the

physics of the problem that is not encapsulated in the forward model

rather than any requirement to produce a unique source model (as

required in inversions using regularized least squares). Finally, since

Bayesian methods return the ensemble of all models that are con-

sistent with the data and chosen prior information, the question of

how to choose one single solution to a problem that does not have

a unique solution becomes moot.

Regularized optimization returns only the part of the null space

required to satisfy the imposed smoothness requirement. Bayesian

sampling (which uses probabilistic methods to determine the family

of all possible models that are consistent with the data and our a pri-

ori constraints), will theoretically produce models from everywhere

in the parameter space, with density proportional to the posterior

probability content: that is, this sampling naturally produces more

models in regions which fit the data better (and so are deemed more

plausible) and fewer in regions with lower probability. We can then

analyse these models however we want. For example, we can plot

histograms and 2-D or 3-D projections of the posterior samples to

image the topology of the complete solution space including the

locations and sizes of its minima.

The term ‘Bayesian’ was not coined until Fisher (1921) (Fienberg

2006), but Bayesian techniques have been used in many scientific

fields for centuries under such names as inverse probability and sub-

jective probability. Thomas Bayes’ only paper on the topic was pub-

lished posthumously (Bayes 1763). Pierre-Simon Laplace derived

many important fundamental probabilistic inference results start-

ing in 1774 and culminating in his treatise on probability (Laplace

1812). He was perhaps the first to use these techniques in a sci-

entific context when he employed Bayesian inference to derive a

posterior probability distribution on the mass of a moon of Saturn.

Bayesian inference has been used to study geophysical problems at

least since the work of Sir Harold Jeffreys (e.g. Jeffreys 1931, 1939),

and there has been a recent resurgence in interest by geophysicists

(e.g. Mosegaard & Tarantola 1995; Malinverno 2002; Sambridge &

Mosegaard 2002; Tarantola 2005).

An ideal goal for inversion of earthquake rupture models is to

use the physics of the rupture process as our only constraint so that

we can determine what is and what is not constrained by the data

and the assumed physics. However, a full Bayesian solution to an

inverse problem using only prior constraints based on the physics of

the process being modelled can be very computationally expensive,

especially for high-dimensional problems like the seismic rupture

models we are studying. For seismic source inversions, there has

been an effort to develop a computationally tractable proxy for the

Bayesian posterior probability density function (PDF; e.g. Monelli

& Mai 2008), as well as studies using Bayesian analysis to calculate

the solution to the traditional inverse problem with non-physical reg-

ularization (e.g. Fukuda & Johnson 2008). But using non-physical

prior constraints makes it difficult to interpret the inversion results.

In contrast, we have developed a full Bayesian approach that uses

a new Markov Chain Monte Carlo (MCMC) sampling technique to

produce finite fault earthquake models that is based on the well-

known Metropolis algorithm (Metropolis et al. 1953). Because of

the increase in sampling efficiency and massively parallel comput-

ing, we are able to solve modelling problems that would up to now

have been computationally intractable. We note that the sampling

technique is in principle completely independent from the data and

model under consideration, and thus has the potential to be applied

to a wide variety of parameter estimation problems.

We begin by providing a brief background on the theory of

Bayesian inversion. This background is followed by a description

of our new MCMC sampling algorithm, cascading adaptive transi-

tional metropolis in parallel (CATMIP), including performance tests

relative to existing algorithms. We then derive a physics-based, min-

imally constrained finite fault earthquake rupture parametrization

suitable for Bayesian techniques and present a series of performance

tests of this model using CATMIP sampling. (Application to real ob-

servations is reserved for a following paper: Minson et al. Bayesian

inversion for finite fault earthquake source models II–the 2011 great

Tohoku-oki, Japan earthquake, in preparation. We will refer to this

as Paper II.) Finally, we present various potentially useful methods

to explore ensembles of earthquake source models.

2 B AY E S I A N A P P ROA C H T O

I N V E R S I O N

Broadly, Bayesian methods for inverse modelling use probability

models to quantify our state of knowledge by explicitly treating the

uncertainties related to the observation process and the uncertainties

due to missing information or errors in the model design, and from

this we can ascribe an a posteriori plausibility to each model in a
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Bayesian finite fault earthquake modelling 1703

set of proposed models (Jaynes 2003; Beck 2010). This posterior

probability distribution describing the plausibility of each member

of the ensemble of models is the ‘solution’ to our inverse problem.

We can derive the Bayesian solution to a generic inverse problem

[the posterior PDF, p(θ |D)] using Bayes’ Theorem,

p(θ |D) ∝ p(D|θ )p(θ), (1)

where θ is a k-dimensional vector of model parameters whose set

of values specify a set of possible models and p(θ ) is the prior PDF

that defines the relative plausibility of each possible value of θ a

priori (i.e. without reference to the data). For example, if we were

fitting a straight line to some data, θ would be a two-element vector

containing the slope and intercept that specify a possible line, and

p(θ ) would be a measure of the relative plausibility assigned to a

specific line that is given by the slope and intercept in θ . The data

likelihood, p(D|θ ), is a PDF describing the probability of having

observed our data, D, given a value for θ .

The Bayesian approach is completely generic. The data, the

model and the form of the probability distributions are not re-

stricted. It is this generality that allows for greater specificity. There

are no simplifying assumptions required in formulating the model.

The model can be linear or non-linear. Prior information that exists

about the physics of the problem but is not specific enough to build

into the forward model can be incorporated in a prior probability

distribution.

Confusingly, there are also optimization techniques that are some-

times described as Bayesian because the choice of regularization in

the optimization scheme is based on some rule derived from Bayes’

Theorem. But, at best, these are only partial Bayesian analyses.

[Traditional regularized optimization can be viewed as a partial

Bayesian analysis; for details see Appendix A and Menke (2012).]

However, when we discuss Bayesian analysis, we refer to methods

that characterize the complete posterior distribution, p(θ |D). We

now consider each component of Bayes’ Theorem (eq. 1) in turn.

2.1 Observed data: D

The observed data represent a superset of possible data sets. For

earthquake source modelling, these data sets could be seismic, GPS,

InSAR, tsunami data, etc.,

D = {Dseismic, Dgeodetic, Dtsunami, . . .}

=
{

D1, D2, . . . , DNds

}

, (2)

where each Di is a vector of data points (or observations) comprising

each of Nds data sets.

These data are sets of numbers obtained from measurement and

so are known at the time of the inversion analysis. On the other

hand, our model-based predictions of these measurements contain

uncertainty from two sources: the uncertainty about the errors in

the prediction of the observed quantities based on a geophysical

model, plus the uncertainty about the errors in the measurements

based on a model of the observation process. (The latter is often

referred to as ‘data uncertainty’ but our perspective is that, in an

inversion analysis, the data is certain and it is our corresponding

predictions that are uncertain.) In the next subsection, these two

sources of uncertainty are quantified by a stochastic forward model

for the predictions, di (a random variable), corresponding to the

actual measurements, Di, for the ith data set.

2.2 Stochastic forward model, p(d|θ), and likelihood

function, p(D|θ)

Consider a generic data set, D, and corresponding prediction of these

measurements, d, where vectors D and d both have Ndp elements.

Given a deterministic forward model design, G(θ ), the stochastic

forward model, p(d|θ), that we use to express the uncertainty in the

predicted measurements is based on,

d = G(θ ) + e + ǫ, (3)

where e represents the uncertain measurement errors (the differ-

ence between the predicted measurements and the true values of

the observed physical quantities) and ǫ represents the uncertain

model prediction errors (the difference between the true observed

quantities and the predictions of the deterministic forward model).

A common choice of the probability models for the measurement

errors, e, and the model prediction errors, ǫ, is to use independent

Gaussian PDFs. [This choice can be justified by using the principle

of maximum entropy to select the probability models for e and ǫ

in eq. (3). See, for examples, Jaynes (2003) and Beck (2010).] In

this case, the sum (e + ǫ) in eq. (3) is Gaussian, so the stochastic

forward model is given by,

p(d|θ ) = N
(

d|G(m) + μ, Cχ

)

=
1

(2π )Ndp/2|Cχ |
1
2

e− 1
2

[d−G(m)−μ]T · Cχ
−1 · [d−G(m)−μ], (4)

where Cχ and μ are the covariance matrix and mean of the sum

(e + ǫ), respectively. Thus, μ represents a possible bias in our pre-

dictions. Further, because e and ǫ are modelled as probabilistically

independent,

Cχ = Cd + Cp, (5)

where Cd and Cp are the covariance matrices for e and ǫ, respec-

tively. Note that for additional generality we have written the deter-

ministic forward model in eq. (4) as G(m) instead of G(θ). In many

applications, θ = m. However, we may also want to use the data,

D, to learn about the parameters in the probability models for e and

ǫ. Then we would have θ = (m,μ, Cχ ).

The likelihood function, p(D|θ ), gives the probability of the ob-

served data according to the model given by θ , and represents

the forward model’s goodness of fit to the data, D. If a model

gives low probability to the observations, then it is highly un-

likely that this model accurately describes the source of those

observations. The likelihood function p(D|θ ) is not a probabil-

ity model of the actual measured data, D, which is known. In-

stead, the likelihood function gives the probability of observing

the actual data, D, given by setting d = D in the stochastic for-

ward model p(d|θ ). For example, if θ = (m,μ, Cχ ), then the poste-

rior is p(m, μ, Cχ |D) ∝ p(D|m, μ, Cχ )p(m, μ, Cχ ) where the like-

lihood function, p(D|m, μ, Cχ ), is given by eq. (4) with d = D, and

p(m,μ, Cχ ) represents the chosen prior PDF on the forward model

parameters and on the mean and covariance of the errors. Results

for inversions will be presented in Section 5 for this case as well as

when μ and Cχ are fixed a priori (so that θ = m).

In many inverse problems, the difference D − G(m) is viewed as

simply measurement errors. But, in many cases, the measurement

errors may be dwarfed by the model prediction errors, ǫ, produced

by differences between the model and the real world. For finite

fault earthquake source processes, possible error sources of this

type include having the wrong source geometry, a poorly located

hypocentre, an incorrect elastic structure and simply parametrizing

the earthquake source evolution in a way that is not amenable to
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1704 S. E. Minson, M. Simons and J. L. Beck

representing the ‘true’ source process. Further, some measurement

errors may be better considered as model prediction errors. For

example, an atmospheric region of high water content may lead to a

spurious deformation signal in a radar interferogram or a large truck

driving by a seismometer may create detectable ground motion.

These are not errors in the accuracy of the measurements. The

change in phase between two radar scenes is no more or less difficult

to estimate on a rainy day than on a dry one, nor is the sensitivity

of a seismometer affected by its proximity to a highway.

In theory, we could create an earthquake source model which

included not only spatially and temporally varying slip but also

parameters to describe the variation in the propagation velocity of

radar signals and ground motions due to near-seismometer activity.

Similarly, parameters for the Earth structure and hypocentre could

be simultaneously modelled as part of the process of sampling pos-

sible earthquake ruptures. But it is not usually tractable to directly

and simultaneously model the earthquake, Earth structure and all

possible error sources. However, it is possible to combine all model

prediction errors into one probabilistic representation by casting

the unknown prediction errors produced by any model as the total

uncertainties due to all sources of errors between the observations

and the predictions of the deterministic forward model except for

the measurement errors produced by the sensors (which can be in-

dependently modelled; e.g. Beck & Katafygiotis 1998; Tarantola

2005; Beck 2010). We have adopted this strategy in eqs (4) and

(5) to construct the stochastic forward model where the covariance

matrix Cd is pre-determined (and usually taken as diagonal) by a

separate study of the measurement process, whereas Cp, or some

defining parameters for it, is included in the parameter vector θ and

updated in the posterior distribution. We defer discussion of the

form of model prediction covariance matrix, Cp, that we use in our

finite fault model to Section 4.

As with traditional optimization approaches, if we underestimate

our errors, we will overfit the data and produce posterior distribu-

tions that are too tightly peaked. (In traditional optimization, this

problem is overtly or sometimes unknowingly dealt with through

regularization.) Similarly, if we overestimate our errors, we will

underfit the data and our posterior distributions will be too broad.

The stochastic forward model corresponding to the Nds data sets

in eq. (2) is a joint distribution,

p(d|θ ) = p(d1, . . . , dNds
|θ ). (6)

We treat the predictions, d1, . . . , dNds
, as probabilistically indepen-

dent, so,

p(d|θ ) = p(d1|θ )p(d2|θ ) · · · p(dNds
|θ)

=

Nds
∏

i=1

p(di|θ ), (7)

where each p(di|θ ) is chosen as in eqs (4) and (5).

To apply Bayes Theorem (eq. 1), we substitute the observed data,

D, for d in eq. (7). This is done by setting di = Di in each stochastic

forward model. Then the posterior PDF is,

p(θ |D) ∝ p(D1|θ)p(D2|θ ) · · · p(DNds
|θ )p(θ )

= p(θ ) ·

Nds
∏

i=1

p(Di|θ ), (8)

where θ includes all parameters needed to define the suite of stochas-

tic forward models for all di, comprised of the parameters for all

deterministic forward models as well as the parameters defining the

probability models for the model prediction errors for each di. Thus,

we have the freedom to fuse as many data sets together as we want.

3 C A S C A D I N G A DA P T I V E

T R A N S I T I O NA L M E T RO P O L I S

I N PA R A L L E L : C AT M I P

3.1 CATMIP introduction

CATMIP is a parallel MCMC algorithm that efficiently samples

high-dimensional spaces. It is based on the Transitional Markov

Chain Monte Carlo (TMCMC) algorithm of Ching & Chen (2007)

which combines transitioning (akin to simulated annealing or tem-

pering) and resampling with the MCMC simulation of the Metropo-

lis algorithm (Metropolis et al. 1953). The Metropolis algorithm

uses a random walk to explore the model space and probabilistically

chooses whether or not to take a proposed step based on the prob-

ability associated with the candidate model. Intrinsically, the basic

Metropolis algorithm is not parallelizable because it uses a single

Markov chain. Further, the efficiency of the Metropolis algorithm

depends strongly on the probability distribution used to produce the

random walk steps, and it has difficultly sampling multiply peaked

PDFs efficiently.

CATMIP and TMCMC belong to a class of samplers which use

transitioning, an approach which shares several characteristics with

simulated annealing optimization (Kirkpatrick et al. 1983; Cerny

1985; Rothman 1985). In the Bayesian literature, it is more common

to find the term ‘tempering’ than ‘annealing’, although a distinction

is often made in which annealing is used to describe algorithms

which go from an initial ‘hot’ solution to a final ‘cold’ solution

while tempering algorithms allow both cooling and heating of the

solution. The use of tempering in Bayesian sampling dates back

at least to Marinari & Parisi (1992). CATMIP and TMCMC use

the annealing strategy. The initial ‘hot’ state of the solution is the

prior PDF which is broader than the final ‘cold’ posterior PDF.

Because we start with a broad distribution and then slowly ‘cool’ it

to the compact posterior distribution, it is easier for the sampler to

find all of the peaks of the posterior distribution. More importantly,

the particular variant of annealing we use, called transitioning (see

eq. 9), ensures that our population of samples are almost always at

equilibrium with the PDF we are trying to simulate, which makes

the sampling very efficient.

Both CATMIP and TMCMC employ resampling (Fig. 2), a pro-

cess in which less probable samples from the previous transitioning

step are replaced with more probable models. Resampling allows

samples trapped in regions of low probability to be transplanted to

become seeds for new Markov chains in regions of higher proba-

bility. As we will see later, this combination of transitioning and

resampling allows the CATMIP and TMCMC algorithms to out-

perform the Metropolis algorithm at sampling a PDF with multiple

peaks. Although the Markov chains do not mix with each other, in-

formation from all Markov chains is combined to calculate a model

covariance used to define the proposal PDF from which the can-

didate samples at each transitioning step are drawn. This adaptive

updating of the proposal PDF tunes the algorithm for maximum

efficiency.

The main difference between CATMIP and TMCMC is in how

the Metropolis algorithm is employed. In TMCMC, more proba-

ble models are assembled into longer Markov chains. In CATMIP,

more probable models spawn more Markov chains, leading to a con-

centration of multiple chains in regions of high probability. In this
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Bayesian finite fault earthquake modelling 1705

Figure 2. Schematic illustration of resampling process. This example begins with a set of 100 unique samples, and thus each sample has a frequency of one

(top). Normalized importance weights are then calculated for each sample from eq. (11) (middle). Finally, we make 100 random draws from the original set

of samples where the chance of selecting each sample is given by the normalized importance weights. The frequency with which each sample was drawn in

this trial is plotted (bottom). Note that there are still 100 samples although they are no longer unique as some samples have been duplicated while others have

been eliminated. The resampling process thus allows a set of samples to more closely approximate a target PDF (the normalized importance weights give the

ratio of the target probability for each sample to that sample’s probability in the PDF from which it was drawn) without the computational effort of having to

generate new samples. However, the gain in computational efficiency is at the loss of the number of unique samples of the target PDF.

respect, CATMIP is more similar to the Neighbourhood algorithm

(Sambridge 1999) which explores the parameter space by concen-

trating random walk sampling in regions which produce better (more

plausible) models.

3.2 CATMIP algorithm

Following Beck & Au (2002) and Ching & Chen (2007), we sample

from a series of ‘transitional’ intermediate PDFs that are controlled

by a tempering (or annealing) parameter, β,

f (θ |D, βm) ∝ p(θ )p(D|θ )βm

m = 0, 1, . . . , M

0 = β0 < β1 < β2 < · · · < βM = 1. (9)

Since f (θ |D, β0 = 0) = p(θ ), it can be simulated directly by draw-

ing samples from the prior distribution. We then sample from a

succession of PDFs, each of which is approximately equal to the

PDF we have just sampled, and which therefore is much easier to

simulate than it would be to directly sample from the final posterior

PDF without the information from the preceding cooling steps. Fi-

nally, we sample f (θ |D, βM = 1) ∝ p(θ )p(D|θ) ∝ p(θ |D), and thus

we have sampled the posterior PDF.

For each transitional stage, CATMIP requires three steps. First, a

new value for β is chosen. Secondly, the samples from the previous

transitional stage are resampled in proportion to their relative like-

lihoods as given by the next intermediate PDF. Third, each output

of the resampling process is used as the seed for a separate instance

of the Metropolis algorithm.

The total number of cooling steps, M, is not a parameter of the

CATMIP algorithm. Instead, M is simply the number of cooling

steps needed to reach β = 1 where each successive value of β is

calculated adaptively so that the difference between f (θ |D, βm) and

f (θ |D, βm+1) is small, ensuring that the next transitional PDF to be

simulated is fairly well approximated by the current set of samples.

This approach makes sampling f (θ |D, βm+1) very efficient.

By choosing β dynamically, the algorithm transitions optimally.

If the data are relatively uninformative, then β will converge to 1

quickly because increasing β has little effect on the intermediate

PDFs. The more informative the data, the more dissimilar the pos-

terior will be from the prior, and the more transitional PDFs are

required for efficiency. The most efficient cooling rate is obtained

by choosing βm + 1 so that the equivalent number of independent

samples after the resampling step, called the effective sample size,

is approximately N

2
where N is the total number of samples (for

definition, see Beck & Zuev 2013). Beck & Zuev (2013) show that

this optimal cooling rate can be obtained by choosing βm + 1 such

that cν[w(θm,i )] = 1, where θm,i is the ith model at cooling step

m, and cν denotes the coefficient of variation defined as the ratio

of the standard deviation to the mean of {w(θm,i ) : i = 1, . . . , N }.

{w(θm,i ) : i = 1, . . . , N } is a set of N importance (or plausibility)

weights each of which is the ratio of the ith sample’s probability at
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1706 S. E. Minson, M. Simons and J. L. Beck

βm + 1 to its probability at βm,

w(θm,i ) =
p(θm,i )p(D|θm,i )

βm+1

p(θm,i )p(D|θm,i )βm

= p(D|θm,i )
βm+1−βm . (10)

After an updated value for β is calculated, the current population

of models are resampled according to their probabilities at βm + 1

so that the likelihood of choosing any model is proportional to its

updated probability. To correct for the change in probability distri-

bution between βm and βm + 1, each sample θm,i must be assigned

the weight w (θm,i ) in eq. (10). During resampling, the chance of

drawing each model θm,i is proportional to w(θm,i ). Resampling

has the benefits of both redistributing the density of samples so

that they better approximate f (θ |D, βm+1) as well as creating a ge-

netic algorithm-like behaviour in which more unlikely models are

removed from the population in favour of increasing the number of

more likely models.

Each resampled model is used as the initial seed for an instance of

the Metropolis algorithm (see Appendix B). The Metropolis algo-

rithm uses a random walk through model space to produce models

whose density are proportional to the target PDF. The candidate

samples in the random walk are drawn from a proposal PDF from

which random numbers can be generated (typically a Gaussian PDF

centred on the current sample in the Markov chain). The efficiency

of the Metropolis algorithm at generating samples of the target PDF

is controlled by how similar the proposal PDF is to the target tran-

sitional PDF. Thus, it is important that the proposal PDF mimic the

target PDF as closely as possible.

We use a multivariate Gaussian PDF as our proposal PDF. To

make our Metropolis sampling as efficient as possible, we set the

covariance equal to the sample model covariance, Cm, calculated

from the current samples and scaled according to the acceptance

rate. By using the sample model covariance, Cm, in our proposal

PDF, the random walk will automatically take larger steps in direc-

tions in which the target PDF is broad and thus has large variance

(or covariance if there are trade-offs between model parameters),

and take smaller steps in directions where the target PDF is highly

peaked. We also dynamically rescale Cm so that the random walk

sampler takes larger steps and explores model space more efficiently

when the acceptance rate of candidate samples is high, but shrinks

the step size when too few acceptable models are found.

To construct the sample model covariance, Cm, we first note that

we have a set of samples from the wrong probability distribution:

our samples are from f (θ |D, βm) while we wish to calculate the co-

variance of f (θ |D, βm+1). We need to correct for this by weighting

each sample by the ratio of probabilities in eq. (10) and renormal-

izing (see e.g. Gelman et al. 2004). The weights of the N samples

at the (m + 1)th intermediate level are given by,

pm,i =
w(θm,i )

∑N

j=1 w(θm, j )
, (11)

where the importance weights, w(θm,i ), are defined in eq. (10). The

sample mean for the (m + 1)th level is then,

θ̄ =

N
∑

i=1

pm,iθm,i , (12)

and the sample covariance matrix is,

Cm =

N
∑

i=1

(θm,i − θ̄m)(θm,i − θ̄m)T pm,i . (13)

The proposal density for the Metropolis sampler (see Appendix

B) in CATMIP is q(y|x) = N (x,�m) with �m = c2
mCm and cm =

a + bR where R is the observed acceptance rate of the Metropo-

lis sampling and a and b are selected constants (Muto, personal

communication, 2008). In this way, we rescale our proposal density

by the acceptance rate of our sampler. When the acceptance rate

is higher, we increase the size of our random walk steps, allowing

greater exploration of the model space. When our acceptance rate

decreases, we take smaller steps to increase the chance that a can-

didate model will be accepted. a and b are not expected to have a

major effect on the efficiency of sampling, but merely act to tweak

the rescaling of the proposal PDF, and so we consider an investiga-

tion of possible optimal values for a and b to be beyond the scope of

this paper. Instead, for the performance tests and earthquake mod-

elling presented here, we will arbitrarily adopt a = 1
9

and b = 8
9

(Muto, personal communication, 2008; these values were also used

to produce the results in Muto & Beck 2008).

Adopting the current best approximation to the model covariance

for the Metropolis proposal density has the advantage that sampling

automatically adapts to both trade-offs between model parameters

and variations in model parameter resolution. For example, if we

have a two-variable problem in which the first model parameter

is well resolved and the second is poorly resolved, then the first

parameter will have a small posterior sample variance, whereas the

second will have a large sample variance. The sampler will then

update the current set of samples by taking random walk steps that

make small changes to the value of the first parameter and large

changes to the second parameter, efficiently exploring the range

of possible values for both. As a second example, consider a two-

variable parameter vector in which the values of the two model

parameters trade-off with each other, resulting in a large sample

model covariance. This information will be passed to the sampler

through the proposal PDF covariance, and the random walk will

take large steps in the direction of strongest correlation and small

steps in the perpendicular direction, optimizing the efficiency of

the sampler and obviating the need to carefully choose the model

design to avoid trade-offs.

The steps of the basic CATMIP algorithm without cascading and

a schematic illustration of these steps are given in Table 1 and Fig. 3,

respectively. (We will introduce cascading in Section 3.3.) The be-

haviour of the CATMIP algorithm while sampling a biased mixture

of 2-D Gaussians is shown in Fig. 4. In this example of a bi-modal

target PDF, the proposal PDF is initially broad and oriented across

the two regions of high probability, allowing the random walkers to

efficiently visit both high-probability areas. In later cooling steps,

the proposal PDF becomes more highly peaked, and the random

walk chains tend to ‘freeze’ into peaks as β → 1, allowing the

accumulation of samples within each peak of the target PDF. So,

though our proposal density is not necessarily optimally efficient for

multiply peaked model spaces, our adaptive proposal PDF based on

Cm can still improve the exploration of model parameters in multi-

ply peaked model spaces.

The number of samples (as specified by both the number of

Markov chains, N, and the length of each Markov chain, Nsteps)

needed to adequately represent the posterior distribution is mainly

governed by the number of model parameters in θ , with more and

longer chains needed to simulate higher-dimensional models. The

‘Curse of Dimensionality’ (Bellman 1957) requires that the number

of samples, N, be large enough to represent the target PDF. The

length of each Markov chain must be at least long enough to exceed

the ‘burn-in’ period and, in practice, must be significantly longer

to allow sufficient exploration of the parameter space. Appropriate
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Table 1. CATMIP algorithm.

(1) Set m = 0. Generate N samples {θ0} = {θ0,1 . . . θ0,N } from the prior PDF f0 = p(θ).

(2) Set m = m + 1. Choose βm such that the cv[w] equals some target value, where w

is the vector of N weights in eq. (10) for all N samples {θm−1}.

(3) Calculate �m = c2
mCm using eq. (13).

(4) Draw N samples from {θm−1} = {θm−1,1, ..., θm−1,N } with probability distribution

{pm − 1} from eq. (11). This set of N resampled models is {θ̂m−1}.

(5) Use each resampled model in {θ̂m−1} as the seed for generating Nsteps models from the

Metropolis algorithm using a Gaussian proposal density with covariance �m.

(6) Collect {θm}, the set of samples comprised of the final model from each of the N Markov

chains. Thus, the total number of samples, N, is unchanged.

(7) Repeat steps 2–6 until sampling at βM = 1 is completed.

Figure 3. CATMIP algorithm schematic. This cartoon illustrates one com-

plete cooling stage of the CATMIP algorithm. The five samples from βm are

resampled and then an instance of the Metropolis algorithm is run for each

of the resulting samples. Numbers indicate the frequency of each model

after resampling. The five red samples comprise the posterior distribution

for βm + 1. The algorithm is plotted with very short Markov chains and

a 100 per cent acceptance rate for simplicity. In applications, the Markov

chains would be much longer and the acceptance rate much lower.

values for N and Nsteps can be determined through preliminary per-

formance tests in which synthetic data from known source models

are inverted for a variety of values of N and Nsteps to determine the

minimum number of samples needed to recover the source model

with sufficient precision. The results of a series of such trials for a

number of fault parametrizations will be presented in Figs 11 and

12 in Section 5.

Altogether, CATMIP contains a number of different features

which increase the efficiency with which it can sample even com-

plex and high-dimensional PDFs. Use of multiple Markov chains

allow the sampler to explore a wider range of the parameter space.

Since we only keep the final sample from each Markov chain, these

samples are much less correlated than if a single Markov chain was

used. The sampling efficiency of the Markov chains is optimized

by using a proposal PDF based on the current best estimate of the

target PDF being simulated, and the proposal PDF is rescaled ac-

cording to the sampler’s rejection rate. Transitioning acts to make

the sampling process easier by not only ensuring that our current

population of samples is always nearly in equilibrium with the cur-

rent target PDF but also by allowing the sampler to begin working

over a broader support region of this target PDF. Finally, through

resampling, individual samples can be ‘teleported’ directly from

regions of low probability to regions of high probability without

having to first random walk to the new location.

3.3 Cascading

To handle even larger parameter spaces, we wrap the basic sampling

algorithm in an approach we call cascading, in which we analyse a

subset of the data and model parameters and then use the resulting

posterior PDF as the basis of the prior PDF for the full inverse

problem. Consider a case in which we have two data sets, D1 and

D2, each of which may contain multiple types of data, and that we

can divide the parameters in θ into two groups so that θ = (θ1, θ2),

where θ1, θ 2 are taken as independent a priori. Further, suppose

that the data likelihood for D1 depends only on model parameters θ1

while the data likelihood for D2 depends on both θ1 and additional

model parameters θ2, and that given θ1 and θ2, our predictions for

D1 and D2 are independent. We can write our posterior distribution

as

p(θ |D) ∝ p(θ )p(D|θ )

= p(θ 1)p(θ2)p(D1|θ1)p(D2|θ1, θ 2)

= [p(θ1)p(D1|θ1)]p(θ2)p(D2|θ1, θ2)

∝ p(θ1|D1)p(θ2)p(D2|θ1, θ2). (14)

Thus, we can first update θ1 using D1, and then update θ1 and θ2

using D2 with the joint prior PDF p(θ1|D1)p(θ2).

We can incorporate eq. (14) into our transitioning scheme by

rewriting our transitional distribution in eq. (9) as,

f (θ |D, βm, γn) ∝ p(θ1)p(θ2)p(D1|θ1)βm p(D2|θ1, θ2)γn . (15)

To sample this joint distribution, use the algorithm in Table 1

twice to sample the following distributions:

1. f (θ1|D1, βm) ∝ p(θ1)p(D1|θ1)βm

0 ≤ βm ≤ 1

2. f (θ |D, γn) ∝ p(θ1)p(D1|θ1)p(θ2)p(D2|θ1, θ2)γn

0 ≤ γn ≤ 1. (16)
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1708 S. E. Minson, M. Simons and J. L. Beck

Figure 4. CATMIP algorithm example. The algorithm begins by directly sampling the prior distribution (row 1). A new value for β is calculated and the

distribution is resampled (column 1). The covariance of samples and acceptance rate is used to design a proposal PDF (column 2) for use in the Metropolis

algorithm (column 3). The final sample from each of 10 000 Markov chains comprise the new PDF (column 4). In this example, the prior distribution is uniform

and the target distribution is the sum of two Gaussians one of which has a factor of three greater amplitude than the other. Both Gaussians in the target PDF

have variance �ii = 0.01 and covariance �ij = 0. The target PDF is plotted in the top right corner for reference.

Cascading allows us to sample the full joint posterior PDF cre-

ated from a variety of different deterministic models, different er-

ror models and/or different data sets by first sampling a smaller

and potentially much lower-dimensional inverse problem and then

leveraging the information from that distribution to more efficiently

simulate the solution to the full inverse problem. Our final posterior

PDF is exactly the joint posterior PDF for the joint inverse problem,

and thus cascading is not an approximation. Cascading is simply a

substantially more efficient way to sample the posterior PDFs for

large inverse problems.

3.4 CATMIP versus TMCMC versus Metropolis

To evaluate the efficiency of CATMIP, we compare CATMIP to

TMCMC and the Metropolis algorithm. Loosely based on Example

2(VIII) in Ching & Chen (2007), we used all three samplers to

simulate a target distribution which is a biased mixture of 10-D

Gaussians:

0.1N (μ1, σ
2I10) + 0.9N (μ2, σ

2I10)

μ1 =

[

1

2
,

1

2
,

1

2
,

1

2
,

1

2
,

1

2
,

1

2
,

1

2
,

1

2
,

1

2

]

μ2 = −μ1

σ = 0.1

I10 = 10 − by − 10 identity matrix. (17)

The prior PDF for this test is the uniform distribution U(−2, 2).

Both CATMIP and TMCMC are run with a target cν of 1.

All three samplers were set up so that they drew approximately

400 000 samples and thus had equal computational expenses.

Note that we cannot prescribe the total number of samples pre-

cisely because both CATMIP and TMCMC choose the cooling

(or transitioning) schedule dynamically and thus the final number

of model evaluations is not known in advance of running the al-

gorithm. The Metropolis algorithm was run for 400 000 samples

with the random walk initiating at the origin. TMCMC was run

with 20 000 samples; it took 20 cooling steps to complete (M =

19 in eq. 9), for a total of 400 000 samples over the lifetime of

the algorithm. CATMIP was run with N = 2200 Markov chains

where each Markov chain required 15 forward model evaluations,

or 33 000 samples per cooling step; it completed in 13 cooling steps

(M = 12), for a total of 398 200 samples over the lifetime of the

algorithm.

The marginal distributions for one dimension of the tar-

get distribution are shown in Fig. 5. (These are calculated by

taking the ith component of all samples θ .) The Metropolis

algorithm has difficulty with the multimodal distribution, and

becomes trapped in one peak of the target PDF. (Of course,

given enough samples, the Metropolis random walk would even-

tually find the other peak.) TMCMC and CATMIP image both

peaks of the distribution, but TMCMC fails to reproduce the

relative amplitudes of the two peaks, demonstrating the impor-

tance of the fact that CATMIP includes more MCMC explo-

ration of the parameter space than TMCMC. Overall, CATMIP

can better reproduce the target distribution with less computational

expense.
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Figure 5. Comparison of CATMIP, TMCMC and Metropolis algorithms.

The marginal distributions for one of the 10 spatial axes is shown.

Figure 6. Cartoon showing typical parametrization of fault slip. The fault

surface is discretized into a set of patches. The sampling process then finds

the distribution of the average slip in that patch.

4 A B AY E S I A N F I N I T E FAU LT

PA R A M E T R I Z AT I O N

As the name suggests, a finite fault earthquake source model consists

of the history of an earthquake source (its spatial and temporal

evolution) over a fault surface of finite extent (Fig. 6). Thus, we

must determine all faulting parameters at many points in space and

time. For Bayesian sampling, we need a model with a tractable

number of free parameters, a computationally fast forward model

and a prior distribution. There is not much flexibility when choosing

the spatial complexity of the fault model: it is mostly determined

by the spatial resolution of the available data and the frequency

content of the kinematic data being used. So our only option is to

describe each rupture source in space with as few parameters as

possible. In an attempt to balance computational and sampling cost

with reasonable flexibility in the source model, we use four faulting

parameters per source: slip in two directions, rupture velocity and

source duration. This model, thus, requires that each point only

ruptures once with a prescribed functional form for its temporal

evolution.

4.1 Kinematic source model

The displacements due to a kinematic seismic source in an elas-

tic medium can be represented by the sum of a series of discrete

sources,

d̂ i (ζ , t) =

2
∑

j=1

ns
∑

k=1

U k
j g̃k

i, j (ζ , t − t k
0 |T k

r ), (18)

where k is an index over all ns source locations, U k
j is the final

slip in the jth direction at the kth source, and g̃k
i, j (ζ , t − t k

0 |T k
r ) =

∫ min(t−tk
0
,T k

r )

0 s(τ |T k
r )G̃k

i, j (ζ , t − τ )dτ given that G̃ is the Green’s

function that maps a unit dislocation in the jth direction at the kth

source location to the ith direction at receiver location ζ , s(τ |T k
r )

is a source-time function with slip duration T k
r at the kth source

location and t k
0 is the time of rupture initiation at the kth source

location. The index j would normally run 1 to 3 but, since we are

interested in shear dislocations and not tensile faults, we will only

consider the two components of slip that lie parallel to the fault

plane. Also, we choose to parametrize our source-time function, s,

as a triangle.

There are four free parameters in eq. (18) for each point source:

two components of slip, slip duration and initial rupture time. Rather

than directly modelling t0 (for which there is no intuitive a priori

knowledge), we instead solve for a rupture velocity, Vr, at each

source location. To determine how much to time-shift each source

in our model, we then map our hypocentre location and rupture ve-

locity field into initial rupture times at each patch. This mapping can

be done quickly and efficiently using the Fast Sweeping Algorithm

(Zhao 2005), a level-set method which uses a Godunov upwind

difference scheme (Rouy & Tourin 1992) for solving the eikonal

equation. This Vr-based parametrization ensures that the resulting

rupture propagation is causal.

Eq. (18) convolves the source-time function, s(τ |T k
r ), and the

point source Green’s function, G̃, to evaluate the modified Green’s

function, g̃. We pre-compute a set of modified Green’s functions

for a wide variety of values for Tr, and, at each forward model

evaluation, use a stored version of g̃. This approach significantly

increases efficiency since convolving the source-time function is one

of the costliest parts of evaluating the kinematic forward model.

Our kinematic model has one triangular source-time function per

patch and freely varying rupture velocity. This model design is al-

most the opposite approach to Kikuchi & Kanamori (1982) who

used a complex source-time function with a fixed rupture velocity.

Cohee & Beroza (1994a) concluded, somewhat unsurprisingly, that

the former approach does a better job of recovering the rupture ve-

locity of the source at the expense of doing a worse job at estimating

rise time; but they also found that source models which can only

rupture once do a better job at estimating the seismic moment.

The data likelihood comes from our kinematic stochastic forward

model (as described in Section 2.2),

p(Dk|θ ) = p(Dk|θ s, θk)

=
1

(2π )
Nk
2 |Ck

χ |
1
2

e− 1
2

[Dk−Gk(θ )−μk]T Ck
χ

−1
[Dk−Gk(θ )−μk], (19)

where Dk is an Nk-dimensional vector of the observed kinematic

time-series such as seismograms or high-rate GPS, Gk(θ ) = d̂k is

the corresponding output vector of the kinematic forward model

(eq. 18) and θ is a vector of model parameters. μk is the combined

bias of our observation and prediction errors, and may be taken to

be 0. Following the cascading approach (Section 3.3), we separate

θ into θ s, the set of parameters sufficient to define the static source

model, and θk, a vector of kinematic fault parameters. θ s is identified

with the vector of 2 × ns slip parameters, U k
j , in eq. (18). θk

contains Tr and Vr for each source and, optionally, the location
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1710 S. E. Minson, M. Simons and J. L. Beck

of the hypocentre on the fault surface. Ck

χ is a covariance matrix

which models the uncertainty from the measurement errors and

from model prediction errors as introduced in Section 2. (Ck

χ is

used instead of Cχ to emphasize that this is the covariance matrix

for the kinematic model.)

4.2 Static source model

In the static case, the time evolution of the seismic source drops out

and eq. (18) simplifies to,

d̂i (ζ ) =
∑

j

ns
∑

k=1

U k
j · g̃k

i, j (ζ , ∞). (20)

We can rewrite the above in matrix notation for a discrete set of

observation locations,

d̂s = Gs · θ s,

where θ s is the same as in eq. (19), Gs is a matrix of Green’s

functions, and d̂s is a vector of data predictions.

Introducing a covariance matrix, Cs

χ , and a bias, μs (which again

may be taken to be 0), as in eq. (19), the associated data likelihood

for static data, Ds , a given Ns-dimensional vector, is,

p(Ds|θ s) =
1

(2π )
Ns
2 |Cs

χ |
1
2

e− 1
2

(Ds−Gs·θ s−μs)T Cs
χ

−1(Ds−Gs ·θ s−μs). (21)

Note that θ s is a subvector of θ in eq. (19). In fact, Ds could be

viewed as a subset of Dk since it contains just the static part of the

measured kinematic time history.

4.3 Choice of prior distribution

The Bayesian formulation of the inverse problem requires that we

specify a prior distribution to use with our model. The one source

parameter of which we usually have good a priori information is the

seismic moment tensor (from teleseismic data). Although the seis-

mic moment tensor does not tell us anything about the distribution

of slip, it tells us something about the average slip direction (rake)

and the total amount of slip summed over all fault patches. To turn

these observations into a prior distribution of slip, we use a rotated

coordinate system with one axis, U‖, aligned with the teleseismic

rake direction and the other axis, U⊥, perpendicular to the rake

direction (Fig. 7). [For efficiency, we rotate our Green’s functions

into (U⊥, U‖) coordinates thus eliminating the need to transform the

forward model for each likelihood evaluation.] The prior on U⊥ is a

Gaussian with zero mean and standard deviation, σ , that is chosen

to be smaller than the anticipated magnitude of the parallel compo-

nent of slip (since we assume that U‖ is aligned with the dominant

slip direction). Thus, we allow variation in the rake but assume that

the most probable variation is no variation. For the prior on U‖, we

use a one-sided semi-infinite uniform prior probability: we allow

any positive value for U‖, but forbid large amounts of back-slip.

(This choice of prior is equivalent to a uniform distribution between

a small negative amount of slip and some large positive value of

slip, umax, which the sampler will never reach.) We allow for slightly

negative U‖ to avoid undersampling models with small slips due to

the hard bound on minimum U‖. Thus our prior distribution on the

static slip model is,

p(θ s) = p(U⊥)p(U‖)

= N
(

0, σ 2Ins

)

U(umin, umax)ns , (22)

Figure 7. Slip coordinate system. The Bayesian finite fault parametrization

uses components of slip, U⊥ and U‖, which lie in the fault plane but are

orthogonal to each other. U‖ is aligned with the direction of hangingwall

motion given by the rake angle, λ, which is chosen from the catalogue

moment tensor solution for the earthquake.

where Ins denotes the ns-by-ns identity matrix, U(umin, umax)ns is the

uniform PDF in ns dimensions, U⊥ and U‖ are vectors in R
ns and

ns represents the number of discrete source locations in our forward

model (or, equivalently, the number of patches on our tessellated

fault plane), as in eq. (18).

For the transitioning described in Section 3.2, we must first sim-

ulate f (θ |D, 0) = p(θ ). Thus, we must draw samples from the prior

slip distributions. Since our prior on U⊥ is a zero-mean Gaussian,

the average net perpendicular slip of each slip model is zero. So the

moment of each random slip model is controlled by U‖. If initially

we drew samples from the uniform distribution, U(umin, umax), our

initial population of models would include slip models whose cor-

responding moments spanned many orders of magnitude. So for

efficiency, we begin at m = 0, β = 0, with a population of sam-

ples which have plausible moment magnitudes. We accomplish this

by drawing our initial samples of slip in the U‖ direction from the

Dirichlet distribution which is applicable to problems where a finite

number of states must sum to a particular value (see e.g. Gelman

et al. 2004). A ns-dimensional sample of the Dirichlet distribution

produces a set of ns positive random numbers which sum to a spec-

ified value, allowing us to pre-determine the total moment for each

random slip model in f (θ |D, 0) (Fig. 8). We take a Gaussian un-

certainty on the moment magnitude, Mw, for the earthquake. The

standard deviation of the Gaussian is set to 0.5 magnitude units

based on our intuition about the typical errors associated with mag-

nitudes reported in seismic catalogues. For each prior sample, we

draw a magnitude from a Gaussian distribution and then generate

random slips on each patch using the Dirichlet distribution so that

the total slip equals the proposed magnitude (Fig. 9). The use of

samples from the Dirichlet distribution is a shortcut to ensure that

the initial pool of models have enough probable models. Other-

wise, almost all of the initial models would be useless for future

cooling steps since even a slight inclusion of the data likelihood

would reject the models with slips corresponding to moments that

were wrong by an order of magnitude or more. It should be empha-

sized that this entire process of drawing samples from the Dirichlet

distribution scaled by a reasonable array of seismic moments is

simply our method of generating our seed models for initializing

CATMIP. Neither the Gaussian distribution on Mw nor the Dirichlet

PDF are used as priors on our slip model and thus have no effect

on which candidate models are accepted or rejected for the lifetime

of the CATMIP algorithm. Our use of the Dirichlet distribution for

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
9
4
/3

/1
7
0
1
/6

4
5
9
3
1
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2
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Figure 8. Dirichlet distribution. One sample of a k-dimensional Dirichlet distribution produces k random numbers which sum to one. Here, we plot the results

of 10 000 draws from the Dirichlet distribution for one, two, four and eight patch slip models (right). The distribution becomes more highly peaked near zero

as the number of patches increases. This behaviour can be intuited from the fact that in order for any one patch to have slip approaching one, the slips on all

other patches must approach zero. Since each patch has an equal probability of observing a given slip value, for each time that a particular patch has a value

near one, it approaches nearly zero k − 1 times. Note that the sum of the slip on the patches equals 1 for each of the 10 000 draws (left).

Figure 9. Methodology for generating initial slip distributions. We describe the magnitude of the earthquake by a Gaussian distribution centred on the catalogue

magnitude for the event (left-hand panel). This yields a log-normal distribution for scalar seismic moment (centre panel). We then use the Dirichlet distribution

to translate the distribution of total moment for the earthquake into a distribution of slip on each patch, and we assume that this slip is aligned with the rake

direction of the earthquake as shown for a selected fault patch (right-hand panel).

initialization purposes merely increases the efficiency of our sam-

pling by ensuring that our random walk seeds come from models

which we cannot eliminate a priori due to unreasonably low or high

seismic moments.

We use uniform priors on Tr and Vr. The bounds on Tr are based

on reasonable slip durations. Vr is allowed to vary between 0 and

the P-wave velocity of our elastic Earth structure (if we want to

include all physically allowable rupture velocities) or the S-wave

velocity (if we want to forbid super-shear rupture). We choose the

prior PDF on the hypocentre position, H0, to be Gaussian with its

mean (μH0
) centred on a location from an earthquake catalogue or

independent study, and its covariance (�H0
) based on the formal

error associated with that hypocentre location or our intuition about

typical hypocentre location errors. (For the example in Section 5, we

will assume that our hypocentre location has a standard deviation

of 10 km.) We define the hypocentre location by two coordinates:

the distance of the hypocentre along-strike and the distance of the

hypocentre downdip. Thus, H0 is a two-element vector, and Tr and

Vr are each ns-element vectors where ns is the number of discrete

seismic sources. We can then write our prior on the kinematic model

as,

p(m) = p(θ s, θk)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

p(θ s)U(Trmin , Trmax )ns U(Vrmin , Vrmax )ns

for fixed hypocentre

p(θ s)U(Trmin , Trmax )ns U(Vrmin , Vrmax )ns N (μH0
, �H0

)

for uncertain hypocentre.

(23)

4.4 Implementation of cascading

For many earthquakes we have both kinematic and static data, al-

lowing us to take advantage of the cascading technique. As the

static data depend only on the static slip distribution, we can use

the posterior static slip distribution as a prior distribution for a full

kinematic model which also includes rupture velocity, slip duration,

and possibly hypocentre location. Given our static parameters (θ s)

and our kinematic-only parameters (θk), the posterior PDF of the
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1712 S. E. Minson, M. Simons and J. L. Beck

full model (θ = [θ s, θk]) can be written as (see eq. 14)

p(θ |D) ∝ p(θ s)p(θk)p(Ds|θ s)p(Dk|θk, θ s)

∝ p(θ s|Ds)p(θk)p(Dk|θk, θ s), (24)

where θ s = (U⊥, U‖) and θk = (Tr, Vr), for fixed hypocentre, or

θk = (Tr, Vr, H0), for uncertain hypocentre.

When fusing static and kinematic earthquake data into updat-

ing a single source model, we solve the static problem first. Then,

through cascading, we use the posterior distribution from modelling

the static data to make the prior distribution for the full kinematic

problem. This approach significantly decreases the computational

cost in multiple ways. First, we can treat the model as two problems,

one of which has half as many free parameters as the full problem

without cascading. Secondly, we can explore the parameter space

of the slip distribution using only the static forward model, which

is significantly faster to compute than the full kinematic forward

model. (The kinematic forward model is about an order of magni-

tude computationally slower than the static forward model.) Third,

once we have sampled the slip distribution based on the static data,

we have explored a large part of the joint kinematic parameter space,

making it much easier to sample for the kinematic model than if

we started without any knowledge of the slip distribution. Finally,

cascading has the additional value that it allows us to assess the

progressive impact of adding additional data sets.

4.5 Model prediction error

As discussed in Section 2, the deficiencies in our Earth structure

model, source parametrization and data interpretation can far exceed

the lack of accuracy in our observations. To determine the effects

of these additional error sources on our solution and thus update

our a posteriori uncertainties, we include the uncertainty in the

model prediction error. For our particular problem, shortcomings in

our Earth structure are probably the single largest source of error

and these errors increase with the size of the source displacement.

Consider a set of Green’s functions which have a 10 per cent error

so that if a given source displacement should produce 10 units of

surface displacement these Green’s functions only predict 9 units

of displacement, leaving a residual between the observations and

the model’s predictions of 1 unit. Then an earthquake that was

an order of magnitude larger would produce 10 times as much

source displacement and 100 units of surface displacement, but our

Green’s functions yield only 90 units of slip leaving a residual misfit

of 10. The size of the residual is not constant but instead grows

proportionally with the size of the input. We could parametrize

our model prediction error variance as a percentage of G(m), but

this would bias our solution since models which overpredicted the

observations would be more plausible than models that underpredict

because the larger output models would be accompanied by larger

prediction errors. Instead, we use our observations as a proxy for

G(m) and adopt a Gaussian distribution for the predicted data (eq. 4)

with covariance matrix, Cχ , that has the form,

Cχ = Cd + Cp

= Cd + α2diag(D2
1, ..., D2

Ndp
), (25)

where α represents the fractional error of our forward model. Note

that, since we can specify a different Cχ for each data set, we can

solve for a different fractional error, α, for each data set. Thus we

need not assume that the Green’s functions for tsunami data contain

the same errors as the Green’s functions for GPS data, and we can

let the inversion determine the errors associated with the prediction

errors for each data set (and thus, in a sense, the appropriate relative

weights for each data set).

The parameter α must be non-negative. Tarantola (2005) argues

that positive scale quantities, termed Jeffreys parameters after Jef-

freys (1939), should be replaced with the log of that parameter to

both acknowledge that the inverse of the parameter could be used in

its place and to preserve the scale invariance of both the original and

inverse quantities. Thus, we sample for ln α instead of α, and adopt

a Gaussian prior on ln α. As with all prior PDFs, our choice for the

prior PDF on ln α must be based on our a priori intuition about the

quantity in question, in this case plausible Green’s functions errors

due to the fact that the elastic structure is poorly known. For exam-

ple, say that a researcher felt that it is likely that there is a 5 per cent

error in a set of Green’s functions but that it is unlikely that these

errors exceed 20 per cent so that there is 95 per cent probability that

the error is 20 per cent or less. Then the prior on ln α could be set

to ln α = N (ln 0.05, σ ) where σ is chosen so that the cumulative

density function (CDF) at ln α = ln 0.2 is 0.95. (However, in the

examples presented in Section 5, we will use very broad priors on

ln α to demonstrate the ability of the sampler to recover the error in

the Green’s functions with poor prior information.)

Our parametrization of the model prediction error has the advan-

tage of providing error estimates that are insensitive to (by automat-

ically scaling with) the magnitude of the earthquake, but it lacks any

sense of temporal dependence for waveforms (for contrast, see Yagi

& Fukahata 2011), and thus may be less optimal for seismic data,

tsunami records and the like. To better capture the physics of the real

problem, we could develop a more complex model for the predic-

tion error uncertainty than our current model of it. For example, the

predicted data from the Green’s functions for each source–receiver

pair should not be modelled as independent: the predicted surface

displacements slowly vary as a function of distance and azimuth

from the source and so should be modelled as correlated. Similarly,

any error in the elastic structure should produce a slowly spatially

varying set of model prediction errors. Thus the model prediction

errors at neighbouring station locations should not be modelled as

independent but should instead have non-zero covariance. However,

choosing an appropriate form for this covariance matrix is beyond

the scope of this paper.

Except in the case of very large amounts of data and model pa-

rameters, evaluating the data likelihood is quite fast if Cχ is fixed

a priori and Cχ
−1 is pre-computed. If the model prediction error

variance is included as a free parameter, then Cp in eq. (5) changes

with every sample of the target PDF, and Cχ
−1 must be recalcu-

lated for every evaluation of the forward model. In this scenario,

it is generally necessary to assume that Cd and Cp, and thus Cχ ,

are diagonal, simply to make calculating Cχ
−1 computationally ef-

ficient. Thus, due to computational expense, we may be forced to

choose between either updating a diagonal model prediction vari-

ance which ignores the error covariances or instead using the full

error covariances while holding Cχ
−1 partially or totally fixed.

5 P E R F O R M A N C E T E S T S

We present a series of tests of Bayesian finite fault models using syn-

thetic data. These tests demonstrate the performance of our Bayesian

sampling scheme and provide intuition about Bayesian inversion of

finite fault earthquake models. We apply our methodology to real

earthquake data in Paper II.
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Bayesian finite fault earthquake modelling 1713

Figure 10. Source–receiver geometry for synthetic finite fault models. Syn-

thetic three-component surface displacements were calculated for each of

the locations denoted by blue triangles. Pink triangles represent colocated

static and kinematic observations for the synthetic kinematic models. The

surface projection of the fault plane is shown with a thick black line. The

fault dips towards the bottom of the figure at an angle of 18◦. The depth to

the top of the fault is 40 km.

5.1 Synthetic static models with abundant data

We first consider the case of a shallowly dipping thrust fault (Fig. 6)

located beneath dense geodetic observations (Fig. 10). We use syn-

thetic three-component displacements at 117 surface locations to

constrain static finite fault slip models using various parametriza-

tions. The fault is a single plane embedded in a 1-D layered elastic

structure. Although the model is perfect and the data noise-free,

for the purposes of computing the inverse, the data variance (diag-

onal elements of Cd) is taken to be 0.1 cm2 for all observations.

Our prior PDFs for each component of slip on each patch are

U⊥ = N (0m, 3m) and U‖ = U(−1m, 10m).

Since the slip distribution consists of two components of motion

on each fault patch, the total number of free parameters in each syn-

thetic model is twice the number of fault patches. When the fault

surface is discretized into a few large patches, the inverse prob-

lem is essentially overdetermined, and the resulting posterior PDF

is tightly peaked with a mean that perfectly matches the synthetic

source model (Fig. 11). As the number of patches (and thus the num-

ber of free parameters) increases, the number of samples required to

reproduce the synthetic slip distribution increases. At some point,

the quality of the mean solution begins to decline, not because of

undersampling, but because the patch size has become so small

that the data can no longer resolve the model given this source–

receiver geometry and assumed error structure. (In the optimization

approach, one would say that the inverse problem has become un-

derdetermined.) When model resolution is lost, the displacements

on neighbouring patches begin to trade-off with each other. (We

note that underparametrization can conversely create small poste-

rior variances that may lead to over confidence in the model.) The

mean of all of these possible models results in a smoother slip dis-

tribution than the synthetic source model. Our data only resolve

local averages and not the slip on each patch individually. So the

posterior PDF for each patch is no longer highly peaked. There are

many possible models that are consistent with the data and, in real

applications, we should consider all of these models.

Figure 11. Sampling a synthetic static finite fault model. The left-hand col-

umn shows the input, that is the slip distributions used to create the synthetic

surface displacements for each test. The quality of the output of CATMIP

sampling is shown in the middle column as evaluated by the variance re-

duction between the input and the mean of the output slip distributions. The

number of Markov chains and their lengths correspond to the parameters N

and Nsteps in the CATMIP algorithm, respectively. The mean of the posterior

samples for the CATMIP run with the largest number of samples is shown in

the right-hand column. The source–receiver geometry for this test is mapped

in Fig. 10.

The computational cost of each CATMIP cooling step scales

with the number of samples, which is the product of the number of

Markov chains with the length of each chain. We see in Fig. 11 that

the quality of the posterior distribution is approximately equal for

equal products of chain length and number of chains. There is some

improvement in the output for sampling runs with longer chain

lengths (larger Nsteps) and smaller number of chains (smaller N), but

some of this effect may simply be a manifestation of the need to

have sufficiently long random walks to exceed the ‘burn-in’ period

of each Markov chain (Fig. 12). Regardless, N must always be large

enough so that the number of samples can fully define the posterior

PDF and, to take maximum advantage of CATMIP’s embarassingly

parallel architecture, N should be a large multiple of the number of

worker CPUs.

5.2 Synthetic static models with prediction error

estimation

To test the effects of errors in our elastic structure on slip modelling,

we generated synthetic observations using the same layered elastic

space as in Section 5.1 and then added Gaussian noise to those

surface displacements. For this test, we used the correct formal
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1714 S. E. Minson, M. Simons and J. L. Beck

Figure 12. Computational cost for different CATMIP runs using a variety

of input parameters. Results using the 144 patch synthetic static slip model

in Fig. 11 are shown. The quality of the posterior mean is measured by the

variance reduction with respect to the input slip model. The computational

cost of CATMIP consists almost entirely of the number of samples drawn

(or, equivalently, number of forward models evaluated) over the lifetime of

the algorithm. The x-axis is this computational cost. CATMIP has two input

parameters: the number of Markov chains and the length of each chain.

Each line in the plot represents a different number of Markov chains, and

the colour of the symbols indicates the length of those Markov chains. The

total number of model evaluations is a function of not only the number of

Markov chains and their lengths, but also the number of cooling steps, which

is chosen dynamically by CATMIP during the run.

observational error variance, σ 2
d , and source geometry but intro-

duced a prediction error into our forward model by using Green’s

functions for a homogeneous elastic half-space. The difference be-

tween our synthetic observations and the predicted displacements

for the true slip distribution propagated through the corrupted for-

ward model are shown in Figs 13 and 14. It is clear from these

figures that the formal observation errors significantly underesti-

mate the true error in our model.

We used two modelling schemes for the Bayesian inversion of the

slip. The first mimics traditional inversion techniques which ignore

the prediction error and only model the formal observational errors.

This approach is equivalent to α = 0 in eq. (25), so the covariance

matrix in the likelihood function is Cχ = Cd = σ 2
d INdp

. The second

scheme models the prediction error as outlined in Section 4.5. The

results from these two techniques are compared in Fig. 15. The

inclusion of model prediction error does not significantly improve

the accuracy of the mean of the posterior PDF. Once observational

noise has corrupted the data or prediction errors bias our forward

model, the model which best fits the observations is likely no longer

the true source model, at least for overparametrized inverse prob-

lems. Thus, the mean or peak of our posterior PDF will not match

the true source model. There is no way to recover the model res-

olution that has been lost through observational noise and a poor

forward model, and estimating the prediction error does nothing to

help this. Instead, estimating the model prediction error increases

the effective errors in our forward model and thus our posterior

Figure 13. Prediction errors for synthetic static finite fault model. Left-hand

panel: Synthetic surface displacements were calculated using the source

model plotted in colour. The sense of fault motion is thrust and the fault

geometry is the same as in Fig. 10. Vectors are horizontal displacements

at selected observation points. The black vectors show our synthetic ob-

servations which were generated using a 1-D layered elastic structure and

Gaussian zero-mean observation noise with a variance of 0.1 cm2. 95 per

cent confidence ellipses for the formal observational error are plotted as

black circles. The blue vectors are the predicted surface displacements from

propagating the synthetic source model through an imperfect elastic struc-

ture, specifically a homogeneous elastic half-space. The difference between

these two sets of vectors is the total prediction error and is plotted in Fig. 14.

Right-hand panel: The background slip model is the mean of the posterior

PDF for the inversion including model prediction error (i.e. the same slip

model that is plotted in red in Fig. 15), and the red vectors are the predicted

surface displacements due to this slip model. The observations (black vec-

tors) are unchanged, but the uncertainties on the observations are now the

95 per cent confidence ellipses based on the covariance matrix of the total

prediction error: Cχ = Cd + ᾱ2diag(D2
1 , . . . , D2

Ndp
), where Cd = 0.1 cm2I

and ᾱ = 0.1250 is the mean of the posterior distribution on α.

Figure 14. Comparison of histogram of total errors (data errors plus pre-

diction errors; blue histogram) for the model in Fig. 13 with the formal

observation error distribution (red line). The formal observational error is

Gaussian with mean zero and variance σ 2
d = 0.1 cm2 for the true slip with

correct Green’s functions. The actual prediction error for the true slip with

incorrect Green’s functions is biased (i.e. the mean is not zero) and the total

error histogram is significantly broader than the formal observational error.

The mean and standard deviation of the total error for the true slip model

are −0.2743 and 1.1451 cm, respectively.

PDF, helping to ensure that the true model lies within the posterior

95 per cent confidence ellipses 95 per cent of the time. In contrast,

ignoring the prediction errors gives too much weight to fitting the

data.
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Bayesian finite fault earthquake modelling 1715

Figure 15. Effects of including model prediction errors for the 36-patch model in Fig. 11. The x-axis and y-axis represent the strike-slip and dip-slip components

of displacement on each fault patch, respectively. Yellow circles indicate input slip used to generate the synthetic observations. The small circles and ellipses are

the mean and 95 per cent confidence ellipses for posterior PDFs generated with (red) and without (black) including the model prediction error in the inversion.

Figure 16. Posterior model prediction error for synthetic static finite fault model. The PDFs for the prior (grey) and posterior (blue) model prediction error

distributions are shown. In this example, both μs and α (as defined in eqs (21) and (25)) were estimated as part of the sampling process. The prior on μs is a

Gaussian, N (0 cm, 5 cm), whereas α has a log-normal prior such that ln α ∼ N (0, 5).

In Fig. 15, only the horizontal component of slip on the bottom

right fault patch is definitely outside of our 95 per cent confidence

bounds when the prediction error effect is included. Of course, for

a 95 per cent confidence estimate, the true answer will lie outside

of the calculated bounds 5 per cent of the time. Our fault model

has thirty-six fault patches and two components of slip on each

patch. Thus, misestimating one out of seventy-two inputs is only

1.4 per cent of our parameters. So, if anything, we are overesti-

mating the size of the error in our model. In contrast, at least five

components of slip are outside of the 95 per cent confidence bounds
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1716 S. E. Minson, M. Simons and J. L. Beck

for the run without model prediction error estimation, which is about

7 per cent of our model parameters and thus an under-estimate of

the size of the error in our model. Explicitly including the model

prediction error as part of the inversion process, allows us to pro-

duce posterior PDFs of the model prediction error (Fig. 16) and

to update the estimated total uncertainties in the inverse problem

(Fig. 13).

We also note that the quality of the entire model prediction er-

ror estimation process depends on the quality of the model used to

parametrize the model prediction error. Here, we have adopted a de-

sign that attempts to approximate any errors in our elastic structure

with a factor that scales with the amplitude of the data. We chose this

design because a first-order effect of errors in the Green’s functions

is that, for a given Earth structure and fault model, the size of the

model prediction error scales with the amplitude of slip (and the am-

plitude of the observations can be used as a proxy for the amplitude

of the predicted data). This may not be an ideal approximation for

model prediction errors due to errors in the elastic structure, espe-

cially since changes to the elastic structure are expected to produce

highly correlated changes in the associated Green’s functions; and,

furthermore, there may be other significant sources of model pre-

diction error other than those originating from the elastic structure

model.

5.3 Synthetic kinematic models

We present a series of synthetic kinematic finite fault earthquake

models using the fault geometry and distribution of geodetic data

in Fig. 10 combined with synthetic seismic records from six re-

ceivers. All of the synthetic data are perfect and free of any noise,

but in the inversion we assume observational errors for the static

and kinematic data of Cs

χ = 0.1cm2INs and Ck

χ = 1cm2INk
, respec-

tively. The prior PDFs on slip duration and rupture velocity are

Tr = U(0s, 10s) and Vr = U(0 km s−1, 5 km s−1), respectively. The

assumed uncertainty for the hypocentre location is 10 km.

We use the cascading technique; so for each joint static-kinematic

model, we first produce samples of the posterior static slip distri-

bution using the static geodetic offsets as our observations, Ds. The

samples of the posterior static slip distribution are then used as

samples of the prior slip distribution for the joint kinematic model.

We present results for two fault parametrizations: one fault dis-

cretized into nine patches (Fig. 17) and one discretized into 36

patches (Fig. 18). Comparisons between the synthetic model and

the mean of the posterior models are shown in Figs 17–20. The

inversion does a good job of recovering the input source model and

all of the posterior distributions are tightly peaked. The quality of

the solution for the kinematic rupture parameters (slip duration and

rupture velocity) seems slightly poorer than that for the slip param-

eters, although this might be due to the fact that the posterior PDFs

on the slip distribution are constrained by synthetic GPS offsets in

addition to synthetic seismograms. Also, it should be noted that the

posterior PDFs on the slip duration are somewhat coarse because

the slip durations are only evaluated in discrete increments of 1 s,

the sampling rate of the kinematic data used in the inversion. The

hypocentre location is well recovered (Fig. 19), especially consider-

ing the fact that our slip patches are 20 km wide and are populated

with point sources spaced 5 km apart.

In Fig. 20, we compare the synthetic faulting parameters with the

1σ Bayesian credibility intervals from the posterior distribution. At

1σ confidence, we would expect about 68 per cent of the input model

parameters to lie in the confidence bounds, or about 99 of the 146

Figure 17. Sampling a synthetic kinematic finite fault model with nine fault

patches. The left-hand column shows the faulting parameters used to create

the synthetic surface displacements for each performance test. The right-

hand column is the mean of the posterior samples for a CATMIP run with

500 000 Markov chains. For the initial static-only run, each chain is 10 steps

long. The joint kinematic-static run used Markov chains 100 steps long.

(Top panel) Static model. (Bottom panel) Kinematic model.

model parameters. For this sampling run, 114 parameters lie within

their credibility interval. The kinematic forward model has four pa-

rameters per fault patch compared to two parameters per patch for

the static forward model. Thus, the quality of the posterior after

sampling could be compared to the 18-patch (36-parameter) and

72-patch (144-parameter) static solutions. However, these are not

entirely fair comparisons. First, the static models were calculated by

sampling the complete 36-parameter and 144-parameter spaces di-

rectly, whereas the kinematic solutions were produced through cas-

cading from lower-dimension static models. Further, the suggested

comparisons are not fair in terms of comparing the computational

cost of the models given the considerably higher computational cost

of the kinematic forward model.

The evolution of the faulting parameters for one patch during

cascading is shown in Fig. 21. Because the kinematic and static

data sets were generated from the same fault slip, the mean of the

posterior PDF on slip is nearly the same for the static and kinematic
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Bayesian finite fault earthquake modelling 1717

Figure 18. Sampling a synthetic kinematic finite fault model with 36 fault

patches using a similar setup as in Fig. 17. The posterior distribution was

simulated by a CATMIP run of 1000 Markov chains with each chain 40 960

steps long.

solutions. However, the uncertainty on the slip model decreases

after the addition of the kinematic data. The reason behind this

can be intuited by thinking about the familiar inverse optimization

problem. In least-squares problems, the uncertainty on model pa-

rameters decreases with increasing numbers of observations. The

additional information in the kinematic data and the sheer quantity

of data points in the kinematic time-series act together to greatly

increase the ostensible number of observations, making the pos-

terior uncertainties small. This behaviour is further evidence that

additional effort is required to quantify the correlation in our data. If

these correlations are properly accounted for, the effective number

of data points may be much smaller and the posterior uncertainties

larger.

The patch-to-patch correlations are shown in Figs 22 and 23.

Slip tends to be highly anticorrelated with its neighbours, show-

ing that there are trade-offs between slip on adjoining patches and

indicating that spatial resolution is poor. Slip duration and rup-

ture velocity show less spatial correlation, although it should be

noted that we are looking at a very narrow type of correlation (the

Gaussian covariance between one parameter on one patch and that

Figure 19. Histograms of prior and posterior PDFs for hypocentre location

for the run in Fig. 18. (Top) 2-D histogram of prior PDF. The prior PDF is

a Gaussian centred at the location denoted by the green star with a standard

deviation of 10 km in both the along-strike and downdip directions. The mean

of the posterior PDF is shown with the blue star. The true hypocentre location

used to generate the synthetic data is 80 km along-strike and 80 km downdip,

and is marked with a white diamond. Background colour is number of

samples of the prior PDF in each 4-by-4 km region. (Bottom) 2-D histogram

of posterior PDF. Background colour is number of samples of the posterior

PDF in each 1-by-1 km region.

same parameter on other patches) and does not rule out the possi-

bility that other correlations may be present in the posterior PDF.

The posterior distributions for the faulting parameters are highly

peaked in Fig. 21, indicating that they are well resolved with this

network geometry and these data. However, this apparent high level

of success is mostly due to the unrealistically perfect synthetic data

and source model combined with a lack of prediction error.

6 E X P L O R I N G T H E E N S E M B L E

O F P O S T E R I O R S A M P L E S

An advantage of the sampling approach to modelling is that

instead of producing one optimal model, our sampling yields an

arbitrarily large ensemble of all plausible models based on the fit to

the data and the a priori information relevant to the model. How-

ever, analysing this ensemble is non-trivial; simply visualizing a

high-dimensional PDF is difficult. We can look at individual mod-

els, such as the mean of the posterior samples, the median of the
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1718 S. E. Minson, M. Simons and J. L. Beck

Figure 20. Bayesian credibility intervals for the run in Fig. 18. The values

of the synthetic source model are shown with blue circles. Error bounds rep-

resent range of 68 per cent (±1σ ) credibility intervals. The two parameters

defining the hypocentre location are the distance along-strike and distance

downdip, respectively. A key to the location of each patch on the fault plane

is provided in the bottom-right-hand panel.

posterior samples, the maximum a posteriori (MAP) which is the

model that maximizes the posterior probability, or the maximum

likelihood estimate (MLE) which is the model that maximizes the

data likelihood. However, these models can be potentially unrep-

resentative of the PDFs from which they are derived. The mean

and median may be very misleading for long-tailed asymmetric

PDFs, and the MAP and MLE can differ significantly depending on

how informative the prior distribution is. Even for simple PDFs for

which the mean, median, MAP and/or MLE represent well-behaved

statistical quantities, any one model may contain features which are

not well constrained and thus should not necessarily be considered

‘real’.

The mean of the posterior samples was plotted for the examples

in Fig. 11 in Section 5.1. In that section, we discussed how the mean

model solution changes as the size of the fault patches decreases

and the trade-off between the model parameters increases due to a

loss of model resolution. However, there is very little information

in Fig. 11 itself to illustrate how this process occurs or even that it

is happening. In this section, we explore more advanced methods

of analysing the posterior PDF using the examples from Fig. 11.

To understand which features of the solution are well-constrained

and which are uncertain, the posterior standard deviation or vari-

ance may be computed for each model parameter. However, there

are two main limitations to this analysis. First, the standard devia-

tion or variance of each model parameter is only a good metric for

describing the posterior PDF if the PDF is approximately Gaussian.

Figure 21. Evolution of faulting parameters for the patch indicated with a

star from the 36-parameter kinematic model. Red lines indicate the values

of the synthetic source model. Blue histograms represent the distribution

of samples of each PDF. The left-hand column is the prior distribution

for the static solution. The middle column is the prior distribution for the

joint kinematic solution that uses the posterior static slip distribution as an a

priori constraint. The right-hand column is the final joint posterior kinematic

solution. The rows from top to bottom are U⊥, U‖, Tr and Vr.

Unless you are able to look at the posterior distribution itself, which

is quite difficult in high dimensions, you have no way of knowing

what the variance of the PDF implies. Secondly, the posterior PDFs

must be analysed in the context of their respective prior PDFs be-

cause the posterior PDF only has meaning given a specific prior

PDF. Consider the following. If the data are completely uninforma-

tive, then p(D|θ ) = constant ∀ θ and p(θ |D) ∝ p(D|θ )p(θ ) ∝ p(θ ).

Thus if the data are nearly uninformative, then the posterior PDF

will nearly be the same as the prior PDF. The posterior distribution

on a model parameter can be understood to be well-constrained by

the observed data not if its posterior PDF is highly peaked (and thus

has small variance) but rather if its posterior PDF is substantially

different from its prior PDF.

The posterior PDF on each parameter can be plotted by computing

histograms of the posterior samples, that is, the samples from the

final cooling step (Figs 24 and 25). Most of the posterior PDFs are

Gaussian-like, but the posterior PDFs on U‖ are truncated on patches

with zero slip because our prior on U‖ is a uniform distribution

which does not allow back-slip in excess of 1 m. Note that the

posterior PDFs in the centre four squares in Fig. 25 (corresponding
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Figure 22. Posterior correlation between the patch marked with a diamond

and the other patches for each faulting parameter. These correlations are

calculated for the nine-patch kinematic model.

Figure 23. Posterior correlation between the patch marked with a diamond

and the other patches for each faulting parameter. These correlations are

calculated for the 36-patch kinematic model.

to patches with high slip) are relatively broad but very different

from the prior PDF. This indicates that the data are informative and

substantially change the posterior distribution relative to the prior

assumptions. However, the broadness of the posterior PDFs indicate

that there must be significant uncertainty on the value of slip on each

patch likely due to trade-offs between slip on neighbouring patches.

This is also revealed by the posterior variances in Fig. 26.

To understand how the possible values for each model parameter

trade-off with each other, the complete posterior model covariance

or correlation must be considered (Fig. 27). In general, the PDF

on any model parameter may be asymmetric or multiply peaked,

Figure 24. Histograms of the rake-perpendicular component of slip on each

patch for the prior (grey) and posterior (blue) PDFs from the 72-parameter

model in Fig. 11. Red lines mark the slip values from the actual source

model.

Figure 25. Same as Fig. 24 for the rake-parallel component of slip.

and the way that any two or more model parameters trade-off with

each other may not be well described by a Gaussian covariance

matrix. (This is equivalent to saying that the joint probability distri-

bution for any two or more model parameters is not a multivariate

Gaussian distribution.) Even if individual PDFs are sufficiently

Gaussian that the scalar covariance between two parameters is suf-

ficient to characterize the relationship between them, then, for a
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1720 S. E. Minson, M. Simons and J. L. Beck

Figure 26. Posterior variances (in m2) for each component of slip for all

models in Fig. 11. The variances are representative of the width of the

posterior PDFs in Figs 24 and 25. Note that the U‖ variances go to zero

for the patches with zero slip due to the positivity constraint eliminating

trade-offs between fault patches.

problem with k model parameters, each model θ is a vector of k

parameters and the model covariance is a k-by-k symmetric matrix.

It is very difficult to make visual sense out of a high-dimensional

covariance matrix. Consider Fig. 27 which plots the covariance and

correlation coefficient matrices for a static finite fault slip model

with just 36 fault patches. We solve for two components of slip on

each patch, resulting in 72 free parameters. It is possible to dis-

cern that individual U⊥ slips have greater trade-off with other U⊥

slips (upper-left quadrant of the matrix) and the U‖ components

of slip have greater trade-offs with other U‖ components of slip

(lower-right quadrant) than any U⊥ slip has with the U‖ compo-

nent on the same fault patch (lower-left and upper-right quadrants).

But is nearly impossible to intuit any spatial relationships between

the correlations when the fault geometry is unwound into matrix

form.

To explore the spatial covariances in the posterior PDF, indi-

vidual pairs of covariances can be plotted on the fault plane as

in Figs 22 and 23. But each plot of this type can only show

the correlations with all other parameters for one model param-

eter on one fault patch, requiring hundreds or thousands of such

figures to explore the solution for real-world-sized finite fault

models. Furthermore, since such figures only plot the parameter-

to-parameter correlation between one parameter and each of the

others, this method may not capture the full complex ways in

Figure 27. Covariance and correlation coefficients (top and bottom panels,

respectively) for the 36-patch/72-parameter model in Fig. 11. The cells of the

matrices represent the slips on the individual patches in order according to

the numbers in Fig. 20. The rake-perpendicular components of slip on each of

the 36 patches are plotted before any of the rake-parallel components of slip

are shown. Covariance has units of m2, whereas correlation is dimensionless.

which the selected parameter may interact with the other model

parameters.

In addition to considering the relationships between individuals

pairs of parameters, we should also consider how groups of pa-

rameters behave. Such analyses could include exploring the spatial

resolution of the slip model by calculating how many adjacent fault

patches would need to be averaged together to achieve a minimum

acceptable level of resolution. We could also consider the distri-

bution of spatial roughness of slip derived from our distribution

of slip models by calculating the norm of the Laplacian of each

slip model. Finally, we could explore how each model parameter

is correlated to all other model parameters (something akin to the

model’s total covariance) or, equivalently, evaluate to what extent

each parameter is independent of the others. The natural method

for this analysis is to compute the mutual information between each

model parameter and the rest of the joint posterior PDF, I (θi ; θ−i).

(Background on mutual information and relative entropy is given in

Appendix C.)

We calculate the mutual information between one model param-

eter, θ i, and all other parameters by comparing the entropy of that

parameter, h(θi ), with the entropy of all other parameters, h(θ−i) (see

Appendix C). The entropies h(θi ) and h(θ−i) as defined in eq. (C4)

are plotted in Fig. 28. From this figure we can draw the following

conclusions. First, the entropy of any particular slip parameter, θ i,
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Figure 28. Entropy (in bits) of posterior PDFs on each model parameter

for the model in Fig. 27. h(θi ) denotes the entropy of a model parameter,

h(θ−i) denotes the entropy for the joint PDF of all model parameters other

than θ i. All colour scales have the same dynamic range. The entropy of

the multivariate Gaussian approximation to the posterior PDF h(θ |D) =

h(θi , θ−i) = 9.965 bits.

is small compared to the entropy of all of the other variables, h(θ−i).

Secondly, the variation in differential entropy h(θ−i) as a function

of which slip parameter is excluded is small compared to the vari-

ability in entropy of the individual slip parameters, h(θi ). (Note that

h(θi , θ−i), the entropy of the full posterior PDF, is a constant.)

Finally, the mutual information between each parameter θ i and

all the others is plotted in Fig. 29. We see based on Fig. 28 that

the dynamic range in the mutual information for any fault model

is due to the contribution of h(θi ) while the average value of the

mutual information is controlled by h(θ−i). The mutual informa-

tion increases as the number of fault patches increase and their size

decreases. This growth is especially evident in the mutual informa-

tion of U‖ (Fig. 29). Increasing mutual information means that the

individual parameters are less independent of each other and more

highly correlated (or anticorrelated). At last, we have arrived at vi-

sual proof for why the mean of the posterior distribution in Fig. 11

becomes a blurry version of the synthetic slip model as the size of

the fault patches decreases.

Another feature apparent in Fig. 29 is that the mutual information

is small for patches with small amounts of slip regardless of the

model resolution for that inversion. This is a result of the back-slip

constraint we use. If there are two patches whose average slip is

large and for which we cannot resolve the slip on each individual

patch, there is plenty of ‘room’ for checkerboard mode uncertainties

without violating the positivity constraint. But this is not possible

when the average slip is small. Another way of saying this is that,

since the variance of the posterior PDF for a patch without slip will

be much smaller (due to the back-slip constraint), its covariance

with any other patch will also be smaller, and thus so will its mutual

information. Thus, low mutual information alone is not enough to

identify a particular faulting parameter as being well constrained by

the inversion. Once again, the posterior PDF can only be understood

in the context of the prior PDF.

7 C O N C LU S I O N S

We have developed a new framework for Bayesian inversion of finite

fault earthquake models that allows imaging of the complete model

parameter space for this inherently underdetermined inverse prob-

lem without applying any non-physics-based a priori constraints on

the form of the solution. To make these calculations computationally

tractable, we have developed and tested a new sampling algorithm,

CATMIP, which is more efficient than comparable existing sam-

plers and can be run in a parallel computing environment. Because

of these advances, we can tackle problems with models as large

as finite fault parametrizations found in studies using conventional

optimization techniques.

It is straightforward to explore any scalar physical quantity or

probability derived from the posterior PDF. For example, the full

ensemble of model samples can be used to formulate probablistic

statements, such as calculating the 95 per cent confidence bounds

for a given model parameter. Similarly, the distribution of possible

scalar seismic moments for an earthquake can be calculated from

the ensemble of all slip models, and the result plotted as a single

1-D PDF.

We have applied our Bayesian methodology to several synthetic

finite fault models. For overdetermined inverse problems, the al-

gorithm produces tightly peaked posterior distributions. For under-

determined or poorly resolved models, the posterior PDFs become

broad and the slip on neighbouring patches becomes anticorre-

lated as different patches trade-off with each other. Traditional opti-

mization methods suppress this behaviour through smoothing. This

smoothing is not necessary. All possible combinations of trade-offs

give plausible models and simply act to broaden the posterior PDF.

In contrast to traditional optimization problems, the methods de-

scribed here are computationally expensive. However, the reward

is a complete characterization of the model. In the process, the

Bayesian approach requires a complete evaluation of the trade-

offs and covariances of the model parametrization, the observa-

tional errors and the model prediction errors, yielding a fuller and

richer understanding of the model and data under consideration. In

the context of traditional optimization, smoothing acts to reduce

understanding nearly as much as it limits model complexity. In

the Bayesian context, greater model complexity (through removing

model regularization and including the parameters of the error struc-

ture in the inversion) creates greater understanding of the strengths,

limitations and uncertainties of the inversion process.
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Figure 29. Mutual information of posterior PDFs on each U⊥ and U‖ for each model in Fig. 11. The two left- and two right-hand columns are the same except

that the plots in the left-hand columns are shown using the same colour scale as each other, whereas the colour scale in the right-hand columns is rescaled for

each fault model. Mutual information is measured in bits.
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A P P E N D I X A : R E G U L A R I Z E D

L E A S T - S Q UA R E S V E R S U S F U L L

B AY E S I A N I N V E R S I O N S

If we substitute eq. (4) with d = D, Cχ = C, and μ = 0 into the

negative of the logarithm of eq. (1), we get,

− ln p(θ |D) =
1

2
ln |C| +

1

2
‖D − G(θ )‖2

C−1

− ln p(θ ) + constant, (A1)

where ‖·‖2
C−1 denotes the squared weighted norm implied by the

exponent in eq. (4). If the covariance matrix C is fixed rather than

parametrized by uncertain parameters, then minimizing the objec-

tive function,

J (θ ) =
1

2
‖D − G(θ)‖2

C−1 − ln p(θ ), (A2)

is equivalent to maximizing the posterior distribution, p(θ |D). In

Bayesian statistics, the optimum value, θ̂ , is called the maximum

a posteriori (MAP) estimate of θ ; it is simply the most probable

value based on the data, D. The regularization in J (θ ) is controlled

by the prior distribution, p(θ ); for example, if a Gaussian prior

N (θ |0, σ 2
0 Ik) is chosen, then,

J (θ ) = ‖D − G(θ )‖2
C−1 + λ ‖θ‖2

2 , (A3)

where constants and a common factor of 1
2

have been dropped since

they do not affect the optimal value θ̂ . This regularization favours

smaller parameter values in the L2-norm sense and the regulariza-

tion parameter λ = 1

σ 2
0

is controlled by the choice of prior variance.

Conversely, since regularized least-squares estimation uses an ob-

jective function of the same form as eq. (A2), it follows that it is

equivalent to Bayesian MAP estimation.

In contrast to the MAP point estimate of θ , a full Bayesian inver-

sion characterizes the whole posterior distribution, p(θ |D), and not

just a dominant peak. Usually, this cannot be done analytically but

it can be accomplished by MCMC sampling that produces samples

of θ that populate the parameter space in a probabilistically appro-

priate way; that is, the samples are distributed so that the number

of them in each region of the parameter space reflects the proba-

bility assigned to that region by p(θ |D). The MCMC samples can

be examined to see if the MAP estimate corresponds to a tightly

confined peak of the posterior distribution, or there are multiple

such sharp peaks, or one (or a few) broad peaks, implying that

there are many models (θ values) that are almost as probable as the

MAP one. Full Bayesian analyses for inversions are the focus of this

paper.

A P P E N D I X B : I N T RO D U C T I O N T O

T H E M E T RO P O L I S A L G O R I T H M

The Metropolis algorithm uses a Markov chain to simulate draws

from an unnormalized target distribution, π , using samples from a

chosen probability distribution q(y|x) (termed the ‘proposal PDF’),

where x is the current sample and y is our proposed new sample.

In CATMIP, at the mth cooling step, π is the intermediate PDF

in eq. (9), f (θ |D, βm). Metropolis et al. (1953) uses a proposal

PDF of the form q(y|x) = q ′(y − x) or, equivalently, y = x +

z, where z ∼ q ′(z). (Popularly, the proposal PDF is chosen to be

q ′ = N (0, �), so each new candidate sample is the current sample

plus some Gaussian perturbation with covariance �.) Note that the

proposed sample y is produced from a PDF that only depends on a

random variable, z, and the current position of the random walker,

x. Thus, the Metropolis algorithm describes a random walk through

model space that is independent of the history of the walker. This

is what makes Metropolis sampling a Markov process and thus an

example of MCMC.

Starting with an arbitrary initial sample x0, the Metropolis algo-

rithm produces N samples of the target distribution by the following:

For i = 1, 2, . . . , N

(i) Draw z ∼ q ′ and compute a candidate sample y = xi − 1 + z.
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(ii) Generate a sample u from U(0, 1), the uniform distribution

on (0,1).

(iii) Compute r (xi−1, y) = min{
π (y)

π (xi−1)
, 1}.

(iv) If u ≤ r, xi = y. Otherwise xi = xi − 1.

In more conceptual terms, the Metropolis algorithm uses a ran-

dom walk through model space to produce samples of any PDF

we want to simulate. For multidimensional spaces, there are only

a few PDFs (e.g. uniform distributions and Gaussian distributions)

for which random samples can be directly generated. MCMC sam-

pling is necessary because the PDFs being simulated are arbi-

trary and not explicitly normalized, and thus samples from the

PDF cannot be produced directly. Instead, the Metropolis algo-

rithm draws samples directly from a proposal PDF and then prob-

abilistically chooses whether to keep or eliminate the candidate

sample based on the ratio of its probability in the target PDF to

the previous sample’s probability in the target PDF. Even candi-

date samples for which this ratio is very low have some chance

of being accepted. This ensures that the random walker will not

become permanently trapped in a local maximum of the target

PDF but instead will eventually escape and visit all parts of the

target PDF.

The proposal PDF is critically important for controlling the ef-

ficiency of the sampler. The more similar the proposal PDF is to

the target PDF, the more efficient is this methodology. In the limit

that the proposal PDF equals the target PDF, then we are actually

directly sampling from the target PDF.

A P P E N D I X C : OV E RV I E W O F E N T RO P Y,

R E L AT I V E E N T RO P Y A N D M U T UA L

I N F O R M AT I O N

Information entropy is a measure of the amount of missing infor-

mation about a variable whose value is uncertain (Shannon 1948).

It can be thought of as the average number of yes-or-no questions

required to determine the value of the variable (Cover & Thomas

2006). Thus, the typical unit of entropy is bits of information.

For a continuous random variable X with PDF f (x), its differential

entropy h(X ) is defined as,

h(X ) = −

∫

f (x) log f (x) dx . (C1)

Note that this definition allows for negative entropy. We can also

define the relative entropy between two PDFs as,

DKL( f ||g) =

∫

f (x) log
f (x)

g(x)
dx . (C2)

The relative entropy is also known as the Kullback–Leibler di-

vergence, Kullback–Leibler distance, Kullback–Leibler informa-

tion criterion (KLIC) or information gain. DKL is a measure

of the differences between two PDFs, although technically it is

not a true distance metric because it does not satisfy all of the

mathematical requirements to be a distance metric; for example,

DKL( f ||g) = DKL(g|| f ). Alternatively, DKL can be viewed as the

inefficiency of assuming that a PDF is g when it is really f (Cover

& Thomas 2006). Note that DKL is non-negative and DKL = 0 if

and only if f = g, that is, the relative entropy between two PDFs is

zero if and only if the two PDFs are equal.

If we compute the relative entropy between the joint PDF, f (x, y),

of random variables X and Y, and the product of their two marginal

PDFs, f (x) and f (y), then we have quantified the difference

between their joint PDF and what the joint PDF would be if the

two variables were independent. This relative entropy is called the

mutual information of X and Y. Consider the fact that if the two

random variables X and Y are independent (which implies that they

are uncorrelated), then their joint distribution is simply given by the

product of their marginal PDFs, f (x, y) = f (x) f (y), and the dis-

tance between the marginal PDFs and their joint PDF is zero. Thus,

the mutual information of X and Y is zero if X and Y are independent.

The term mutual information is used because it quantifies the extent

to which X and Y contain dependent or redundant information. The

concept of mutual information was introduced by Shannon (1948)

who applied it to quantifying the capacity of a noisy communication

channel.

Following Cover & Thomas (2006), the mutual information,

I (X ; Y ) can be expressed by the equivalent statements,

I (X ; Y ) = DKL[ f (x, y)|| f (x) f (y)]

=

∫

f (x, y) log
f (x, y)

f (x) f (y)
dx dy

= h(X ) + h(Y ) − h(X, Y )

= EX [DKL ( f (y|x)|| f (y))]

= EY [DKL ( f (x |y)|| f (x))] . (C3)

The last two lines can be read as ‘The expectation over x of the

relative entropy of y with respect to x’ and ‘The expectation over y

of the relative entropy of x with respect to y.’

It is generally computationally intractable to compute eq. (C3)

for high-dimensional PDFs. Thus, we make the simplifying assump-

tion that the posterior PDF can be approximated as a multivariate

Gaussian distribution because then the entropies in eq. (C3) can

be calculated analytically. This assumption will generally have the

effect of overestimating the entropy in our PDFs since there is a

well-known result in information theory that a Gaussian has the

greatest differential entropy of any probability distribution with a

given covariance matrix.

Given a k-dimensional vector of model parameters θ =

(θ1, θ2, ..., θk), our goal is to quantify how independent a particu-

lar model parameter, θ i, is. In other words, we want to calculate the

distance between f (θi |D) f (θ1, θ2, ...θi−1, θi+1, ...θk |D) and f (θ |D).

For brevity, let us define θ−i as all members of θ except for θ i, so

that we have the following two PDFs,

f (θi |D) =

∫

f (θ |D)dθ−i

f (θ−i|D) =

∫

f (θ |D)dθi = f (θ1, θ2, ..., θi−1, θi+1, ...θk |D), (C4)

which are the marginal distribution for one variable θ i and the joint

distribution for all other variables θ−i, respectively.

If the posterior PDF is Gaussian, f (θ |D) ∼ N (μ,�), then,

f (θi |D) ∼ N (μi , σ
2
i )

f (θ−i|D) ∼ N (μ−i, �−i), (C5)

where σ 2
i = �i,i and �−i is � with the ith row and column deleted.

Also μi and μ−i represent the means of the two Gaussians, respec-

tively, although the mean of a Gaussian is irrelevant to its entropy

as will be seen in eq. (C6).
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From eq. (C1), the entropy for a k-dimensional Gaussian with

mean μ and covariance � is,

h(N (μ, �)) =
1

2
log2

(

(2πe)k |�|
)

. (C6)

Substituting into the third equation of eq. (C3), we find,

I (θi ; θ−i) = h(θi ) + h(θ−i) − h(θi , θ−i)

= +
1

2
log2

(

(2πe)σ 2
i

)

+
1

2
log2

(

(2πe)k−1|�−i|
)

−
1

2
log2

(

(2πe)k |�|
)

=
1

2
log2

σ 2
i |�−i|

|�|
. (C7)

This is the estimate of mutual information that we used for the

analyses in Section 6.

A P P E N D I X D : L I S T S O F

M AT H E M AT I C A L S Y M B O L S

A N D N O TAT I O N

Table D1. Mathematical symbols.

Symbol Description

C (also �) Covariance matrix.

Cd Data covariance matrix: a matrix of uncertainties on observations, D.

Cm Model covariance matrix: a matrix of uncertainties on the model parameters, θ .

Cp Prediction covariance matrix: a matrix of uncertainties due to errors in forward model, G(θ).

Cχ Total covariance matrix of residuals between data and predictions (Cχ = Cd + Cp).

Ck
χ Cχ for kinematic data.

Cs
χ Cχ for static data.

cm A constant used to scale the model covariance matrix: �m = c2
mCm.

cν [·] Coefficient of variation, defined as the ratio of the standard deviation to the mean: cv = σ
μ

.

D Observed data (a vector of real numbers).

d Data predicted by stochastic forward model (an uncertain-valued vector).

d̂k Vector of predicted kinematic data produced by deterministic forward model G(θk).

d̂s Vector of predicted static data produced by deterministic forward model G(θ s).

f (also g, p, q) Probability density function.

G(·) A deterministic forward model that accepts a vector of model parameters and

returns a vector of predicted observations.

Gk(·) Deterministic forward model for kinematic data.

Gs Deterministic forward model for static data comprised of static (t = ∞) component of

point source Green’s function, G̃.

G̃ Point source Green’s function.

g (also f , p, q) Probability density function.

g̃ Green’s function, G̃, convolved with a source-time function, s.

H0 Hypocentre location on the fault plane.

h(·) Differential entropy of (·).

M Total number of transitional PDFs (cooling stages).

m Vector of parameter values that specify deterministic forward model G(m).

(·)m Index over transitional PDFs (cooling stages).

N Number of samples of a target PDF. In CATMIP, N is not only the number of samples

of the posterior PDF output by the algorithm, it is also equal to the number of

Markov chains per cooling step as well as the number of samples output for each

transitional PDF f (θ |D, βm ).

Nsteps Length of a Markov chain (i.e. number of random walk steps).

Ndp Number of data points.

Nds Number of data sets.

Nk Number of kinematic data points.

Ns Number of static data points.

ns Number of seismic sources.

N Gaussian distribution.

p (also f , g, q) Probability density function.

p Probability associated with plausibility weight, w.

q (also f , g, p) Probability density function.

R
n n-dimensional Euclidian space.

s(·) Source-time function.

Tr Duration of source-time function, s(·).

t Time.

t0(·) First arrival time of the rupture wave front at (·).

U Displacement on the fault plane.

U‖ Displacement on the fault plane in the direction aligned with the rake angle
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Table D1. (Continued.)

Symbol Description

U⊥ Displacement on the fault plane in the direction perpendicular to U‖.

U Uniform distribution.

Vr Rupture velocity.

w Plausibility weight.

α A fractional error used to parametrize Cp.

β, γ ‘Inverse temperature’ for transitioning or annealing.

ζ Receiver location.

θ Vector of parameter values which specify full stochastic forward model for

data likelihood function p(D|θ ). (Often θ = m.)

θk Vector of kinematic-only parameter values for the kinematic forward model

such that the vector of all parameters for the kinematic model is m = (θ s, θk).

θ s Vector of parameter values for the static forward model.

μ Mean.

σ Standard deviation.

� (also C) Covariance matrix.

�m Scaled version of model covariance matrix, Cm.

Table D2. Mathematical notation.

Notation Description

p(x) Probability density of continuous variable x.

p(x, y) Joint probability density function of x and y.

p(x|y) Conditional probability density function of x given y.

DKL( f ||g) Relative entropy between PDFs f and g.

E[X ] Expected value of X.

I (X ; Y ) Mutual information of X and Y.
¯(·) Mean of (·).
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