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S U M M A R Y

The posterior distribution of earth models that fit observed geophysical data convey information

on the uncertainty with which they are resolved. From another perspective, the non-uniqueness

inherent in most geophysical inverse problems of interest can be quantified by examining

the posterior model distribution converged upon by a Bayesian inversion. In this work we

apply a reversible jump Markov chain Monte Carlo method to sample the posterior model

distribution for the anisotropic 1-D seafloor conductivity constrained by marine controlled

source electromagnetic data. Unlike conventional gradient based inversion approaches, our

algorithm does not require any subjective choice of regularization parameter, and it is self

parametrizing and trans-dimensional in that the number of interfaces with a resistivity contrast

at depth is variable, as are their positions. A synthetic example demonstrates how the algorithm

can be used to appraise the resolution capabilities of various electromagnetic field components

for mapping a thin resistive reservoir buried beneath anisotropic conductive sediments. A

second example applies the method to survey data collected over the Pluto gas field on the

Northwest Australian shelf. A benefit of our Bayesian approach is that subsets of the posterior

model probabilities can be selected to test various hypotheses about the model structure,

without requiring further inversions. As examples, the subset of model probabilities can be

viewed for models only containing a certain number of layers, or for models where resistive

layers are present between a certain interval as suggested by other geological constraints such

as seismic stratigraphy or nearby well logs.

Key words: Inverse theory; Electromagnetic theory; Marine electromagnetics; Australia.

1 I N T RO D U C T I O N

The ability of marine controlled-source electromagnetic (CSEM) data to detect thin resistive layers such as hydrocarbon formations trapped

in conductive sediments is now well-known due to more than a decade of research conducted in conjunction with the commercialization of

CSEM technologies (e.g. Ellingsrud et al. 2002; Um & Alumbaugh 2007; Constable 2010). Given a CSEM data set, the inverse problem

is to find a resistivity model compatible with the data. This non-linear ill-posed inverse problem can be tackled in a number of ways. The

traditional approaches used during the past few decades for various EM geophysics applications have relied on regularization methods that

serve to stabilize the problem, usually through the use of norms that penalize the model roughness or deviations from a preferred model (e.g.

Constable et al. 1987; Newman & Alumbaugh 2000; Abubakar et al. 2008). Though highly efficient and well understood, these gradient

based optimization methods only provide a single smooth model as a result, or provide a suite of smooth models as a function of data misfit.

While such results can be considered robust in the sense that the smoothness constraint tends to eliminate unnecessary or spurious features

and retains only those smooth features required to fit the data, these methods have a very narrow view of the full range of models compatible

with the data. Furthermore, questions about the resolution of the resulting inverse models remain unanswered.

A solution to this problem is to utilize Bayesian methods to characterize model resolution in terms of marginal probability density

functions (PDFs) for each model parameter (e.g. Sen & Stoffa 1995). Since Bayesian probability is a statement of information, it is natural

to postulate geophysical inversion in a Bayesian framework. Inversion thus implies sampling a posterior model distribution, which depends

on available prior information on likely models and the likelihood of the data fit for sampled models. The posterior distribution of model

parameters conveys information on the uncertainty with which they are resolved. From another perspective, the non-uniqueness inherent in

most geophysical problems of interest can be quantified by examining the posterior model distribution.

Our study is not the first to apply Bayesian methods for 1-D inversion of marine CSEM problems. One of the earliest applications

focused on joint inversion of CSEM and seismic data in order to improve estimates of reservoir properties (Hou et al. 2006; Chen et al.
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1136 A. Ray and K. Key

2007). Trainor-Guitton & Hoversten (2011) use a sampling scheme which involves both the Metropolis-Hastings algorithm and slice sampling

(Neal 2003) to improve convergence upon the distribution of solution models. Buland & Kolbjornsen (2012) apply the Metropolis-Hastings

algorithm (Hastings 1970) to invert marine CSEM data together with magnetotelluric (MT) data to constrain the range of likely resistivities

as a function of depth.

While these inversions have indeed been probabilistic, they have not addressed the issue of model selection, or scalability of the model

space. That is to say, either the number of layers and their depths have been fixed a priori using only a few parameters, or the number of depth

intervals is very large to allow for more structural detail (requiring considerably more computational effort). Having too few or too many

parameters will bias the inversion results (Dettmer et al. 2010). Tompkins et al. (2011) address the issue of model space scalability for the

marine CSEM problem by using either a principle component analysis approach or singular value decomposition to transform their model

domain. This may result in a more efficient search since the model space is greatly reduced (Collins & Fishman 1995), and has similarly been

applied to geo-acoustic inversion (Dosso & Dettmer 2011). However, the approach of Tompkins et al. (2011) is not Bayesian and requires

a starting regularization as well as subjective layer parametrization. Gunning et al. (2010) developed a ‘Bayesianized’ parametric bootstrap

method that splits layers to create resolution at depths statistically justified by the CSEM data.

Our approach is to essentially use nothing more complicated than Bayes’ theorem (Bayes 1763) itself, and the idea of ‘Bayesian

parsimony’ which states that the evidence term in Bayes’ theorem prefers models with simpler model parametrizations (Dettmer et al. 2010).

To this end we apply the reversible jump Markov Chain Monte Carlo (RJ-MCMC) method to characterize model uncertainty for marine

CSEM data. This approach was first introduced to the statistics community for change point analysis by Green (1995) and deals with a variable

number of unknowns, which in our case are the number and positions of the model layers and their resistivities. The RJ-MCMC method has

found widespread use in a diverse number of fields from genetics (Huelsenbeck et al. 2004) to automated surveillance (Smith et al. 2005). In

the geophysical realm, Malinverno (2002) has applied it to DC resistivity data inversion and more recently Agostinetti & Malinverno (2010)

and Bodin et al. (2012) have used it for seismic receiver function analysis. A recent application to airborne electromagnetic (EM) can be

found in Minsley (2011). RJ-MCMC methods are often said to be ‘trans-dimensional’, where trans-dimensionality implies that the number of

model parameters is variable. The algorithm we follow has been used for the geo-acoustic problem (Dettmer et al. 2010) and seismic surface

wave tomography (Bodin & Sambridge 2009), using the ‘partition modelling’ approach outlined by Bodin & Sambridge (2009).

The manner in which this algorithm avoids regularization yet provides reasonable solutions is elegantly simple. The results of the

inversion, as in any Bayesian framework, are not limited to a single ‘best-fit’ solution. Instead, the algorithm provides a distribution of model

solutions, the large majority of which fit the data to within its uncertainty. The non-uniqueness inherent in most geophysical inverse problems

due to both the physics of the problem and a finite set of noisy observations implies that there are an infinite number of models that fit the

data. However, some parts of the model space are more frequently required by models that fit the data than other parts of the model space.

It is these parts of the model space which are deemed to be more probable (Backus 1988; Tarantola 2005). Since the model space is often

high-dimensional, the ensemble of models can be conveniently viewed via marginal distributions of the parameters of interest (e.g. Sen &

Stoffa 1995).

Here we present the theory for a trans-dimensional RJ-MCMC with an adaptation that mixes local and global steps in the model space

to ensure thorough sampling of the model space. We then proceed with two example applications for marine CSEM inversion. The first is a

resolution test for resistivity anisotropy in a model of a thin resistive layer representing an offshore hydrocarbon reservoir and the second is

an application to CSEM survey data collected over the Pluto gas field in the Northwest Shelf of Australia.

2 T H E O RY A N D A L G O R I T H M

2.1 Anisotropic forward modelling

The analytic expressions for the EM fields in media that are transversely isotropic about the vertical (TIV) due to electric and magnetic dipole

transmitters are given in appendix F of Løseth & Ursin (2007). As an illustrative example, we provide here the integral transform for the

radial electric field due to a horizontal electric dipole (HED) at an azimuth β and range r from the dipole, normalized by the source dipole

moment:

Er = −
1

4π
cos β

[

I
TM
0 +

1

r

(

I
TE
1 − I

TM
1

)

]

, (1)

where

I
TM
0 =

∫ ∞

0

dkr kr J0(krr )gTM(pz I I ), (2)

I
TE
1 =

∫ ∞

0

dkr J1(krr )gTE(pz I ), (3)

I
TM
1 =

∫ ∞

0

dkr J1(krr )gTM(pz I I ). (4)
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Trans-dimensional inversion of CSEM data 1137

Table 1. Modes present in the various EM field com-

ponents produced by each of the four fundamental

electric and magnetic dipoles sources when embed-

ded in 1-D layered media.

Component HED VED HMD VMD

Er TE,TM TM TE,TM

Eβ TE,TM TE,TM TE

Ez TM TM TM

Hr TE,TM TE,TM TE

Hβ TE,TM TM TE,TM

Hz TE TE TE

In the above equations, kr is the radial wavenumber, J 0 and J 1 are Bessel functions of order 0 and 1, respectively, and the integrations are over

all possible wavenumbers kr. The functions gTE(pzI ) and gTM(pzII ), which are functions of kr, contain information about the seabed resistivity

structure in the form of the generalized transverse electric (TE) and transverse magnetic (TM) reflection coefficients of a stack of conducting

layers, including the air, sea and seafloor sediments. Full expressions for these functions can be found in Løseth & Ursin (2007) or derived in

a slightly different form in Chew (1995).

For the case of TIV anisotropy, from eqs (119) in Løseth & Ursin (2007), it can be shown that within a given layer

p2
z I = με̃h −

k2
r

ω2
, (5)

p2
z I I = με̃h −

ε̃h

ε̃v

k2
r

ω2
, (6)

where ε̃ = ε + iσ
ω

is the complex permittivity with the corresponding conductivity σ h or σ v for the horizontal or vertical directions within

the layer. The terms ε and μ are the permittivity and permeability of free space, respectively. The term pzI is the vertical ‘slowness’ (vertical

wavenumber divided by the angular frequency ω) associated purely with the TE mode while the term pzII is associated only with the TM

mode. Thus, from eqs (5) and (6) it is apparent that the TE mode depends only on the horizontal conductivity while the TM mode depends

on both the horizontal and vertical conductivity (e.g. Ramananjaona et al. 2011); this is expected given that the TE mode in 1-D layered

structures is associated only with horizontal currents while the TM mode is associated with both horizontal and vertical currents.

The complete suite of fundamental dipole sources also includes the vertical electric dipole (VED), the horizontal magnetic dipole

(HMD) and the vertical magnetic dipole (VMD). Each source produces particular modes in the EM field components, as listed in Table 1.

The specific integral expressions for each field component and source type can be found in Løseth & Ursin (2007). For both the HED and

HMD, the expressions for the radial electric field Er, azimuthal electric field Eβ , the radial magnetic field H r and the azimuthal magnetic field

Hβ are mixtures of TE and TM modes, thus they contain sensitivity to both the horizontal and vertical conductivity of the seabed. Similarly,

the three field components produced by a VED are entirely TM mode fields, which eq. (6) shows to contain sensitivity to the conductivity

anisotropy. Conversely, the Eβ , H r and H z components produced by a VMD are only TE mode fields and therefore are only sensitive to

horizontal conductivity. Similarly, the H z produced from either a HED or HMD is TE mode only and hence it is completely blind to the

vertical conductivity.

While our understanding of the CSEM sensitivity to anisotropy is aided by knowledge of the modes present in each component, this

knowledge does not address how well each component can resolve anisotropic conductivity. In an earlier study for isotropic conductivity,

smooth inversions of synthetic data from each field component were used to identify which components can best recover a thin resistive layer

representing a hydrocarbon reservoir, finding the HED transmitter to be overall superior for recovering the resistive layer as compared to the

VED (Key 2009). While the smooth inversions were adequate for this purpose, they only produce a single conductivity model and offer no

insights on the full range of models that might fit a given data set. Later in this work, we expand on this study by carrying out a Bayesian

uncertainty analysis to characterize the resolution possible with each field component and also extend the model to include a modest amount

of anisotropy in the overburden.

While either of the HED and HMD sources might be best for resolving anisotropy since they have the richest combination of modes, for

practical reasons most marine CSEM surveys use a HED source. Very long HED antennas (100–500 m) can be deep-towed just above the

seabed, creating a large source dipole moment that offers good signal-to-noise ratio data to long source–receiver offsets, whereas practically

achievable HMD dipole moments result in much lower amplitude electric and magnetic fields and hence lower signal-to-noise ratios and a

more limited range of usable source–receiver offsets. Hence the resolution study we present will focus only on the HED source.

2.2 Bayesian inversion

In the most general sense, the goal of geophysical studies is to provide information about the subsurface geology. Since Bayesian probability

is a statement of information (e.g. Scales & Snieder 1997), a Bayesian framework for geophysical inversion seems natural to postulate.
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1138 A. Ray and K. Key

We begin with Bayes’ Theorem,

p(m|d) =
p(d|m)p(m)

p(d)
, (7)

where d is the vector of observed data and m is a vector of model parameters. However, in a Bayesian approach, all information is contained

in PDFs represented by the notation p(.). The idea is to estimate the posterior model distribution p(m|d) (i.e. the probability of the model

given the data) starting from the knowledge of a prior model distribution p(m) given the observed data d. The information contained in the

data is inserted into Bayes’ theorem using the likelihood function p(d|m) which is the probability of the data given the model, (essentially

the PDF of the data misfit as a function of m). Assuming the noise in the data is Gaussian, we have the following likelihood function

p(d|m) ∝ exp

(

−
[d − f (m)]T Cd

−1[d − f (m)]

2

)

, (8)

where f (m) is the predicted data due to model m and Cd is the data covariance matrix, assumed here to be a diagonal matrix of data noise

variances. The likelihood function in eq. (8) is formulated such that models with lower misfit demand a higher likelihood while poorly fitting

models have less likelihood.

The evidence term p(d) is equal to an integration of the numerator in the RHS of (7) over all possible models, and is therefore only a

normalizing constant to ensure that p(m|d) integrates to 1; consequently it can be ignored, providing the following relationship

p(m|d) ∝ p(d|m)p(m). (9)

Thus it is now a matter of sampling the right hand side of eq. (9) to obtain the solution to the inverse problem and obtain the posterior model

distribution. However, it is not possible to exhaustively sample the model space for more than a few parameters, hence in practice one resorts

to efficient sampling methods like the Markov chain Monte Carlo (MCMC) method (e.g. Liang et al. 2010).

2.3 Reversible Jump MCMC

The RJ-MCMC is a particular type of Metropolis-Hastings (MH) algorithm (e.g. Liang et al. 2010) that allows one to search the model

space such that models are not restricted in the number of parameters they may posses. Thus, they are said to be ‘trans-dimensional’ in the

number of model parameters. In the context of the CSEM problem, the number of resistivity contrasts in the seabed is usually unknown a

priori and should also be considered a part of the inverse problem. Malinverno (2002) considered this aspect of ‘model selection’ for the DC

resistivity problem and Minsley (2011) applied this idea to the airborne frequency-domain EM problem. Formulating the inverse problem

in a trans-dimensional manner allows for a broader characterization of the posterior model distribution, as demonstrated by Dettmer et al.

(2010) for the geo-acoustic problem and Bodin & Sambridge (2009) for seismic tomography. There is a natural ‘parsimony’ (Malinverno

2002) built into the Bayesian RJ-MCMC framework. Simple models that fit the data well by using a few parameters are favoured over

models with a larger number of parameters; this aspect of the RJ-MCMC Bayesian approach is similar to Occam’s inversion, in which a

penalty against model roughness is used to find a smooth model that only contains features required to fit the data (Constable et al. 1987).

However, the trans-dimensional algorithm does not require any regularization or smoothing parameters, which are usually subjective choices

for gradient based inversion methods. In short, a Bayesian RJ-MCMC framework is a truly data driven inversion scheme that parametrizes

itself as demanded by the data.

The remainder of this section describes the details of the RJ-MCMC approach for the interested reader, but one could without loss of

continuity skip to the example applications given in Section 3.

2.4 Prior information and model parametrization

In a pure Bayesian framework, prior information encapsulates knowledge about the model which is independent of the data. To be as general

as is physically feasible, we use bounded uniform priors for all the model parameters of interest. In this section we closely follow the prior

parametrization approach of Bodin & Sambridge (2009) but use interfaces (Dettmer et al. 2010) instead of Voronoi cells. We parametrize

each model m as having n interfaces at depths z, and therefore n + 1 resistivities each for the horizontal resistivity ρh and for the vertical

resistivity ρv , where resistivity ρ = σ−1. The number of layers is fixed for a given model m, hence

p(m) = p(m|n)p(n). (10)

We use a uniform prior on n, given by

p(n) =

{

1
nmax−nmin

if nmin ≤ n ≤ nmax

0 else
. (11)

We assume no a priori knowledge between the depth of interfaces in the model and the layer resistivities (also considered independent),

therefore their PDFs can be separated in the following product form,

p(m|n) = p(z|n)p(ρh |n)p(ρv|n). (12)

C© 2012 The Authors, GJI, 191, 1135–1151
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Trans-dimensional inversion of CSEM data 1139

Assuming interfaces can be located anywhere in the subsurface between zmax and zmin such that an interface can be at any of N (temporarily

discrete) depths, for n interfaces, we can arrange them without paying attention to their ordering in N !
n!(N−n)!

ways. Note that this unspecified

variable N will cancel out of the expressions we need to use in the algorithm and is only introduced for ease of mathematical derivation. Thus,

p(z|n) =

⎧

⎨

⎩

[

N !
n!(N−n)!

]−1

if zmin ≤ z ≤ zmax

0 else

. (13)

Assuming that all n + 1 resistivities, ρh and ρv lie uniformly between ρmin and ρmax, independent of each other, we write

p(ρh |n)p(ρv|n) =

⎧

⎨

⎩

[

1
ρmax−ρmin

]2(n+1)

if ρmin ≤ ρ ≤ ρmax

0 else

. (14)

To obtain the explicit expression for the prior model probability, we write �ρ = ρmax − ρmin and �n = nmax − nmin and substitute eqs

(11)–(14) into (10) to get

p(m) =

⎧

⎨

⎩

n!(N−n)!

N !�n(�ρ)2n+2 if z ∈ [zmin, zmax] and ρ ∈ [ρmin, ρmax], ∀n ∈ [nmin, nmax]

0 else
. (15)

2.5 MH algorithms and the acceptance probability

What guides an MCMC sampler like the MH algorithm to convergence upon the posterior distribution is the acceptance probability α (e.g.

Liang et al. 2010). At every step of the Markov Chain, a candidate model is sampled by perturbing the current model from a known distribution

(the proposal distribution q) and the acceptance α is calculated. A random number r is then sampled uniformly from the interval [0,1]. If r <

α the proposed perturbation is accepted, else the old model is retained. The rationale behind this algorithm can be explained by examining in

more detail the expression for α (Bodin & Sambridge 2009), where

α(m′|m) = min

[

1,
p(m′)

p(m)
×

p(d|m′)

p(d|m)
×

q(m|m′)

q(m′|m)
× |J|

]

. (16)

Here m′ is the new proposed model and m is the old model (throughout this paper, primes will denote new model values). Specifically, p(m′)
p(m)

is the prior ratio, p(d|m′)
p(d|m)

is the likelihood ratio and q(m|m′)
q(m′|m)

is the proposal ratio. The Jacobian term |J| is not to be confused with the model

Jacobian needed for gradient based inversions (e.g. Constable et al. 1987), but is a matrix that incorporates changes in model dimension when

moving from m to m′. In a classic MH algorithm with a fixed number of dimensions, the prior ratio, proposal ratio (for symmetric proposals),

and Jacobian term are all 1 (Dettmer et al. 2010). Hence the algorithm always moves towards areas of higher posterior probability if the data

misfit improves (likelihood ratio >1). However, it can also move to areas of lower posterior probability with a probability α if the misfit does

not improve (likelihood ratio <1).

To be able to compare likelihoods between models with different numbers of parameters (i.e. with different dimensions), the Jacobian in

the acceptance term in eq. (16) needs to be evaluated. There are various implementations of RJ-MCMC, and in all the examples cited so far,

a ‘birth–death’ scheme has been used. As shown in Bodin & Sambridge (2009) and Dettmer et al. (2010) for the ‘birth–death’ RJ-MCMC

scheme, this Jacobian term is unity. We have adopted the ‘birth–death’ algorithm in this paper and shall not concern ourselves with this

Jacobian term any further.

As to why the algorithm should not always look to improve the data fit by simply increasing the number of parameters (interfaces in the

seabed), if we examine eq. (16) we find that even if the likelihood ratio times the proposal ratio is greater than one for a proposed move that

inserts a new interface into the model, the prior ratio will be less than one owing to the fact that the new prior PDF p(m′) needs to integrate

over a larger number of parameters to equal 1. Hence, there is an opposition to the ‘birth’ of a new layer (which may lead to improvement of

data fit) by the prior ratio.

2.6 Outline of our algorithm

We start the algorithm with a ‘minimum structure model’, following the approach of Agostinetti & Malinverno (2010). Placing one layer

above a halfspace (i.e. n = 1) we start with a single interface and then allow the algorithm to iteratively add interfaces (‘birth’) or remove

them (‘death’), perturbing the layer resistivities, as the data may demand via the acceptance probability α in (16).

We then closely follow the ‘partition modelling’ approach of Bodin & Sambridge (2009), but use layer interfaces instead of their Voronoi

cells (Dettmer et al. 2010). We perturb candidate model resistivities just as Agostinetti & Malinverno (2010) perturb elastic properties for

their seismic receiver function problem. We depart from the above methods in our implementation by randomly using a local (small) or

C© 2012 The Authors, GJI, 191, 1135–1151

Geophysical Journal International C© 2012 RAS

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
9
1
/3

/1
1
3
5
/5

5
8
9
3
6
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



1140 A. Ray and K. Key

global (large) proposal for perturbing resistivities when the number of dimensions is fixed (i.e. it is not a birth or death move) as suggested in

Andriéu et al. (2003). In brief, this is how we proceed:

2.6.1 Initialization

Start the algorithm with n = 1 and layer resistivities sampled randomly from the uniform prior distribution represented by eq. (14).

2.6.2 Update layer properties

At every even numbered step we perturb all the 2(n + 1) layer resistivities about their current values using a Gaussian proposal q(m′|m) with

a standard deviation 
ρ , where

q(m′|m) =

(

1
√

2π
ρ

)2n+2

exp

[

−
1

2
2
ρ

(ρ ′ − ρ)T (ρ ′ − ρ)

]

. (17)

Note that this update move does not involve a change in the number of interfaces.

It is in this move that we depart from previously carried out work, by randomly switching between an update proposal step size of 
ρ

to a smaller step size f 
ρ . f is a fraction to be determined by the problem at hand and is constant throughout the algorithm. The randomly

selected step size allows the algorithm to take global or local steps while sampling the model space during fixed dimension moves (Andriéu

et al. 2003).

2.6.3 Perturb model geometry

At every odd numbered step we allow one of the following 4 moves:

(1) Birth of an interface: n′ = n + 1. Uniformly between zmin and zmax, we randomly select an unoccupied depth and insert an interface. The

layer above or below the newly created interface is randomly selected and only its horizontal and vertical resistivity are perturbed according

to a 2-D Gaussian proposal with standard deviation 
′
ρ .

(2) Death of an interface: n′ = n − 1. An existing interface is selected at random and deleted. The new horizontal and vertical resistivity

in the layer are randomly copied from one of the two layers that used to exist on either side of the deleted interface.

(3) Move an interface: n′ = n. An existing interface is selected at random and its depth perturbed by a 1-D Gaussian proposal with standard

deviation 
m. If the new interface depth is shallower or deeper than the interfaces currently above or below it, this move can be thought of

as a simultaneous death/birth move, that is, properties from one of the layers on either side of the old interface are copied (at random) and

assigned to one of the layers on either side of the new interface position (also at random).

(4) No perturbation: n′ = n and z′ = z.

Each of these model geometry perturbation moves is applied with a certain probability, such that their sum equals 1. In addition, the

birth and death probabilities are set equal. We set the probabilities as follows: [birth, death, move, no perturbation] ≡
[

3
8
, 3

8
, 1

8
, 1

8

]

.

At each step of the Markov chain, the proposed model is evaluated for acceptance. If it is accepted, it becomes the current model. If it is

rejected, the current model is preserved and the algorithm moves on to the next step. To compute the acceptance, one needs to evaluate eq.

(16), for which we explicitly describe the proposal distributions and their ratios in the next section.

2.7 Proposal distributions and acceptance probabilities

Our proposal distributions are similar to those described in Bodin & Sambridge (2009) and Dettmer et al. (2010), but since the trans-

dimensional approach to the best of our knowledge has not been used for solving the CSEM problem we review the model proposals in

modest detail here.

2.7.1 Fixed dimension moves

For all moves that are neither birth nor death, the number of interfaces remain fixed. In these moves, we have elected to use Gaussian proposals

to suggest the new model parameters by centring the proposals on the old parameters and drawing a random number from a normal distribution

with a given standard deviation (step size). As can be seen from eq. (17) these kinds of moves are symmetric, implying that the probability to

go from the old state to the new state is the same as it would be in going from the new state to the old state
[

q(m|m′)

q(m′|m)

]

fixed

= 1. (18)
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Trans-dimensional inversion of CSEM data 1141

Since the number of dimensions remains constant, the prior ratio in eq. (16) is 1. Hence for fixed dimension moves, we find that the acceptance

probability is simply the ratio of the likelihoods:

αf =

⎧

⎨

⎩

min
[

1,
p(d|m′)
p(d|m)

]

if z ∈ [zmin, zmax] and ρ ∈ [ρmin, ρmax], ∀n ∈ [nmin, nmax]

0 else

. (19)

2.7.2 Birth move

For a birth move, one can select from out of N − n unoccupied spaces. The perturbations for the birthed layer’s horizontal and vertical

resistivity are drawn from a 2-D Gaussian with standard deviation 
bd , centred about the old values in the layer. Since the selection of an

interface depth and the perturbations are independent, we can write

q(m′|m) = q(z′|m) q(ρ ′|m) (20)

=
1

(N − n)

1

2π
2
bd

exp

[

−
(ρ ′

h − ρh)2 + (ρ ′
v − ρv)2

2
2
bd

]

. (21)

For the reverse move in a birth, keeping in mind that the current state has n interfaces, a birth would have n + 1 interfaces to delete from, and

the probability of removing resistivities in a layer in the reverse move is 1, thus we can say that

q(m|m′) = q(z|m′) q(ρ|m′) (22)

=
1

(n + 1)
× 1. (23)

Thus in a birth move, from eqs (21) and (23), the proposal ratio can be written as

[

q(m|m′)

q(m′|m)

]

birth

=
(N − n)2π
2

bd

n + 1
exp

[

(ρ ′
h − ρh)2 + (ρ ′

v − ρv)2

2
2
bd

]

. (24)

Finally from eqs (15), (16) and (24) we get for the birth moves, the following acceptance probability

αb =

⎧

⎨

⎩

min
[

1,
2π
2

bd

�ρ2 exp
[

(ρ′
h−ρh )2+(ρ′

v−ρv )2

2
2
bd

]

p(d|m′)
p(d|m)

]

if z ∈ [zmin, zmax], ρ ∈ [ρmin, ρmax], ∀n ∈ [nmin, nmax]

0 else

. (25)

2.7.3 Death move

In a death move, one can select one of n places for deletion. Further, the probability of removing resistivities in a layer is certain. Thus,

q(m′|m) = q(z′|m) q(ρ ′|m) (26)

=
1

n
× 1. (27)

In the reverse move for death, since the reference state has n interfaces, there are N − (n − 1) sites at which to add an interface. Further, the

resistivity perturbations are proposed using a 2-D Gaussian centred around the current values. Hence

q(m|m′) = q(z|m′) q(ρ|m′) (28)

=
1

N − n + 1
×

1

2π
2
bd

exp

[

−
(ρh − ρ ′

h)2 + (ρv − ρ ′
v)2

2
2
bd

]

. (29)

Thus we can see from eqs (27) and (29) that the proposal ratio for death can be written as
[

q(m|m′)

q(m′|m)

]

death

=
n

(N − n + 1)2π
2
bd

exp

[

−
(ρh − ρ ′

h)2 + (ρv − ρ ′
v)2

2
2
bd

]

. (30)
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1142 A. Ray and K. Key

Again from eqs (15), (16) and (30) we get for the death moves, the following acceptance probability

αd =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min

[

1,
�ρ2

2π
2
bd

exp
[

− (ρ′
h−ρh )2+(ρ′

v−ρv )2

2
2
bd

]

p(d|m′)
p(d|m)

]

if z ∈ [zmin, zmax], ρ ∈ [ρmin, ρmax], ∀n ∈ [nmin, nmax]

0 else

. (31)

It should be noted that the derived expressions for α in eqs (19), (25) and (31) do not involve the variable N (as promised) and are very similar

in form to the expressions derived in Bodin & Sambridge (2009). This demonstrates how flexible the algorithm is when solving completely

different kinds of geophysical problems.

2.8 Convergence to the posterior distribution

The algorithm is run for a given number of steps until it is deemed to have collected enough samples to provide a reasonable estimate of

the posterior. There are a couple of caveats in this regard, as there are with any MCMC sampler (Liang et al. 2010). If the algorithm is

seeded with an initial model that is in a low posterior probability region, it may take quite a few steps till it reaches a region of high posterior

probability, such that it begins to sample models which fit the data within the given data error. The number of such required steps (which

are subsequently discarded in the final chain) is known in MCMC parlance as the ‘burn-in’ period, which depends on how well the proposal

distributions have been scaled (Chib & Greenberg 1995). This brings us to the step sizes (scaling) in the proposal distributions in the form

of the standard deviations 
ρ , 
m, 
bd and the fraction f required in the various proposals to generate a new candidate model. The form of

the proposal distributions should ‘emulate’ the posterior for efficient sampling, but since the posterior distribution may be complicated (and

unknown a priori), any kind of simple distribution, symmetric where possible, can be used. The exact form of the proposal does not affect

convergence. The suitability of the step size for the problem at hand can be examined by looking at the number of samples accepted in a large

interval of steps, referred to as the acceptance rate. If the acceptance rate is too low, it means that the step sizes are too large as lots of steps

are falling outside the prior bounds or are being rejected as they land in low probability (high misfit) areas. If the acceptance rate is too high,

then it implies that the algorithm isn’t exploring the model space enough and will again be slow to converge upon the posterior distribution.

While the sampled posterior should not depend on the size of the steps taken, one has to factor in the optimality of the step size as otherwise

convergence will be very slow (Bodin & Sambridge 2009). For an illuminating discussion on this matter, one can refer to Chib & Greenberg

(1995) or Trainor-Guitton & Hoversten (2011) for a more recent discussion relevant to marine CSEM. For further discussions on convergence

diagnostics and the practicality of their application, one can refer to Liang et al. (2010) The algorithm should be run long enough at the lowest

acceptable rms (achieved after the burn-in period) such that there is at least stationarity achieved in the square misfit with iteration number.

Further, to ensure that the inferred posterior is not biased due to being trapped in local maxima (of the posterior probability), we recommend

that the algorithm be run from many different starting points, ideally in parallel for computational efficiency. The final ensemble for posterior

inference can be constructed by concatenating the various parallel chains (e.g. Agostinetti & Malinverno 2010; Dettmer et al. 2010; Bodin

et al. 2012).

2.9 Implementation details

We implemented the trans-dimensional Bayesian inversion algorithm in MATLAB since it allowed for rapid prototyping, testing and

modification. Specifically, we coded the comprehensive suite of equations for magnetic and electric dipole sources embedded in TIV

anisotropic media that are listed in appendix F of Løseth & Ursin (2007). The Hankel transform integrals are evaluated using the digital

filters and lagged convolution MATLAB codes that are freely available in Key (2012a). To speed up the program’s performance, the portion

handling the 1-D CSEM forward calls was converted to C and precompiled as a MEX (MATLAB Executable) using the MATLAB Coder

utility. The numerical CSEM responses from the forward code were validated by comparisons with suites of anisotropic responses given in

Løseth & Ursin (2007) and Li & Dai (2011). We validated the reliable sampling of the trans-dimensional Bayesian algorithm by ensuring

that we could sample and recover the specified uniform prior model distribution by removing the data and running the RJ-MCMC algorithm.

Since resistivity can span many orders of magnitude, we follow the usual approach for EM geophysics and parametrized the code to invert

for log10(resistivity) rather than its linear counterpart.

3 E X A M P L E A P P L I C AT I O N S

3.1 Synthetic studies for the resolution of a thin resistive layer

In this example application, we use the trans-dimensional inversion algorithm to study how well each CSEM field component can resolve

the anisotropic resistivity of an offshore hydrocarbon reservoir model. In a previous study conducted for a simple isotropic reservoir model,

the Occam inversion method was used to find the smoothest inversion model for each data component, generally showing that the field
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Trans-dimensional inversion of CSEM data 1143

Figure 1. Synthetic model of a thin resistive hydrocarbon reservoir with overlying anisotropic conductive sediments. The horizontal resistivity is shown in

solid black, and the vertical resistivity with blue dashes.

Figure 2. Source normalized CSEM responses shown as magnitude versus offset (MVO) and phase versus offset (PVO) curves for the radial electric field at

0.7 Hz produced by a horizontal electric dipole (HED). Plotted responses correspond to an isotropic 1 ohm-m seafloor in 1 km of water (dashed blue), the

isotropic model corresponding only to ρh in Fig. 1 (green) and the full anisotropic model in Fig. 1 (red).

components from a HED are best able to recover the sediment and reservoir resistivity as compared to a VED (Key 2009). In addition, because

the HED data are the most commonly collected on commercial surveys, we restrict our synthetic studies here to data generated from a HED.

The model under consideration is based on the well-studied canonical 1-D reservoir model (e.g. Constable & Weiss 2006) but here has

been updated to include a moderate amount of anisotropy in the overburden sediments, as shown in Fig. 1. The main feature of the model

is a 100 m thick, 100 ohm-m isotropic reservoir located 1 km beneath the seafloor. The overburden resistivity is 1 ohm-m in the horizontal

direction but 4 ohm-m in the vertical direction, representative of bulk anisotropy due to sediment layering.

We modelled 20 source–receiver offsets spaced evenly from 0 to 12 km, with the transmitter positioned 10 m above the seafloor and

broadcasting frequencies 0.1, 0.3 and 0.7 Hz. As an example of the contributions of the various model features to the CSEM responses, Fig. 2

shows the inline radial electric field Er magnitude versus offset (MVO) and phase versus offset (PVO) responses for the anisotropic model

(red), a similar model but where the sediments are isotropic with 1 ohm-m resistivity (green), and a model with a uniform 1 ohm-m isotropic

sediments (dashed blue). The resistive reservoir can be seen to be the largest contributor to the responses, but the overburden anisotropy also

contributes substantially to the increased MVO responses accompanied by markedly different PVO responses.
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1144 A. Ray and K. Key

Synthetic data were generated for both inline and broadside transmitter geometries by adding 5 per cent random Gaussian noise to the

model responses and then removing data below amplitudes of 10−15 V A−1m−2 for electric fields and 10−18 T A−1m−1 for magnetic fields,

representative of the electric and magnetic field noise floors for currently available CSEM transmitter–receiver systems with 60 s data stacks.

The trans-dimensional algorithm was independently applied to the synthetic noisy data for each of the 6 EM field components to obtain

the marginal PDFs on the model parameters, which then can be used to compare the resolution properties of each component. We allowed

the number of interfaces to range from 1 to 30, and the range of depths at which to place interfaces from 1005 to 2500 m. We used uniform

prior distributions on the log-resistivities in the seafloor that allowed them to vary between −1 and 2.3 (corresponding to linear resistivities

of 0.1 to 200 ohm-m). For each field component, a total of 200 MCMC chains were run in parallel (each starting point was randomly sampled

from the prior distribution), with 2 million steps taken in each each chain. Approximately 1/3 of the chain length was discarded as part of

the initial ‘burn-in’ process (Dettmer et al. 2010) and the remaining steps were collected. The length of the ‘burn-in’ period was determined

by monitoring for when the algorithm reached an rms data misfit value of ≈1 (corresponding to a χ2 value equal to the number of data

points); after the burn-in period, the algorithm continued to sample models that fit the data within an acceptable data rms misfit. The final

concatenated MCMC chain is constructed from all 200 parallel runs, but with care to only concatenate chains that have converged upon the

region of acceptable rms. Those chains, which even after ‘burn-in’ failed to achieve an rms close to 1 were discarded (Trainor-Guitton &

Hoversten 2011). For each field component’s inversion, the final concatenated chains consists of roughly 200 000 models after thinning the

chain to retain 1 out of every 1000 samples (as a means of reducing the storage requirements and the burden for later plotting algorithms).

We found that a further decimation of 1 in every 4 models produced acceptable PDFs, with a final sample size of around 50 000 models.

Since this trans-dimensional method has not been applied to marine CSEM data before (to the best of our knowledge), we preferred to be

cautious rather than undersample the parameter PDFs. The implication is that we potentially could have used a smaller number of parallel

MCMC chains or a shorter chain length, or some combination of both to significantly reduce the computational load of this task, given that

we achieved acceptance rates between 12 and 22 per cent. These acceptance rates are in agreement with those reported by Dettmer et al.

(2010) and Agostinetti & Malinverno (2010).

The final ensembles for each data component consist of about 50 000 1-D models, each of which contains a variable number of layers,

the layer interface depths and the horizontal and vertical resistivities of each layer. To visualize the range of acceptable resistivities, we binned

these parameters into a grid of fine depth intervals to produce a histogram of resistivities at each depth, normalized by the total number of

resistivities encountered in a depth bin. Higher histogram values at a particular depth bin indicate a higher probability of the resistivity being

at the corresponding value at that depth. Similarly, the probability that an interface exists at a certain depth is shown by binning the interface

depths required by the various models over a range of fine depth intervals.

The results are shown in Fig. 3, where each row corresponds to an inversion of a certain EM field component. In every row, the first two

columns correspond to PDFs of the horizontal and vertical resistivity as a function of depth, with the 5 per cent and 95 per cent quantiles

at each depth shown in blue. The true model is shown in red, and higher values of probability at a depth are shown by darker shading. The

third column in each row corresponds to the probability of a layer interface at a given depth, with the true values at which interfaces are

located indicated by red horizontal lines. The fine black vertical line in this column corresponds to a uniform probability on the location

of interfaces. Again, higher values indicate a greater probability for the presence of a resistivity contrast at the corresponding depth. Fig. 4

shows the probability of the number of interfaces required for each particular field component, where the vertical red line denotes the true

value of two interfaces for our three layered anisotropic model.

From the synthetic inversions we can make a number of observations. The vertical resistivities for all components (with the exception

of H z which is a pure TE mode) have the most probable value aligned with the true value at shallower depths. At the reservoir and greater

depths, the well-known trade-off between reservoir thickness and resistivity (Constable & Weiss 2006; Key 2012b) results in the PDFs being

more diffuse, yet still concentrated near the true resistivity. Further, there is a marked increase in the 95 per cent quantile line in the vicinity

of the reservoir whereas at much shallower depths the 95 per cent quantiles suggest there is little probability of a resistive layer.

For the horizontal resistivities, the most probable values at shallow depths are also closely aligned with the true value until the reservoir

level, where there is an abrupt decrease as the PDF becomes greatly spread out with no significant peak and the confidence of the estimate

(indicated by the width between the 5 and 95 per cent quantiles) at these depths is quite low. This inability to resolve the horizontal resistivity

within the reservoir is not surprising, as the current density in the resistive reservoir layer becomes predominantly vertically polarized with

little horizontal flow and hence contains greatly diminished sensitivity to the horizontal resistivity at this depth (Brown et al. 2012). There

is however, a slight increase in the 95 per cent limit around the reservoir depth at least suggesting the probability of an increased resistivity

at this depth. Perhaps surprisingly, the lower halfspace resistivities are well imaged by the horizontal resistivity PDFs, probably owing to the

fact that to complete the circuit, current must flow horizontally at this depth.

The interface depth probabilities in Fig. 3 show that all components (with the exception of H z) have a high probability for layer interfaces

near the correct depths of the reservoir. Some estimate well either the reservoir top (by Er) or the reservoir bottom (by Hβ or H r) or both the

top and bottom (by Eβ and Ez). The vertical magnetic field H z seems unable to clearly estimate either the reservoir top or bottom, but this is

unsurprising given that it only contains the TE mode which is well-known to be insensitive to thin resistive layers. The ability of the Ez to

recover both the top and bottom depths of the reservoir is intriguing, particularly since previous smooth inversion studies suggested it has

slightly lower resolution for the reservoir thickness (see fig. 7 in Key 2009). While all other components (besides H z) contain a mixture of

TE and TM modes, the Ez component only contains the TM mode; perhaps its ability to resolve the reservoir boundaries is due to galvanic

charge accumulation effects. Further exploration of this result is clearly warranted but is beyond the scope of this work.
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Trans-dimensional inversion of CSEM data 1145

Figure 3. Trans-dimensional Bayesian inversion of synthetic HED data with 5 per cent added noise. The results from independent inversion of each field

component are shown row wise. Marginal distributions on anisotropic resistivity values at depth are shown as shaded colours in the first two columns while

the third column indicates the probability of an interface. 5 per cent and 95 per cent quantile lines are shown in blue and the true values are indicated by red

lines. The top three rows correspond to the components measured by receivers inline with the HED while the bottom three rows are for components measured

by receivers broadside to the HED.

Anisotropy in the shallower section is well resolved by all components (again with the exception of H z), with the tightest bounds on

anisotropy being given by the inline radial electric field. For all these components, a good indicator for the presence of a resistive reservoir

seems to be the combination of the peak in the interface depth probabilities aligning with a high probability of large vertical resistivity. As

can be seen in Fig. 3, this alignment occurs around the true reservoir vertical resistivity and depth.

The probability for the number of interfaces shown in Fig. 4 illustrates that the algorithm did not spend much time testing a large number

of layers (which require longer times per forward call), suggesting a computational efficiency advantage to using the RJ-MCMC sampler over

alternative approaches using a large number of fixed layer interfaces. In fact, one suggested approach when using this algorithm is to first

look at the ensemble of all inverted models to identify the most probable number of layer interfaces, and then to examine the PDFs for the

subset of models with that number of layers.
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1146 A. Ray and K. Key

Figure 4. Probability of the number of interfaces determined from independent inversions of synthetic data for each field component. The true number of

interfaces (2) is shown by the red line. The fine dashed black horizontal line corresponds to a uniform probability on the number of interfaces.

Figure 5. Subset of the posterior ensemble for the Er synthetic data inversion where the number of interfaces is equal to the true value of 2. The 5 per cent and

95 per cent quantiles are far tighter than for the full ensemble shown in Fig. 3.

Fig. 5 shows that when we subset the posterior ensemble to display only models which require two interfaces (i.e. three layers) to fit the

data, which of course is the true number of interfaces in the synthetic model, we get very tight constraints on the ensuing distributions for the

radial inline electric field data. This agrees with a previous studying showing a tight region of low misfit in the two parameter model space

of reservoir resistivity and thickness (Key 2012b). In an exploration scenario, the ‘data mining’ or post-processing of the trans-dimensional

inversion results opens up the possibility of incorporating more information as and when it becomes available during the interpretation phase,

in order to obtain more certainty in the inverted results without having to perform any further inversion—as the full posterior model solution

only needs to be subsetted for this kind of exploration of model space. This ability is further explored in our application to real data, as

described in the next section.

3.2 Application to data from the Pluto gas field, Northwest Shelf of Australia

In this section, we apply the trans-dimensional inversion to real CSEM survey data collected over the Pluto gas field on the Northwest Shelf

of Australia as part of a commercial survey in early 2007. A previous analysis of this single site of CSEM data was presented in the context

of solving for unknown receiver orientations in Key & Lockwood (2010). Pluto together with the close by Xena field comprise a five TCF gas

accumulation (Tilbury et al. 2009). The discovery well Pluto-1 found a gas column of 209 m gross thickness approximately 3100 m below

sea level in a sandy tilted Triassic fault block, with an average net porosity of 28 per cent with gas saturations in the main reservoir of around
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Trans-dimensional inversion of CSEM data 1147

Figure 6. Results of the trans-dimensional inversion of the Pluto inline radial electric field data for a single receiver. Interfaces with high resistivity contrast

are indicated and marked with red horizontal lines at 2150 m and 2950 m depth (right panel), with the values of most probable vertical resistivity at these

depths being 10 ohm-m (middle panel). Note the similarities with the synthetic studies of Er on encountering a resistor at depth—the horizontal resistivity

PDFs become diffuse (left panel) but there is a pronounced peak in the vertical resistivity PDFs.

Figure 7. PDF of the number of interfaces required to fit the Pluto data. The most probable number of interfaces is three.

93 per cent. Radial inline electric field data collected at 0.24 and 0.4 Hz for a single site were inverted using the trans-dimensional RJ-MCMC

method described in this paper.

The trans-dimensional inversion results for the resistivity PDFs and the number of interfaces required are shown in Figs 6 and 7,

respectively. The horizontal and vertical resistivity as a function of depth shows little evidence of anisotropy from the seafloor down to 2000 m,

with the most probable resistivity value being 0.5 ohm-m. However, the 5 per cent and 95 per cent quantile lines on the horizontal resistivity

are larger than the very narrow PDFs of the vertical resistivity in this depth interval. The interface probability as a function of depth (third

column in Fig. 6) suggests a large probability of an interface at 2150 m, followed by another peak at 2950 m. The vertical resistivity jumps

to a most probable value around 10 ohm-m accompanied by an increase in the 95 per cent quantile on resistivities at depth. This is very

similar to what we observed in our synthetic studies on Er, as can be seen by comparing Fig. 3 with Fig. 6. Further, at depths beyond 2000 m

the horizontal resistivity PDFs are very diffuse, again similar to what was seen in the synthetic studies in resistive layers. However, as there

seem to multiple resistive targets at depths beyond 2000 m, the PDFs do not show a narrowing again as they they did for the single resistive

layer synthetic data, but instead are more diffuse indicating that resolution decreases with depth, as expected for CSEM on the conductive

sediments of the continental shelves. The most probable number of interfaces, from Fig. 7 is 3.

The data fit for 50 randomly sampled models (out of a total of 94 450) in the final posterior model distribution is shown in Fig. 8, along

with the corresponding models. The scatter in the resistivity models mirrors the probabilities shown in the PDF plots of Fig. 6, where the

vertical resistivity at 1–2 km depth has the least scatter, in association with its tightest probabilities. Conversely, the horizontal resistivity at

these depths can be seen to be less well resolved.

In Fig. 9, a number of different scenarios have been subsetted (rows b–d) from the full posterior model distribution (row a). The inline

radial electric field has been previously inverted using the Occam method to generate a smooth isotropic 1-D model (Key & Lockwood 2010);

this result is shown as the red line in Fig. 9. The Occam inversion model exhibits a smooth resistivity peak in the vicinity of the highest

resistivities observed in the Pluto-1 well log. It appears that the highest probability of an interface in the full posterior solution shown in

Fig. 9(a) is shallower at close to 2150 m depth. There is another interface probability peak close to 2950 m, although it is of a lower probability.

This does not imply that there needs to be interfaces exclusively at one depth or the other, as we shall show with the following analysis.
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1148 A. Ray and K. Key

Figure 8. A randomly chosen set of 50 models (left-hand side) fitting to rms 1 from the full posterior model distribution and their data fits (right-hand side).

Note how similar the sampled models when plotted together begin to look like the PDFs of resistivity shown in Fig. 6.

Following the same methodology as introduced for the synthetic studies, we look at the posterior distribution of the number of interfaces,

and pick out the most probable number, 3. If we only look at this subset of models with exactly three interfaces (wherever they may be) from

the final posterior solution ensemble, we obtain the scenario in (b). With this subset the 5 per cent and 95 per cent quantiles become closer

in the resistivity PDFs and the probability of an interface near 2150 m depth is now accentuated. 14 per cent of the 94 450 models in the full

posterior correspond to this scenario. In (c), we only look at the subset of models from the full posterior ensemble that require interfaces

between the depth range 2000 and 2450 m. 77 per cent of the models in the full posterior correspond to this scenario. Note how all these

models, which require there to be interfaces between 2000 and 2450 m, also require a high probability of there being interfaces between 2450

and 3300 m. Finally, we could choose to incorporate our knowledge of the nearby well-log which says there is an interface at 3000 m. Or

we could also look at it as if we were examining the probability of there being models which require interfaces between 2450 and 3300 m

and what features that would require in the rest of the model. Subsetting such models, which require interfaces between 2450 and 3300 m,

gives us scenario (d), corresponding to 67 per cent of the models in the full posterior ensemble. Note how there is still a high probability of

interfaces at shallower depths between 2000 and 2450 m for all these models. Given that 96 per cent of models require interfaces between

2000 and 3300 m, one can calculate the probability on the number of models that require interfaces to be present in both intervals = (77 per

cent + 67 per cent) − 96 per cent = 48 per cent, also borne out by subsetting the full model posterior. Thus 48 per cent of models in the final

posterior solution ensemble require there to be interfaces in both intervals, as we set out to demonstrate.

To further illustrate the high-probability scenario (d) shown in Fig. 9, we zoom in to the depths of interest as shown in Fig. 10, where

hotter colours correspond to higher probabilities. The Pluto-1 resistivity well log has also been included in the middle panel, and both

resistivity panels show the smooth isotropic inversion result from Key & Lockwood (2010). It is encouraging to see that the peak resistivity

in the smooth inversion coincides with the high probability value of about 10 ohm-m at around 2950 m depth, as is also suggested by the

well log. However, it is rather intriguing that there is a greater probability for another interface near the shallower depth of 2100 m. Given

that the isotropic smooth inversion (Key & Lockwood 2010) was regularized with a penalty on model roughness, it is not surprising that this

interface was not found given that it would be difficult for such an inversion to resolve a sharp jump in resistivity at depth and the possibility

of two or more closely spaced resistive layers.

An explanation may be that the high vertical resistivity at these shallower depths is caused by the presence of regionally extensive shales

above the Pluto gas field (Tilbury et al. 2009). Shales can exhibit a large vertical resistivity and small horizontal resistivity due to microscopic

grain layering and macro scale layer interbedding; since such shales could potentially mask or be mistaken for a resistive hydrocarbon layer,
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Trans-dimensional inversion of CSEM data 1149

Figure 9. Different scenarios mined from the full posterior ensemble. (a) The full posterior solution and accompanying PDFs. (b) Subset of solutions where the

number of interfaces is three (the most probable number). (c) Subset of solutions which require interfaces between 2000 and 2450 m, shown by red horizontal

lines. (d) Subset of solutions which require interfaces between 2450 and 3300 m, shown by red horizontal lines. The fraction of models associated with each

scenario out of the full posterior are given as percentages in the last column.

the identification of anisotropic shales is of considerable concern for CSEM exploration (e.g. Brown et al. 2012). One cannot also discount

the possibilities of there being a multilevel reservoir or the reservoir top being shallower in the survey area than in Pluto-1. Finally, this feature

could also be the effect of 2-D or 3-D geology, but these possibilities need to be fully modelled by 2-D or 3-D forward solvers to see if the

feature is still retained in the resulting posterior distributions. Here our interpretation is limited by having only a single site of relatively noisy

data (compared to data from more recent industry surveys). Bayesian analysis of data from additional CSEM receivers located both on and

off the Pluto reservoir, along with integration of the stratigraphy determined from seismic imaging and petrophysical analyses from the many

nearby wells, would almost certainly shed more light on the nature of the shallower resistive interface detected here.

4 C O N C LU S I O N S

In this study we have developed a Bayesian approach for the inversion of CSEM data. We used this approach to quantify the resolvability of

anisotropic conductivity for a 1-D model representative of an offshore hydrocarbon reservoir, and to quantify the resolution of marine CSEM

data collected at the Pluto gas field offshore Northwest Australia.

Our work with synthetic models show that anisotropy can indeed be well resolved in the shallower sediments, at least when the ratio of

vertical to horizontal resistivities is near 4:1. Highly resistive isotropic reservoir layers seem to be characterized by very wide distributions

with only the peak in the distribution of vertical resistivities at reservoir depth being trustworthy. All field components from the HED except

H z show a similar resolution of the reservoir vertical resistivity, whereas H z is completely insensitive to the reservoir. The radial inline electric

C© 2012 The Authors, GJI, 191, 1135–1151
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1150 A. Ray and K. Key

Figure 10. Close up view of scenario (d) from Fig. 9 which requires there to be interfaces between 2450 and 3300 m. In the middle panel, the Pluto-1 well

log is shown as the thin blue line. The smooth inversion result from Key & Lockwood (2010) is shown as the thin white line. Hotter colours in the resistivity

PDFs represent higher probabilities. Note how the probability of interfaces at shallower depths around 2150 m still remains. The probability of this scenario is

67 per cent.

field Er seems best at constraining the shallow anisotropy while the vertical electric field Ez seems best at resolving both the reservoir top and

bottom depths (Fig. 3). Given that both these field components can be acquired with standard inline geometry, it augurs that with relatively

straightforward survey designs over a 1-D target, anisotropy and the reservoir can be resolved if the target geology is not significantly different

from what has been studied here.

Our approach to data inversion uses a Bayesian framework and a ‘birth–death’ RJ-MCMC sampler which has not been used for inverting

marine CSEM data yet. The algorithm is trans-dimensional in that the number of model parameters is not fixed a priori. Further, the algorithm

is self-parametrizing in that the interfaces in a particular model are not fixed to be at a specific location and can move. We differ from

other trans-dimensional RJ-MCMC algorithms in mixing a global and local ‘update’ move for fixed dimension steps instead of using more

computationally intensive approaches such as delayed rejection. The algorithm is highly flexible and this method of Bayesian inversion is the

most truly ‘data driven’ approach that the authors have yet converged upon. A further improvement in this direction would be adding the data

noise parameters themselves as unknowns (Bodin et al. 2012), which would tackle the crucial issue of estimating data noise, which directly

affect the misfit function and thus the posterior solution converged upon.

The full posterior ensemble can be subsetted to display model distributions corresponding to a most probable parameter such as the

number of interfaces (Bodin et al. 2012), to incorporate new information as and when it may become available, or, for hypothesis testing of

different plausible geological scenarios. Subsetting is rather easily carried out and does not require additional inversion. Further, different

scenarios can be quantitatively compared by the fraction of models required in each scenario out of the total number of models in the full

posterior distribution of models.

Application of the trans-dimensional inversion to marine CSEM data from the Pluto field are in general agreement with previous results

obtained with smooth inversion. The differences, where they exist, highlight the fact that smooth models which are subjectively regularized

to obtain a stable and meaningful result out of the many highly oscillatory ones that all fit the data (Fig. 8)—may miss features that are not

smooth variations in resistivity, but nonetheless are likely geological features from a data misfit point of view.

Despite its numerous advantages, an obvious drawback to using this method is the fact that a large number of forward calls need to be

made to sample the posterior model distribution adequately. For 1-D earth models, the problem is tractable in that reasonable estimates of

the posterior solution can be found within a couple of hours when running on parallel computer systems. The rate limiting step is essentially

how long it takes to achieve burn-in for each chain. For Pluto, we ran 128 chains in parallel over 12 hr and oversampled the distribution by

at least a factor of two. Post burn-in, if enough chains are run in parallel, the number of further steps required can be reduced if the number

of parallel chains is increased. For 2-D or 3-D geology, evaluating a forward model response can take considerably longer and the millions

of forward calls may take inordinate amounts of time when done serially. However, given that parallel 2-D and 3-D forward solvers for EM

geophysics problems are becoming increasingly more efficient and that independent Markov chains are highly suited to being run in parallel,

this bodes well for the future of this flexible Bayesian approach to inverse problem solving.
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