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Abstract. To operate successfully in indoor environments, mobile robots must be able to localize themselves
Most current localization algorithms lack flexibility, autonomy, and often optimality, since they rely on a human to
determine what aspects of the sensor data to use in localization (e.g., what landmarks to use). This paper descr
a learning algorithm, called BaLL, that enables mobile robots to learn what features/landmarks are best suite
for localization, and also to train artificial neural networks for extracting them from the sensor data. A rigorous
Bayesian analysis of probabilistic localization is presented, which produces a rational argument for evaluatin
features, for selecting them optimally, and for training the networks that approximate the optimal solution. In ¢
systematic experimental study, BaLL outperforms two other recent approaches to mobile robot localization.
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1. Introduction

To operate autonomously, mobile robots must know where theyMahile robot local-
ization that is the process of determining and tracking the position (location) of a mobile
robot relative to its environment, has received considerable attention over the past fe
years. Accurate localization is a key prerequisite for successful navigation in large-sca
environments, particularly when global models are used, such as maps, drawings, top
logical descriptions, and CAD models (Kortenkamp, Bonassi, & Murphy, in press). As
demonstrated by a recent survey of localization methods by Borenstein, Everett, & Fen
(1996), the number of existing approaches is diverse. Cox (1991) noted that “Using sel
sory information to locate the robot in its environment is the most fundamental problem tc
providing a mobile robot with autonomous capabilities.”

Virtually all existing localization algorithms extract a small sefiegfturedrom the robot’s
sensor measurementisandmark-based approacheshich have become very popular in
recent years, scan sensor readings for the presence or absence of landmarks to infe
robot’s position. Other techniques, such as muoatlel matching approachgextract certain
geometric features such as walls or obstacle configurations from the sensor readings, whi
are then matched to models of the robot's environment. The range of features used |
different approaches to mobile robot localization is quite broad. They range from artificia
markers such as barcodes and more natural objects such as ceiling lights and doors
geometric features such as straight wall segments and corners. This raises the quest
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as to what features might be the best ones to extract, in the sense that they produce
best localization results. Assuming that features correspond to landniautke robot’s
environment, the questions addressed in this papeiénat landmarks are best suited for
mobile robot localization? Can a robot learn its own sets of featucas it define its own
landmarks for localizationand can it learn optimal featuresThe problem of learning
the right landmarks has been recognized as a significant scientific problem in robotic
(Borenstein, Everett, & Feng, 1996), artificial intelligence (Greiner & Isukapalli, 1994),
and in cognitive science (Chown, Kaplan, & Kortenkamp, 1995).

Few localization algorithms enable arobotto learn features or to define its own landmark:
Instead, they rely on static, hand-coded sets of features for localization, which has thre
principle disadvantages:

1. Lack of flexibility. The usefulness of a specific feature depends on the particular en:
vironment the robot operates in and also often hinges on the availability of a particula
type of sensors. For example, the landmark “ceiling light"—which has been used suc
cessfully in several mobile robot applications—is useless when the environment doe
not possess ceiling lights, or when the robot is not equipped with the appropriate sens
(such as a camera). If the features are static and predetermined, the robot can locali
itself only in environments where those features are meaningful, and with sensors th
carry enough information for extracting them.

2. Lack of optimality. Even if a feature is generally applicable, it is usually unclear how
good it is or what theptimallandmark would be. Of course, the goodness of features
depends, among other things, on the environment the robot operates in and the type
uncertainty it faces. Existing approaches usually do not strive for optimality, which car
lead to brittle behavior.

3. Lack of autonomy. For a human expert to select appropriate features, he/she has to b
knowledgeable about the characteristics of the robot’s sensors and its environment. Co
sequently, it is often not straightforward to adjust an existing localization approach tc
new sensors or to new environments. Additionally, humans might be fooled by intro-
spection. Since the human sensory apparatus differs from that of mobile robots, featur
that appear appropriate for human orientation are not necessarily appropriate for robo

These principal deficiencies are shared by most existing localization approaches (Borenste
Everett, & Feng, 1996).

This paper presents an algorithm, called BaLL (shorBayesian landmark learning
that lets a robotearn such features, along with routines for extracting them from sen-
sory data. Features are computed by artificial neural networks that map sensor data
a lower-dimensional feature space. A rigorous Bayesian analysis of probabilistic mobil
robot localization quantifies the average posterior error a robot is expected to make, whic
depends on the features extracted from the sensor data. By training the networks so as
minimize this error, the robot learns features that directly minimize the quantity of interes
in mobile robot localization (see also Greiner & Isukapalli, 1994).

We conjecture that the learning approach proposed here is flegilgle than static ap-
proaches to mobile robot localization, since BaLL can automatically adapt to the particula
environment, the robot, and its sensors. We also conjecture that BaLL will ofterbgiéd
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resultsthan static approaches, since it directly chooses features by optimizing their utility
for localization. Finally, BaLL increases theitonomyof a robot, since it requires no human

to choose the appropriate features; instead, the robot does this by itself. The first and t
third conjecture follow from the generality of the learning approach. The second conjectur
is backed with experimental results which illustrate that BaLL yields significantly better
results than two other approaches to localization.

Section 2 introduces the basic probabilistic localization algorithm, which has in large
parts been adopted from various successful mobile robot control systems. Section 3 fc
mally derives the posterior error in localization and Section 4 derives a neural networl
learning algorithm for minimizing it. An empirical evaluation and comparison with two
other approaches is described in Section 5, followed by a more general discussion of r
lated work in Section 6. Section 7 discusses the implications of this work and points ou
interesting directions for future research.

2. A probabilistic model of mobile robot localization

This section lays the groundwork for the learning approach presented in Section 3, providir
a rigorous probabilistic account on mobile robot localization. In a nutshell, probabilistic
localization alternates two steps:

1. Sensing.At regular intervals, the robot queries its sensors. The results of these querie
are used to refine the robot’s internal belief as to where in the world it is located. Sensin
usually decreases the robot’s uncertainty.

2. Acting. When the robot executes an action command, its internal belief is updatec
accordingly. Since robot motion is inaccurate due to slippage and drift, it increases th
robot’s uncertainty.

The derivation of the probabilistic model relies on the assumption that the robot operates
a partially observable Markov environment (Chung, 1960) in which the only “state” is the
location of the robot. In other words, the Markov assumption states that noise in perceptic
and control is independent of noise at previous points in time. Various other researcher
however, have demonstrated empirically that the probabilistic approach works well even i
dynamic and populated environments, due to the robustness of the underlying probabilist
representation (Burgard et al., 1996a; Kaelbling, Cassandra, & Kurien, 1996; Leonart
Durrant-Whyte, & Cox, 1992; Koenig & Simmons, 1996; Kortenkamp & Weymouth, 1994;
Nourbakhsh, Powers, & Birchfield, 1995; Simmons & Koenig, 1995; Smith & Cheeseman
1985; Smith, Self, & Cheeseman, 1990; Thrun, 1996).

2.1. Robot motion

BalLL employs a probabilistic model of robot motion. Lgetdenote the location of the
robot within a global reference frame. Throughout this paper, the tecation will be
used to refer to three variables: the robatandy coordinates and its heading directidn
Although physically a robot always has a unique locagiat any point in time, internally
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it only has a belief as to where it is located. BaLL describes this belief by a probability
density over all locations € &, denoted by

Bel(&), 1)

where E denotes the space of all locations. Occasionally we will distinguish the belief
beforetaking a sensor snapshot, denotedB®aior(§), and the belief after incorporating
sensor information, denoted Behosterio(£). The problem of localization is to approximate
as closely as possible the “true” distribution of the robot location, which has a single pea
at the robot’s location and is zero elsewhere.

Each motion command (e.g., translation, rotation) changes the location of the robo
Expressed in probabilistic terms, the effect of a motion comnaedA, whereA is the
space of all motion commands, is described by a transition density

PE | €, a), (2

which specifies the probability that the robot’s locatios,igiven that it was previously 4t
andthatitjust executed actian In practice it usually suffices to know a pessimistic approxi-
mation of P(¢ | £, @), which can easily be derived from the robot’s kinematics/dynamics.

If the robot wouldhotuse its sensors, it would gradually lose information as to where itis
due to slippage and drift (i.e., the entropyR¥l(¢) would increase). Incorporating sensor
readings counteracts this effect, since sensor measurements convey information about
robot’s location.

2.2. Sensing

Let Sdenote the space of all sensor measurements (sensations)sad3elenote a single
sensation, where sensations depend on the locatidithe robot. Let

P(s|§) ®3)

denote the probability thatis observed at locatiof. In practice, computing meaningful
estimates of (s | &) is difficult in most robotic applications. For example, if one robot’s
sensors include a camer(s | £) would be a high-dimensional density capable of deter-
mining the probability of every possible camera image that could potentially be taken at an
locationé. Even if a full-blown model of the environment is available, computtg | &)

will be a complex, real-time problem in computer graphics. Moreover, the current work
does not assume that a model of the environment is given to the robot; fRgsde;) must

be estimated from data.

To overcome this problem, it is common practice to extract (filter) a lower-dimensional
feature vector from the sensor measurements. For example, landmark-based approac
scan the sensor input for the presence or absence of landmarks, neglecting all other
formation contained therein. Model-matching approaches extract partial models such
geometric maps from the sensor measurements, which are then compared to an exist
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model of the environment. Only the result of this comparison (typically a single value) is
then considered further.

To formally model the extraction of features from sensor data, let us assume sensor de
are projected into a smaller spa€eand the robot is given a function

0:S— F, (4)

which maps sensatiors € S into featuresf € F. Borrowing terms from the signal
processing literaturey will be called afilter, and the result of filtering a sensor reading
f = o (s) will be called &eature vector Instead of having to know (s | £), it now suffices

to know

P(f18), (5)

whereP (f | &) relates the sensory featurés= o (s) to different locations of the environ-
ment, for wnich reason it is often calledreaap of the environmenthe majority of localiza-

tion approaches described inthe literature assumes thatthe map is given (Borenstein, Ever
& Feng, 1996). The probability?(f | £) can also be learned from exampld3(f | &) is
often represented by a piecewise constant function (Buhmann et al., 1995; Burgard et &
19964a; Burgard et al., 1996b; Kaelbling, Cassandra, & Kurien, 1996; Koenig & Simmons
1996; Moravec & Martin, 1994; Nourbakhsh, Powers, & Birchfield, 1995; Simmons &
Koenig, 1995), or a parameterized density such as a Gaussian or a mixture of Gaussie
(Gelb, 1974; Rencken, 1995; Smith & Cheeseman, 1985; Smith, Self, & Cheesemal
1990). Below, in our experimental comparisoik;aearest neighbor algorithm will be used

to represenP(f | &).

In landmark-based localization, for exampiefilters out information by recording only
the presence and absence of individual landmarks Parfd| &) models the likelihood of
observing a landmark at the various locatign® (f | £) can be estimated from data. The
mathematically inclined reader may notice that the usgsfinstead okis mathematically
justified only ifo is asufficient statisti¢Vapnik, 1982) for estimating location—otherwise,
all approaches that filter sensor data may yield sub-optimal results (by ignoring importar
sensor information). In practice, the suboptimality is tolerated, sihck| ¢), or an ap-
proximate version oP(f | &), is usually much easier to obtain th&gs | £), and often is
a good approximation to this probability.

2.3. Robot localization

For reasons of simplicity, let us assume that at any point in tintee robot queries its
sensors and then executes an action command that terminates tttildn response to
the sensor query, the robot receives a sensor reaflingrom which it extracts a feature
vectorf®, Letf®, @ =g(sWV), o (s?),...denotethe sequence of feature vectors,
and leta®?, a@, ... denote the sequence of actions. Furthermore®atz™, ... denote
the sequence of robot locations. Occasionally, locations will annotated toydhstinguish
them from variables used for integration.
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Initially, at timet = 0, the robot has arior belief as to what its location might be;
this prior belief is denoteBelpriO,(é(O)) and reflects the robot’s initial uncertainty. If the
robot knows its initial location and the goal of localization is to compensate slippage ant
drift, Beby (@) is a point-centered distribution that has a peak at the correct location. The
corresponding localization problem is callgasition tracking Conversely, if the robot has
no initial knowledge about its positiorBelp,ior(é(")) is a uniform distribution. Here the
corresponding localization problem is callsélf localization global localization or the
“kidnapped robot problem” (Engelson, 1994), a task that is significantly more difficult than
position tracking.

Sensor queries and actions change the robot’s internal belief. Expressed probabilistical
the robot’s belief after executing thhe- 1th action is

Bebrior(é(t)) = P(&"Y | fO a0 §@ g@ =D a(t—l)) (6)
and after taking thé-th sensor measurement it is

Bebosterio(é(t)) — p(g(t) | f@,a® §@ g@  gt=D f©). 7)
We will treat these two cases separately, starting with the second one.
2.3.1. Sensing. According to Bayes'’ rule,

Bebostenoy(é(t)) _ P(g‘” | O, atD, f(t))

P(fO [£0, fO at-D)p(e® | O, at-D)

- P(fO M, . atD) - ®

The Markov assumption states that sensor readings are conditionally independent of pre
ous sensor readings and actions given knowledge of the exact location:

P(sV | £0) = P(sV | £0, s® a® . at-D), 9)
Since f® = o (sV), it follows that
P(sV | £0) = P(f® |0 f® a®  at-D) (10)

It is important to notice that the Markov assumption does not specify the independence ¢
different sensor readings if the robot’s location is unknown; neither does it make assumptior
on the extent to whic§® is known during localization. In mobile robot localization, the
location is usually unknown—otherwise there would not be a localization problem—anc
subsequent sensor readings and actions usually depend on each other. See Chung (1€
Howard (1960), Mine & Osaki (1970), and Pearl (1988) for more thorough treatments o
conditional independence and Markov chains.
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The Markov assumption simplifies (8), which leads to the important formula (Moravec,
1988; Pearl, 1988):

P(fO [£O)P(E® | fD, .. at-D)
P(fO | f®, . .. at-D)
P(f® | £V)Bebrior(§V)

T R(fO [0, atD) (11)

Beh)osteriov(g: (t)) =

The denominator on the right hand side of (11) is a normalizer which ensures that the beli
Bebosterio€ ") integrates to 1. Itis calculated as

P(FO ] £ atD) :/ P(FO | £D)P(ED | £, at=D) dg®

&

= [ P10 160)Beobuor (). 12)

To summarize, the posterior bel®€hosteriof € V) after observing theth feature vectorf
is proportional to the prior belidBelyior (£ ) multiplied by the likelihoodP (f® | ¢®) of
observingf® atg®,

2.3.2. Acting. Actions change the location of the robot and thus its belief. Recall that the
belief after executing thih action is given by

Bebror(§Y) = P(E | 19, 10,a0), (13)

which can be rewritten using the theorem of total probability as
/ p(é(H-l) | §@ fO aO)P(E® | fFO fO a®)dg®. (14)
Since&® does not depend on the actiaf? executed there, (14) is equivalent to

f p(g(tJrl) | g(t)’ f(l)’ o f(t)’ a(t)) p(g(t) | f(l)’ e f(t)) d%‘(t). (15)

=

By virtue of the Markov assumption, which§f" is known renders conditional indepen-
dence ot ™V from @, a®, ..., f© (but not froma®), Bekyi(&*Y) can be expressed
as

/ P(g:(tJrl) | %-('[)’ a(t)) p(g(t) | f(l)’ o .I:(t)) dé(t)

=

or

[ PE 19, 20)Bebusnofs ) e (16)
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Table 1 The incremental localization algorithm.

1. Initialization: Bel(£) <— Bebyrior(€©)

2. For each observed feature vecfoe= o (s) do:
Bel(&) <— P(f | &) Bel(§) L (17)
Bel(&) «— Bel(®) [/ Bel(§) d%} (normalization) (18)

3. For each action commarddo:

Bel(§) «— /_ P( | € a) Bel() dé (19)

Put verbally, the probability of being &t'*? at timet + 1 is the result of multiplying the
probability of previously having been &t with the probability that actioa® carries the
robot to locatiorf *+V, integrated over all potential locatiof®'. The transition probability
PED | £® a®) has been defined in (2) in Section 2.1.

2.4. The incremental localization algorithm

Beliefs can be updated incrementally. This follows from the fact that the Eibfsterior

(W) is obtained from the belieBelyior(§") just before sensing, using (11), and the
belief Bekyior (€ ™) is computed from the beliBelosteriof & ") just before executing an
action command, using (16). The incremental nature of (11) and (16) lets us state tt
compact algorithm for probabilistic localization shown in Table 1. As can be seen in the
table, to updat8el(£) three probabilities must be knowBekyior(£?), the initial estimate
(uncertainty);P (¢ | £, a), the transition probability that describes the effect of the robot’s
actions; andP(f | &), the map of the environment.

Figure 1 provides a graphical example that illustrates the localization algorithm. Initially,
the location of the robot is unknown except for its orientation. Tied£) is uniformly
distributed over all locations shown in figure 1(a). The robot queries its sensors and finc
out that it is next to a door. This information alone does not suffice to determine its positior
uniquely—partially because of the existence of multiple doors in the environment anc
partially because the feature extractor might err. As a reBdl¢) is large for door
locations and small everywhere else, as shown infigure 1(b). Next, the robot moves forwar
in response to which its densiBel(&) is shifted and slightly flattened out, reflecting the
uncertaintyP (¢ | £, a) introduced by robot motion, as in figure 1(c). The robot now queries
its sensors once more and finds out that again it is next to a door. The resulting densi
in figure 1(d) now has a single peak and is fairly accurate. The robot “knows” with high
accuracy where it is.

Notice that the algorithm derived in this paper is a general instance of an updatin
algorithm for a partially observable Markov chain. For example, it subsumes Kalman filter:
(Kalman, 1960) when applied mobile robot localization (Smith, Self, & Cheeseman, 1990
Leonard, Durrant-Whyte, & Cox, 1992). It also subsumes hidden Markov models (Rabinel
1989) if robot location is the only state in the environment, as assumed here and elsewhe
Due to its generality, our algorithm subsumes various probabilistic algorithms publishe
in the recent literature on mobile robot localization and navigation (see Burgard et al.
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Figure 1L Probabilistic localization—an illustrative example. (a) Initially, the robot does not know where it is,
henceBel(§) is uniformly distributed. (b) The robot observes a door next to it, and changes its belief accordingly.
(c) The robot moves a meter forward; as a result, the belief is shifted and flattened. (d) The repeated observati
of a door prompts the robot to modify its belief, which now approximates the “true” location well.

1996a; Kaelbling, Cassandra, & Kurien, 1996; Koenig & Simmons, 1996; Kortenkamp &
Weymouth, 1994; Nourbakhsh, Powers, & Birchfield, 1995; Simmons, & Koenig, 1995;
Smith, Self, & Cheeseman, 1990).

3. The Bayesian localization error

This section and the following one present BalLL, a method for learsin@he input to
the BaLL algorithm is a set of sensor snapshots labeled by the location at which they wel
taken:

X={{s &) k=1 ...,K} (20)
whereK denotes the number of training examples.

Localization is a specific form of state estimation. As itis common practice in the statis-
tical literature on state estimation (Vapnik, 1982; Casella & Berger, 1990), the effectivenes
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of an estimator will be judged by measuring the expected deviation between estimated al
true locations. BaLL learns by minimizing this deviatior?.

3.1. The posterior error Fsterior

The key to learnings is to minimize the localization error. To analyze this error, let us
examine the update rule (17) in Table 1. This update rule transforms a prior belief to
refined, posterior belief, which is usually more accurate. Obviously, the posterior belief an
thus the error depend @n which determines the information extracted from sensorslata
Let &* denote therue location of the robot (throughout the derivation, we will omit the
time index to simplify the notation), and lets*, &) denote an error function for measuring
the error between the true positiohand an arbitrary other positign The concrete nature
of e is inessential to the basic algorithm; for exammenight be the Kullback-Leibler
divergence or a metric distance.
The Bayesian localization error a*, denoted byE (£*), is obtained by integrating the
errore over all belief positiong, weighted by the likelihoo®el(&) that the robot assigns
to &, giving

") = / e(&*, £)Bel(#) de. (21)

If this error is computed prior to taking a sensor snapshot, thatBglif) = Belyior(§), it
is called theprior Bayesian error ag* with respect to the next sensor reading and will be
denotedE,ior. The prior localization error is a function &elyi(£).

We are now ready to derive the Bayesian eafoertaking a sensor snapshot. Recall that
&* denotes the true location of the robot. By definition, the robot will sense a feature vecto
f with probability P(f | £*). In response, it will update its belief according to Eqg. (17).
The posterior Bayesian error a&t*, which is the error the robot is expected to maké*at
after sensing, is obtained by applying the update rule (17) to the error (21), giving

Eposterio§™) = /H e(&”, £)Bebosteriof§) d&

Pf B rior
=/e<s*,5)/ (T TEBebrior®) b ¢ | g g e, (22)
E F P(f)

where Eposterior is averaged over all possible sensor feature vectoveeighted by their
likelihood P(f | £*). The normalizeP( f) is computed just as in equations (12) or (18).

Thus far, the posterior errdEposteriorcOrresponds to a single positigti only. By aver-
aging over all possible positio§$, weighted by their likelihood of occurrend®£*), we
obtain theaverage posterior error

Eposterior = /H Eposterior(g*) P(%‘*) d.‘;—'*

P(f B rior
=//e<s*,s>/ (T 180BChior®) b ¢ | ooy pies) of d de™.  (23)
gJa F P(f)
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Sincef = o (s), expression (23) can be rewritten as

* P(o(s) | g)Belprior(%—) " N .
Eposterior= ) P P , 24
post /E/EE(S s)L P () (o(s) | E)P(£*) ds & d& (24)

where
P(o(s) = f P((S) | &)Behyor(®) dé. (25)

The errorEposterioris the exact localization error after sensing.

3.2.  Approximating Bosterior

While Eposterior measures the “true” Bayesian localization error, it cannot be computed
in any but the most trivial situations (since solving the various integrals in (24) is usually
mathematically impossible). Howevé,osteriorCan be approximated using the data. Recall
that to learro, the robot is given a set &€ examples

X={(sc&) Ik=1..., K} (26)

whereX consists oK sensor measuremersgsthat are labeled by the locatigp at which
they were takenX is used to approximatEpesteriorWith the expression

= P(o(s) | £)Bebrior(§)
Eposterior= e", &) P(o(s) | EPE"), (27)
P <é*;ex <s§e:x P(a(s))

where

P@(9)= Y P((s) | &Bebio®). (28)

(E,8)eX

Equation (27) follows directly from Eq. (24). The integration varialfles E ands € S,
which are independent in (24), are collapsed into a single summation over all trainin
patterns(&, s) € X in (27). Eposterioris a stochastic approximation &osterios based on
data, that converges uniformly &yosterior@s the size of the data sktgoes to infinity.

Leaving problems of small sample sizes aslﬁ&,stenorlets the robot compare different
o with each other: the smalleéposterio|i the bettew for the purpose of localization. This
alone is an important result, as it lets awmparetwo filters to each other.

The errorEposterioris a function of the prior uncertaintgel,;(£) as well. As a result,
a specifico that is optimal under one prior uncertainty can perform poorly under another.
This observation matches our intuition: when the robot is globally uncertain, it is usually
advantageous to consider different features than when it knows its location within a sma
margin of uncertainty.
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4. The BaLL algorithm

BaLL learns the filtew by minimizing Eposte,iorthrough search in the space of filters
that is, by computing

o= argminéposterior(&)v (29)
GEX

whereX is a class of functions from which is chosen. This section presents a specific
search spacg, for wnich it derives a gradient descent algorithm.

4.1. Neural network filters

BaLl realizesos by a collection ofn backpropagation-style feedforward artificial neural
networks (Rumelhart, Hinton, & Williams, 1986). Each network, denotedybwith

i =1,...,n, maps the sensor dagdo a feature value i0, 1). More formally, we have
o= (01, %, -, Gn)s (30)
whereforalli =1,...,n,
g:5S— (0,1 (31)

is realized by an artificial neural network. Thié& network corresponds to théh feature,
wheren is the dimension of the feature vectbr

Neural networks can approximate a large class of functions (Hornik, Stinchcombe, &
White, 1989). Thus, there are many features that a neural network can potentially extrac
To the extent that neural networks are capable of recognizing landmarks, our approach le
a robot automatically select its own and learn routines for their recognition.

4.2. Stochastic filters

Atfirst glance, it might seem appropriate to defihe- (g1(s), g2, (S), ..., gn(S)), making

the feature vectorff be the concatenateddimensional output of tha neural networks.

Unfortunately, such a definition would imply= (0, 1)", which contains an infinite number

of feature vectorsf (since neural networks produce real-valued outputs). If the sensor

readings are noisy and distributed continuously, as is the case for most sensors used

today’s robots, the chance is zero that two different sensations taken at the same locati

will generate the same feature vecfarin other words, iff = (91(S), g2, (S), ..., On(S)),

F would be too large for the robot to ever recognize a previous location—a problem tha

specifically occurs when using real-valued function approximators as feature detectors.
Fortunately, there exists an alternative representation that has several nice properties.

the BaLL algorithmF = {0, 1}" and|F| = 2" (which is finite). Each neural network

is interpreted as atochasticfeature extractor, which generates the vafye= 1 with
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probability g; (s) and the valuef; = 0 with probability 1— g; (s), giving

P(fi=1]s) =0gi(s)

(32)
P(fi=0]s)=1-g(s).
We assume that the joint probabilify(f |s) is given by the product of the marginal
probabilitiesP (f; | s):

P(fls)=]]Pfils. (33)
i=1

The stochastic setting lets express confidence in its result by assigning probabilities to
the differentf € F—a generally desirable property for a filter.

The stochastic representation has another advantage, which is important for the efficien
of the learning algorithm. As we show beloﬁposterior is differentiable in the output of
the function approximator and hence in the weights and biases of the neural network
Differentiability is a necessary property for training neural networks with gradient descent

4.3. The neural network learning algorithm

The new, stochastic interpretation @frequires thaE,qs and its approximatiorIEposte,ior

be modified to reflect the fact thatgenerates a probability distribution ovérinstead of a
single f € F. Following the theorem of total probability and using (23) as a starting point,
Epostis given by

fo (1 ,,,,, 1
Eposterior= / / eE", &) JsP(f9)P(s | £)Bebior(§) ds
f=

(0 ,,,,, ) P(T)
< LP(f |9P(s|£)P(E") ds d d&”, (34)

where
P(f)zﬁfsp<f |9P(S | E)Bebrior @) ds E. (35)

The approximation of this term is governed by

5 f=(@1,..., l)Pf B rior
Eposterio= y .y eE%&) Y ( 'SF),(]?)"’ Cptismpe
(*,s*)eX (£,5)eX f=(0,...,0)

=P

= Y Y e oPE) Bepo®) > 5

(&*,s")eX (§,5)eX f=(0,...,0)

P(f]s"), (36)
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where

P(f)= > P(f |3Bebio(®). (37)
(£,8)eX

The mathematically inclined reader should notice that (24) and (27) are special cases
(34) and (36). They are equivalent if one assumes®dt| s) is deterministic, that is, if
P(f |s) is centered on a singlé for eachs.

Armed with an appropriate definition é‘posterioﬁ we are now ready to derive the gradient
descent learning algorithm for training the neural network feature recognizers to minimiz
EposteriOF This is done by iteratively adjusting thweeightsand biasesof the ith neural
network, denoted by, in the direction of the negative gradientsliﬁoste,io,;

el Eposterior
Wipy < Wigy — N .

38
Wi 0 (38)
Heren > 0 is a learning rate, which is commonly used in gradient descent to control
the magnitude of the updates. Computing the gradient in the right-hand side of (38) is
technical matter, as botByosteriorand neural networks are differentiable:

0 Igposterior _ Z bl Eposterioragi ) (39)

awi;w E.5eX agl ) awi/w '

The second gradient on the right-hand side of (39) is the regular output-weight gradiet
used in the backpropagation algorithm, whose derivation we omit (see Hertz, Krogh, &
Palmer, 1991; Rumelhart, Hinton, & Williams, 1986; Wasserman, 1989). The first gradien
in (39) can be computed as

0 Eposterior (36)
- = 6(%'* E) P(S*)Belprior(é)
96 (5) (€ *;ex <52>:

1

1 1
XZZ > HP(f.|s>P(f.|s) P(H)~| (40)
== n089(5)

= e(&™, E)P(%‘*)Belprior(f)

(E*,s*)eX (§,5)eX
1 1 1
x Y ST P IsHPCE |s)
f1=0 f,=0 fn=0];é|
| 3¢ gP(fi|s) + 6. ¢ P(fi | s")
D (Egex HT:l P(fj 135
P IsHP(fi [9) 14 P(f; 19Bebor(§)
(Xegex 1= P(f; |§))2

m

:|(28f.,1_1)-
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Table 2 Ball, the algorithm for learning neural network filters

Input: Data setX = {(s, &) [k=1,..., K}, prior beliefBekyior(£).
Output: Optimized parameters (weights and biases), for then networksgy, . .., gn.

Algorithm:

1. Initialize the parametens;,, of every network with small random values.
2. lterate until convergence criterion is fulfilled:

2.1 Forall(&, s) € X, compute the conditional probabilities
10 if fi =1
1-g(s if fi=0

whereg; (s) is the output of théth network for inputs (cf. (32)).
2.2 Compute the errdEposterior(Cf. (36))

1 1
Eposlerlor— Z Z e(E*, £)P(£) Bebyior(€) - Z Z Z
(

£ 55 eX (£,5)eX f1=0 f,=0 =0

P(fi IS)=:

-1

i=1 £5ex \i=1

(]‘[ P(fi [s")P(fi |s>> { > (]‘[ P(f é)) Belpnor@}
(

2.3 For all network parametets , ,, compute

Dposter _ Z 9O ST e, HPE) Bepror®)

Jwj Y
" x MWine o STex ¢'5ex

1 1
: Z > TTPUiIsHP 19)28,.1-D)

f1=0 f,=0 fa=0j#i

4D

(42)

|:35*,g P(fils) + 8 P(fils")  P(fi|s")P(fis)[]j4 P(fj 9 Bebyior(§)
' : e m_ P(fj |5 <\2
Legex [li= P19 (Z(%,g)ex ITj_1 P(f; |S)>

The gradientéa% are obtained with backpropagation (cf. (39) and (40)).
2.4 For all network parametets ,, ,, update (cf. (38))

9E,
- : posterior
Wigy <= Wiy — N Wi

]

(43)

(44)

Hereé, y denotes the Kronecker symbol, which is kit= y and 0 ifx # y. P(fj|s*)is

computed according to Eq. (32).

Table 2 describes the BaLL algorithm and summarizes the main formulas derived in thi

and the previous section. BalL's input is the data>$eind a specific prior beli@el,;(£).

Below, we will train networks for different prior beliefs characterized by different entropies
(i.e., degrees of uncertainty). The gradient descent update is repeated until one react
a termination criterion (e.g., early stopping using a cross-validation set or pseudoconve

gence ofEposteriod, aS in regular backpropagation (Hertz, Krogh, & Palmer, 1§9B3LL

differs from conventional backpropagation (supervised learning) in that no target values al

generated for the outputs of the neural networks. Instead, the quantity of inEy@&kios

is minimized directly. The output characteristics of the individual networks and, hence, the

features they extract, emerge as a side effect of minimigipg:
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The output of the BalL L algorithm is a set of filters specified by a set of weights and biase
for the different networks. As noted abo,.steriorand the resulting filtes depend on the
uncertaintyBelyio:(¢). Below, when presenting experimental results, we will show that, in
cases in which the uncertainty is small (the entropBekyio(£) is low), quite different
features are extracted than when the uncertainty is large. However, although the networ
must betrained for a particularBekyio(£), they can beusedto estimate the location for
arbitrary uncertaintieBelyi(£), but with degraded performance. Itis therefore helpful, but
not necessary, to train different networks for different prior uncertainties.

4.4. Algorithmic complexity

The complexity of the learning and the performance methods must be analyzed separate
The localization algorithm described in Table 1 must be executed in real time, while the
robotis in operation, whereas the learning algorithm described in Table 2 can be run offline
Our primary concern in the analysis is time complexity.

4.4.1. Localization. The complexity of probabilistic localization (Table 1) depends on the
representation d®(f | £) andBel(&). Inthe worst case, processing a single sensor reading
requiresO(Kn+ nW) time, whereK is the training set size) is the number of networks
andW is the number of weights and biases in each neural network. Processing an actic
requiresO (K 2n) time. Various researchers have implemented versions of the probabilistic
localization algorithm that work in real time (Burgard et al., 1996a; Burgard, Fox, & Thrun,
1997; Kaelbling, Cassandra, & Kurien, 1996; Koenig & Simmons, 1996; Nourbakhsh,
Powers, & Birchfield, 1995; Simmons & Koenig, 1995; Thrun et al., 1996; Thrun, 1996).
Given the relatively small computational overhead of the existing implementations, scalin
to larger environments is not problematic.

4.4.2. Learning. BaLL requiresO(N2"K3 + N KnW) time, wheren, K, andW are the
same as above, and whedxeis the number of gradient descent iterations. If the number
of training patterns is greater than both the number of inputs and the number of hidde
units in each network, which is a reasonable assumption since otherwise the number
free parameters exceeds the number of training patterns by a huge margid 2K 2)
dominatesO(N KnW). Thus, under normal conditions, the training the networks requires
O(N2"K?) time. The constant factor is small (cf. Table 2). Most existing localization
algorithms use only one or two features (e.g., one or two landmarks), indicating that eve
small values fon work well in practice.

There are several ways to reduce the complexity of learning:

1. Instead of training all networks in parallel, they can also be trained one after anothe
similar to the way units are trained one after another in the cascade correlation algorithi
(Fahlman & Lebiere, 1989). Sequential training would reduce worst-case exponential t
linear complexity, since networks are trained one after another, which requines K°)
time.

2. Compactrepresentationsfe¢f | £) andBel(&) can reduce the complexity significantly.
For example, in Burgard et al. (1996a), Koenig & Simmons (1996), and Simmons
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& Koenig (1995), the number of grid cells used to represent | &) andBel§) is
independent of the training set size. Using their representations, our learning algorithr
would scale quadratically in the size of the environment and linearly in the size of the
training set. In addition, coarse-grained representations such as the one reported
Koenig & Simmons (1996) and Simmons & Koenig (1995) can reduce the constan
factor even further.

3. Thelearning algorithm in Table 2 interleaves one computaticﬁbg},ie,iorand its deriva-
tives with one update of the weights and biases. Since the bulk of processing time |
spent computingiposteriorand its derivatives, the overall complexity can be reduced by
modifying the training algorithm so that multiple updates of the networks’ parameters
are interleaved with a single computationl::qfoste,iorand its derivatives. The necessary
steps include:

3.1. The network outputg; (s) are computed for each training examgdes) € X.

3.2. The gradients oEposteriorwith respect to the network outpugs(s) are computed
(cf. (40)).

3.3. For each training exampls, &) € X, “pseudo-patterns” are generated using the
current network output in conjunction with the corresponding gradients, giving

agi (s)

3.4. These patterns are fitted using multiple epochs of regular backpropagation.

<s . Gi(S) — E"—t> : (45)

This algorithm approximates gradient descent, but it reduces the complexity by a consta
factor.

In addition, modifications such as online learning, stochastic gradient descent, or highe
order methods such as momentum or conjugate gradient methods (Hertz, Krogh, & Palm
1991) yield further speedup. Little is currently known about principal complexity bounds
that would apply here.

As noted above, learning can be done offline and is only done once. With the modifica-
tions proposed here, one complexity of training is low-order polynomial (mostly linear) in
K, n, N, andW. In the light of the modifications discussed here, scaling up our approact
to larger environments, larger training sets, and more neural networks does not appear
be problematic.

In our implementation (see below), training the networks required between 30 min an
12 h on a 200 MHz Pentium Pro.

5. Empirical evaluation and comparison

This section presents some empirical results obtained with BaLL, using data obtained frol
a mobile robot equipped with a color camera and an array of sonar sensors, as shown
figure 2(a). Tocompare our approach with other state-of-the-art methods, we reimplement
two previously published approaches.
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®)

Figure 2 (a) The Real World Interface B21 robot used in our research. (b) The testing environment.

1. Localization using doors. A team of researchers at our university has recently devel-
oped a similar probabilistic localization method that uses doors as its primary landmar
(see Koenig & Simmons, 1996; Simmons & Koenig, 1995). This group is interested
in reliable long-term mobile robot operation, for which reason it has operated an au
tonomous mobile robot almost on a daily basis over the last two years, in which the
robot moved more than 110 km in more than 130 hours. Since we are located in th
same building as this group, we had the unique opportunity to conduct comparisons i
the same environment using the same sensor configuration.

2. Localization with ceiling lights. Various research teams have successfully used ceiling
lights as landmarks, including HelpMate Robotics, which has built a landmark commer:
cial service robot application that has been deployed in hospitals world wide (King &
Weiman, 1990). HelpMate’s navigation system is extremely reliable. In our building,
ceiling lights are easy to recognize, stationary, and rarely blocked by obstacles, makir
them prime candidate landmarks for mobile robot localization.

Our previously best localization algorithm (Thrun, in press; Thrun et al., 1996), which is
based ormodel matchinfjand which is now distributed commercially by a mobile robot
manufacturer (Real World Interface, Inc.), was not included in the comparison, becaus
this approach is incapable of localizing the robot under global uncertainty. In fact, mos
approaches in the literature are restricteghdsition tracking i.e., localization under the
assumption that the initial position is known. Of the few approaches to global localiza-
tion, most require that a single sensor snapshot suffices to disambiguate the position—
assumption which rarely holds true in practice.

5.1. Testbed and implementation

This section describes the robot, its environment, the data, and the specific implementati
used throughout our experiments.

5.1.1. Environment. Figure 2(b) shows a hand-drawn map of our testing environment, of
which we used an 89 meter-long corridor segment. The environment contains two window
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(at both corners), various doors, an elevator, three to four trash bins, and a hallway. Tt
environment was also dynamic. While the data was recorded, the corridors were populate
the status of some ofthe doors changed, and the natural daylight had a strong effect on cam
images taken close to the windows. Strictly speaking, such dynamics violate the Marko
assumption (cf. Section 2.3), but as documented here and elsewhere (Burgard et al., 199
Burgard et al., 1996b; Kaelbling, Cassandra, & Kurien, 1996; Leonard, Durrant-Whyte, &
Cox, 1992; Koenig & Simmons, 1996; Nourbakhsh, Powers, & Birchfield, 1995; Smith,
Self, & Cheeseman, 1990), the probabilistic approach is fairly robust to such dynamics.

5.1.2. Data collection. During data collection, the robot moved autonomously at approxi-
mately 15 cm/s, controlled by our local obstacle avoidance and navigation routines (Fo
Burgard, & Thrun, 1996). In 12 separate runs, a total of 9,815 sensor snapshots we
collected (228 MB raw data). The dats was recorded using three different pointing direction
for the robot’s camera:

1. Data set D-1:In 3,232 snapshots, the camera was pointed towards the outer side of th
corridor, so that doors were clearly visible when the robot passed by them.

2. Data set D-2: In 3,110 snapshots, the camera was pointed towards the interior of the
building. Here the total number of doors is much smaller, and doors are wider.

3. Data set D-3: Finally, in 3,473 data points, the camera was pointed towards the ceiling.
This data set was used to compare with landmark-based localization using ceiling light

The illumination between the different runs varied slightly, as the data was recorded ¢
different times of day. In each individual run, approximately three quarters of the date
was used for training, and one quarter for testing (with different partitionings of the date
in different runs). When partitioning the data, items collected in the same run were alway
part of the same patrtition.

Unless otherwise noted, the robot started at a specific location in each run, from whel
it moved autonomously through the 89 meter-long segment of corridor. Thus, the principe
heading directions in all data are the same; however, to avoid collisions with humans, th
obstacle avoidance routines sometimes substantially changed the heading of the robot. M
of our data was collected close to the center of the corridor. Consequently, the networl
o and the maP(f | &) are specialized to our navigation algorithms (Thrun et al., 1996).
This is similar to work by others (Kuipers & Byun, 1988; Kuipers & Byun, 1991; Matari’
1990), whose definition of a landmark also requires that the robot use a particular navigatic
algorithm that makes it stay at a certain proximity to obstacles. Although the robot travel;
the corridor in both directions in everyday operation, we felt that for the purpose of scientific
evaluation, using data obtained for a single travel direction was suffitient.

Locationé was modeled by a three-dimensional varialdgy, 6). Instead of measuring
the exact locations of the robot by hand, which would not have been feasible given the larc
number of positions, we used the robot’s odometry and the position tracking algorithn
described by Thrun (in press) to derive the position labels. The error of these automatical
derived position labels was significantly lower than the tolerance threshold of our existin
navigation software (Thrun et al., 1996).
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5.1.3. Preprocessing.In all our runs, images were preprocessed to eliminate some of the
daytime- and view-dependent variations and to reduce the dimensionality of the data. Fir:
the pixel mean and variance were normalized in each image. Subsequently, each image v
subdivided into ten equally sized rows and independently into ten equally sized column:
For each row and column, seven characteristic image features were computed:

e average brightness

e average color(one for each of the three color channels), and

o texture information: the average absolute difference of the RGB values of any two
adjacent pixels (in a subsampled image of size 60 by 64, computed separately for ea
color channel).

In addition, 24 sonar measurements were collected, resulting in a total 204 24= 164

sensory values per sensor snapshot. During the course of this research, we tried a variet)
differentimage encodings, none of which appeared to have a significantimpact on the quali
of the results. The features are somewhat specific to domains that possess brightness, cc
or texture cues, which we believe to be applicable to a wide range of environments. Th
basic learning algorithm, however, does not depend on the specific choice of the feature
and it does not require any preprocessing for reasons other than computational efficienc

5.1.4. Neural networks. In all our experiments, multilayer perceptrons with sigmoidal
activation functions (Rumelhart, Hinton, & Williams, 1986) were used to filter the (pre-
processed) sensor measurements. These networks contained 164 input units, six hidc
units, and one output unit. Runs using different network structures (e.g., two hidden layer:
gave similar results as long as the number of hidden units per layer was not smaller the
four. To decrease the training time, we used the pseudo-pattern training method describ
in item 3 of Section 4.4.2, interleaving 100 steps of backpropagation training with one
computation ofépostenorand its derivatives. Networks were trained using a learning rate
of 0.0001, a momentum of 0.9, and a version of conjugate gradient descent (Hertz, Krog
& Palmer, 1991). These modifications of the basic algorithm were exclusively adopted
reduce the overall training time, but an initial comparison using the unmodified algorithrr
(see Table 2) gave statistically indistinguishable results. As noted above, learning require
between 30 min and 12 h on a 200 MHz Pentium Pro.

5.1.5. Error function. In our implementation, the erra&*, £) measures the distance
the robot must travel to move frogt to &. Thus, the further the robot must travel when
erroneously believing to be &t the larger its error.

5.1.6. Map. NearestneighbofFranke, 1982; Stanfill & Waltz, 1986) was used to compute
P(fi | £). More specifically, in our experiments the entire trainingXetas memorized.

For each query locatiog, a set ofk valuesg(sy), g(s2), ..., g(s) was computed for the

k data points inX nearest t&. Nearness was calculated using Euclidean distance. The
desired probabilityP ( f; | £) was assumed to be the aver&gé Z!‘zl g(s). This approach
was found to work reasonably well in practice. The issue of how to best approximate
P(f | &) from finite sample sizes is orthogonal to the research described here and we
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therefore not investigated in depth; for example, see Burgard et al. (1996a), Gelb (1974
Nourbakhsh, Powers, & Birchfield (1995), Simmons & Koenig (1995), and Smith, Self, &
Cheeseman (1990) for further literature on this topic.

5.1.7. Testing conditions. We were particularly interested in measuring performance un-
der different uncertainties—from local to global. Such comparisons are motivated by th
observation that the utility of a feature depends crucially on uncertainty (cf. Section 3.2). Ir
most of our runs, the uncertainBekyior(¢) was uniformly distributed and centered around
the true (unknown) position. In particular, the distributions used here had the widthsn [
i1m], [-2m,2m],[F5m,5m], 10 m, 10 m], F50 m, 50 m], and 89 m, 89 m].

The range of uncertainties captures situations with global uncertainty as well as situatior
where the robot knows its position within a small margin. An uncertainty-89 m, 89 m]
corresponded tglobal uncertainty, since the environment was 89 m long. We will refer
to uncertainties at the other end of the spectrusil(fn, 1 m], -2 m, 2 m]) adocal. An
uncertainty of 1 m, 1 m] is generally sufficient for our autonomous navigation routines,
so no smaller uncertainty was usedBHlyiq is used in training, we refer to it asining
uncertainty If it is used in testing, we call itesting uncertaintyWhen evaluating BaLL,
sometimes different prior uncertainties are used in training and testing to investigate th
robustness of the approach.

5.1.8. Dependent measuresThe absolute errdﬁposterio,depends on the prior uncertainty
Belyior(€), hence it is difficult to compare for different prior uncertainties. We therefore
chose to measure instead #veor reduction defined as

1— Ep~osterior. (46)
Eprior

Like the posterior erroEposte,ioﬁ the prior errorli,[,rior denotes the approximation &prior
based onthe daté. Forexample, ifthe prior errd::sprior isfourtimes as large as the posterior
error Eposteriorafter taking a sensor snapshot, the error reduction is 75%. The larger the
error reduction, the more useful the information extracted from the sensor measurement f
localization. In our experiments, the initial error of a globally uncertain robot is 42.2 m;
thus, to lower the error to 1 m, it must reduce its error by 97.6%. The advantage of plottin
the error reduction instead of the absolute error is that all results are in the same sce
regardless of the prior uncertainty, which facilitates their comparison.

5.2. Results

The central hypothesis underlying our researchis thatfilters learned by BaLL can outperfor
human-selected landmarks. Thus, the primary purpose of our experiments was to compz
the performance of BaLL to that the other two approaches. Performance was measured
terms of localization error. The secondary purpose of our experiments was to understal
what features BalLL uses for localization. Would the features used by BaLL be similar tc
those chosen by humans, or would they be radically different?
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In a first set of experiments, we evaluated the error reduction for BaLL and compared |
to the two other approaches, under different experimental conditions. The error reductic
directly measures the usefulness of a filter a particular type of landmark for localization.
Thus, it lets us judge empirically how efficient each approach is in estimating a robot'
location. Different experiments were conducted for different uncertainties (from local to
global), and different numbers of netwonks

5.2.1. One neural network and same uncertainty in training and testindn the first
experiment, BaLL was used to train a single neural network, which was then compare
to the other two approaches. While the different approaches were evaluated under tl
different uncertainties, in each experiment the testing uncertainty was the same as t
training uncertainty. Consequently, the results obtained here represdrgdheasdor
BaLL, sinces was trained for the specific uncertainty that was also used in testing.

Figure 3 shows the error reduction obtained for the three different data sets D-1, D-2, ar
D-3. Ineach ofthese diagrams, the solid line indicates the error reduction obtained for BaLL
whereas the dashed line depicts the error reduction for the other two approaches (landma
based localization using doors in figures 3(a) and (b), and ceiling lights in figure 3(c)). Ir
all graphs, 95% confidence intervals are also shown.

Ascanbe seeninallthree diagrams, BaLL significantly outperforms the other approache
For example, as the results obtained with data set D-1 indicate (figure 3(a)), doors appe
to be best suited fa-2 m uncertainty. If the robot knows its location withit?2 m, doors,
when used as landmarks, reduce the uncertainty by an average of 8.31%. BalLL identifi
a filter that reduces the error by an average of 14.9%. This comparison demonstrates tt
BaLL extracts more useful features from the sensor data. The advantage of our approack
even larger for increasing uncertainties. For example, if the robot’s uncertaifi§Qisn,
BaLL reduces the error by 36.9% (data set D-1), whereas doors reduce the error by as litf
as 5.02%.

Similar results occur for the other two data sets. For example, in data set D-2, where tf
camera is pointed towards the inside wall, the door-based approach reduces the error
a maximum average of 9.78% (figure 3(b)). In this environment, doors appear to be be
suited for+5 m uncertainty (and not fat2 m), basically because doors on the interior side
of the testing corridor are wider and there are fewer of them. Here, too, BaLL outperform:
the door-based approach. It successfully identifies a feature that reduces the uncertail
by 15.6% under otherwise equal conditions. In figure 3(b), the largest relative advantag
of our approach over the door-based approach occurs when the robot is globally uncerte
aboutits position. Here BaLL reduces the error by 27.5%, whereas the door-based approg
yields no noticeable reduction (0.00%).

The results obtained for data set D-3, where the camera is pointed upward, are genera
similar. If the prior uncertainty ist2 m, ceiling lights manage to reduce the error by as
much as 15.6%, indicating that they are significantly better suited for this type of uncertaint
than doors. We attribute this finding to the fact that most of our ceiling lights are spaced i
regular intervals of about 5 m. BaLL outperforms localization based on ceiling lights in all
cases, as can be seen in figure 3(c). For example, it reduces the error by 21-HB%nfor
prior uncertainty and by 39.5% fak50 m uncertainty. All these results are significant at
the 95% confidence level.
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Figure 3 Average results. The dashed line indicates the error reduction obtained for doors, and the solid lin
indicates the error reduction if the filters are learned using BaLL, for (a) D-1, (b) D-2, and (c) D-3.
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Table3 Comparison of BaLL with the other two approach£& (m uncertainty). Here specifies the dimension
of the features vectof (i.e., the number of networks), and the numbers in the table give the average error reductior
and their 95% confidence interval. The results in the first two rows can also be found in figuee? 3rat

Data set D-1 D-2 D-3
Doors 8.3%t 1.1% 1.4%t 1.5% —
Ceiling lights — — 15.6%t 1.4%
BalLL,n=1 14.9%+ 1.3% 14.2%t 1.6% 21.0%t1.7%
BalLL,n=2 33.5%+ 1.9% 36.7%t 1.9% 34.5%t 2.0%

BalLL,n=3 39.7%+ 2.0% 36.3%t2.3% 41.5%¢t 1.8%
BalLL,n=4 41.7%+ 2.5% 36.7%t1.9% 42.9%¢t 1.6%

5.2.2. Multiple neural networks and same uncertainty in training and testingn a second
experiment, we held uncertainty constant but varied the number of networks and hence tl
dimensionality of the feature vector (from one to four). As described in Section 4, BalL
can simultaneously train multiple networks.

The primary result of this study was that, as the number of networks increases, BalLL'
advantage over the alternative approaches increases. Table 3 shows the average error re
tion (and 95% confidence interval) obtained 462 m uncertainty and for the three different
data sets. Fan = 4, the difference between BaLL and both other approaches is huge. Ou
approach finds features that reduce the error on average by 41.7% (data set D-1), 36."
(D-2), and 42.9% (D-3), whereas the other approaches reduce the error only by 8.3%, 1.4
and 15.6%, respectively. According to these numbers, BaLL is between 2.75 and 26.2 tim
as data efficient as the alternatives.

To understand the performance improvement over the single network case, it isimporta
to notice that multiple networks tend to extract different features. If all networks recognizec
the same features, their output would be redundant and the result would be the same a
n = 1. Iftheir outputs differ, however, the networks will generally extraoteinformation
from the sensors, which will usually lead to improved results, as demonstrated by th
performance results. Thus, the observation that the different networks tend to select differe
features is a result of minimizing the posterior effgssterior AS We have shown in an earlier
version of this article (Thrun, 1996), the output of the networks is largely uncorrelated,
demonstrating that different, nonredundant features are extracted by the different networtk

5.2.3. Multiple neural networks and different uncertainty in training and testingin
a third experiment, we investigated BalLL's performance when trained for one particula
uncertainty but tested under another. These experiments have practical importance, since
our current implementation the slowness of the learning procedure prohibits training ne\
networks every time the uncertainty changes. We conducted a series of runs in which ne
works were trained fat=2 m uncertainty and tested under the various different uncertainties.
In the extreme case, the testing uncertainty #&9 m, whereas the training uncertainty
was=+2 m.

Figure 4 shows the results obtained foe= 4 networks using the three different data
sets. As expected, the networks perform best when the training uncertainty equals tl
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Figure 4 Even under different uncertainties, the learned filters reduce the error significantly more than thos
that recognize doors. This figure shows results obtained whent networks are trained fat2 m uncertainty.
BalLL's error reduction is plotted by the solid line, whereas the dashed line depicts the error reduction when doo
are used as landmarks. The figure shows results for data set (a) D-1, (b) D-2, and (c) D-3.
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testing uncertainty. The primary results are that the performance degrades gracefull
in that even if the training uncertainty differs drastically from the testing uncertainty, the
networks extract useful information for localization. BaLL still outperforms both alternative

approaches or produces statistically indistinguishable results. These results suggest that
our environment, a single set of filters might still be sufficient for localization, although the
results might not be as good as they would be for multiple sets of filters.

5.2.4. Global localization. In a final experiment, BaLL was applied to the problem of
global localization, in which the robot does not know its initial location. We model this by
assuming its initial uncertainty is uniformly distributed. As the robot moves, the internal
belief is refined based on sensor readings. In our environment, a single sensor snapsho
usually insufficient to determine the position of the robot uniquely. Thus, multiple sensol
readings must be integrated over time.

We conducted 35 global localization runs comparing the door-based localization ap
proach with BaLL. In each run, the robot started at a random position in the corridor
Sensor snapshots were taken every 0.5 m and incorporated into the internal belief using t
probabilistic algorithm described in Table 1. Both approaches—the door-based approa
and Ball, used the same data; thus, any performance, difference was exclusively due
the different information extracted from the sensor readings. BalLL nsedl networks,
which were trained fot-2 m uncertainty prior to robot operation and held constant while
the robot localized itself.

Figure 5 depicts an example run with BaLL. This figure shows the bBb§E) and the
error at different stages of the localization. Each row in figure 5 gives the liRsigf) at
a different time, with time progressing from the top to the bottom. In each row, the true
position of the robot is marked by the square. As can be seen in figure 5, the feature
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Figure 5 An example of global localization with BaLL. Each curve represents the ligdif) of the robot at a
different time. Initially (top curve), the robot’s position is in the center of the rectangle. Its initial [B8igf) is
uniformly distributed. As the robot senses and moves forvBet(¢) is refined. After four sensor measurements,

Bel(£) is centered on the correct position. The numbers on the right side depict th&ggg@riorat the different
stages of the experiment.
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Figure 6. Absolute error in cm as a function of meters traveled, averaged over 35 different runs with different
starting points. Every 0.5 m, the robot takes a sensor snapshot. The dashed line indicates the error when do
are used as landmarks and the solid line corresponds to BalLL, which gives superior results.

extracted by BalLL reduce the overall uncertainty fairly effectively, and after four sensot
readings (2 meters of robot motion) the robot “knows where it is.”

Figure 6 summarizes the result of the comparison between BalLL and the door-base
approach (dashed line). This shows the average error (in cm) as a function of the distan
traveled, averaged over 35 different runs with randomly chosen starting positions, alon
with 95% confidence intervals. The results demonstrate the relative advantage of learnir
the features. After 30 m of robot travel, the average error of the door-based approach
7.46 m. In contrast, BaLL attains the same accuracy after only 4 m, making it approximatel
7.5 times as data efficient. After 9.5 m, BaLL yields an average error that is smaller thal
1 m. The differences are all statistically significant at the 95% level.

As noted above, when applied in larger environments or in the bidirectional case, th
number of sensor readings required for global localization increases. To quantify thi
increase, it is useful to consider the problem of localization from an information-theoretic
viewpoint. Reducing the uncertainty from 89 s m log,(89 m/1 m)= 6.48 independent
bits of information. This is because it takes 6.48 bits to code a symbol using an alphab
of 89 symbols. Of course, consecutive sensor readings are not independent, reducing 1
amount of information they convey. Empirically, BaLL requires on average 19 sensol
readings (9.5 m) to reduce the error to 1 m. These numbers suggest that, on avera
it needs 3 = 19/5.4 sensor readings for one bit of independent position information.
Consequently, in a corridor twice the size of the one considered here (or in the bidirection:
case), 23 sensor readings should be sufficient to obtain an average localization error of 1
(since 23> 19+ 3.5).

5.3. What features do the neural networks extract?

Analyzing the trained neural networks led to some interesting findings. In general, th
networks use a mixture of different features for localization, such as doors, dark spots, we
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Figure 7. Example output characteristics of a filter, plotted over data obtained in one of the runs. The filters
were trained for (a):2 m, (b)+10 m, and (c}89 m (global) uncertainty.

color, hallways, and blackboards. In several runs, the networks became sensitive to a sf
in our corridor whose physical appearance did not, to us, differ from other places. Close
investigation of this spot revealed that, due to an irregular pattern of the ceiling lights, th
wall is slightly darker than the rest of the corridor. This illumination difference is barely
visible to human eyes, since they compensate for the total level of illumination. However
our camera is very sensitive to the total level of illumination, which explains why the robot
repeatedly selected this spot for use in localization.

We also investigated the effect of different training uncertainties on the diltés the
above results suggest, different filters are learned for different uncertainties, so the questi
arises as to what type of features are used under these different conditions.

Using data set D-1 as an example, figure 7 depicts example outputs of trained networ
for £2 m, £10 m, and+89 m training uncertainty. Each curve plots the output value
for the corresponding network, which were evaluated in the 89 meter-long corridor. Ob
viously, the features extracted by the different networks differ substantially. Whereas th
network trained for small uncertainty is sensitive to local features such as doors, hallway
and dark spots, the network trained for large uncertainty is exclusively sensitive to the colc
of the walls. Roughly a quarter of our corridor is orange and three quarters are light browr
If the robot is globally ignorant about its position, wall color is vastly superior to any other
feature, as illustrated by the performance results described in the previous section. If tt
robot is only slightly uncertain, however, wall color is a poor feature.

Figure 8 depicts the output of= 4 networks, simultaneously trained for local uncertainty
(2 m). As discussed above, the different networks specialize to different perceptue
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Figure 8 Example output characteristicsf= 4 filters, optimized foet2 m uncertainty.



BAYESIAN LANDMARK LEARNING FOR MOBILE ROBOT LOCALIZATION 69

features. More examples and a more detailed discussion of the different features learn
under the various experimental conditions can be found in thrun (1996).

6. Related work

Mobile robot localization has frequently been recognized as a key problem in robotic:
with significant practical importance. Cox (1991) considers localization to be a fundamen
tal problem to providing a mobile robot with autonomous capabilities. A recent book by
Borenstein, Everett, & Feng (1996) provides an excellent overview of the state-of-the-art i
localization. Localization—and in particular localization based on landmarks—plays a key
role in various successful mobile robot architectr&%hile some localization approaches,
such as Horswill (1994), Koenig & Simmons (1996), Kortenkamp & Weymouth (1994),
Matari¢ (1990), and Simmons & Koenig (1995), localize the robot relative to some land-
marks in a topological map, BaLL localizes the robot in a metric space, as in the approac
by Burgard et al. (1996a, 1996b).

However, few localization approaches can localize a robot globally; they are used mainl
to track the position of a robot. Recently, several authors have proposed probabilisti
representations for localization. Kalman filters, which are used by Gelb (1974), Rencke
(1995), Smith & Cheeseman (1985), and Smith, Self, & Cheeseman (1990), represent tl
location of a robot by a Gaussian distribution; however, they only can represent unimodz
distributions, and so they are usually unable to localize a robot globally. It is feasible tc
represent densities using mixtures of Kalman filters, as in the approach to map buildin
reported by Cox (1994), which would remedy the limitation of conventional Kalman fil-
ters. The probabilistic approaches described by Burgard et al. (1996a, 1996b), Kaelblin
Cassandra, & Kurien (1996), Koenig & Simmons (1996), Nourbakhsh, Powers, & Birchfield
(1995), and Simmons & Koenig (1995) employ mixture models or discrete approxima-
tions of densities that can represent multimodal distributions. Some of these approach
are capable of localizing a robot globally. The probabilistic localization algorithm de-
scribed in Section 2 borrows from this literature but generalizes all these approaches.
smoothly blends both position tracking and global optimization, using only a single updatt
equation.

Most existing approaches to mobile robot localization extract static features form the
sensor readings, usually using hand-crafted filter routines. The most popular class
approaches to mobile robot localizatidogcalization based on landmarkscan sensor
readings for the presence or absence of landmarks. A diverse variety of objects and spat
configurations have been used as landmarks. For example, many of the landmark-bas
approaches reviewed in Borenstein, Everett, & Feng (1996) require artificial landmarks suc
as bar-code reflectors (Everett et al., 1994), reflecting tape, ultrasonic beacons, or vist
patterns that are easy to recognize, such as black rectangles with white dots (Borenste
1987). some recentapproaches use more natural landmarks that do not require modificatic
of the environment. For example, the approaches of Kortenkamp & Weymouth (1994) an
Matari¢ (1990) use certain gateways, doors, walls, and other vertical objects to determir
the robot’s position, and the Helpmate robot uses ceiling lights to position itself (King
& Weiman, 1990). The approaches reported in Collet & Cartwright (1985) and Wolfart,
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Fisher, & Walker (1995) use dark/bright regions and vertical edges as landmarks. Thes
are just a few representative examples of many different landmarks used for localization.

Map matching which comprises a second, not quite as popular family of approaches
to localization, converts sensor data to metric maps of the surrounding environment, su
as occupancy grids (Moravec, 1988) or maps of geometric features such as lines. T
sensor map is then matched to a global map, which might have been learned or provid
by hand (Cox, 1991; Rencken, 1993, Schiele & Crowley, 1994; Thrun, 1993; Thrun, in
press; Yamauchi & Beer, 1996; Yamauchi & Langley, 1997). Map-matching approache
filter sensor data to obtain a map, and then use only the map in localization.

These approaches have in common the fact that the features extracted from the sen
readings are predetermined. By hand selecting a particular set of landmarks, the rob
ignores all other information in the sensor readings which, as our experiments demonstra
might carry some additional information. By mapping sensor readings to metric maps in
fixed, precoded way, the robot ignores other potentially relevant information in the sensc
readings. The current work lets the robot determine by itself what features to extract fo
localization, based on their utility for localization. As shown by our empirical comparison,
enabling arobot to extract its own features (and learning its own landmarks) has a noticeal
impact on the quality of the results.

Probably the most related research is that by Greiner and Isukapalli (1994). Their af
proach can select a set of landmarks from a larger, predefined set of landmarks, using
error measure that bears close resemblance to the one used in BaLL. The selection is dri
by the localization error after sensing, which is determined empirically from training data
In that regard, both approaches exploit the same basic objective function in learning filter:
Greiner and Isukapalli's approach differs from BaLL primarily in three respects. First, it
assumes that the exact location of each landmark is known before learning. The robot do
not define its own landmarks; rather, it starts with a set of human-defined landmarks ar
rules out those that are not suited for localization. Second, it is tailored towards correctin
small localization errors and cannot perform global localization. Third, the class of land-:
marks that BaLL can learn is much broader. The filters used by Greiner and Isukapalli ar
functions of three parameters (distance, angle, and type of landmark); in contrast, Bal
employs neural networks that have many more degrees of freedom.

7. Conclusion

This paper has presented a Bayesian approach to mobile robot localization. The approz
relies on a probabilistic representation and uses Bayes’ rule to incorporate sensor data ir
internal beliefs and to model robot motion. The key novelty is a method, called BaLL,
for training neural networks to extract a low-dimensional feature representation from high
dimensional sensor data. Arigorous Bayesian analysis of probabilistic localization provide
a rational objective for training the neural networks so as to directly minimize the quantity
of interest in mobile robot localization: the localization error. As a result, the features
extracted from the sensor data emerge as a side effect of the optimization.

An empirical comparison with two other localization algorithms under various conditions
demonstrated the advantages of BaLL. We compared BalLL with an existing method b
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Koenig & Simmons (1996), which use doors as landmark in localization, and with King
& Weiman'’s (1990) method, which uses ceiling lights. In this experiment, our approact
identified features that led to superior localization results. In some cases, the performan
differences were large, particularly for localization under global uncertainty.

BaLL's ability to learn its own features and thus to discover its own landmarks has im-
portant consequences for mobile robot navigation. In particular, the probabilistic paradigr
has four principal advantages when compared to conventional approaches to this proble

1. Autonomy. BalLL obviates the need for manually determining the features to extract
from the sensor data. In most previous approaches to localization, a human design
had to manually specify the features to extract. For example, most landmark-base
approaches rely on predetermined landmarks, chosen by human expert, which requir
expertise about the robot, its sensors, and the environment. BaLL replaces the need 1
selecting the right features by automated learning.

2. Optimality. In BaLL, filters are learned by attempting to optimize the accuracy of the
localization routines that employs them. Asymptotically, minimizing the Bayesian error
should yield optimal filters. Of course, BaLL might fail to find an optimal set of filters
for three reasons: BalLLl is trained using finite sample sets; backpropagation network
might not be sufficient to represent optimal filters; and the gradient descent trainin
procedure might converge to a local minimum.

3. Environmental flexibility. Our method can also customize itself to different environ-
ments. Any routine that relies on static, built-in landmarks should fail in environments
that do not possess such landmarks. For example, although ceiling lights might be a
propriate landmarks in some environments, they are inappropriate in environments th
do not possess them. By providing a method that supports the automatic customizatic
of robots to their environments, we hope to achieve a level of flexibility that facilitates
the design of future service robot applications (e.g., service robots operated in priva
homes, whose design varies greatly from home to home).

4. Sensor flexibility. The current approach does not hinge on a specific sensor technology
In contrast, most existing localization approaches are closely tied to a particular type c
sensor. For example, routines that rely on visual cues require that the robot be equipp
with a camera. BalLL is more flexible in that it automatically adapts to the particular
type sensor. We conjecture that it will also scale better to high-dimensional sensc
spaces that arise if a large number of sensors are used simultaneously. Exploiting t
information in high-dimensional sensor spaces has proven to be extremely difficult fo
human engineers; for this reason we believe that data-driven learning approaches su
as the one proposed in this paper will ultimately make a lasting contribution to the fielc
of robotics.

A key limitation of the current approach is that it does not learn the location of landmarks
(in x-y coordinates). Instead, it learns to associate sensor readings with robot locations.
the robot knew the location of the landmarks, it could apply projective geometry to predic
a landmark’s appearance from different, nearby locations. In the current approach, this
not possible and we suspect that this limitation causes an increased need for training da
A second limitation arises from the fact that, after the initial training phase, learning is
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discontinued. If the environment changes, it is desirable that the localization routines ada
to the changes, and it appears feasible to extend BalLL accordingly. As the robot know
roughly where it is, BaLL can use its position estimates to label sensor data automaticall
and use this self-labeled data for further training. The effectiveness of such an extension
practice remains to be seen.

Although we have applied BaLL only to one specific problem in mobile robot localization,
the mathematical framework presented here is more general and can be applied to a wh
range of decision problems arising in the context of mobile robotics. These include:

1. Active sensing.As shown in Thrun (1996), the mathematical framework yields a rational
incentive for pointing sensors so as to best localize a robot. Empirical results hav
demonstrated that by actively controlling the pointing direction of the robot’'s camera sc
as to minimize the future expected localization error, the efficiency and robustness c
localization can be improved further.

2. Sensor selectionthe approach can also be used to determine what sensor to include o
mobile robots. Previously, robot designers lacked a formal method for determining the
sensors best suited for localization. By comparing the Bayesian localization error fo
different type sensors, our analysis provides a rational criterion for determining whick
sensors work best and where to mount them.

3. Navigation for localization. The approach can be used to determine where to move so
as to best localize the robot, a problem that has previously been studied by Kaelblin
Cassandra, & Kurien (1996). The mathematical details are discussed in Thrun (1996
while a similar approach with empirical results can be found in Burgard, Fox, & Thrun
(1997).

The Bayesian method presented here is an instance of a general approach for the estima
of hidden state and the integration of high-dimensional sensor data over time. Put in th
light, a limiting assumption of the current approach is the requirement that, during training
the hidden state must be accessible. This is obviously a reasonable assumption to me
in some situations (such as the one studied here), but it is unreasonable in many ot
situations. Thus, an open research issue is the extension of the current methods for 1
estimation of hidden state when it is not accessible. Preliminary results carried out in oL
lab in the context of intelligent building control have led to an extension to situations where
only a low-dimensional projection of the hidden state is accessible during training. We
suspect that the general paradigm of Bayesian analysis has the potential for new class
more capable learning algorithms, with the current work being just an initial example.
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Notes

1. As noted by Matad(1990), “Although intuitively clear, the concept [of a landmark] is difficult to define.” We
adopt Matar’s and Presson & Montello’s (1988) definition, who define a landmark as “any element (object
or feature) which can serve as a point reference.” The reader may notice that some authors, such as Chou
Kaplan, & Kortenkamp (1995) or Kuipers & Levitt (1988), propose more specific definitions, such as that
landmarks must be unique, they must correspond to physical objects, or they must be visible from everywher

2. Other error measures, such as measures related to the efficiency of robot motion, are not considered, since
work focuses on the problem of state estimation, and our current approach does not address robot control.

3. In our experiments, we did not observe an overfitting effect, as experiments reported in Thrun (1996) demo
strate. Thus, we simply trained the networks for a large number of iterations (such as 10000).

4. See also Chatila & Laumond (1985), Rencken (1993), Schiele & Crowley (1994), and Yamauchi & Beer (1996)

5. As far as tracking the position of the robot is concerned, the results obtained here should directly transfer
the bidirectional case, since the robot never turns an unnoticed Gdbbal localization in the bidirectional
case is generally more difficult for any approach, due to the increased number of possible locations. The ma
point of this paper is to provide ways for learning features (landmarks) for localization, and we have no reaso
to believe that the qualitative results obtained here do not transfer to the bidirectional case (as they shou
not change when one goes from a 89 m to a 178 m corridor). Section 5.2.4 quantifies the effect of large
environments, or the general bidirectional case.

6. Examples can be found in Betke & Gurvits (1993), Cox (1991), Cox (1994), Horswill (1994), Fukuda et al.
(1993), Hinkel & Knieriemen (1988), Koenig & Simmons (1996), Kortenkamp & Weymouth (1994), Leonard
& Durrant-Whyte (1992), Leonard, Durrant-Whyte, & Cox (1992), Matti990), Neven & Sabrier (1995),
Nourbakhsh, Powers, & Birchfield (1995), Peters et al. (1994), Rencken (1993), Schiele & Crowley (1994)
Simmons & Koenig (1995), Thrun et al. (1996), Weil3, Wetzler, & von Puttkamer (1994), and various chapter:
in Kortenkamp, Bonassi, & Murphy (in press).
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