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Abstract. To operate successfully in indoor environments, mobile robots must be able to localize themselves.
Most current localization algorithms lack flexibility, autonomy, and often optimality, since they rely on a human to
determine what aspects of the sensor data to use in localization (e.g., what landmarks to use). This paper describes
a learning algorithm, called BaLL, that enables mobile robots to learn what features/landmarks are best suited
for localization, and also to train artificial neural networks for extracting them from the sensor data. A rigorous
Bayesian analysis of probabilistic localization is presented, which produces a rational argument for evaluating
features, for selecting them optimally, and for training the networks that approximate the optimal solution. In a
systematic experimental study, BaLL outperforms two other recent approaches to mobile robot localization.
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1. Introduction

To operate autonomously, mobile robots must know where they are.Mobile robot local-
ization, that is the process of determining and tracking the position (location) of a mobile
robot relative to its environment, has received considerable attention over the past few
years. Accurate localization is a key prerequisite for successful navigation in large-scale
environments, particularly when global models are used, such as maps, drawings, topo-
logical descriptions, and CAD models (Kortenkamp, Bonassi, & Murphy, in press). As
demonstrated by a recent survey of localization methods by Borenstein, Everett, & Feng
(1996), the number of existing approaches is diverse. Cox (1991) noted that “Using sen-
sory information to locate the robot in its environment is the most fundamental problem to
providing a mobile robot with autonomous capabilities.”

Virtually all existing localization algorithms extract a small set offeaturesfrom the robot’s
sensor measurements.Landmark-based approaches, which have become very popular in
recent years, scan sensor readings for the presence or absence of landmarks to infer a
robot’s position. Other techniques, such as mostmodel matching approaches, extract certain
geometric features such as walls or obstacle configurations from the sensor readings, which
are then matched to models of the robot’s environment. The range of features used by
different approaches to mobile robot localization is quite broad. They range from artificial
markers such as barcodes and more natural objects such as ceiling lights and doors to
geometric features such as straight wall segments and corners. This raises the question
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as to what features might be the best ones to extract, in the sense that they produce the
best localization results. Assuming that features correspond to landmarks1 in the robot’s
environment, the questions addressed in this paper are:What landmarks are best suited for
mobile robot localization? Can a robot learn its own sets of features, can it define its own
landmarks for localization, and can it learn optimal features?The problem of learning
the right landmarks has been recognized as a significant scientific problem in robotics
(Borenstein, Everett, & Feng, 1996), artificial intelligence (Greiner & Isukapalli, 1994),
and in cognitive science (Chown, Kaplan, & Kortenkamp, 1995).

Few localization algorithms enable a robot to learn features or to define its own landmarks.
Instead, they rely on static, hand-coded sets of features for localization, which has three
principle disadvantages:

1. Lack of flexibility. The usefulness of a specific feature depends on the particular en-
vironment the robot operates in and also often hinges on the availability of a particular
type of sensors. For example, the landmark “ceiling light”—which has been used suc-
cessfully in several mobile robot applications—is useless when the environment does
not possess ceiling lights, or when the robot is not equipped with the appropriate sensor
(such as a camera). If the features are static and predetermined, the robot can localize
itself only in environments where those features are meaningful, and with sensors that
carry enough information for extracting them.

2. Lack of optimality. Even if a feature is generally applicable, it is usually unclear how
good it is or what theoptimal landmark would be. Of course, the goodness of features
depends, among other things, on the environment the robot operates in and the type of
uncertainty it faces. Existing approaches usually do not strive for optimality, which can
lead to brittle behavior.

3. Lack of autonomy. For a human expert to select appropriate features, he/she has to be
knowledgeable about the characteristics of the robot’s sensors and its environment. Con-
sequently, it is often not straightforward to adjust an existing localization approach to
new sensors or to new environments. Additionally, humans might be fooled by intro-
spection. Since the human sensory apparatus differs from that of mobile robots, features
that appear appropriate for human orientation are not necessarily appropriate for robots.

These principal deficiencies are shared by most existing localization approaches (Borenstein,
Everett, & Feng, 1996).

This paper presents an algorithm, called BaLL (short forBayesian landmark learning),
that lets a robotlearn such features, along with routines for extracting them from sen-
sory data. Features are computed by artificial neural networks that map sensor data to
a lower-dimensional feature space. A rigorous Bayesian analysis of probabilistic mobile
robot localization quantifies the average posterior error a robot is expected to make, which
depends on the features extracted from the sensor data. By training the networks so as to
minimize this error, the robot learns features that directly minimize the quantity of interest
in mobile robot localization (see also Greiner & Isukapalli, 1994).

We conjecture that the learning approach proposed here is moreflexiblethan static ap-
proaches to mobile robot localization, since BaLL can automatically adapt to the particular
environment, the robot, and its sensors. We also conjecture that BaLL will often yieldbetter
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resultsthan static approaches, since it directly chooses features by optimizing their utility
for localization. Finally, BaLL increases theautonomyof a robot, since it requires no human
to choose the appropriate features; instead, the robot does this by itself. The first and the
third conjecture follow from the generality of the learning approach. The second conjecture
is backed with experimental results which illustrate that BaLL yields significantly better
results than two other approaches to localization.

Section 2 introduces the basic probabilistic localization algorithm, which has in large
parts been adopted from various successful mobile robot control systems. Section 3 for-
mally derives the posterior error in localization and Section 4 derives a neural network
learning algorithm for minimizing it. An empirical evaluation and comparison with two
other approaches is described in Section 5, followed by a more general discussion of re-
lated work in Section 6. Section 7 discusses the implications of this work and points out
interesting directions for future research.

2. A probabilistic model of mobile robot localization

This section lays the groundwork for the learning approach presented in Section 3, providing
a rigorous probabilistic account on mobile robot localization. In a nutshell, probabilistic
localization alternates two steps:

1. Sensing.At regular intervals, the robot queries its sensors. The results of these queries
are used to refine the robot’s internal belief as to where in the world it is located. Sensing
usually decreases the robot’s uncertainty.

2. Acting. When the robot executes an action command, its internal belief is updated
accordingly. Since robot motion is inaccurate due to slippage and drift, it increases the
robot’s uncertainty.

The derivation of the probabilistic model relies on the assumption that the robot operates in
a partially observable Markov environment (Chung, 1960) in which the only “state” is the
location of the robot. In other words, the Markov assumption states that noise in perception
and control is independent of noise at previous points in time. Various other researchers,
however, have demonstrated empirically that the probabilistic approach works well even in
dynamic and populated environments, due to the robustness of the underlying probabilistic
representation (Burgard et al., 1996a; Kaelbling, Cassandra, & Kurien, 1996; Leonard,
Durrant-Whyte, & Cox, 1992; Koenig & Simmons, 1996; Kortenkamp & Weymouth, 1994;
Nourbakhsh, Powers, & Birchfield, 1995; Simmons & Koenig, 1995; Smith & Cheeseman,
1985; Smith, Self, & Cheeseman, 1990; Thrun, 1996).

2.1. Robot motion

BaLL employs a probabilistic model of robot motion. Letξ denote the location of the
robot within a global reference frame. Throughout this paper, the termlocation will be
used to refer to three variables: the robot’sx andy coordinates and its heading directionθ .
Although physically a robot always has a unique locationξ at any point in time, internally
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it only has a belief as to where it is located. BaLL describes this belief by a probability
density over all locationsξ ∈ 4, denoted by

Bel(ξ), (1)

where4 denotes the space of all locations. Occasionally we will distinguish the belief
beforetaking a sensor snapshot, denoted byBelprior(ξ), and the belief after incorporating
sensor information, denoted byBelposterior(ξ). The problem of localization is to approximate
as closely as possible the “true” distribution of the robot location, which has a single peak
at the robot’s location and is zero elsewhere.

Each motion command (e.g., translation, rotation) changes the location of the robot.
Expressed in probabilistic terms, the effect of a motion commanda ∈ A, whereA is the
space of all motion commands, is described by a transition density

P(ξ | ξ̃ ,a), (2)

which specifies the probability that the robot’s location isξ , given that it was previously atξ̃
and that it just executed actiona. In practice it usually suffices to know a pessimistic approxi-
mation ofP(ξ | ξ̃ ,a), which can easily be derived from the robot’s kinematics/dynamics.

If the robot wouldnotuse its sensors, it would gradually lose information as to where it is
due to slippage and drift (i.e., the entropy ofBel(ξ) would increase). Incorporating sensor
readings counteracts this effect, since sensor measurements convey information about the
robot’s location.

2.2. Sensing

Let Sdenote the space of all sensor measurements (sensations) and lets ∈ Sdenote a single
sensation, where sensations depend on the locationξ of the robot. Let

P(s | ξ) (3)

denote the probability thats is observed at locationξ . In practice, computing meaningful
estimates ofP(s | ξ) is difficult in most robotic applications. For example, if one robot’s
sensors include a camera,P(s | ξ) would be a high-dimensional density capable of deter-
mining the probability of every possible camera image that could potentially be taken at any
locationξ . Even if a full-blown model of the environment is available, computingP(s | ξ)
will be a complex, real-time problem in computer graphics. Moreover, the current work
does not assume that a model of the environment is given to the robot; hence,P(s | ξ)must
be estimated from data.

To overcome this problem, it is common practice to extract (filter) a lower-dimensional
feature vector from the sensor measurements. For example, landmark-based approaches
scan the sensor input for the presence or absence of landmarks, neglecting all other in-
formation contained therein. Model-matching approaches extract partial models such as
geometric maps from the sensor measurements, which are then compared to an existing
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model of the environment. Only the result of this comparison (typically a single value) is
then considered further.

To formally model the extraction of features from sensor data, let us assume sensor data
are projected into a smaller spaceF , and the robot is given a function

σ : S−→ F, (4)

which maps sensationss ∈ S into features f ∈ F . Borrowing terms from the signal
processing literature,σ will be called afilter, and the result of filtering a sensor reading
f = σ(s)will be called afeature vector. Instead of having to knowP(s | ξ), it now suffices
to know

P( f | ξ), (5)

whereP( f | ξ) relates the sensory featuresf = σ(s) to different locations of the environ-
ment, for wnich reason it is often called amap of the environment.The majority of localiza-
tion approaches described in the literature assumes that the map is given (Borenstein, Everett,
& Feng, 1996). The probabilityP( f | ξ) can also be learned from examples.P( f | ξ) is
often represented by a piecewise constant function (Buhmann et al., 1995; Burgard et al.,
1996a; Burgard et al., 1996b; Kaelbling, Cassandra, & Kurien, 1996; Koenig & Simmons,
1996; Moravec & Martin, 1994; Nourbakhsh, Powers, & Birchfield, 1995; Simmons &
Koenig, 1995), or a parameterized density such as a Gaussian or a mixture of Gaussians
(Gelb, 1974; Rencken, 1995; Smith & Cheeseman, 1985; Smith, Self, & Cheeseman,
1990). Below, in our experimental comparison, ak-nearest neighbor algorithm will be used
to representP( f | ξ).

In landmark-based localization, for example,σ filters out information by recording only
the presence and absence of individual landmarks, andP( f | ξ) models the likelihood of
observing a landmark at the various locationsξ . P( f | ξ) can be estimated from data. The
mathematically inclined reader may notice that the use ofσ(s) instead ofs is mathematically
justified only ifσ is asufficient statistic(Vapnik, 1982) for estimating location—otherwise,
all approaches that filter sensor data may yield sub-optimal results (by ignoring important
sensor information). In practice, the suboptimality is tolerated, sinceP( f | ξ), or an ap-
proximate version ofP( f | ξ), is usually much easier to obtain thanP(s | ξ), and often is
a good approximation to this probability.

2.3. Robot localization

For reasons of simplicity, let us assume that at any point in timet , the robot queries its
sensors and then executes an action command that terminates at timet + 1. In response to
the sensor query, the robot receives a sensor readings(t), from which it extracts a feature
vector f (t). Let f (1), f (2), . . . = σ(s(1)), σ (s(2)), . . .denote the sequence of feature vectors,
and leta(1),a(2), . . . denote the sequence of actions. Furthermore, letξ (0), ξ (1), . . . denote
the sequence of robot locations. Occasionally, locations will annotated by a∗ to distinguish
them from variables used for integration.
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Initially, at time t = 0, the robot has aprior belief as to what its location might be;
this prior belief is denotedBelprior(ξ

(0)) and reflects the robot’s initial uncertainty. If the
robot knows its initial location and the goal of localization is to compensate slippage and
drift, Belpri(ξ

(0)) is a point-centered distribution that has a peak at the correct location. The
corresponding localization problem is calledposition tracking. Conversely, if the robot has
no initial knowledge about its position,Belprior(ξ

(0)) is a uniform distribution. Here the
corresponding localization problem is calledself localization, global localization, or the
“kidnapped robot problem” (Engelson, 1994), a task that is significantly more difficult than
position tracking.

Sensor queries and actions change the robot’s internal belief. Expressed probabilistically,
the robot’s belief after executing thet − 1th action is

Belprior
(
ξ (t)
) = P

(
ξ (t) | f (1),a(1), f (2),a(2), . . . , f (t−1),a(t−1)

)
(6)

and after taking thet-th sensor measurement it is

Belposterior
(
ξ (t)
) = P

(
ξ (t) | f (1),a(1), f (2),a(2), . . . ,a(t−1), f (t)

)
. (7)

We will treat these two cases separately, starting with the second one.

2.3.1. Sensing. According to Bayes’ rule,

Belposterior
(
ξ (t)
) = P

(
ξ (t) | f (1), . . . ,a(t−1), f (t)

)
= P

(
f (t) | ξ (t), f (1), . . . ,a(t−1)

)
P
(
ξ (t) | f (1), . . . ,a(t−1)

)
P
(

f (t) | f (1), . . . ,a(t−1)
) . (8)

The Markov assumption states that sensor readings are conditionally independent of previ-
ous sensor readings and actions given knowledge of the exact location:

P
(
s(t) | ξ (t)) = P

(
s(t) | ξ (t), s(1),a(1), . . . ,a(t−1)

)
. (9)

Since f (t) = σ(s(t)), it follows that

P
(
s(t) | ξ (t)) = P

(
f (t) | ξ (t), f (1),a(1), . . . ,a(t−1)

)
. (10)

It is important to notice that the Markov assumption does not specify the independence of
different sensor readings if the robot’s location is unknown; neither does it make assumptions
on the extent to whichξ (t) is known during localization. In mobile robot localization, the
location is usually unknown—otherwise there would not be a localization problem—and
subsequent sensor readings and actions usually depend on each other. See Chung (1960),
Howard (1960), Mine & Osaki (1970), and Pearl (1988) for more thorough treatments of
conditional independence and Markov chains.
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The Markov assumption simplifies (8), which leads to the important formula (Moravec,
1988; Pearl, 1988):

Belposterior
(
ξ (t)
) = P

(
f (t) | ξ (t))P(ξ (t) | f (1), . . . ,a(t−1)

)
P
(

f (t) | f (1), . . . ,a(t−1)
)

= P
(

f (t) | ξ (t))Belprior
(
ξ (t)
)

P
(

f (t) | f (1), . . . ,a(t−1)
) . (11)

The denominator on the right hand side of (11) is a normalizer which ensures that the belief
Belposterior(ξ

(t)) integrates to 1. It is calculated as

P
(

f (t) | f (1), . . . ,a(t−1)
) = ∫

4

P
(

f (t) | ξ (t))P(ξ (t) | f (1), . . . ,a(t−1)
)

dξ (t)

=
∫
4

P
(

f (t) | ξ (t))Belprior
(
ξ (t)
)
dξ (t). (12)

To summarize, the posterior beliefBelposterior(ξ
(t)) after observing thet th feature vectorf (t)

is proportional to the prior beliefBelprior(ξ
(t))multiplied by the likelihoodP( f (t) | ξ (t)) of

observingf (t) at ξ (t).

2.3.2. Acting. Actions change the location of the robot and thus its belief. Recall that the
belief after executing thet th action is given by

Belprior
(
ξ (t+1)

) = P
(
ξ (t+1) | f (1), . . . , f (t),a(t)

)
, (13)

which can be rewritten using the theorem of total probability as∫
4

P
(
ξ (t+1) | ξ (t), f (1), . . . , f (t),a(t)

)
P
(
ξ (t) | f (1), . . . , f (t),a(t)

)
dξ (t). (14)

Sinceξ (t) does not depend on the actiona(t) executed there, (14) is equivalent to∫
4

P
(
ξ (t+1) | ξ (t), f (1), . . . , f (t),a(t)

)
P
(
ξ (t) | f (1), . . . , f (t)

)
dξ (t). (15)

By virtue of the Markov assumption, which ifξ (t) is known renders conditional indepen-
dence ofξ (t+1) from f (1),a(1), . . . , f (t) (but not froma(t)), Belpri(ξ

(t+1)) can be expressed
as ∫

4

P
(
ξ (t+1) | ξ (t),a(t)) P

(
ξ (t) | f (1), . . . , f (t)

)
dξ (t)

or ∫
4

P
(
ξ (t+1) | ξ (t),a(t))Belposterior

(
ξ (t)
)

dξ (t). (16)
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Table 1. The incremental localization algorithm.

1. Initialization: Bel(ξ)←− Belprior(ξ
(0))

2. For each observed feature vectorf = σ(s) do:

Bel(ξ)←− P( f | ξ) Bel(ξ) (17)

Bel(ξ)←− Bel(ξ)

[∫
4

Bel(ξ̃ ) dξ̃

]−1

(normalization) (18)

3. For each action commanda do:

Bel(ξ)←−
∫
4

P(ξ | ξ̃ ,a) Bel(ξ̃ ) dξ̃ (19)

Put verbally, the probability of being atξ (t+1) at timet + 1 is the result of multiplying the
probability of previously having been atξ (t) with the probability that actiona(t) carries the
robot to locationξ (t+1), integrated over all potential locationsξ (t). The transition probability
P(ξ (t+1) | ξ (t),a(t)) has been defined in (2) in Section 2.1.

2.4. The incremental localization algorithm

Beliefs can be updated incrementally. This follows from the fact that the beliefBelposterior

(ξ (t)) is obtained from the beliefBelprior(ξ
(t)) just before sensing, using (11), and the

belief Belprior(ξ
(t+1)) is computed from the beliefBelposterior(ξ

(t)) just before executing an
action command, using (16). The incremental nature of (11) and (16) lets us state the
compact algorithm for probabilistic localization shown in Table 1. As can be seen in the
table, to updateBel(ξ) three probabilities must be known:Belprior(ξ

(0)), the initial estimate
(uncertainty);P(ξ | ξ̃ ,a), the transition probability that describes the effect of the robot’s
actions; andP( f | ξ), the map of the environment.

Figure 1 provides a graphical example that illustrates the localization algorithm. Initially,
the location of the robot is unknown except for its orientation. Thus,Bel(ξ) is uniformly
distributed over all locations shown in figure 1(a). The robot queries its sensors and finds
out that it is next to a door. This information alone does not suffice to determine its position
uniquely—partially because of the existence of multiple doors in the environment and
partially because the feature extractor might err. As a result,Bel(ξ) is large for door
locations and small everywhere else, as shown in figure 1(b). Next, the robot moves forward,
in response to which its densityBel(ξ) is shifted and slightly flattened out, reflecting the
uncertaintyP(ξ | ξ̃ ,a) introduced by robot motion, as in figure 1(c). The robot now queries
its sensors once more and finds out that again it is next to a door. The resulting density,
in figure 1(d) now has a single peak and is fairly accurate. The robot “knows” with high
accuracy where it is.

Notice that the algorithm derived in this paper is a general instance of an updating
algorithm for a partially observable Markov chain. For example, it subsumes Kalman filters
(Kalman, 1960) when applied mobile robot localization (Smith, Self, & Cheeseman, 1990;
Leonard, Durrant-Whyte, & Cox, 1992). It also subsumes hidden Markov models (Rabiner,
1989) if robot location is the only state in the environment, as assumed here and elsewhere.
Due to its generality, our algorithm subsumes various probabilistic algorithms published
in the recent literature on mobile robot localization and navigation (see Burgard et al.,
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Figure 1. Probabilistic localization—an illustrative example. (a) Initially, the robot does not know where it is,
henceBel(ξ) is uniformly distributed. (b) The robot observes a door next to it, and changes its belief accordingly.
(c) The robot moves a meter forward; as a result, the belief is shifted and flattened. (d) The repeated observation
of a door prompts the robot to modify its belief, which now approximates the “true” location well.

1996a; Kaelbling, Cassandra, & Kurien, 1996; Koenig & Simmons, 1996; Kortenkamp &
Weymouth, 1994; Nourbakhsh, Powers, & Birchfield, 1995; Simmons, & Koenig, 1995;
Smith, Self, & Cheeseman, 1990).

3. The Bayesian localization error

This section and the following one present BaLL, a method for learningσ . The input to
the BaLL algorithm is a set of sensor snapshots labeled by the location at which they were
taken:

X = {〈sk, ξk〉 | k = 1, . . . , K }, (20)

whereK denotes the number of training examples.
Localization is a specific form of state estimation. As it is common practice in the statis-

tical literature on state estimation (Vapnik, 1982; Casella & Berger, 1990), the effectiveness
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of an estimator will be judged by measuring the expected deviation between estimated and
true locations. BaLL learnsσ by minimizing this deviation.2

3.1. The posterior error Eposterior

The key to learningσ is to minimize the localization error. To analyze this error, let us
examine the update rule (17) in Table 1. This update rule transforms a prior belief to a
refined, posterior belief, which is usually more accurate. Obviously, the posterior belief and
thus the error depend onσ , which determines the information extracted from sensor datas.

Let ξ ∗ denote thetrue location of the robot (throughout the derivation, we will omit the
time index to simplify the notation), and lete(ξ∗, ξ) denote an error function for measuring
the error between the true positionξ ∗ and an arbitrary other positionξ . The concrete nature
of e is inessential to the basic algorithm; for example,e might be the Kullback-Leibler
divergence or a metric distance.

TheBayesian localization error atξ ∗, denoted byE(ξ ∗), is obtained by integrating the
errore over all belief positionsξ , weighted by the likelihoodBel(ξ) that the robot assigns
to ξ , giving

E(ξ ∗) =
∫
4

e(ξ ∗, ξ)Bel(ξ) dξ. (21)

If this error is computed prior to taking a sensor snapshot, that is, ifBel(ξ) = Belprior(ξ), it
is called theprior Bayesian error atξ ∗ with respect to the next sensor reading and will be
denotedEprior. The prior localization error is a function ofBelpri(ξ).

We are now ready to derive the Bayesian errorafter taking a sensor snapshot. Recall that
ξ ∗ denotes the true location of the robot. By definition, the robot will sense a feature vector
f with probability P( f | ξ ∗). In response, it will update its belief according to Eq. (17).
Theposterior Bayesian error atξ ∗, which is the error the robot is expected to make atξ∗

after sensing, is obtained by applying the update rule (17) to the error (21), giving

Eposterior(ξ
∗) =

∫
4

e(ξ ∗, ξ)Belposterior(ξ) dξ

=
∫
4

e(ξ ∗, ξ)
∫

F

P( f | ξ)Belprior(ξ)

P( f )
P( f | ξ∗) df dξ, (22)

where Eposterior is averaged over all possible sensor feature vectorsf weighted by their
likelihood P( f | ξ ∗). The normalizeP( f ) is computed just as in equations (12) or (18).

Thus far, the posterior errorEposteriorcorresponds to a single positionξ ∗ only. By aver-
aging over all possible positionsξ ∗, weighted by their likelihood of occurrenceP(ξ ∗), we
obtain theaverage posterior error

Eposterior=
∫
4

Eposterior(ξ
∗)P(ξ ∗) dξ ∗

=
∫
4

∫
4

e(ξ ∗, ξ)
∫

F

P( f | ξ)Belprior(ξ)

P( f )
P( f | ξ ∗)P(ξ ∗) df dξ dξ ∗. (23)
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Since f = σ(s), expression (23) can be rewritten as

Eposterior=
∫
4

∫
4

e(ξ ∗, ξ)
∫

S

P(σ (s) | ξ)Belprior(ξ)

P(σ (s))
P(σ (s) | ξ∗)P(ξ ∗) ds dξ dξ ∗, (24)

where

P(σ (s)) =
∫
4

P(σ (s) | ξ̃ )Belprior(ξ̃ ) dξ̃ . (25)

The errorEposterioris the exact localization error after sensing.

3.2. Approximating Eposterior

While Eposterior measures the “true” Bayesian localization error, it cannot be computed
in any but the most trivial situations (since solving the various integrals in (24) is usually
mathematically impossible). However,Eposteriorcan be approximated using the data. Recall
that to learnσ , the robot is given a set ofK examples

X = {〈sk, ξk〉 | k = 1, . . . , K }, (26)

whereX consists ofK sensor measurementssk that are labeled by the locationξk at which
they were taken.X is used to approximateEposteriorwith the expression

Ẽposterior=
∑

〈ξ∗,s∗〉∈X

∑
〈ξ,s〉∈X

e(ξ ∗, ξ)
P(σ (s) | ξ)Belprior(ξ)

P(σ (s))
P(σ (s) | ξ∗)P(ξ ∗), (27)

where

P(σ (s)) =
∑
〈ξ̃ ,s̃〉∈X

P(σ (s) | ξ̃ )Belprior(ξ̃ ). (28)

Equation (27) follows directly from Eq. (24). The integration variablesξ ∈ 4 ands ∈ S,
which are independent in (24), are collapsed into a single summation over all training
patterns〈ξ, s〉 ∈ X in (27). Ẽposterior is a stochastic approximation ofEposterior, based on
data, that converges uniformly toEposterioras the size of the data setX goes to infinity.

Leaving problems of small sample sizes aside,Ẽposteriorlets the robot compare different
σ with each other: the smaller̃Eposterior, the betterσ for the purpose of localization. This
alone is an important result, as it lets onecomparetwo filters to each other.

The errorẼposterior is a function of the prior uncertaintyBelpri(ξ) as well. As a result,
a specificσ that is optimal under one prior uncertainty can perform poorly under another.
This observation matches our intuition: when the robot is globally uncertain, it is usually
advantageous to consider different features than when it knows its location within a small
margin of uncertainty.
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4. The BaLL algorithm

BaLL learns the filterσ by minimizing Ẽposterior through search in the space of filtersσ ,
that is, by computing

σ = argmin
σ̂∈6

Ẽposterior(σ̂ ), (29)

where6 is a class of functions from whichσ is chosen. This section presents a specific
search space6, for wnich it derives a gradient descent algorithm.

4.1. Neural network filters

BaLL realizesσ by a collection ofn backpropagation-style feedforward artificial neural
networks (Rumelhart, Hinton, & Williams, 1986). Each network, denoted bygi with
i = 1, . . . ,n, maps the sensor datas to a feature value in(0, 1). More formally, we have

σ = (g1, g2, . . . , gn), (30)

where for alli = 1, . . . ,n,

gi : S−→ (0, 1) (31)

is realized by an artificial neural network. Thei th network corresponds to thei th feature,
wheren is the dimension of the feature vectorf .

Neural networks can approximate a large class of functions (Hornik, Stinchcombe, &
White, 1989). Thus, there are many features that a neural network can potentially extract.
To the extent that neural networks are capable of recognizing landmarks, our approach lets
a robot automatically select its own and learn routines for their recognition.

4.2. Stochastic filters

At first glance, it might seem appropriate to definef = (g1(s), g2, (s), . . . , gn(s)), making
the feature vectorf be the concatenatedn-dimensional output of then neural networks.
Unfortunately, such a definition would implyF = (0, 1)n, which contains an infinite number
of feature vectorsf (since neural networks produce real-valued outputs). If the sensor
readings are noisy and distributed continuously, as is the case for most sensors used in
today’s robots, the chance is zero that two different sensations taken at the same location
will generate the same feature vectorf . In other words, iff = (g1(s), g2, (s), . . . , gn(s)),
F would be too large for the robot to ever recognize a previous location—a problem that
specifically occurs when using real-valued function approximators as feature detectors.

Fortunately, there exists an alternative representation that has several nice properties. In
the BaLL algorithmF = {0, 1}n and |F | = 2n (which is finite). Each neural network
is interpreted as astochasticfeature extractor, which generates the valuefi = 1 with
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probabilitygi (s) and the valuefi = 0 with probability 1− gi (s), giving

P( fi = 1 | s) = gi (s)
(32)

P( fi = 0 | s) = 1− gi (s).

We assume that the joint probabilityP( f | s) is given by the product of the marginal
probabilitiesP( fi | s):

P( f | s) =
n∏

i=1

P( fi | s). (33)

The stochastic setting letsσ express confidence in its result by assigning probabilities to
the different f ∈ F—a generally desirable property for a filter.

The stochastic representation has another advantage, which is important for the efficiency
of the learning algorithm. As we show below,Ẽposterior is differentiable in the output of
the function approximator and hence in the weights and biases of the neural networks.
Differentiability is a necessary property for training neural networks with gradient descent.

4.3. The neural network learning algorithm

The new, stochastic interpretation ofσ requires thatEpost and its approximatioñEposterior

be modified to reflect the fact thatσ generates a probability distribution overF instead of a
single f ∈ F . Following the theorem of total probability and using (23) as a starting point,
Epost is given by

Eposterior=
∫
4

∫
4

e(ξ ∗, ξ)
f=(1,...,1)∑
f=(0,...,0)

∫
S P( f | s)P(s | ξ)Belprior(ξ) ds

P( f )

×
∫

S
P( f | s)P(s | ξ∗)P(ξ ∗) ds dξ dξ ∗, (34)

where

P( f ) =
∫
4

∫
S

P( f | s)P(s | ξ̃ )Belprior(ξ̃ ) ds dξ̃ . (35)

The approximation of this term is governed by

Ẽposterior=
∑

〈ξ∗,s∗〉∈X

∑
〈ξ,s〉∈X

e(ξ ∗, ξ)
f=(1,...,1)∑
f=(0,...,0)

P( f | s)Belprior(ξ)

P( f )
P( f | s∗)P(ξ ∗)

=
∑

〈ξ∗,s∗〉∈X

∑
〈ξ,s〉∈X

e(ξ ∗, ξ)P(ξ ∗) Belprior(ξ)

f=(1,...,1)∑
f=(0,...,0)

P( f | s)
P( f )

P( f | s∗), (36)
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where

P( f ) =
∑
〈ξ̃ ,s̃〉∈X

P( f | s̃)Belprior(ξ̃ ). (37)

The mathematically inclined reader should notice that (24) and (27) are special cases of
(34) and (36). They are equivalent if one assumes thatP( f | s) is deterministic, that is, if
P( f | s) is centered on a singlef for eachs.

Armed with an appropriate definition of̃Eposterior, we are now ready to derive the gradient
descent learning algorithm for training the neural network feature recognizers to minimize
Ẽposterior. This is done by iteratively adjusting theweightsand biasesof the i th neural
network, denoted bywiµν , in the direction of the negative gradients ofẼposterior:

wiµν ← wiµν − η∂ Ẽposterior

∂wiµν
. (38)

Hereη > 0 is a learning rate, which is commonly used in gradient descent to control
the magnitude of the updates. Computing the gradient in the right-hand side of (38) is a
technical matter, as both̃Eposteriorand neural networks are differentiable:

∂ Ẽposterior

∂wiµν
=

∑
〈ξ̄ ,s̄〉∈X

∂ Ẽposterior

∂gi (s̄)

∂gi (s̄)

∂wiµν
. (39)

The second gradient on the right-hand side of (39) is the regular output-weight gradient
used in the backpropagation algorithm, whose derivation we omit (see Hertz, Krogh, &
Palmer, 1991; Rumelhart, Hinton, & Williams, 1986; Wasserman, 1989). The first gradient
in (39) can be computed as

∂ Ẽposterior

∂gi (s̄)
(36)=

∑
〈ξ∗,s∗〉∈X

∑
〈ξ,s〉∈X

e(ξ ∗, ξ) P(ξ ∗)Belprior(ξ)

×
1∑

f1=0

1∑
f2=0

. . .

1∑
fn=0

∂

∂gi (s̄)

[(
n∏

i=1

P( fi | s∗) P( fi | s)
)

P( f )−1

]
(40)

=
∑

〈ξ∗,s∗〉∈X

∑
〈ξ,s〉∈X

e(ξ ∗, ξ)P(ξ ∗)Belprior(ξ)

×
1∑

f1=0

1∑
f2=0

. . .

1∑
fn=0

∏
j 6=i

P( f j | s∗)P( f j | s)

·
[
δξ∗,ξ̄ P( fi | s)+ δξ,ξ̄ P( fi | s∗)∑

〈ξ̃ ,s̃〉∈X

∏n
j=1 P( f j | s̃)

− P( fi | s∗)P( fi | s)
∏

j 6=i P( f j | s̄)Belprior(ξ̄ )(∑
〈ξ̃ ,s̃〉∈X

∏n
j=1 P( f j | s̃)

)2
]
(2δ fi ,1−1).
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Table 2. BaLL, the algorithm for learning neural network filtersσ .

Input: Data setX = {〈sk, ξk〉 | k = 1, . . . , K }, prior beliefBelprior(ξ).

Output: Optimized parameters (weights and biases)wiµν for then networksg1, . . . , gn.

Algorithm:

1. Initialize the parameterswiµν of every network with small random values.
2. Iterate until convergence criterion is fulfilled:

2.1 For all〈ξ, s〉 ∈ X, compute the conditional probabilities

P( fi | s) =
{

gi (s) if fi = 1
(41)

1− gi (s) if fi = 0

wheregi (s) is the output of thei th network for inputs (cf. (32)).
2.2 Compute the error̃Eposterior(cf. (36))

Ẽposterior=
∑

〈ξ∗,s∗〉∈X

∑
〈ξ,s〉∈X

e(ξ∗, ξ)P(ξ∗) Belprior(ξ) ·
1∑

f1=0

1∑
f2=0

. . .

1∑
fn=0(

n∏
i=1

P( fi | s∗)P( fi | s)
) ∑
〈ξ̃ ,s̃〉∈X

(
n∏

i=1

P( fi | s̃)
)

Belprior(ξ̃ )

−1

(42)

2.3 For all network parameterswi,µ,ν , compute

∂ Ẽposterior
∂wiµν

=
∑
〈ξ̄ ,s̄〉∈X

∂gi (s̄)

∂wiµν

∑
〈ξ∗,s∗〉∈X

∑
〈ξ,s〉∈X

e(ξ∗, ξ)P(ξ∗) Belprior(ξ)

·
1∑

f1=0

1∑
f2=0

. . .

1∑
fn=0

∏
j 6=i

P( f j | s∗)P( f j | s)(2δ fi ,1−1)

·
δξ∗,ξ̄ P( fi | s)+ δξ,ξ̄ P( fi | s∗)∑

〈ξ̃ ,s̃〉∈X

∏n
j=1 P( f j | s̃) − P( fi | s∗)P( fi | s)

∏
j 6=i P( f j | s̄) Belprior(ξ̄ )(∑

〈ξ̃ ,s̃〉∈X

∏n
j=1 P( f j | s̃)

)2

.
(43)

The gradients∂gi (s̄)
∂wiµν

are obtained with backpropagation (cf. (39) and (40)).

2.4 For all network parameterswi,µ,ν , update (cf. (38))

wiµν ← wiµν − η ∂ Ẽposterior
∂wiµν

. (44)

Hereδx,y denotes the Kronecker symbol, which is 1 ifx = y and 0 ifx 6= y. P( f j | s∗) is
computed according to Eq. (32).

Table 2 describes the BaLL algorithm and summarizes the main formulas derived in this
and the previous section. BaLL’s input is the data setX and a specific prior beliefBelpri(ξ).
Below, we will train networks for different prior beliefs characterized by different entropies
(i.e., degrees of uncertainty). The gradient descent update is repeated until one reaches
a termination criterion (e.g., early stopping using a cross-validation set or pseudoconver-
gence ofEposterior), as in regular backpropagation (Hertz, Krogh, & Palmer, 1991).3 BaLL
differs from conventional backpropagation (supervised learning) in that no target values are
generated for the outputs of the neural networks. Instead, the quantity of interest,Eposterior,
is minimized directly. The output characteristics of the individual networks and, hence, the
features they extract, emerge as a side effect of minimizingEpost.
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The output of the BaLL algorithm is a set of filters specified by a set of weights and biases
for the different networks. As noted above,Eposteriorand the resulting filterσ depend on the
uncertaintyBelprior(ξ). Below, when presenting experimental results, we will show that, in
cases in which the uncertainty is small (the entropy ofBelprior(ξ) is low), quite different
features are extracted than when the uncertainty is large. However, although the networks
must betrained for a particularBelprior(ξ), they can beusedto estimate the location for
arbitrary uncertaintiesBelpri(ξ), but with degraded performance. It is therefore helpful, but
not necessary, to train different networks for different prior uncertainties.

4.4. Algorithmic complexity

The complexity of the learning and the performance methods must be analyzed separately.
The localization algorithm described in Table 1 must be executed in real time, while the
robot is in operation, whereas the learning algorithm described in Table 2 can be run offline.
Our primary concern in the analysis is time complexity.

4.4.1. Localization. The complexity of probabilistic localization (Table 1) depends on the
representation ofP( f | ξ) andBel(ξ). In the worst case, processing a single sensor reading
requiresO(Kn+ nW) time, whereK is the training set size,n is the number of networks
andW is the number of weights and biases in each neural network. Processing an action
requiresO(K 2n) time. Various researchers have implemented versions of the probabilistic
localization algorithm that work in real time (Burgard et al., 1996a; Burgard, Fox, & Thrun,
1997; Kaelbling, Cassandra, & Kurien, 1996; Koenig & Simmons, 1996; Nourbakhsh,
Powers, & Birchfield, 1995; Simmons & Koenig, 1995; Thrun et al., 1996; Thrun, 1996).
Given the relatively small computational overhead of the existing implementations, scaling
to larger environments is not problematic.

4.4.2. Learning. BaLL requiresO(N2nK 3 + N KnW) time, wheren, K , andW are the
same as above, and whereN is the number of gradient descent iterations. If the number
of training patterns is greater than both the number of inputs and the number of hidden
units in each network, which is a reasonable assumption since otherwise the number of
free parameters exceeds the number of training patterns by a huge margin, thenO(N2nK 3)

dominatesO(N KnW). Thus, under normal conditions, the training the networks requires
O(N2nK 3) time. The constant factor is small (cf. Table 2). Most existing localization
algorithms use only one or two features (e.g., one or two landmarks), indicating that even
small values forn work well in practice.

There are several ways to reduce the complexity of learning:

1. Instead of training all networks in parallel, they can also be trained one after another,
similar to the way units are trained one after another in the cascade correlation algorithm
(Fahlman & Lebiere, 1989). Sequential training would reduce worst-case exponential to
linear complexity, since networks are trained one after another, which requiresO(NnK3)

time.
2. Compact representations forP( f | ξ)andBel(ξ) can reduce the complexity significantly.

For example, in Burgard et al. (1996a), Koenig & Simmons (1996), and Simmons
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& Koenig (1995), the number of grid cells used to representP( f | ξ) and Bel(ξ) is
independent of the training set size. Using their representations, our learning algorithm
would scale quadratically in the size of the environment and linearly in the size of the
training set. In addition, coarse-grained representations such as the one reported by
Koenig & Simmons (1996) and Simmons & Koenig (1995) can reduce the constant
factor even further.

3. The learning algorithm in Table 2 interleaves one computation ofẼposteriorand its deriva-
tives with one update of the weights and biases. Since the bulk of processing time is
spent computing̃Eposteriorand its derivatives, the overall complexity can be reduced by
modifying the training algorithm so that multiple updates of the networks’ parameters
are interleaved with a single computation ofẼposteriorand its derivatives. The necessary
steps include:

3.1. The network outputsgi (s) are computed for each training example〈s, ξ〉 ∈ X.
3.2. The gradients of̃Eposteriorwith respect to the network outputsgi (s) are computed

(cf. (40)).
3.3. For each training example〈s, ξ〉 ∈ X, “pseudo-patterns” are generated using the

current network output in conjunction with the corresponding gradients, giving〈
s , gi (s)− Ẽposterior

gi (s)

〉
. (45)

3.4. These patterns are fitted using multiple epochs of regular backpropagation.

This algorithm approximates gradient descent, but it reduces the complexity by a constant
factor.

In addition, modifications such as online learning, stochastic gradient descent, or higher-
order methods such as momentum or conjugate gradient methods (Hertz, Krogh, & Palmer,
1991) yield further speedup. Little is currently known about principal complexity bounds
that would apply here.

As noted above, learningσ can be done offline and is only done once. With the modifica-
tions proposed here, one complexity of training is low-order polynomial (mostly linear) in
K , n, N, andW. In the light of the modifications discussed here, scaling up our approach
to larger environments, larger training sets, and more neural networks does not appear to
be problematic.

In our implementation (see below), training the networks required between 30 min and
12 h on a 200 MHz Pentium Pro.

5. Empirical evaluation and comparison

This section presents some empirical results obtained with BaLL, using data obtained from
a mobile robot equipped with a color camera and an array of sonar sensors, as shown in
figure 2(a). To compare our approach with other state-of-the-art methods, we reimplemented
two previously published approaches.
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Figure 2. (a) The Real World Interface B21 robot used in our research. (b) The testing environment.

1. Localization using doors. A team of researchers at our university has recently devel-
oped a similar probabilistic localization method that uses doors as its primary landmark
(see Koenig & Simmons, 1996; Simmons & Koenig, 1995). This group is interested
in reliable long-term mobile robot operation, for which reason it has operated an au-
tonomous mobile robot almost on a daily basis over the last two years, in which the
robot moved more than 110 km in more than 130 hours. Since we are located in the
same building as this group, we had the unique opportunity to conduct comparisons in
the same environment using the same sensor configuration.

2. Localization with ceiling lights. Various research teams have successfully used ceiling
lights as landmarks, including HelpMate Robotics, which has built a landmark commer-
cial service robot application that has been deployed in hospitals world wide (King &
Weiman, 1990). HelpMate’s navigation system is extremely reliable. In our building,
ceiling lights are easy to recognize, stationary, and rarely blocked by obstacles, making
them prime candidate landmarks for mobile robot localization.

Our previously best localization algorithm (Thrun, in press; Thrun et al., 1996), which is
based onmodel matching4 and which is now distributed commercially by a mobile robot
manufacturer (Real World Interface, Inc.), was not included in the comparison, because
this approach is incapable of localizing the robot under global uncertainty. In fact, most
approaches in the literature are restricted toposition tracking, i.e., localization under the
assumption that the initial position is known. Of the few approaches to global localiza-
tion, most require that a single sensor snapshot suffices to disambiguate the position—an
assumption which rarely holds true in practice.

5.1. Testbed and implementation

This section describes the robot, its environment, the data, and the specific implementation
used throughout our experiments.

5.1.1. Environment. Figure 2(b) shows a hand-drawn map of our testing environment, of
which we used an 89 meter-long corridor segment. The environment contains two windows
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(at both corners), various doors, an elevator, three to four trash bins, and a hallway. The
environment was also dynamic. While the data was recorded, the corridors were populated,
the status of some of the doors changed, and the natural daylight had a strong effect on camera
images taken close to the windows. Strictly speaking, such dynamics violate the Markov
assumption (cf. Section 2.3), but as documented here and elsewhere (Burgard et al., 1996a;
Burgard et al., 1996b; Kaelbling, Cassandra, & Kurien, 1996; Leonard, Durrant-Whyte, &
Cox, 1992; Koenig & Simmons, 1996; Nourbakhsh, Powers, & Birchfield, 1995; Smith,
Self, & Cheeseman, 1990), the probabilistic approach is fairly robust to such dynamics.

5.1.2. Data collection. During data collection, the robot moved autonomously at approxi-
mately 15 cm/s, controlled by our local obstacle avoidance and navigation routines (Fox,
Burgard, & Thrun, 1996). In 12 separate runs, a total of 9,815 sensor snapshots were
collected (228 MB raw data). The dats was recorded using three different pointing directions
for the robot’s camera:

1. Data set D-1: In 3,232 snapshots, the camera was pointed towards the outer side of the
corridor, so that doors were clearly visible when the robot passed by them.

2. Data set D-2: In 3,110 snapshots, the camera was pointed towards the interior of the
building. Here the total number of doors is much smaller, and doors are wider.

3. Data set D-3:Finally, in 3,473 data points, the camera was pointed towards the ceiling.
This data set was used to compare with landmark-based localization using ceiling lights.

The illumination between the different runs varied slightly, as the data was recorded at
different times of day. In each individual run, approximately three quarters of the data
was used for training, and one quarter for testing (with different partitionings of the data
in different runs). When partitioning the data, items collected in the same run were always
part of the same partition.

Unless otherwise noted, the robot started at a specific location in each run, from where
it moved autonomously through the 89 meter-long segment of corridor. Thus, the principal
heading directions in all data are the same; however, to avoid collisions with humans, the
obstacle avoidance routines sometimes substantially changed the heading of the robot. Most
of our data was collected close to the center of the corridor. Consequently, the networks
σ and the mapP( f | ξ) are specialized to our navigation algorithms (Thrun et al., 1996).
This is similar to work by others (Kuipers & Byun, 1988; Kuipers & Byun, 1991; Matari´c,
1990), whose definition of a landmark also requires that the robot use a particular navigation
algorithm that makes it stay at a certain proximity to obstacles. Although the robot travels
the corridor in both directions in everyday operation, we felt that for the purpose of scientific
evaluation, using data obtained for a single travel direction was sufficient.5

Locationξ was modeled by a three-dimensional variable〈x, y, θ〉. Instead of measuring
the exact locations of the robot by hand, which would not have been feasible given the large
number of positions, we used the robot’s odometry and the position tracking algorithm
described by Thrun (in press) to derive the position labels. The error of these automatically
derived position labels was significantly lower than the tolerance threshold of our existing
navigation software (Thrun et al., 1996).
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5.1.3. Preprocessing.In all our runs, images were preprocessed to eliminate some of the
daytime- and view-dependent variations and to reduce the dimensionality of the data. First,
the pixel mean and variance were normalized in each image. Subsequently, each image was
subdivided into ten equally sized rows and independently into ten equally sized columns.
For each row and column, seven characteristic image features were computed:

• average brightness,
• average color(one for each of the three color channels), and
• texture information: the average absolute difference of the RGB values of any two

adjacent pixels (in a subsampled image of size 60 by 64, computed separately for each
color channel).

In addition, 24 sonar measurements were collected, resulting in a total of 7× 20+ 24= 164
sensory values per sensor snapshot. During the course of this research, we tried a variety of
different image encodings, none of which appeared to have a significant impact on the quality
of the results. The features are somewhat specific to domains that possess brightness, color,
or texture cues, which we believe to be applicable to a wide range of environments. The
basic learning algorithm, however, does not depend on the specific choice of the features,
and it does not require any preprocessing for reasons other than computational efficiency.

5.1.4. Neural networks. In all our experiments, multilayer perceptrons with sigmoidal
activation functions (Rumelhart, Hinton, & Williams, 1986) were used to filter the (pre-
processed) sensor measurements. These networks contained 164 input units, six hidden
units, and one output unit. Runs using different network structures (e.g., two hidden layers)
gave similar results as long as the number of hidden units per layer was not smaller than
four. To decrease the training time, we used the pseudo-pattern training method described
in item 3 of Section 4.4.2, interleaving 100 steps of backpropagation training with one
computation ofẼposterior and its derivatives. Networks were trained using a learning rate
of 0.0001, a momentum of 0.9, and a version of conjugate gradient descent (Hertz, Krogh,
& Palmer, 1991). These modifications of the basic algorithm were exclusively adopted to
reduce the overall training time, but an initial comparison using the unmodified algorithm
(see Table 2) gave statistically indistinguishable results. As noted above, learning required
between 30 min and 12 h on a 200 MHz Pentium Pro.

5.1.5. Error function. In our implementation, the errore(ξ∗, ξ) measures the distance
the robot must travel to move fromξ ∗ to ξ . Thus, the further the robot must travel when
erroneously believing to be atξ , the larger its error.

5.1.6. Map. Nearest neighbor(Franke, 1982; Stanfill & Waltz, 1986) was used to compute
P( fi | ξ). More specifically, in our experiments the entire training setX was memorized.
For each query locationξ , a set ofk valuesg(s1), g(s2), . . . , g(sk) was computed for the
k data points inX nearest toξ . Nearness was calculated using Euclidean distance. The
desired probabilityP( fi | ξ)was assumed to be the averagek−1∑k

i=1 g(si ). This approach
was found to work reasonably well in practice. The issue of how to best approximate
P( f | ξ) from finite sample sizes is orthogonal to the research described here and was
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therefore not investigated in depth; for example, see Burgard et al. (1996a), Gelb (1974),
Nourbakhsh, Powers, & Birchfield (1995), Simmons & Koenig (1995), and Smith, Self, &
Cheeseman (1990) for further literature on this topic.

5.1.7. Testing conditions. We were particularly interested in measuring performance un-
der different uncertainties—from local to global. Such comparisons are motivated by the
observation that the utility of a feature depends crucially on uncertainty (cf. Section 3.2). In
most of our runs, the uncertaintyBelprior(ξ) was uniformly distributed and centered around
the true (unknown) position. In particular, the distributions used here had the widths: [−1 m,
1 m], [−2 m, 2 m], [−5 m, 5 m], [−10 m, 10 m], [−50 m, 50 m], and [−89 m, 89 m].
The range of uncertainties captures situations with global uncertainty as well as situations
where the robot knows its position within a small margin. An uncertainty of [−89 m, 89 m]
corresponded toglobal uncertainty, since the environment was 89 m long. We will refer
to uncertainties at the other end of the spectrum ([−1 m, 1 m], [−2 m, 2 m]) aslocal. An
uncertainty of [−1 m, 1 m] is generally sufficient for our autonomous navigation routines,
so no smaller uncertainty was used. IfBelprior is used in training, we refer to it astraining
uncertainty. If it is used in testing, we call ittesting uncertainty. When evaluating BaLL,
sometimes different prior uncertainties are used in training and testing to investigate the
robustness of the approach.

5.1.8. Dependent measures.The absolute error̃Eposteriordepends on the prior uncertainty
Belprior(ξ), hence it is difficult to compare for different prior uncertainties. We therefore
chose to measure instead theerror reduction, defined as

1− Ẽposterior

Ẽprior

. (46)

Like the posterior error̃Eposterior, the prior errorẼprior denotes the approximation ofEprior

based on the dataX. For example, if the prior error̃Eprior is four times as large as the posterior
error Ẽposterior after taking a sensor snapshot, the error reduction is 75%. The larger the
error reduction, the more useful the information extracted from the sensor measurement for
localization. In our experiments, the initial error of a globally uncertain robot is 42.2 m;
thus, to lower the error to 1 m, it must reduce its error by 97.6%. The advantage of plotting
the error reduction instead of the absolute error is that all results are in the same scale
regardless of the prior uncertainty, which facilitates their comparison.

5.2. Results

The central hypothesis underlying our research is that filters learned by BaLL can outperform
human-selected landmarks. Thus, the primary purpose of our experiments was to compare
the performance of BaLL to that the other two approaches. Performance was measured in
terms of localization error. The secondary purpose of our experiments was to understand
what features BaLL uses for localization. Would the features used by BaLL be similar to
those chosen by humans, or would they be radically different?
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In a first set of experiments, we evaluated the error reduction for BaLL and compared it
to the two other approaches, under different experimental conditions. The error reduction
directly measures the usefulness of a filterσ or a particular type of landmark for localization.
Thus, it lets us judge empirically how efficient each approach is in estimating a robot’s
location. Different experiments were conducted for different uncertainties (from local to
global), and different numbers of networksn.

5.2.1. One neural network and same uncertainty in training and testing.In the first
experiment, BaLL was used to train a single neural network, which was then compared
to the other two approaches. While the different approaches were evaluated under the
different uncertainties, in each experiment the testing uncertainty was the same as the
training uncertainty. Consequently, the results obtained here represent thebest casefor
BaLL, sinceσ was trained for the specific uncertainty that was also used in testing.

Figure 3 shows the error reduction obtained for the three different data sets D-1, D-2, and
D-3. In each of these diagrams, the solid line indicates the error reduction obtained for BaLL,
whereas the dashed line depicts the error reduction for the other two approaches (landmark-
based localization using doors in figures 3(a) and (b), and ceiling lights in figure 3(c)). In
all graphs, 95% confidence intervals are also shown.

As can be seen in all three diagrams, BaLL significantly outperforms the other approaches.
For example, as the results obtained with data set D-1 indicate (figure 3(a)), doors appear
to be best suited for±2 m uncertainty. If the robot knows its location within±2 m, doors,
when used as landmarks, reduce the uncertainty by an average of 8.31%. BaLL identifies
a filter that reduces the error by an average of 14.9%. This comparison demonstrates that
BaLL extracts more useful features from the sensor data. The advantage of our approach is
even larger for increasing uncertainties. For example, if the robot’s uncertainty is±50 m,
BaLL reduces the error by 36.9% (data set D-1), whereas doors reduce the error by as little
as 5.02%.

Similar results occur for the other two data sets. For example, in data set D-2, where the
camera is pointed towards the inside wall, the door-based approach reduces the error by
a maximum average of 9.78% (figure 3(b)). In this environment, doors appear to be best
suited for±5 m uncertainty (and not for±2 m), basically because doors on the interior side
of the testing corridor are wider and there are fewer of them. Here, too, BaLL outperforms
the door-based approach. It successfully identifies a feature that reduces the uncertainty
by 15.6% under otherwise equal conditions. In figure 3(b), the largest relative advantage
of our approach over the door-based approach occurs when the robot is globally uncertain
about its position. Here BaLL reduces the error by 27.5%, whereas the door-based approach
yields no noticeable reduction (0.00%).

The results obtained for data set D-3, where the camera is pointed upward, are generally
similar. If the prior uncertainty is±2 m, ceiling lights manage to reduce the error by as
much as 15.6%, indicating that they are significantly better suited for this type of uncertainty
than doors. We attribute this finding to the fact that most of our ceiling lights are spaced in
regular intervals of about 5 m. BaLL outperforms localization based on ceiling lights in all
cases, as can be seen in figure 3(c). For example, it reduces the error by 21.0% for±2 m
prior uncertainty and by 39.5% for±50 m uncertainty. All these results are significant at
the 95% confidence level.
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Figure 3. Average results. The dashed line indicates the error reduction obtained for doors, and the solid line
indicates the error reduction if the filters are learned using BaLL, for (a) D-1, (b) D-2, and (c) D-3.
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Table 3. Comparison of BaLL with the other two approaches (±2 m uncertainty). Heren specifies the dimension
of the features vectorf (i.e., the number of networks), and the numbers in the table give the average error reduction
and their 95% confidence interval. The results in the first two rows can also be found in figure 3 at±2 m.

Data set D-1 D-2 D-3

Doors 8.3%± 1.1% 1.4%± 1.5% —

Ceiling lights — — 15.6%± 1.4%

BaLL, n = 1 14.9%± 1.3% 14.2%± 1.6% 21.0%± 1.7%

BaLL, n = 2 33.5%± 1.9% 36.7%± 1.9% 34.5%± 2.0%

BaLL, n = 3 39.7%± 2.0% 36.3%± 2.3% 41.5%± 1.8%

BaLL, n = 4 41.7%± 2.5% 36.7%± 1.9% 42.9%± 1.6%

5.2.2. Multiple neural networks and same uncertainty in training and testing.In a second
experiment, we held uncertainty constant but varied the number of networks and hence the
dimensionality of the feature vector (from one to four). As described in Section 4, BaLL
can simultaneously train multiple networks.

The primary result of this study was that, as the number of networks increases, BaLL’s
advantage over the alternative approaches increases. Table 3 shows the average error reduc-
tion (and 95% confidence interval) obtained for±2 m uncertainty and for the three different
data sets. Forn = 4, the difference between BaLL and both other approaches is huge. Our
approach finds features that reduce the error on average by 41.7% (data set D-1), 36.7%
(D-2), and 42.9% (D-3), whereas the other approaches reduce the error only by 8.3%, 1.4%,
and 15.6%, respectively. According to these numbers, BaLL is between 2.75 and 26.2 times
as data efficient as the alternatives.

To understand the performance improvement over the single network case, it is important
to notice that multiple networks tend to extract different features. If all networks recognized
the same features, their output would be redundant and the result would be the same as if
n = 1. If their outputs differ, however, the networks will generally extractmoreinformation
from the sensors, which will usually lead to improved results, as demonstrated by the
performance results. Thus, the observation that the different networks tend to select different
features is a result of minimizing the posterior errorEposterior. As we have shown in an earlier
version of this article (Thrun, 1996), the output of the networks is largely uncorrelated,
demonstrating that different, nonredundant features are extracted by the different networks.

5.2.3. Multiple neural networks and different uncertainty in training and testing.In
a third experiment, we investigated BaLL’s performance when trained for one particular
uncertainty but tested under another. These experiments have practical importance, since in
our current implementation the slowness of the learning procedure prohibits training new
networks every time the uncertainty changes. We conducted a series of runs in which net-
works were trained for±2 m uncertainty and tested under the various different uncertainties.
In the extreme case, the testing uncertainty was±89 m, whereas the training uncertainty
was±2 m.

Figure 4 shows the results obtained forn = 4 networks using the three different data
sets. As expected, the networks perform best when the training uncertainty equals the
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Figure 4. Even under different uncertainties, the learned filters reduce the error significantly more than those
that recognize doors. This figure shows results obtained whenn = 4 networks are trained for±2 m uncertainty.
BaLL’s error reduction is plotted by the solid line, whereas the dashed line depicts the error reduction when doors
are used as landmarks. The figure shows results for data set (a) D-1, (b) D-2, and (c) D-3.
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testing uncertainty. The primary results are that the performance degrades gracefully,
in that even if the training uncertainty differs drastically from the testing uncertainty, the
networks extract useful information for localization. BaLL still outperforms both alternative
approaches or produces statistically indistinguishable results. These results suggest that, in
our environment, a single set of filters might still be sufficient for localization, although the
results might not be as good as they would be for multiple sets of filters.

5.2.4. Global localization. In a final experiment, BaLL was applied to the problem of
global localization, in which the robot does not know its initial location. We model this by
assuming its initial uncertainty is uniformly distributed. As the robot moves, the internal
belief is refined based on sensor readings. In our environment, a single sensor snapshot is
usually insufficient to determine the position of the robot uniquely. Thus, multiple sensor
readings must be integrated over time.

We conducted 35 global localization runs comparing the door-based localization ap-
proach with BaLL. In each run, the robot started at a random position in the corridor.
Sensor snapshots were taken every 0.5 m and incorporated into the internal belief using the
probabilistic algorithm described in Table 1. Both approaches—the door-based approach
and BaLL, used the same data; thus, any performance, difference was exclusively due to
the different information extracted from the sensor readings. BaLL usedn = 4 networks,
which were trained for±2 m uncertainty prior to robot operation and held constant while
the robot localized itself.

Figure 5 depicts an example run with BaLL. This figure shows the beliefBel(ξ ) and the
error at different stages of the localization. Each row in figure 5 gives the beliefBel(ξ ) at
a different time, with time progressing from the top to the bottom. In each row, the true
position of the robot is marked by the square. As can be seen in figure 5, the features

Figure 5. An example of global localization with BaLL. Each curve represents the beliefBel(ξ ) of the robot at a
different time. Initially (top curve), the robot’s position is in the center of the rectangle. Its initial beliefBel(ξ ) is
uniformly distributed. As the robot senses and moves forward,Bel(ξ ) is refined. After four sensor measurements,
Bel(ξ ) is centered on the correct position. The numbers on the right side depict the errorEposteriorat the different
stages of the experiment.
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Figure 6. Absolute error in cm as a function of meters traveled, averaged over 35 different runs with different
starting points. Every 0.5 m, the robot takes a sensor snapshot. The dashed line indicates the error when doors
are used as landmarks and the solid line corresponds to BaLL, which gives superior results.

extracted by BaLL reduce the overall uncertainty fairly effectively, and after four sensor
readings (2 meters of robot motion) the robot “knows where it is.”

Figure 6 summarizes the result of the comparison between BaLL and the door-based
approach (dashed line). This shows the average error (in cm) as a function of the distance
traveled, averaged over 35 different runs with randomly chosen starting positions, along
with 95% confidence intervals. The results demonstrate the relative advantage of learning
the features. After 30 m of robot travel, the average error of the door-based approach is
7.46 m. In contrast, BaLL attains the same accuracy after only 4 m, making it approximately
7.5 times as data efficient. After 9.5 m, BaLL yields an average error that is smaller than
1 m. The differences are all statistically significant at the 95% level.

As noted above, when applied in larger environments or in the bidirectional case, the
number of sensor readings required for global localization increases. To quantify this
increase, it is useful to consider the problem of localization from an information-theoretic
viewpoint. Reducing the uncertainty from 89 m to 1 m log2(89 m/1 m)= 6.48 independent
bits of information. This is because it takes 6.48 bits to code a symbol using an alphabet
of 89 symbols. Of course, consecutive sensor readings are not independent, reducing the
amount of information they convey. Empirically, BaLL requires on average 19 sensor
readings (9.5 m) to reduce the error to 1 m. These numbers suggest that, on average,
it needs 3.5 = 19/5.4 sensor readings for one bit of independent position information.
Consequently, in a corridor twice the size of the one considered here (or in the bidirectional
case), 23 sensor readings should be sufficient to obtain an average localization error of 1 m
(since 23≥ 19+ 3.5).

5.3. What features do the neural networks extract?

Analyzing the trained neural networks led to some interesting findings. In general, the
networks use a mixture of different features for localization, such as doors, dark spots, wall
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Figure 7. Example output characteristics of a filter, plotted over data obtained in one of the runs. The filters
were trained for (a)±2 m, (b)±10 m, and (c)±89 m (global) uncertainty.

color, hallways, and blackboards. In several runs, the networks became sensitive to a spot
in our corridor whose physical appearance did not, to us, differ from other places. Closer
investigation of this spot revealed that, due to an irregular pattern of the ceiling lights, the
wall is slightly darker than the rest of the corridor. This illumination difference is barely
visible to human eyes, since they compensate for the total level of illumination. However,
our camera is very sensitive to the total level of illumination, which explains why the robot
repeatedly selected this spot for use in localization.

We also investigated the effect of different training uncertainties on the filterσ . As the
above results suggest, different filters are learned for different uncertainties, so the question
arises as to what type of features are used under these different conditions.

Using data set D-1 as an example, figure 7 depicts example outputs of trained networks
for ±2 m, ±10 m, and±89 m training uncertainty. Each curve plots the output value
for the corresponding network, which were evaluated in the 89 meter-long corridor. Ob-
viously, the features extracted by the different networks differ substantially. Whereas the
network trained for small uncertainty is sensitive to local features such as doors, hallways,
and dark spots, the network trained for large uncertainty is exclusively sensitive to the color
of the walls. Roughly a quarter of our corridor is orange and three quarters are light brown.
If the robot is globally ignorant about its position, wall color is vastly superior to any other
feature, as illustrated by the performance results described in the previous section. If the
robot is only slightly uncertain, however, wall color is a poor feature.

Figure 8 depicts the output ofn = 4 networks, simultaneously trained for local uncertainty
(±2 m). As discussed above, the different networks specialize to different perceptual

Figure 8. Example output characteristics ofn = 4 filters, optimized for±2 m uncertainty.
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features. More examples and a more detailed discussion of the different features learned
under the various experimental conditions can be found in thrun (1996).

6. Related work

Mobile robot localization has frequently been recognized as a key problem in robotics
with significant practical importance. Cox (1991) considers localization to be a fundamen-
tal problem to providing a mobile robot with autonomous capabilities. A recent book by
Borenstein, Everett, & Feng (1996) provides an excellent overview of the state-of-the-art in
localization. Localization—and in particular localization based on landmarks—plays a key
role in various successful mobile robot architectures.6 While some localization approaches,
such as Horswill (1994), Koenig & Simmons (1996), Kortenkamp & Weymouth (1994),
Matarić (1990), and Simmons & Koenig (1995), localize the robot relative to some land-
marks in a topological map, BaLL localizes the robot in a metric space, as in the approach
by Burgard et al. (1996a, 1996b).

However, few localization approaches can localize a robot globally; they are used mainly
to track the position of a robot. Recently, several authors have proposed probabilistic
representations for localization. Kalman filters, which are used by Gelb (1974), Rencken
(1995), Smith & Cheeseman (1985), and Smith, Self, & Cheeseman (1990), represent the
location of a robot by a Gaussian distribution; however, they only can represent unimodal
distributions, and so they are usually unable to localize a robot globally. It is feasible to
represent densities using mixtures of Kalman filters, as in the approach to map building
reported by Cox (1994), which would remedy the limitation of conventional Kalman fil-
ters. The probabilistic approaches described by Burgard et al. (1996a, 1996b), Kaelbling,
Cassandra, & Kurien (1996), Koenig & Simmons (1996), Nourbakhsh, Powers, & Birchfield
(1995), and Simmons & Koenig (1995) employ mixture models or discrete approxima-
tions of densities that can represent multimodal distributions. Some of these approaches
are capable of localizing a robot globally. The probabilistic localization algorithm de-
scribed in Section 2 borrows from this literature but generalizes all these approaches. It
smoothly blends both position tracking and global optimization, using only a single update
equation.

Most existing approaches to mobile robot localization extract static features form the
sensor readings, usually using hand-crafted filter routines. The most popular class of
approaches to mobile robot localization,localization based on landmarks, scan sensor
readings for the presence or absence of landmarks. A diverse variety of objects and spatial
configurations have been used as landmarks. For example, many of the landmark-based
approaches reviewed in Borenstein, Everett, & Feng (1996) require artificial landmarks such
as bar-code reflectors (Everett et al., 1994), reflecting tape, ultrasonic beacons, or visual
patterns that are easy to recognize, such as black rectangles with white dots (Borenstein,
1987). some recent approaches use more natural landmarks that do not require modifications
of the environment. For example, the approaches of Kortenkamp & Weymouth (1994) and
Matarić (1990) use certain gateways, doors, walls, and other vertical objects to determine
the robot’s position, and the Helpmate robot uses ceiling lights to position itself (King
& Weiman, 1990). The approaches reported in Collet & Cartwright (1985) and Wolfart,
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Fisher, & Walker (1995) use dark/bright regions and vertical edges as landmarks. These
are just a few representative examples of many different landmarks used for localization.

Map matching, which comprises a second, not quite as popular family of approaches
to localization, converts sensor data to metric maps of the surrounding environment, such
as occupancy grids (Moravec, 1988) or maps of geometric features such as lines. The
sensor map is then matched to a global map, which might have been learned or provided
by hand (Cox, 1991; Rencken, 1993, Schiele & Crowley, 1994; Thrun, 1993; Thrun, in
press; Yamauchi & Beer, 1996; Yamauchi & Langley, 1997). Map-matching approaches
filter sensor data to obtain a map, and then use only the map in localization.

These approaches have in common the fact that the features extracted from the sensor
readings are predetermined. By hand selecting a particular set of landmarks, the robot
ignores all other information in the sensor readings which, as our experiments demonstrate,
might carry some additional information. By mapping sensor readings to metric maps in a
fixed, precoded way, the robot ignores other potentially relevant information in the sensor
readings. The current work lets the robot determine by itself what features to extract for
localization, based on their utility for localization. As shown by our empirical comparison,
enabling a robot to extract its own features (and learning its own landmarks) has a noticeable
impact on the quality of the results.

Probably the most related research is that by Greiner and Isukapalli (1994). Their ap-
proach can select a set of landmarks from a larger, predefined set of landmarks, using an
error measure that bears close resemblance to the one used in BaLL. The selection is driven
by the localization error after sensing, which is determined empirically from training data.
In that regard, both approaches exploit the same basic objective function in learning filters.
Greiner and Isukapalli’s approach differs from BaLL primarily in three respects. First, it
assumes that the exact location of each landmark is known before learning. The robot does
not define its own landmarks; rather, it starts with a set of human-defined landmarks and
rules out those that are not suited for localization. Second, it is tailored towards correcting
small localization errors and cannot perform global localization. Third, the class of land-
marks that BaLL can learn is much broader. The filters used by Greiner and Isukapalli are
functions of three parameters (distance, angle, and type of landmark); in contrast, BaLL
employs neural networks that have many more degrees of freedom.

7. Conclusion

This paper has presented a Bayesian approach to mobile robot localization. The approach
relies on a probabilistic representation and uses Bayes’ rule to incorporate sensor data into
internal beliefs and to model robot motion. The key novelty is a method, called BaLL,
for training neural networks to extract a low-dimensional feature representation from high-
dimensional sensor data. A rigorous Bayesian analysis of probabilistic localization provided
a rational objective for training the neural networks so as to directly minimize the quantity
of interest in mobile robot localization: the localization error. As a result, the features
extracted from the sensor data emerge as a side effect of the optimization.

An empirical comparison with two other localization algorithms under various conditions
demonstrated the advantages of BaLL. We compared BaLL with an existing method by
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Koenig & Simmons (1996), which use doors as landmark in localization, and with King
& Weiman’s (1990) method, which uses ceiling lights. In this experiment, our approach
identified features that led to superior localization results. In some cases, the performance
differences were large, particularly for localization under global uncertainty.

BaLL’s ability to learn its own features and thus to discover its own landmarks has im-
portant consequences for mobile robot navigation. In particular, the probabilistic paradigm
has four principal advantages when compared to conventional approaches to this problem:

1. Autonomy. BaLL obviates the need for manually determining the features to extract
from the sensor data. In most previous approaches to localization, a human designer
had to manually specify the features to extract. For example, most landmark-based
approaches rely on predetermined landmarks, chosen by human expert, which requires
expertise about the robot, its sensors, and the environment. BaLL replaces the need for
selecting the right features by automated learning.

2. Optimality. In BaLL, filters are learned by attempting to optimize the accuracy of the
localization routines that employs them. Asymptotically, minimizing the Bayesian error
should yield optimal filters. Of course, BaLL might fail to find an optimal set of filters
for three reasons: BaLL is trained using finite sample sets; backpropagation networks
might not be sufficient to represent optimal filters; and the gradient descent training
procedure might converge to a local minimum.

3. Environmental flexibility. Our method can also customize itself to different environ-
ments. Any routine that relies on static, built-in landmarks should fail in environments
that do not possess such landmarks. For example, although ceiling lights might be ap-
propriate landmarks in some environments, they are inappropriate in environments that
do not possess them. By providing a method that supports the automatic customization
of robots to their environments, we hope to achieve a level of flexibility that facilitates
the design of future service robot applications (e.g., service robots operated in private
homes, whose design varies greatly from home to home).

4. Sensor flexibility. The current approach does not hinge on a specific sensor technology.
In contrast, most existing localization approaches are closely tied to a particular type of
sensor. For example, routines that rely on visual cues require that the robot be equipped
with a camera. BaLL is more flexible in that it automatically adapts to the particular
type sensor. We conjecture that it will also scale better to high-dimensional sensor
spaces that arise if a large number of sensors are used simultaneously. Exploiting the
information in high-dimensional sensor spaces has proven to be extremely difficult for
human engineers; for this reason we believe that data-driven learning approaches such
as the one proposed in this paper will ultimately make a lasting contribution to the field
of robotics.

A key limitation of the current approach is that it does not learn the location of landmarks
(in x-y coordinates). Instead, it learns to associate sensor readings with robot locations. If
the robot knew the location of the landmarks, it could apply projective geometry to predict
a landmark’s appearance from different, nearby locations. In the current approach, this is
not possible and we suspect that this limitation causes an increased need for training data.
A second limitation arises from the fact that, after the initial training phase, learning is
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discontinued. If the environment changes, it is desirable that the localization routines adapt
to the changes, and it appears feasible to extend BaLL accordingly. As the robot knows
roughly where it is, BaLL can use its position estimates to label sensor data automatically,
and use this self-labeled data for further training. The effectiveness of such an extension in
practice remains to be seen.

Although we have applied BaLL only to one specific problem in mobile robot localization,
the mathematical framework presented here is more general and can be applied to a whole
range of decision problems arising in the context of mobile robotics. These include:

1. Active sensing.As shown in Thrun (1996), the mathematical framework yields a rational
incentive for pointing sensors so as to best localize a robot. Empirical results have
demonstrated that by actively controlling the pointing direction of the robot’s camera so
as to minimize the future expected localization error, the efficiency and robustness of
localization can be improved further.

2. Sensor selection.the approach can also be used to determine what sensor to include on
mobile robots. Previously, robot designers lacked a formal method for determining the
sensors best suited for localization. By comparing the Bayesian localization error for
different type sensors, our analysis provides a rational criterion for determining which
sensors work best and where to mount them.

3. Navigation for localization. The approach can be used to determine where to move so
as to best localize the robot, a problem that has previously been studied by Kaelbling,
Cassandra, & Kurien (1996). The mathematical details are discussed in Thrun (1996),
while a similar approach with empirical results can be found in Burgard, Fox, & Thrun
(1997).

The Bayesian method presented here is an instance of a general approach for the estimation
of hidden state and the integration of high-dimensional sensor data over time. Put in this
light, a limiting assumption of the current approach is the requirement that, during training,
the hidden state must be accessible. This is obviously a reasonable assumption to make
in some situations (such as the one studied here), but it is unreasonable in many other
situations. Thus, an open research issue is the extension of the current methods for the
estimation of hidden state when it is not accessible. Preliminary results carried out in our
lab in the context of intelligent building control have led to an extension to situations where
only a low-dimensional projection of the hidden state is accessible during training. We
suspect that the general paradigm of Bayesian analysis has the potential for new class of
more capable learning algorithms, with the current work being just an initial example.
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Notes

1. As noted by Matari´c (1990), “Although intuitively clear, the concept [of a landmark] is difficult to define.” We
adopt Matari´c’s and Presson & Montello’s (1988) definition, who define a landmark as “any element (object
or feature) which can serve as a point reference.” The reader may notice that some authors, such as Chown,
Kaplan, & Kortenkamp (1995) or Kuipers & Levitt (1988), propose more specific definitions, such as that
landmarks must be unique, they must correspond to physical objects, or they must be visible from everywhere.

2. Other error measures, such as measures related to the efficiency of robot motion, are not considered, since our
work focuses on the problem of state estimation, and our current approach does not address robot control.

3. In our experiments, we did not observe an overfitting effect, as experiments reported in Thrun (1996) demon-
strate. Thus, we simply trained the networks for a large number of iterations (such as 10000).

4. See also Chatila & Laumond (1985), Rencken (1993), Schiele & Crowley (1994), and Yamauchi & Beer (1996).
5. As far as tracking the position of the robot is concerned, the results obtained here should directly transfer to

the bidirectional case, since the robot never turns an unnoticed 180◦. Global localization in the bidirectional
case is generally more difficult for any approach, due to the increased number of possible locations. The main
point of this paper is to provide ways for learning features (landmarks) for localization, and we have no reason
to believe that the qualitative results obtained here do not transfer to the bidirectional case (as they should
not change when one goes from a 89 m to a 178 m corridor). Section 5.2.4 quantifies the effect of larger
environments, or the general bidirectional case.

6. Examples can be found in Betke & Gurvits (1993), Cox (1991), Cox (1994), Horswill (1994), Fukuda et al.
(1993), Hinkel & Knieriemen (1988), Koenig & Simmons (1996), Kortenkamp & Weymouth (1994), Leonard
& Durrant-Whyte (1992), Leonard, Durrant-Whyte, & Cox (1992), Matari´c (1990), Neven & Sch¨oner (1995),
Nourbakhsh, Powers, & Birchfield (1995), Peters et al. (1994), Rencken (1993), Schiele & Crowley (1994),
Simmons & Koenig (1995), Thrun et al. (1996), Weiß, Wetzler, & von Puttkamer (1994), and various chapters
in Kortenkamp, Bonassi, & Murphy (in press).
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