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Abstract

In this paper, we discuss the regularization in linear mixed quantile regression. A hierarchical

Bayesian model is used to shrink the fixed and random effects toward the common population

values by introducing an l1 penalty in the mixed quantile regression check function. A Gibbs

sampler is developed to simulate the parameters from the posterior distributions. Through

simulation studies and analysis of an age-related macular degeneration data, we assess the

performance of the proposed method. The simulation studies and the age-related macular

degeneration data analysis indicate that the proposed method performs well in comparison

to the other approaches.

Keywords: Asymmetric Laplace distribution; Gibbs sampler; Random effects;

Longitudinal data; Quantile regression.

1. Introduction

Clustered data are encountered in a wide variety of applications including agriculture,

economics, educational, ecology, geology, medicine and social repeated measures studies.

The linear mixed model with random effects (Laird and Ware, 1982) has been widely used

to describe the clustered data, due to the flexibility for modeling fixed and random effects.

In this model, the fixed effects give the population intercept and slopes, while the random

effects account for the heterogeneity among the clusters. One of the serious challenges in the
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linear mixed model lies in selecting both random and fixed effects. To solve this problem,

model selection criteria such as AIC (Akaike, 1973) and BIC (Schwarz, 1978) have been used

over the years to select the mixed effects by comparing a list of models. Recently, Bayesian

methods have been proposed for selecting the mixed effects ( see, Chen and Dunson, 2003;

Kinney and Dunson, 2008; Saville and Herring, 2009; Bondell et al., 2010; Ibrahim et al.,

2011). These approaches focus on the traditional least square regression. Compared to the

traditional least square regression, quantile regression is more robust to non-normal errors

and outliers (Koenker, 2005). The median is the best-known example of the quantile and

plays the central role (Koenker, 2005; Yu et al., 2003). Quantile regression has gradually

emerged as a comprehensive extension to the least square regression (Koenker, 2005). It

is insensitive to heteroscedastic data and outliers, and thus is able to accommodate non-

normal errors, which are common in many real world applications (Koenker and Bassett,

1978; Koenker, 2005). Quantile regression has been the subject of great theoretical interest

as well as numerous practical applications in a number of fields such as finance, social

science and medicine. A comprehensive account of these recent applications can be found in

(Koenker, 2005).

Variable selection for fixed effects in quantile regression has attracted much research

interest recently (see for example, Zou and Yuan, 2008; Li and Zhu, 2008; Wu and Liu, 2009;

Bradic et al., 2010; Li et al, 2010). In this paper, we present a Bayesian approach to select

the random effects, together with the fixed effects in the quantile regression models.

Our motivating example is an analysis of age-related macular degeneration data which

is previously analyzed by Chaili (2008). This study had a total of 203 patients which were

randomly selected from three cities (centers) in the United Kingdom to measure the treat-

ment effects of teletherapy on the loss of vision associated with the progress of age related

macular degeneration. The objective of this study is to investigate the relationship between

the distance visual acuity (DVA) and a set of covariates. The change in distance visual
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acuity of each patient was measured four times over a two year period, on the 3th, 6th, 12th

and 24th months. In this paper we are interested in selecting the most significant predictors

as well as random effects for the quantile regression model, relating to the change in distance

visual acuity. The selection of random effects is important in this application, in order to

know which predictors have coefficients that vary among subjects. Our goal in this study is

to shrink the fixed and random effects toward the common population values by introducing

an l1 penalty in the mixed quantile regression check function.

The rest of the paper is organized as follows. In Section 2, we review linear mixed-effects

(LME) models and its re-parameterization . In Section 3, we present the penalized linear

mixed quantile regression. We outline the Bayesian MCMC estimation procedure in Section

4. In Section 5, we carry out simulation examples to examine the performance of the method

proposed and in Section 6, we illustrate the performance of our method via analysis of the

age-related macular degeneration data. We conclude with a brief discussion in Section 7.

2. Linear Mixed Models

Suppose there are N subjects under study so that yij denote the jth response for subject

i, for i = 1, ..., N and j = 1, ..., ni, x′

ij and z′

ij are rows of the X i and Zi matrices, X i is

ni × k and Zi is ni × q. Then the linear mixed model is defined as:

yij = x′

ijβ + z′

ijαi + εij, εij ∼ N(0, σ2), (1)

where β and αi are k and q-dimensional unknown parameters and random effects, respec-

tively, and εij is the error term. Here αi ∼ N(0,Σ).

A Markov chain Monte Carlo (MCMC) method has been suggested by Chen and Dunson

(2003) to identify any random effect with zero variance. Their approach is built under the re-

parameterized random effect model and it is based on a prior with mass at zero for the random
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effect variances. Recently, this reparametrization appeared in papers by Kinney and Dunson

(2008), Bondell et al. (2010), Saville and Herring (2009) and Ibrahim et al. (2011) to contact

Bayesian variable selection in mixed models. Chen and Dunson (2003) reparametrized the

linear mixed model (1) as

yij = x′

ijβ + z′

ijΛΓbi + εij, εij ∼ N(0, σ2), (2)

where Λ = diag(d1, d2, ..., dq) is a diagonal matrix, Γ is a lower triangular matrix of dimension

q × q, whose (l, r)th element is denoted by γlr, γ = (γ1, ..., γq(q−1)/2)
′, bi = (bi1, ..., biq)

′ and

bi ∼N(0, I). Under this reparametrization, the diagonal elements of Σ are σll = d2
l +

∑l−1
r=1 γ2

lrd
2
l , l = 1, · · · , q. Given Γ, bi and rearranging terms, the authors showed that the

diagonal elements of Λ can be expressed as regression coefficients in a normal linear regression

model. They also showed that, given Λ and bi, the parameters in Γ can be expressed as

regression coefficients in a normal linear regression model. Under this reparametrization, the

parameters in Λ and Γ have the conditional conjugacy property that allows for a simple and

efficient Gibbs sampling algorithm for fitting the linear mixed model. Recently, Bondell et al.

(2010) developed this idea by using a penalized joint log-likelihood function with an adaptive

penalty for the selection and estimation of both the fixed and random effects.

3. The penalized linear mixed quantile regression

Our approach is to set up the problem as a Bayesian quantile regression problem under

the l1 penalty. For the pth regression quantile, we can define a joint penalized criterion under

the l1 penalty as

min
β

N∑

i=1

ni∑

j=1

ρp(yij − x′

ijβp − z′

ijΛΓbpi) + λ(
k∑

s=1

|βps| +
q∑

s=1

|dps|), (3)
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where ρp(u) = u{p − I(u < 0)} is the so-called check function. For simplicity of notation,

we will omit the subscript p in the remainder of the paper. Thus, Equation (3) becomes

min
β

N∑

i=1

ni∑

j=1

ρp(yij − x′

ijβ − z′

ijΛΓbi) + λ(

k∑

s=1

|βs| +
q

∑

s=1

|ds|), (4)

A parametric connection between the minimization problem in (4) and maximum likeli-

hood theory is given by assuming the error distribution is the asymmetric Laplace dis-

tribution; see Koenker and Machado (1999) and Yu and Moyeed (2001). This error dis-

tribution also connects the quantile regression model with normal regression models; see

Kozumi and Kobayashi (2009) and Reed and Yu (2009). If we employ a Laplace prior

p(βs|σ, λ) = σλ/2 exp{−σλ|βs|} on βs, a Laplace prior p(ds|σ, λ) = σλ/2 exp{−σλ|ds|} on

ds and assume that the residuals εij follow an asymmetric Laplace distribution AL(0, σ, p),

where the parameters are the location, scale, and skewness, respectively, then the posterior

distribution of β is

f(β|y, X, Z, σ, λ,Λ,Γ) = exp{−
N∑

i=1

ni∑

j=1

|εij| + (2p − 1)εij

2σ
− σλ

k∑

s=1

|βs| − σλ

q
∑

s=1

|ds|}, (5)

where εij = yij − x′

ijβ − z′

ijΛΓbi. In order to make the model inference tractable, the

likelihood function of the asymmetric laplace distribution can be represented as a scale

mixture of normals with an exponential mixing density (see , Kozumi and Kobayashi, 2009;

Reed and Yu, 2009). This representation can be written as

N∏

i=1

ni∏

j=1

σ−1 exp{−|εij | + (2p − 1)εij

2σ
} =

N∏

i=1

ni∏

j=1

∫
∞

0

1

σ
√

4πσvij

exp{−(εij − ξvij)
2

4σvij
− ζvij}dvij, (6)

where ξ = (1 − 2p) and ζ = p(1 − p)/σ (see also, Alhamzawi and Yu, 2012, for some

detials). The Laplace prior can also be represented as a scale mixture of normals (see,
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Andrews and Mallows, 1974; Park and Casella, 2008)

p(β|λ1) =
k∏

s=1

λ1

2
exp{−λ1|βs|},

=

k∏

s=1

∫
∞

0

1√
2πts

exp{− β2
s

2ts
}λ2

1

2
exp{−λ2

1

2
ts}dts, (7)

p(d|λ1) =

q
∏

s=1

λ1

2
exp{−λ1|ds|},

=

q
∏

s=1

∫
∞

0

1√
2πηs

exp{− d2
s

2ηs

}λ2
1

2
exp{−λ2

1

2
ηs}dηs, (8)

where λ1 = σλ. The prior specification for the model in (4) is completed by specifying priors

for (σ, λ2
1, γ). We specify a conjugate Inverse Gamma prior InverseGamma(g1, g2) to the

scale parameter σ, a conjugate gamma prior Gamma(c1, c2) for λ2
1 and a multivariate normal

prior N(0,Γ0) for γ.

4. Bayesian sampler for variable selection

A Gibbs sampling algorithm for the Bayesian quantile regression is constructed by sam-

pling the parameters from their full conditional distributions.

• Full conditional distribution of β.

Let T = diag(t−1
1 , ..., t−1

k ). Then, the full conditional distribution of β is a multivariate

normal distribution with mean µβ and variance-covariance matrix Σβ where

Σβ = (
N∑

i=1

ni∑

j=1

xijx
′

ij

2σvij

+ T )−1, µβ = Σβ

N∑

i=1

ni∑

j=1

xij(yij − z′

ijΛΓbi − ξvij)

2σvij

(9)

• Full conditional distribution of bi.
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The full conditional distribution of bi is a multivariate normal distribution with mean

µbi and variance-covariance matrix Σbi where

Σbi = (

ni∑

j=1

(z′

ijΛΓ)(z′

ijΛΓ)′

2σvij
+ I)−1, µbi = Σbi

ni∑

j=1

(z′

ijΛΓ)(yij − x′

ijβ − ξvij)

2σvij
(10)

• Full conditional distribution of σ.

σ|β, v ∼ InverseGamma(
3n

2
+ g1,

(εij − ξvij)
2

4vij
+ ζvij + g2).

• Full conditional distribution of v.

The full conditional posterior distribution of each v−1
ij is Inverse Gaussian(µ′, λ′) where

µ′ =

√

1

(yij − x′

ijβ − z′

ijΛΓbi)2
and λ′ =

1

2σ
, (11)

in the parameterization of inverse Gaussian density given by

f(x|λ′, µ′) =

√

λ′

2π
x−3/2 exp{−λ′(x − µ′)2

2(µ′)2x
}, x > 0; (12)

(Chhikara and Folks, 1989, see,). We use the rinvGauss() function in the R package

SuppDists (Bob, 2009) to sample from generalized inverse Gaussian distribution.

• Full conditional distribution of t.

The full conditional posterior distribution of each ts is Inverse Gaussian(µ′, λ′) where

µ′ =

√

λ2
1

β2
s

and λ′ = λ2
1. (13)

• Full conditional distribution of η.
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The full conditional posterior distribution of each ηs is Inverse Gaussian(µ′, λ′) where

µ′ =

√

λ2
1

d2
s

and λ′ = λ2
1. (14)

• Full conditional distribution of λ2
1.

The full conditional posterior distribution of λ2
1 is Gamma(f1, f2) where

f1 = k + q + c1 and f2 =
k∑

s=1

ts
2

+

q
∑

s=1

ηs

2
+ c2. (15)

• Full conditional distribution of γ.

The full conditional posterior distribution of γ is a multivariate normal distribution

with mean µγ and variance-covariance matrix Σγ where

Σγ = (

N∑

i=1

ni∑

j=1

uiju
′

ij

2σvij
+ Γ0

−1)−1, µγ = Σγ(

N∑

i=1

ni∑

j=1

uij(yij − x′

ijβ − ξvij)

2σvij
), (16)

where uij = (bildmzijm : l = 1, ..., q, m = l + 1, ..., q)′

• Full conditional distribution of d.

The full conditional posterior distribution of d is multivariate normal distribution with

mean µd and variance-covariance matrix Σd where

Σd = (

N∑

i=1

ni∑

j=1

wijw
′

ij

2σvij
+ Ω)−1, µd = Σd(

N∑

i=1

ni∑

j=1

wij(yij − x′

ijβ − ξvij)

2σvij
), (17)

where Ω = diag(η−1
1 , · · · , η−1

q ) and wij = (bilγmzijm : l = 1, ..., q, m = l + 1, ..., q)′.
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5. Simulation studies

We use simulation studies to examine the proposed approach. We compare four models:

the Bayesian quantile regression for longitudinal data models (BQRGS) reported in Luo et al.

(2011), the Bayesian adaptive lasso quantile regression (BALQR) for the fixed effects as

described in Alhamzawi et al. (2011), the standard frequentist quantile regression for the

fixed effects (QR) in the R package quantreg (Koenker, 2012), and our approach is referred

to as “PMQ”. The methods are evaluated based on the median of mean absolute deviations

(MMAD), i.e. median (
∑N

i=1

∑ni

j=1 |yij − ŷij|/
∑N

i=1 ni), where ŷij is the predicted value of yij

and the median is taken over 100 simulations. MMAD is a good way of providing information

on how well a method performs, where a lower MMAD indicates a better performance.

We report the standard deviation of MAD (SD) for each method. Correlation coefficients

between y = (yij, ..., yNn
N

)′ and ŷ = (ŷij, ..., ŷNn
N

)′ for each simulated data set and for each

method are also reported. A model with a higher correlation coefficient between y and ŷ,

indicates a better performance. We consider 4 model designs:

Design 1 (sparse case): We generate data from the model

yij = x′

ijβ + z′

ijαi + εij, (18)

for i = 1, · · · , 50, j = 1, · · · , 5 and xij = (xij1, xij2, xij3, xij4, xij5, xij6, xij7, xij8)
′, where xijg

is generated from a uniform distribution over (−2, 2) for g = 1, · · · , 8. We set zij = xij . We

consider the true model

yij = (β1 + αi1)xij1 + (β2 + αi2)xij2 + (β3 + αi3)xij3 + εij (19)
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where (β1, β2, β3) = (1, 1, 1), αi ∼ N(0,Σ), and true variance-covariance matrix

Σ =









0.75 0.10 0.05

0.10 0.55 0.15

0.05 0.15 0.10









We simulated the error εij from three possible error distributions: a standard normal

distribution, a t3 distribution with three degrees of freedom, and a Chi-squared distri-

bution with three degrees of freedom (χ2
3). For each p ∈ (0.50, 0.75, 0.95), we run 100

simulations. The prior specifications are the same as those in Section (3), and we set

c1 = c2 = g1 = g2 = 0.1. We run our Gibbs sampler for 25,000 iterations with an initial

burn-in of 5000 iterations.

Design 2 (sparse case): The setup in this design is the same as Design 1, except we

set zij = xij plus a random intercept term. We generate data from the model

yij = αi0 + (β1 + αi1)xij1 + (β2 + αi2)xij2 + (β3 + αi3)xij3 + εij, (20)

where (β1, β2, β3) = (3, 1.5, 2), αi ∼ N(0,Σ), and true variance-covariance matrix

Σ =












0.95 0.45 0.03 0.05

0.45 0.75 0.10 0.05

0.03 0.10 0.55 0.15

0.05 0.05 0.15 0.10












Design 3 (dense case): The setup in this design is the same as Design 2, except we
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Table 1: MMADs with standard deviations of MADs in their corresponding parentheses for Design
1.

p Method Error Distribution
normal t3 χ2

3

0.50 PMQ 0.903 (0.014) 0.918 (0.011) 1.289 (0.017)
BQRGS 1.023 (0.055) 1.327 (0.062) 1.725 (0.038)
BALQR 1.221 (0.092) 1.321 (0.075) 2.051 (0.095)

QR 1.287 (0.083) 1.704 (0.084) 2.193 (0.090)

0.75 PMQ 0.936 (0.015) 0.985 (0.021) 1.226 (0.025)
BQRGS 1.045 (0.057) 1.363 (0.035) 1.633 (0.059)
BALQR 1.212 (0.091) 1.459 (0.091) 1.925 (0.111)

QR 1.295 (0.097) 1.697 (0.106) 2.196 (0.115)

0.95 PMQ 1.001 (0.003) 1.251 (0.016) 1.634 (0.035)
BQRGS 1.103 (0.026) 1.434 (0.126) 2.014 (0.084)
BALQR 1.222 (0.096) 1.741 (0.112) 2.116 (0.109)

QR 1.320 (0.084) 1.744 (0.102) 2.215 (0.094)

set (β1, β2, β3, β4, β5, β6, β7, β8) = (0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85).

Design 4 (sparse recovery problem where the number of predictors exceeds the sam-

ple size). The setup in this design is the same as Design 2, except we set N=30, ni=3,

xij = (xij1, xij2, · · · , xij100)
′ and β = (1, 1, 1

︸ ︷︷ ︸

3

, 0, · · · , 0
︸ ︷︷ ︸

97

), which corresponds to the case that

the number of variables is greater than the sample size.
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Table 2: MMADs with standard deviations of MADs in their corresponding parentheses for Design
2.

p Method Error Distribution
normal t3 χ2

3

0.50 PMQ 0.981 (0.009) 1.126 (0.013) 1.121 (0.005)
BQRGS 1.041 (0.048) 1.329 (0.072) 1.331 (0.021)
BALQR 1.281 (0.106) 1.351 (0.096) 1.827 (0.011)

QR 1.476 (0.082) 1.881 (0.094) 2.281 (0.124)

0.75 PMQ 1.083 (0.011) 1.075 (0.001) 0.987 (0.003)
BQRGS 1.329 (0.032) 1.512 (0.031) 1.329 (0.021)
BALQR 1.425 (0.102) 1.924 (0.099) 1.855 (0.065)

QR 1.509 (0.096) 1.865 (0.106) 2.290 (0.138)

0.95 PMQ 1.092 (0.008) 1.167 (0.019) 1.248 (0.011)
BQRGS 1.331 (0.026) 1.308 (0.103) 1.403 (0.048)
BALQR 1.429 (0.092) 1.812 (0.101) 2.071 (0.094)

QR 1.516 (0.095) 1.904 (0.112) 2.361 (0.127)

Design 1, 2, 3 and 4 show that, in terms of the MMAD and the standard deviation

of MAD (SD), our proposed method performs better than the other methods in general.

The results of the MMAD and standard deviations for Designs 1-4 are reported in Table

1, 2 and Figure 1, 2, respectively. We see that the proposed method (PMQ) tends to give

lower MMAD and standard deviations compared with the other approaches reviewed for

all distributions under considerations, suggesting good performance of the algorithm. As

expected, the results of MMAD and the standard deviations criteria show that the BALQR

and QR do not perform well because they ignore the random effects entirely.

Instead of looking at the MMAD and the standard deviations criteria, we may also look

at the correlation coefficient between y and ŷ. The results of the correlation coefficients

over 100 simulations for Designs 1-3 are reported in Figure 3, 4 and 5, respectively. The

figures are plotted using the R package vioplot (Adler, 2005). We see that the proposed
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Figure 1: The upper panels represent the MMADs and the lower panels represent the standard
deviations for the simulated data in Design 3. The solid line denotes the QR method, the dashed
line denotes the BALQR, the dotted line denotes the BQRGS and the dotted-dashed line denotes
our Gibbs sampler (PMQ).

method (PMQ) tends to give higher correlation coefficient between y and ŷ compared with

the other approaches reviewed, suggesting good performance of the proposed algorithm. We

also observe that BQRGS gives a higher correlation coefficient compared with BALQR and

QR. Similar conclusions are also observed for Design 4 of which, the correlation coefficient

results are not shown here.

We may also look at the estimation of the parameter vector β. From Table 3 we observe

that, in general, the proposed method performs well when comparing the estimates of βj

with the true values of βj . Table 4 shows the posterior means, standard deviations and 95%

credible intervals for the random effect variances in the simulated data of Design 1 when

the error is normal by using our proposed method. As we can observe from Table 4, all the
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Figure 2: The upper panels represent the MMADs and the lower panels represent the standard
deviations for the simulated data in Design 4. The dashed line denotes the BALQR, the dotted
line denotes the BQRGS and the dotted-dashed line denotes our Gibbs sampler (PMQ). Because
the number of variables is greater than the sample size, the design matrix is singular. As a result,
the standard QR whose results are not shown here fails in this Design.

credible intervals contain the true parameter values, indicating that our algorithm performs

well.
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Table 3: Posterior means for the simulated data in Design 1 when the error is normal.

p Method β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8

βtrue 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000
0.50 PMQ 1.004 1.001 0.998 0.004 0.000 0.005 0.011 0.002

BQRGS 1.021 0.992 1.002 0.012 0.043 0.048 0.019 -0.057
BALQR 1.052 0.988 1.013 0.002 0.002 -0.003 0.009 -0.019

QR 0.983 0.991 0.992 0.003 -0.012 -0.015 -0.011 0.031

0.75 PMQ 1.009 0.994 0.997 0.000 0.001 -0.008 -0.001 -0.013
BQRGS 0.911 0.937 1.112 -0.032 0.045 0.037 0.013 0.023
BALQR 1.013 0.978 1.012 0.007 0.003 -0.012 -0.009 0.002

QR 1.015 0.953 0.991 0.016 0.026 -0.014 -0.021 0.014

0.95 PMQ 1.012 0.987 1.019 0.007 -0.014 0.021 0.004 0.009
BQRGS 0.944 0.891 0.965 0.045 0.035 -0.002 0.015 0.021
BALQR 0.967 0.969 0.989 0.013 0.005 0.003 -0.001 -0.008

QR 0.958 0.977 1.022 0.016 -0.019 0.002 -0.013 0.011

6. Age-related macular degeneration data

We illustrate the proposed method with the age-related Macular Degeneration data

(ARMD) previously analyzed by Chaili (2008). There are 203 patients which were ran-

domly selected from three cities (centers) in the United Kingdom to measure the treatment

effects of teletherapy on the loss of vision associated with the progress of age related macular

degeneration. The sample consists of 70 patients from London, 84 from Belfast and 49 from

Southampton. Of which, 101 patients were randomly assigned to a treatment medication

group and 102 to a control group. The response variable, the change in Distance Visual Acu-

ity (DVA), of each patient was measured four times over a two year period, on the 3th, 6th,

12th and 24th months (Chaili, 2008). Owing to the possible heterogeneity among the sub-

jects, this dataset is of specific interest to us. In this section, our quantile regression model

contains seven covariates. The seven covariates are time (x1), age (x2), sex (x3), centre at

which the examination took place (x4), treatment (x5), the index eye of the patient (x6)
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Table 4: Posterior means (Mean), standard deviations (SD) and 95% credible intervals (CrI) for the random effect variances in
the simulated data of Design 1 when the error is normal by using our proposed method.

p σ11 σ22 σ33 σ44 σ55 σ66 σ77 σ88

0.50 σtrue 0.75 0.55 0.10 0.00 0.00 0.00 0.00 0.00
Mean 0.83 0.41 0.13 0.07 0.01 0.06 0.05 0.02
SD 0.31 0.27 0.24 0.11 0.07 0.04 0.03 0.05
CrI (0.45, 1.13) (0.31, 0.76) (0.03, 0.21) (0.00, 0.17) (0.00, 0.03) (0.00, 0.14) (0.00, 0.09) (0.00, 0.04)

0.75 Mean 0.93 0.49 0.18 0.03 0.00 0.08 0.06 0.05
SD 0.26 0.30 0.16 0.04 0.02 0.09 0.08 0.01
CrI (0.53, 1.27) (0.26, 0.71) (0.04, 0.30) (0.00, 0.08) (0.00, 0.04) (0.03, 0.17) (0.00, 0.11) (0.02, 0.09)

0.95 Mean 0.99 0.62 0.08 0.05 0.03 0.2 0.00 0.02
SD 0.43 0.35 0.09 0.02 0.01 0.05 0.01 0.03
CrI (0.61, 1.32) (0.33, 0.81) (0.02, 0.17) (0.01, 0.11) (0.00, 0.07) (0.00, 0.06) (0.00, 0.02) (0.00, 0.05)
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Figure 3: Correlation coefficients between y and ŷ for Design 1 over 100 simulations. The panels
from the top to the bottom correspond to the standard normal distribution, t(3) distribution and
χ2

(3) distribution for the errors, respectively.

and either both or one eye affected by the condition (x7). In this example we set zij = xij .

and we assume the random effects follow the multivariate normal distribution Nq(0, I). The

results of mean absolute deviation (MAD) and the standard deviations of AD are reported

in Table 5. Clearly, we can see from Table 5 that the results of MMAD and the standard

deviations criteria show that the proposed method perform well compared with the other
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Figure 4: Correlation coefficients between y and ŷ for Design 2 over 100 simulations. The panels
from the top to the bottom correspond to the standard normal distribution, t(3) distribution and
χ2

(3) distribution for the errors, respectively.

approaches.

18



0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

QR BALQR BQRGS PMQ

p=0.50

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

QR BALQR BQRGS PMQ

p=0.75

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

QR BALQR BQRGS PMQ

p=0.95

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

QR BALQR BQRGS PMQ

p=0.50

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

QR BALQR BQRGS PMQ

p=0.75

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

QR BALQR BQRGS PMQ

p=0.95

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

QR BALQR BQRGS PMQ

p=0.50

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

QR BALQR BQRGS PMQ

p=0.75

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

QR BALQR BQRGS PMQ

p=0.95

Figure 5: Correlation coefficients between y and ŷ for Design 3 over 100 simulations. The panels
from the top to the bottom correspond to the standard normal distribution, t(3) distribution and
χ2

(3) distribution for the errors, respectively.

7. Conclusion

In this paper, we have proposed a Bayesian hierarchical model for variable selection and

estimation in mixed quantile regression models. Similar to Chen and Dunson (2003) we

re-parameterized linear mixed quantile regression model so that functions of the covariance

parameters of the random effects distribution are incorporated as regression coefficients.
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Table 5: MADs with standard deviations of ADs in their corresponding parentheses for the age-
related macular degeneration data.

Method p = 0.50 p = 0.75 p = 0.95

PMQ 0.043 (0.014) 0.056 (0.026) 0.153 (0.105)
BQRGS 0.213 (0.053) 0.287 (0.051) 0.325 (0.203)
BALQR 0.316 (0.067) 0.331 (0.147) 0.369 (0.133)

QR 0.203 (0.179) 0.251 (0.196) 0.471 (0.255)

We have introduced a Gibbs sampler for Bayesian mixed quantile regression with the joint

Lasso penalty for fixed effects and random effect variances. This Gibbs sampler is based

on a theoretic derivation of the skewed Laplace distribution as a scale mixture of normal

distributions. By using simulated and age-related macular degeneration data we have shown

that the proposed method can outperform the commonly used methods with respect to

estimation.
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