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Abstract—A novel sparse channel state information (CSI)
estimation scheme is proposed for orthogonal time frequency
space (OTFS) modulated systems, in which the pilots are di-
rectly transmitted over the time-frequency (TF)-domain grid for
estimating the delay-Doppler (DD)-domain CSI. The proposed
CSI estimation model leads to a reduction in the pilot overhead
as well as the training duration required. Furthermore, it does
not require a DD-domain guard interval between the pilot
and data symbols, hence increasing the bandwidth efficiency. A
novel Bayesian learning (BL) framework is proposed for CSI
acquisition, which exploits the DD-domain sparsity for improving
the estimation accuracy in comparison to the conventional
minimum mean squared error (MMSE)-based scheme. A low-
complexity linear MMSE detector is used in the subsequent
data detection phase. Our simulation results demonstrate the
performance improvement of the proposed BL-based scheme
over the conventional MMSE-based scheme as well as over other
existing sparse estimation schemes.

Index Terms—OTFS, delay-Doppler domain channel, sparsity,
channel estimation, BCRLB, high-mobility

I. INTRODUCTION

Given the continuously evolving diverse range of applica-
tions, it is of paramount importance to explore novel modula-
tion techniques that are resilient to both the delay-spread and
to the Doppler-shifts introduced by the wireless propagation
medium. To this end, a novel delay-Doppler (DD)-domain
modulation technique, originally proposed by R. Hadani et
al. in [1]–[3], termed as the orthogonal time frequency space
(OTFS) arrangement, deserves further exploration in high-
mobility scenarios. An important aspect of OTFS modulation
is that it relies on the DD-domain representation of the wireless
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channel [1], [4], [5], which leads to a substantial reduction
in the number of DD-domain channel taps. However, its
significantly enhanced performance and the improved end-to-
end bit-error-rate (BER) depend critically on the availability
of accurate DD-domain CSI at the receiver for reliable symbol
detection, which has therefore been the focus of [6]–[8].

A. Literature Review

The early treatises [3], [9] proposed an impulse-based CSI
estimation scheme for single-input single-output (SISO) OTFS
systems. A key drawback of the proposed CSI estimation
schemes therein is that they require an entire OTFS frame for
pilot transmission, which significantly reduces the bandwidth
efficiency. To circumvent this, Raviteja et al. [7] proposed
embedded pilot (EP)-based CSI estimation schemes, where
the DD-domain pilot, data and guard symbols are specifically
arranged for avoiding interference, followed by a threshold-
based technique for CSI acquisition. Alternatively, a few recent
innovative propositions, such as those by Shen et al. [6] and
Rasheed et al. [8], exploited the DD-domain sparsity of the
wireless channel via a compelling formulation of the CSI es-
timation paradigm as a sparse signal recovery problem. These
schemes have demonstrated superior CSI estimation accuracy
in comparison to the previously reviewed training impulse
and embedded pilot techniques as they additionally leverage
the sparsity of the underlying wireless channel. Prominently,
almost all of the existing treatises employ a DD-domain guard
for pilot placement, which leads to a reduction of the resultant
bandwidth efficiency. Most of the DD-domain CSI estimation
techniques consider either an ideal-biorthogonal [2], [10]
signalling pulse or an approximate model for the practical
rectangular pulse that relies on the relationship developed in
[4]. The above-mentioned impediments motivate us to develop
a novel DD-domain sparse CSI estimation scheme for OTFS
systems that can overcome the shortcomings of the approaches
presented in the open literature. The various contributions of
this paper are summarized next.

B. Contributions

• A novel sparse channel estimation model is derived for
a SISO OTFS system having arbitrary transceiver pulse
shaping filters. Furthermore, as per this model, the pilots
are directly transmitted in the TF-domain, hence reducing
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both the pilot overhead as well as the training duration
and the pre-processing complexity.

• The proposed channel estimation model has the additional
advantage that it does not require a DD-domain guard
interval between the pilot and data symbols, thereby
increasing the bandwidth efficiency.

• Subsequently, a Bayesian learning (BL) framework and
its multiple measurement vector (MMV) extension M-BL
are proposed, which exploit the DD-domain sparsity for
improved CSI estimation.

• The performance of the proposed BL-based schemes is
also benchmarked by deriving both the Oracle-MMSE
and the Bayesian Cramer-Rao lower bound (BCRLB).

II. OTFS SYSTEM MODEL

Consider a SISO OTFS system having a frame duration of
Tf = NT and bandwidth of B = M∆f , where T denotes the
symbol duration and ∆f represents the subcarrier spacing, so
that T∆f = 1. The quantities N and M represent the number
of symbols along the time and frequency axes in the TF-grid.
OTFS places the information symbols in an equivalent DD-
grid, where the delay and Doppler axes are sampled at integer
multiples of ∆τ = 1

B and ∆ν = 1
Tf

, respectively.

A. OTFS Modulation

Let XDD ∈ CM×N denote a matrix of information symbols.
The transmitter first maps these DD-domain symbols to the
TF-domain by using the inverse symplectic finite Fourier trans-
form (ISFFT) as XTF = FMXDDFHN , where FN represents
the discrete Fourier transform (DFT) matrix. Subsequently, the
time-domain signal is obtained by performing the Heisenberg
transform of the TF-domain symbol matrix XTF. Let ptx(t)
denote the transmit pulse of duration T , which is repeated
N -times in the OTFS frame duration Tf . The transmit signal
matrix S ∈ CM×N is then formulated as

S = PtxF
H
MXTF = PtxXDDFHN , (1)

where Ptx = diag
{
ptx

(
pT
M

)}M−1

p=0
∈ CM×M . Furthermore,

the MN -samples of the transmit signal s ∈ CMN×1 expressed
in the vectorized form can be formulated as

s = vec
(
PtxXDDFHN

)
=
(
FHN ⊗Ptx

)
xDD, (2)

where we have xDD = vec (XDD) ∈ CMN×1. Finally, prior to
transmission, similar to OFDM, a cyclic prefix (CP) of length
L is appended to remove the inter-frame interference.

B. DD-domain Wireless Channel Model

Let h(τ, ν) denote the DD-domain representation of the
wireless channel, which is a 2D function of the delay variable
τ and Doppler variable ν. Since typically, only a few dominant
reflectors are exhibited by a wireless channel, the DD-domain
channel can be formulated as [1], [4], [10]

h(τ, ν) =

Lp∑
i=1

hiδ(τ − τi)δ(ν − νi), (3)

where τi and νi represent the delay- and Doppler-shifts,
while hi denotes the complex path gain introduced by the
ith reflector. Furthermore, Lp denotes the number of dom-
inant reflectors/ multipath components and δ(·) represents
the Dirac-delta function. Finally, for a suitable choice of M
and N , the delay-shift τi and Doppler-shift νi associated
with the ith multipath component can be approximated as
τi = li

M∆f , νi = ki
NT , where the integers li < M and

ki < N are the indices corresponding to τi and νi.
Let r ∈ CMN×1 and w ∈ CMN×1 denote the MN -samples

of the received signal and the noise process. Then the received
signal vector r can be expressed as [11]

r = Hs + w, (4)

where the matrix H ∈ CMN×MN is formulated as H =∑Lp
i=1 hi (Π)

li (∆)
ki . Here, Π ∈ CMN×MN denotes a

permutation matrix [11] and ∆ = diag
{
ωi
}MN−1

i=0
∈

CMN×MN , where ω = ej2π
1

MN .

C. OTFS Demodulation

Let YTF ∈ CM×N denote the TF-demodulated symbol
matrix. This is given by the discrete Wigner transform of
the received sample matrix R = vec−1(r) ∈ CM×N as

YTF = FMPrxR, where Prx = diag
{
p∗rx

(
pT
M

)}M−1

p=0
. Here,

prx(t) of duration T represents the receiver pulse. The OTFS-
demodulated signal YDD ∈ CM×N in the DD-domain is
obtained by applying the SFFT to the TF-domain demodulated
signal YTF as YDD = FHMYTFFN = PrxRFN , and its
equivalent vector yDD = vec (YDD) is expressed as

yDD = (FN ⊗Prx) r ∈ CMN×1. (5)

Upon substituting r from (4), and s from (2) into (5), the
DD-domain system model of the OTFS system is obtained as

yDD = HDDxDD + vDD, (6)

where we have HDD = (FN ⊗Prx) H
(
FHN ⊗Ptx

)
∈

CMN×MN and vDD = (FN ⊗Prx) w ∈ CMN×1. For sym-
bols having an average power of unity, the MMSE-based linear
detector is formulated by

x̂MMSE
DD =

(
HH

DDR−1
v,DDHDD + IMN

)−1
HH

DDR−1
v,DDyDD, (7)

where Rv,DD ∈ CMN×MN denotes the covariance matrix of
the noise vDD, which obeys Rv,DD = σ2

[
IN ⊗

(
PrxP

H
rx

) ]
. As

mentioned earlier, accurate CSI estimation plays a key role in
exploiting the full benefits of the OTFS system, which forms
the focus of the subsequent section.

III. SPARSE CSI ESTIMATION MODEL FOR OTFS
SYSTEMS

Let XTF,P ∈ CM×Np denote the TF-domain pilot symbol
matrix, where Np denotes the number of pilot symbols placed
along the time-axis. Thus, according to (1), the matrix SP ∈
CM×Np comprising the time-domain pilot samples may be
expressed as

SP = PtxF
H
MXTF,P . (8)
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Let hji denote the complex path gain associated with the
ith delay-tap, 0 ≤ i ≤ Mτ − 1, and jth Doppler-tap,
0 ≤ j ≤ Nν − 1. Here, Mτ and Nν represent grid-sizes
along the delay- and Doppler-axes, respectively, considered
for sparse representation of the DD-domain CSI, which obey
max(li) < Mτ << M and max(ki) < Nν << N . Thus, the
sparse representation of the DD-domain channel h(τ, ν) of (3)
can be formulated as

h(τ, ν) =

Mτ−1∑
i=0

Nν−1∑
j=0

hji δ(τ − τi)δ(ν − νj), (9)

where τi = i
M∆f and νj = j

NT . Note that since there are
only a few dominant reflectors in the wireless channel, only
a few coefficients Lp(<< MτNν) are non-zero among the
MτNν coefficients of hji , 0 ≤ i ≤ Mτ − 1, 0 ≤ j ≤ Nν − 1.
After removing the CP, the received time-domain pilot signal
rP ∈ CMNp×1 is given by

rP = H̄sP + wP , (10)

where sP = vec (SP) ∈ CMNp×1, and wP ∈ CMNp×1

represents the noise vector. The matrix H̄ ∈ CMNp×MNp can
be formulated as

H̄ =

Mτ−1∑
i=0

Nν−1∑
j=0

hji
(
Π̄
)i (

∆̄i

)j
, (11)

where Π̄ denotes a permutation matrix of size MNp×MNp,
whereas ∆̄i ∈ CMNp×MNp is defined as

∆̄i =

{
diag

{
1, ω, · · · , ωMNp−i−1, ω−i, · · · , ω−1

}
, if i 6= 0,

diag
{

1, ω, · · · , ωMNp−1
}
, for i = 0.

Let the output pilot matrix RP ∈ CM×Np be constructed as
RP = vec−1(rP). Then the TF-domain pilot symbol matrix
YTF,P ∈ CM×Np is given as: YTF,P = FMPrxRP . The
equivalent vectorized representation is given by

yTF,P = vec(YTF,P) =
[
INp ⊗ (FMPrx)

]
rP . (12)

Upon substituting rP from (10) into (12), and in turn substi-
tuting sP using (8), yTF,P above can be reformulated as

yTF,P =
[
INp ⊗ (FMPrx)

]
H̄
[
INp ⊗

(
PtxF

H
M

)]
xTF,P + v,

where xTF,P = vec(XTF,P) ∈ CMNp×1 and v =[
INp ⊗ (FMPrx)

]
wP ∈ CMNp×1. Now, substituting H̄ from

(11) into the above, we obtain

yTF,P =

Mτ−1∑
i=0

Nν−1∑
j=0

ωjih
j
i + v, (13)

where ωji =
[
INp ⊗ (FMPrx)

]
Π̄i∆̄j

i

[
INp ⊗

(
PtxF

H
M

)]
xTF,P .

Eq. (13) can now be formulated as the standard sparse signal
recovery problem:

yTF,P = Ωh + v, (14)

where the dictionary matrix Ω ∈ CMNp×MτNν

and the vector h ∈ CMτNν×1 obey Ω =[
ω0

0,ω
1
0, · · · ,ω

Nν−1
0 , · · · ,ω0

Mτ−1,ω
1
Mτ−1, · · · ,ω

Nν−1
Mτ−1

]
,h =

[
h0

0, h
1
0, · · · , h

Nν−1
0 , · · · , h0

Mτ−1, h
1
Mτ−1, · · · , h

Nν−1
Mτ−1

]T
. For

the linear model of (14), the conventional MMSE estimate,
denoted by ĥMMSE, is given by

ĥMMSE =
(
ΩHR−1

v Ω + R−1
h

)−1
ΩHR−1

v yTF,P , (15)

where Rh ∈ CMτNν×MτNν and Rv ∈ CMNp×MNp de-
note the covariance matrices of the channel vector h and
noise v, respectively. The noise covariance Rv obeys Rv =
σ2
[
INp ⊗

(
FMPrxP

H
rx FHM

) ]
, whereas the true channel co-

variance Rh is typically unknown and set to IMτNν in (15)
for the sparsity-agnostic (SA)-MMSE. It is important to note
that although the conventional SA-MMSE channel estimation
scheme is popular, it fails to exploit the sparse nature of
the CSI vector h having a limited number of the multipath
components, which is a unique characteristic of the wireless
channel in the DD-domain. To exploit the sparsity, this work
develops a Bayesian method for sparse signal recovery. In
this context, a sparse Bayesian learning (SBL) framework,
which employs a parameterized Gaussian-prior together with a
Gamma-hyperprior, has been derived in [12], [13] for finding
robust solutions to regression and classification problems. SBL
has then further been extended in [14] to the basis-selection
problem using a non-informative hyperprior. Recently, priors
constructed using mixtures of Bernoulli and continuous dis-
tributions have also been employed for sparse recovery. For
example, the authors of [15] employed a Bernoulli-truncated
exponential prior, whereas a Bernoulli-generalized Gaussian
prior has been conceived in [16]. However, in all these works,
the fundamental philosophy remains the same, i.e., combining
these priors with the likelihood to derive the a posteriori
distribution, followed by deriving the maximum a posteriori
(MAP) or MMSE estimators. Thus, for simplicity, following
the procedure described in [14], the next section develops a
Bayesian learning (BL) based sparse CSI estimation frame-
work for exploiting the sparsity of the DD-domain wireless
channel in OTFS systems.

IV. BL-BASED SPARSE CSI ESTIMATION

The proposed BL framework is based on the Bayesian
principle, which assigns the following parameterized Gaussian
prior to the DD-domain channel h [14]:

f(h; Γ) =

MτNν−1∏
i=0

1

(πγi)
exp

(
−|h(i)|2

γi

)
. (16)

Here, the quantity γi, 0 ≤ i ≤ MτNν − 1, denotes the
hyperparameter and the matrix Γ = diag

{
γi
}MτNν−1

i=0
∈

RMτNν×MτNν represents the unknown hyperparameter ma-
trix. The MMSE estimate µ ∈ CMτNν×1 of the DD-domain
channel h can be expressed as [17]

µ = ΣΩHR−1
v yTF,P , (17)

where the error covariance matrix Σ ∈ CMτNν×MτNν is
given by Σ =

(
ΩHR−1

v Ω + Γ−1
)−1

. Thus, it follows from
(17) that the MMSE estimate µ necessitates the estimation
of the hyperparameter matrix Γ. To this end, it is desir-
able to select the matrix Γ̂ that maximizes the log-Bayesian
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evidence log
[
f(yTF,P ; Γ)

]
. Since the log-Bayesian evidence

maximization with respect to the hyperparameter matrix Γ
is a non-concave problem [14], and hence intractable, the
expectation-maximization (EM) method is an ideal tool for
maximizing the cost function iteratively. Therefore, the pro-
posed BL framework employs the EM technique for DD-
domain sparse CSI estimation in OTFS systems. Let Γ̂(j−1) =

diag
{
γ̂

(j−1)
i

}MτNν−1

i=0
∈ RMτNν×MτNν denote the estimate

of Γ in the (j−1)st EM-iteration. The procedure to update the
estimate Γ̂(j) in the jth EM-iteration is described in Theorem-
1 presented next.

Theorem 1. Given γ̂(j−1)
i , 0 ≤ i ≤MτNν − 1, the hyperpa-

rameter update γ̂(j)
i in the jth EM iteration, which maximizes

the conditional-expectation of the log-likelihood function of
the complete information set

{
yTF,P ,h

}
, denoted by

L
(
Γ|Γ̂(j−1)

)
= Eh|yTF,P ;Γ̂(j−1)

{
log
[
f(yTF,P ,h; Γ)

]}
,

(18)

is given by

γ̂
(j)
i = Σ(j)(i, i) + |µ(j)(i)|2, (19)

where we have µ(j) = Σ(j)ΩHR−1
v yTF,P and Σ(j) =[

ΩHR−1
v Ω +

(
Γ̂(j−1)

)−1
]−1

.

Proof. The proof is given in our technical report [18].

The EM procedure described above is repeated for a max-
imum of Nmax iterations or until ‖ Γ̂

(j)
− Γ̂

(j−1)
‖2F≤ ε,

whichever is achieved earlier, where the stopping parameters
ε and Nmax are suitably chosen. The BL-based sparse estimate
ĥBL of the DD-domain channel is obtained as the converged
a-posteriori mean, i.e., ĥBL = µ(j). Subsequently, ĥBL is used
for constructing the estimate ĤDD for detection as follows:

ĤDD = (FN ⊗Prx)

[∑
i,j

ĥjBL,iΠ
i∆j

] (
FHN ⊗Ptx

)
, (20)

where ĥjBL,i represents the estimate of the component hji of
the vector h defined after Eq. (14).

A. Multiple Measurement Vector (MMV)-Extension

Consider now a scenario with multiple pilot output vec-
tors, denoted by yTF,P,k, 1 ≤ k ≤ K, which are obtained
using the identical transmit pilot symbol matrix XTF,P . Thus,
the kth pilot output yTF,P,k can be expressed in terms of
the dictionary matrix Ω and the corresponding DD-domain
CSI hk as yTF,P,k = Ωhk + vk, where vk denotes the
noise. Defining now the concatenated matrices ỸTF,P =

[yTF,P,1 · · · ,yTF,P,K ] ∈ CMNp×K , H̃ = [h1, · · · ,hK ] ∈
CMτNν×K and Ṽ = [v1, · · · ,vK ], the MMV model for the
DD-domain CSI estimation can be expressed as

ỸTF,P = ΩH̃ + Ṽ. (21)

Considering these K snapshots of the DD-domain CSI hk
well within the geometric-coherence time [10], for which their

support-set, i.e., the Lp-indices of the non-zero locations of the
sparse DD-domain CSI hk, do not change, the resultant CSI
matrix H̃ exhibits simultaneous-sparsity, since its columns
hk share an identical sparsity profile. As described in our
technical report [18], one can readily derive an efficient MMV-
BL (M-BL) framework, which exploits the multiple pilot
outputs and the simultaneous-sparse nature of the CSI matrix
H̃, yielding a superior estimation performance. The update
equations of the proposed M-BL framework for the jth EM
iteration is summarized below [18], [19]:

Σ(j) =

[
ΩHR−1

v Ω +
(
Γ̂(j−1)

)−1
]−1

, (22)

Ĥ(j) = Σ(j)ΩHR−1
v ỸTF,P , (23)

γ̂
(j)
i = Σ(j)(i, i) +

1

K

K∑
k=1

∣∣∣Ĥ(j)(i, k)
∣∣∣2 . (24)

The key results of our complexity analysis are summarized be-
low. The computational complexity order of the BL, M-BL and
sparsity-agnostic MMSE techniques is seen as O

(
M3
τN

3
ν

)
,

which arises due to matrix inversion of size-[MτNν ×MτNν ].
On the other hand, the worst-case complexity order of the
orthogonal matching pursuit (OMP) scheme is seen to be
O
(
M3N3

p

)
, which arises due to the intermediate LS estimate

required in each iteration. Finally, the computational cost of
the conventional EP-based [7] CSI estimator is seen to be of
the order O (MτNν), since it does not involve any matrix
multiplication/ inversion operations. Due to lack of space,
the detailed derivations for the computational complexities of
various schemes have been moved to our technical report [18].

V. PERFORMANCE BENCHMARKS

In this subsection, we first derive a hypothetical Oracle-
MMSE estimator, which assumes a perfect knowledge of
the DD-domain channel profile. Let H denote the support-
set and ΩO = Ω (:,H) represent the Oracle-sensing matrix
comprising of the columns indexed by the support-set H. The
Oracle-MMSE estimate can be derived as

ĥO-MMSE =
(
ΩH

O R−1
v ΩO + I−1

Lp

)−1

ΩH
O R−1

v yTF,P . (25)

Next, we derive the BCRLB for the MSE of the estimated CSI
ĥ. To this end, the Bayesian Fisher information matrix (FIM),
denoted by JB ∈ CMτNν×MτNν , for the DD-domain sparse
channel vector h can be expressed as [20]: JB = JD + JP,
where the FIMs JD and JP, both of size MτNν ×MτNν ,
are determined as JD = −EyTF,P ,h

{
∂2 log[f(yTF,P |h)]

∂h∂hH

}
,JP =

−Eh

{
∂2 log[f(h;Γ)]

∂h∂hH

}
. Employing the above relationships, we

obtain JD = ΩHR−1
v Ω and JP = Γ−1. Thus, the Bayesian

FIM JB evaluates to JB = ΩHR−1
v Ω + Γ−1. Finally, the

BCRLB for the MSE of the CSI estimate h is expressed as
[20]

MSE
(
ĥ
)
≥ Tr

(
J−1

B

)
= Tr

([
ΩHR−1

v Ω + Γ−1
]−1
)
.

(26)

Note that the BCRLB derived above also assumes the perfect
knowledge of the DD-domain channel profile, since it employs
the true hyperparameter matrix Γ to lower bound the MSE.
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TABLE I
SIMULATION PARAMETERS OF SYSTEM-I AND SYSTEM-II

Parameter System-I System-II
Carrier frequency (GHz) 4 28
Subcarrier spacing (KHz) (∆f) 15 78.125
# of symbols along delay-axis (M) 32 128
# of symbols along Doppler-axis (N) 32 128
# of pilots along time-axis (Np) 8 16
# of samples in CP (L) 6 32
# of dominant reflectors (Lp) 5 5
Max. spread along delay-axis (Mτ ) 16 32
Max. spread along Doppler-axis (Nν) 8 16
Modulation scheme 8-PSK 4-PSK
Pulse-shape Rect. Rect.

TABLE II
DD-PROFILE OF THE WIRELESS CHANNEL OF SYSTEM-I

Path-index(i) 1 2 3 4 5

Delay (τi) (µs) 2.08 4.164 6.246 8.328 10.41
Doppler (νi) (Hz) 0 470 940 1410 1880
Speed (Km/h) 0 126.9 253.8 380.7 507.6

VI. SIMULATION RESULTS

This section quantifies the performance of the proposed
BL-based schemes and compares them to that of the state-of-
the-art OMP- and FOCUSS-based [21] techniques for sparse
estimation of the DD-domain CSI in terms of the normalized
MSE (NMSE) defined as NMSE =

‖ĥ−h‖2
F

‖h‖2F
. Furthermore, the

performance is also benchmarked with respect to the BCRLB
and the MMSE-Oracle estimator derived in Section-V, and
also to the conventional state-of-the-art EP-based estimator of
[7]. Note that for a fair comparison, the power of the pilot-
impulse considered in [7] is set to MNp, which is identical to
the total pilot power employed in our proposed framework.
This is followed by characterizing the BER performance
obtained with the aid of the CSI estimates derived. For the
BL-based approaches, the stopping parameters ε and Nmax are
set to 10−6 and 50, respectively. The stopping criterion for the
OMP is set for ensuring that the algorithm terminates when the
residual error R(i) between the consecutive iterations obeys
|R(i)−R(i− 1)| < 0.1σ2. The regularization parameter for
the FOCUSS is set to σ2, the lp-norm parameter to p = 0.8
and the stopping threshold is set to 10−5 with the maximum
number of iterations set to 800. The SNR in decibels (dB) is
defined as 10 log10

(
1
σ2

)
. Table-I shows the detailed parame-

ters of a sub-6 GHz band and of a high-frequency millimeter
wave system, termed System-I and System-II, respectively,
considered in our simulations. Table-II and Table-III summa-
rize the channel parameters in a high-mobility scenario for
System-I and in the low and average mobility scenarios for
System-II, respectively.

TABLE III
DD-PROFILE OF THE WIRELESS CHANNEL OF SYSTEM-II

Path-index(i) 1 2 3 4 5

Delay (τi) (µs) 0.3 1 1.7 2.4 3.1
Doppler (νi) (Hz) 0 610 1220 2440 3660
Speed (Km/h) 0 23.5 47 94 141

Fig. 1(a) compares the NMSE performance of the proposed
BL-based schemes to that of the other competing approaches
for the OTFS setup of System-I. We can readily observe
the significant NMSE improvement of the proposed BL
scheme over the SA-MMSE, FOCUSS, OMP and EP-based
approaches. For the sparsity-agnostic SA-MMSE estimate of
Eq. (15), the covariance matrix Rh is set to an identity
matrix. Since the SA-MMSE and EP-based schemes do not
exploit the sparsity of the DD-domain CSI, they yield the
poor NMSE. The poor performance of the OMP can be
attributed to its sensitivity to both the stopping parameter as
well as to the dictionary matrix. By contrast, the limitation
of the FOCUSS arises due to its convergence deficiencies
and sensitivity to the regularization parameter [14]. Thus, the
performance of OMP, FOCUSS and EP-based schemes is not
competitive. On the other hand, the NMSEs of the BL-based
schemes are seen to be close to that of the MMSE-Oracle
and BCRLB. In fact, the M-BL technique associated with
K = 4 pilot snapshots, matches the benchmarks derived.
Fig. 1(b) compares the NMSE of the various CSI estimation
techniques for the OTFS setup of System-II. A similar trend
has been observed here also, where the BL schemes yield
the best overall performance. Finally, Fig. 1(c) portrays the
BER of all the contending schemes. It can be observed from
the figure that owing to its improved estimation accuracy, the
BER achieved using the detectors derived from the BL-based
channel estimates is markedly better than that of its OMP and
FOCUSS counterparts. Moreover, the former is also seen to
approach the BER of a receiver with perfect CSI (PCSI), which
demonstrates its enhanced capability of sparse CSI recovery.

It is worth noting that the proposed CSI estimation frame-
work transmits MNp pilot symbols, followed by an OTFS data
frame comprising MN symbols. Thus, the pilot overhead is
Np

N+Np
. On the other hand, the pilot overhead for the conven-

tional EP-based technique [7] is given by (2Mτ+1)(2Nν+1)
MN .

Upon substituting the various parameters from Table-I, the
pilot overhead of the proposed CSI estimation framework be-
comes 0.2 and 0.11, for System-I and System-II, respectively.
By contrast, the corresponding overheads for the schemes in
[7] are 0.54 and 0.13, respectively, which are higher than that
of the proposed estimation framework.

Let us now consider an interesting scenario, where the
maximum delay and Doppler spread parameters of the un-
derlying wireless channel of System-I are set to Mτ = 16 and
Nν = 16, respectively, whereas the number of pilot symbols
Np is set to {4, 6}. It can be readily observed that the channel
estimation model of (14) becomes ‘ill-posed’, since one has to
estimate an MτNν = 256-dimensional sparse vector h using
only MNp ∈ {128, 192} pilot outputs. The NMSE versus
SNR performance of these schemes is presented in Fig. 1(d).
It is important to note that the proposed sparse estimation
frameworks can yield a sufficiently low NMSE even in this
challenging scenario, thanks to the sparse signal recovery
guarantees available from the small number of measurements
using compressive sensing techniques [12]–[16], [21], [22].
Interestingly, for this scenario, the conventional EP-based tech-
nique [7] becomes rather inefficient, since its pilot overhead
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Fig. 1. (a) NMSE versus SNR performance of the OTFS System-I; (b) NMSE versus SNR performance of the OTFS System-II; (c) BER versus SNR
performance of the OTFS System-I; (d) NMSE versus SNR performance of the OTFS System-I with Mτ = 16 and Nν = 16.

tends to 1. This is due to the fact that it cannot accommodate
any data symbol along with the pilot and guard symbols in
the same OTFS frame. By contrast, the pilot overhead of the
proposed CSI estimation framework becomes 0.11 for Np = 4,
and 0.15 for Np = 6, which is significantly lower, since our
framework does not require any guard symbols.

VII. CONCLUSIONS

A novel sparse CSI estimation model is proposed for OTFS
modulation based wireless systems, where the pilots are di-
rectly transmitted over the TF-domain grid. The proposed CSI
estimation model reduces the pilot overhead, training duration
and pre-processing burden, despite dispensing with the inser-
tion of a DD-domain guard interval between the pilot and data
symbols. The latter trait results in a significantly reduced pilot
overhead and an increased bandwidth efficiency. Our novel BL
framework developed using the aforementioned model exploits
the DD-domain sparsity as well as simultaneous-sparsity for
improved CSI estimation. The DD-domain CSI obtained was
then directly employed in the subsequent data detection phase
without assuming any further knowledge with regards to the
number of dominant multipath components. Our simulation
results demonstrated the performance improvement of the
proposed BL-based schemes for OTFS channel estimation over
the conventional EP-based technique as well as over the OMP,
FOCUSS and the MMSE estimators, both in terms of the MSE,
BER and pilot overhead.
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