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Abstract. In the context of biomedical image processing and bioinfor-
matics, an important problem is the development of accurate models for
image segmentation and DNA spot detection. In this paper we propose
a highly efficient unsupervised Bayesian algorithm for biomedical im-
age segmentation and spot detection of cDNA microarray images, based
on generalized Gaussian mixture models. Our work is motivated by the
fact that biomedical and cDNA microarray images both contain non-
Gaussian characteristics, impossible to model using rigid distributions
like the Gaussian. Generalized Gaussian mixture models are robust in
the presence of noise and outliers and are more flexible to adapt the
shape of data.

1 Introduction

In recent years a lot of different algorithms were developed in the aim of au-
tomatically learning to recognize complex patterns, and to make intelligent
decisions based on observed data. Machine learning, a branch of artificial in-
telligence, offers a principled approach for developing and studying automatic
techniques capable of learning models and their parameters based on training
data. Recent advances in machine learning have fascinated researchers from bi-
ology/bioinformatics community because they offer promise for the development
of novel supervised and unsupervised methods that can help in specifying, de-
tecting, and diagnosing different diseases, while at the same time increasing
objectivity of the decision-making process. The relation history between biology
and the field of machine learning is long and complex. The flexibility of machine
learning techniques is expected to improve the efficiency of discovery and un-
derstanding in the mounting volume and complexity of biological data. Machine
learning techniques have been used, for instance, in [1] for microarray analysis
and classification, in [2] for DNA microarray image spot detection, in [3] for
biomedical image analysis, and in [4] for multiple limb motion classification.

Mixture models are one of the machine learning techniques receiving consid-
erable attention in different applications. Mixture models are normally used to
model complex datasets. In most of biomedical applications, the Gaussian den-
sity is applied for data modeling [4,5]. However, data are generally non-Gaussian
[6]. Many studies have demonstrated that the generalized Gaussian distribution
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(GGD) can be a good alternative to the Gaussian thanks to its shape flexibility
which allows the modeling of a large number of non-Gaussian signals [7,8]. The
GGD for a variable x ∈ R is defined as follows:

P (x|μ, α, β) =
βα

2Γ (1/β)
e−(α|x−μ|)β

(1)

where α = 1
σ

√
Γ (3/β)
Γ (1/β) , −∞ < μ < ∞, β > 0, and α > 0, and Γ (.) is the

Gamma function given by: Γ (x) =
∫ ∞
0

tx−1e−tdt, x > 0. μ, α and β denote
the distribution mean, the inverse scale parameter, and the shape parameter,
respectively. The GGD is flexible thanks to its shape parameter β that controls
the decay rate of the density function. In other words, β allows the GGD to take
different shapes depending on the data. Fig. 1 shows us two main reasons to use
GGD. First, the parameter β controls the shape of the pdf. The larger the value,
the flatter the pdf; and the smaller the value, the more picked the pdf. Second,
when β = 2 and β = 1, the GGD is reduced to the Gaussian and Laplacian
distributions, respectively. In the past few years, several approaches have been
applied for GGDs parameters estimation such as moment estimation [9], en-
tropy matching estimation [10,11], and maximum likelihood estimation [12,13].
It is noteworthy that these approaches consider a single distribution. Concern-
ing finite mixture models parameters estimation, approaches can be arranged
into two categories: deterministic, and Bayesian methods. In deterministic ap-
proaches, parameters are taken as fixed and unknown, and inference is founded
on the likelihood of the data. In the recent past, some deterministic approaches
have been proposed for the estimation of finite generalized Gaussian mixture
(GGM) models parameters (see, for instance, [14,15]). Despite the fact that de-
terministic approaches have controlled mixture models estimation due to their
small computational time, many works have demonstrated that these methods
have severe problems such as convergence to local maxima, and their tendency
to overfitt the data [16] especially when data are sparse or noisy. With com-
putational tools evolution, researchers were encouraged to implement and use
Bayesian MCMC methods and techniques as an alternative approach. Bayesian
methods consider parameters to be random, and to follow different probability
distributions (prior distributions). These distributions are used to describe our

Fig. 1. Generalized Gaussian Distributions with different values of the shape parameter
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knowledge before considering the data, as for updating our prior beliefs the like-
lihood is used. Please refer to [16] for interesting and in depth discussions about
the general Bayesian theory. In this paper, we describe a Bayesian algorithm
for GGM learning and provide two examples of their applications in Biomed-
ical/Bioinformatics fields. Biomedical image segmentation is chosen to be our
first application since medical images are highly corrupted by noise, and con-
tain non-gaussian characteristics. For the second application, we are interested
in developing an algorithm capable of automatically detecting the spots in DNA
microarray images.

The rest of this paper is organized as follows. Section 2 describes the Bayesian
estimation algorithm. In section 3, we demonstrate the efficacy of the model on
two applications. Our last section is devoted to the conclusion.

2 Bayesian Estimation of the GGM Model

A general Gaussian mixture with M components is defined as:

P (x|Θ) =
M∑

j=1

P (x|μj , αj , βj)pj (2)

where pj are the mixing proportions which are constrained to be non-negative
and sum to one, and p(x|μj , αj , βj) is the GGD describing component j. The
symbol Θ = (ξ, p) refers to the whole set of parameters to be estimated, know-
ing that ξ = (μ1, α1, β1, ..., μM , αM , βM ), and p = (p1, ..., pM ). The two main
problems in finite mixture models are the estimation of the parameters vector Θ
and the number of components M . Supposing that the number of classes M is
known then for N observations , X = (x1, ..., xN ), the likelihood corresponding
to this case is:

P (X|Θ) =
N∏

i=1

M∑
j=1

P (xi|ξj)pj (3)

where ξj = (μj , αj , βj). For each variable xi, let Zi, the unobserved or missing
vector, be an M -dimensional vector that indicates to which component xi be-
longs. In other words, Zij equals 1 if xi belongs to class j and 0, otherwise. The
complete-data likelihood for this case is then:

P (X , Z|Θ) =
N∏

i=1

M∑
j=1

(P (xi|ξj)pj)Zij (4)

where Z = {Z1, Z2, ..., ZN}. Then, the estimation of each Zij , defined as the
posterior probability that the ith observation arises from the jth component of
the mixture is:

Ẑ
(t)
ij =

P (t−1)(xi|ξ(t−1)
j )pt−1

j∑M
j=1 P (t−1)(xi|ξ(t−1)

j )pt−1
j

(5)

where t denotes the current iteration step and ξ
(t)
j and p

(t)
j are the current

evaluations of the parameters.
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Bayesian MCMC simulation methods are applied to get the posterior distri-
bution π(Θ|X , Z). Generally MCMC methods are found on the Bayesian theory,
which means that they allow for probability statements to be made directly
about the unknown parameters of a mixture model, while taking into consid-
eration prior or expert opinion. In order to get the posterior distribution using
MCMC, we need to combine the prior information about the parameters, π(Θ),
with the observed value or realization of the complete data P (X , Z|Θ). This can
be reached from Bayes formula:

π(Θ|X , Z) =
π(Θ)P (X , Z|Θ)∫
π(Θ)p(X , Z|Θ)

∝ π(Θ)P (X , Z|Θ) (6)

where (X , Z) is the complete data. With the joint distribution, π(Θ)P (X , Z|Θ),
in hand we can deduce the posterior distribution (Eq. 6). Having π(Θ|X , Z)
we can simulate our model parameters Θ, rather than computing them. Tak-
ing advantage of the missing data Z, we simulate Z according to the posterior
probability π(Z|Θ,X ). This is done by associating with each observation xi a
missing Multinomial variable Zi ∼ M(1; Ẑi1; ...; ẐiM ). This choice is based on
two reasons, first, we know that each Zi is a vector of zero-one indicator vari-
ables. Second, the probability that the ith observation, xi, arises from the jth
component of the mixture is given by Ẑij .

For p simulation we need to get π(p|Z(t)), using Bayes rule: π(p|Z)= π(Z|p)π(p)∫
π(Z|p)π(p)

∝ π(Z|p)π(p). This indicates that we need to determine π(Z|p), and π(p). More-
over, we know that the vector P is defined on the simplex (0 ≤ pj ≤ 1 and∑M

j=1 pj = 1), then the typical choice, as a prior, for this vector is a Dirichlet
distribution with parameters η = (η1, ..., ηM )

π(p) =
Γ (

∑M
j=1 ηj)∏M

j=1 Γ (ηj)

M∏
j=1

p
ηj−1
j (7)

As for π(Z|p) we have:

π(Z|p) =
M∏

j=1

π(Zi|p) =
N∏

i=1

M∏
j=1

p
Zij

j =
M∏

j=1

p
nj

j (8)

Where nj =
∑N

i=1 IZij=1 , then we can conclude that:

π(p|Z) = π(Z|P )π(p) =
Γ (

∑M
j=1 ηj)∏M

j=1 Γ (ηj)

M∏
j=1

p
ηj−1

j

M∏
j=1

p
nj

j =
Γ (

∑M
j=1 ηj)∏M

j=1 Γ (ηj)

M∏
j=1

p
ηj+nj−1

j

(9)

∝ D(η1 + n1, ..., ηM + nM )

D denotes the Dirichlet distribution with parameters (η1 + n1, ..., ηM + nM ).
From (Eq. 9) we can deduce that the Dirichlet distribution is a conjugate prior
for the mixture proportions, which means that the prior and the posterior have
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the same form. Let us now define ξ priors, which are supposed to be drawn
independently. For the parameters ξ, we assigned independent Normal priors
for the distributions means, and Gamma priors for the inverse scale and shape
parameters [17,18]:

μj ∼ N (μ0, σ
2
0) , βj ∼ G(αβ , ββ) , αj ∼ G(αα, βα)

Where N (μ0, σ
2
0) is the normal distribution with mean μ0 and variance σ2

0 ,
G(αβ , ββ) is the gamma distribution with shape parameter αβ and rate param-
eter ββ . μ0, σ2

0 , αβ , ββ, αα, βα are called the hyperparameters of the model.
With this priors, we can deduce the posterior distributions for μ, α, and β to be:

π(μj |Z,X ) ∝ e
(μj−μ0)2

2σ2
0

+
∑

Zij=1
(−αj |xi−μj |)βj

(10)

π(αj |Z,X ) ∝ ααα−1
j e−βααj (αj)nj e

∑
Zij=1

(−αj |xi−μj |)βj

(11)

π(βj |Z,X ) ∝ β
αβ−1
j e−βββj (

βj

Γ (1/βj)
)nj e

∑
Zij=1

(−αj |xi−μj |)βj

(12)

It is quite easy to notice that we cannot simulate directly from these posterior
distributions because they are not in well known forms. To solve this problem we
applied the well known Metropolis-Hastings (M-H) algorithm given in [19]. The
major problem in the M-H algorithm is the choice of the proposal distribution.
Random Walk M-H given in [19] is used here to solve this problem, then the
proposals are considered to be: μ̃j ∼ N (μ(t−1)

j , ζ2), α̃j ∼ LN (log(α(t−1)
j ), ζ2),

β̃j ∼ LN (log(β(t−1)
j ), ζ2), where LN is the log-normal distribution, since, we

know that α̃j > 0 and β̃j > 0. ζ2 is the scale of the random walk.
In fact, choosing a relevant model consists both of choosing its form and

the number of components M . The integrated or marginal likelihood using the
Laplace-Metropolis estimator [19] is applied in order to rate the ability of the
tested models to fit the data or to determine the number of clusters M . The
integrated likelihood is defined by [19]

p(X|M) =
∫

π(Θ|X , M)dΘ =
∫

p(X|Θ, M)π(Θ|M)dΘ (13)

where Θ is the vector of parameters of a finite mixture model, π(Θ|M) is its
prior density, and p(X|Θ, M) is the likelihood function taking into account that
the number of clusters is M .

3 Experimental Results

In this section, we apply the Bayesian estimation of the GGM in biomedical
image segmentation, and microarray image spot detection. We validate the al-
gorithm by comparing it to different state of the art algorithms. In the following
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applications, we used 5000 iteration for our Metropolis-within-Gibbs sampler (we
discarded the first 800 iterations as “burn-in” and kept the rest), and our specific
choices for the hypeparameters were (μ0, σ

2
0 , αα, βα, αβ , ββ) = (0, 1, 0.2, 2, 0.2, 2).

To increase the sensitivity of the random walk sampler, the scale of the random
walk was chosen to be ζ2 = 0.01.

3.1 Biomedical Image Segmentation

Image segmentation is one of the major challenges in image analysis, since image
analysis tasks highly depend on how well previous segmentation is accomplished.
Image segmentation is the procedure of dividing an image into different groups
with each group enjoying similar properties such as texture, color, boundary,
and intensity. Despite, the existence of different segmentation methods, many
of them fail to provide satisfactory results when applied on biomedical images.
Reasons behind this failure are numerous. First, image segmentation is strongly
influenced by the quality of data and biomedical images contain different noises
such as speckle, shadows which may cause the boundaries of structures to be
indistinct and disconnected. Second, most of image segmentations algorithms
are founded on the assumption that the data are Gaussian which is not the
case for biomedical images. Further complications arise as the contrast between
areas of interest in biomedical images is low, which make the extraction of the
desired regions impossible as they are statistically indistinguishable. Last but
not least, most of existed segmentation methods do not integrate uncertain prior
knowledge.

In this section, we develop a new segmentation methodology, using the Bayesian
MCMC algorithm developed in section 2. We can divide our method into two
main steps: histogram adjustment, and identification of object of interest using
the Bayesian GGM with the integrated likelihood. We validate our algorithm by
comparing it to a state of the art segmentation algorithm [20]. This method is
divided into two stages: preprocessing, and object segmentation. Preprocessing
stage contains histogram adjustment, noise reduction, and layer of interest extrac-
tion using K-means algorithm. For the object segmentation a marker-controlled
watershed technique is used.

The first image used is the image of a rat spleen tissue pulps (Fig. 2(a)).
For visual differentiation of cellular components, the tissue section was stained
with haematoxylin and eosin (H&E). Under a microscope, nuclei are usually
dark blue, red blood cells orange/red, and muscle fibers deep pink/red. The
feature used to differentiate red and white is the density of the lymphocytes. The
white pulp has lymphocytes and macrophages surrounding central arterioles. The
distribution of the lymphocytes in red pulp is much looser than those in white
pulp. Evaluating the severity of infection requires identifying the white pulps.
We started by transforming the color image to a gray level image (Fig. 3(a)) in
order to simplify the processing procedure. For grayscale image nuclei are dark
objects within a gray background. Then histogram adjustment [21] is applied
on the image to increase image contrast (Fig. 3(b)). At this point, we applied
our Bayesian GGM to identify the object of interest in the image (Fig. 3(c)).
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(a) (b)

Fig. 2. Microscopic images used, (a) The rat spleen tissue pulps (Courtesy of Dr. Jinglu
Tan), (b) Lung Carcinoid tumor (Courtesy of Dr. Robert Cardiff)

(a) (b)

(c) (d)

Fig. 3. The different stage outputs for the two methods on the rat spleen tissue, (a)
The gray scale image, (b) The image after histogram adjustment, (c) The identified
object of interest using our method, (d) The identified object of interest using the state
of the art algorithm

Comparing the output from our method to the one from the watershed method
(Fig. 3(d)), we can find that we were able to reach a higher identification for the
infected regions. Also, the proposed method is less complex due to the fact that
we did not need to use neither noise reduction, nor marker-controlled watershed
techniques.

The second image is an image of a carcinoid tumor seen in the lung of eighty
one years old female (Fig. 2(b)). To be able to differentiate visually the cellular
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(a) (b)

(c) (d)

Fig. 4. The different stage outputs for the two methods on the Lung Carcinoid tumor,
(a) The gray scale image, (b) The image after histogram adjustment, (c) The identified
object of interest using our method, (d) The identified object of interest using the state
of the art algorithm

components, the tissue section was stained with haematoxylin and eosin (H&E).
The size of the tumor is of 2.5 cm long as shown in the image. First we trans-
formed the image into gray scale image (Fig. 4(a)). Next, we applied the his-
togram adjustment on the image (Fig. 4(b)), and last we applied our algorithm
on it to reach the object of interest (Fig. 4(c)). Also, it is quite clear here that
our algorithm outperformed the watershed algorithm. Experimental results show
that the proposed method is effective and accurate in segmenting microscopic
images even without the need of noise reduction stages and marker-controlled
watershed techniques to separate the touching objects.

3.2 Spot Detection and Image Segmentation in DNA Microarray
Data

In this section, we propose an optimized clustering-based method for microarray
image segmentation using GGM. Our algorithm is based on the fact that GGM
is flexible to model the shape of data, and have high immunity to noise. To assess
the performance of our method, we compare it to two well known algorithms:
k-means clustering microarray image segmentation (SKMIS) [22], and optimized
k-means microarray image (OKMIS) [23]. We evaluate the segmentation perfor-
mance of the three methods on the spot images from ApoA1 Data [24].
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DNA microarray technology is a high throughput technique allowing the com-
prehensive measurement of the expression level of thousands of genes simultane-
ously in the studies of genomics for biology and medicine [25]. Complementary
single stranded DNA (cDNA) microarrays consist of thousands of individual
DNA sequences printed in a high density array. Nowadays, microarray experi-
ments are used to compare gene expression from two samples: target or experi-
mental, and control. The mRNA of both biological tissues (normal and tumor)
is extracted, then reversed transcribed into complementary DNA (cDNA) copy,
followed by a labeling procedure using two fluorescence dyes, Cyanine Cy3 (green
channel) and Cy5 (red channel). After labeling, the two samples are mixed and
hybridized with the arrayed DNA sequences. Afterwards, fluorescence measure-
ments are made for each dye separately, and the digital image scanner records the
intensity level at each microarray location producing two grayscale images [26].

Image analysis is a highly important aspect of cDNA microarray experiments,
as it is responsible for reducing an image of spots into a table with a measure of
the intensity for each spot. Efficient, accurate and automatic analysis of cDNA
spot images is necessary in order to apply this technology in different biological
experiments. cDNA microarray gene expression data analysis involves three main
stages: spot localization or gridding, background separation or image segmenta-
tion, and intensity estimation. Spot localization or gridding is used to identify
blocks and to position rows and columns of spots within each block. Background
separation or image segmentation is used to segment the image into background
or foreground, and the intensity estimation step gets the red and green intensi-
ties and assigns the log ratio after background correction in order to represent
the log relative abundance of each spot. These stages are quite important, since
the accuracy of the resulting data is essential in posterior analysis.

In cDNA microarray experiments, noise is a challenging problem as it can
be produced by laser light reflection, dust on the glass slide, and photon and
electronic noise. These noises force microarray images to vary in intensity, in
the spot sizes and positions. For this reason, we decided to apply the Bayesian
GGM on this problem for its immunity to noise. Over the past few years, many
approaches have been proposed for microarray image segmentation. Fixed circle
segmentation is the first applied technique on microarray images, its idea is to
assign the same circle size to all the spots. Another proposed method in order
to avoid the drawback of the fixed circle segmentation is the adaptive circle
segmentation technique. This algorithm fits a circle with adaptive size around
each spot, in order to characterize the pixels in the circle as signal pixels and the
pixels out of the circle as background pixels (i.e. foreground or background). An-
other technique that has been efficiently used in microarray image segmentation
is clustering, since it is not restricted to a particular shape and size for the spots.
Single k-means clustering microarray image segmentation (SKMIS) attempts to
cluster the pixels into two groups, one for foreground, and the other for back-
ground. Therefore in SKMIS, feature vector is reduced to a single variable in the
Euclidean one-dimensional space. Optimized k-means microarray image segmen-
tation (OKMIS) not only consider the intensity of the pixel but also the shape
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(a) (b) (c) (d) (e)

Fig. 5. Five noisy spots obtained from the 1230c1G/R microarray image

SKMIS

OKMIS

GGM

(a) (b) (c) (d) (e)

Fig. 6. The experimental results of the three methods on the five noisy spots

of the spot based on the fact that the position of the pixel could also influence
the result of the clustering. Our algorithm is very simple as we only apply a two
component GGM to classify the data to either foreground or background.

In order to compare GGM, OKMIS and SKMIS, we applied the three meth-
ods on the 1230c1G/R microarray image obtained from the ApoA1 data. Fig. 5
shows some examples for the noisy spots in our microarray image. From Fig. 6 it
is clear that our method was able to retrieve the true foreground from the back-
ground. We also observe that the GGM outperformed the SKMIS and OKMIS
in identifying noisy pixels from foreground. Note that, the GGM was able to
take the data form. Hence, the GGM is more suitable when dealing with cDNA
microarray image segmentation.
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4 Conclusion

In this paper, we have presented a new Bayesian algorithm for biomedical image
segmentation and multi-class DNA classification. Our method is based on GGM
models which chief advantage is their flexibility and immunity to noise. We
have used the Monte Carlo simulation technique of Gibbs sampling mixed with
a Metropolis-Hasting step for parameters estimation. The Bayesian estimation
of the model parameters incorporates uncertainty which disease diagnosis, for
instance, are in need. For the selection of number of clusters we have used the
integrated Likelihood. The experimental results show the effectiveness of the
proposed method in two interesting applications.

Acknowledgment

The completion of this research was made possible thanks to the Natural Sciences
and Engineering Research Council of Canada (NSERC), a NATEQ Nouveaux
Chercheurs Grant, and a start-up grant from Concordia University.

References

1. Cho, S.-B., Won, H.-H.: Machine Learning in DNA Microarray Analysis for Cancer
Classification. In: Proc. of the First Asia-Pacific Bioinformatics Conference, pp.
189–198 (2003)

2. Katzer, M., Kummert, F., Sagerer, G.: Methods for Automatic Microarray Image
Segmentation. IEEE Transactions on NanoBioscience 2(4), 202–214 (2003)

3. Pappas, T.N.: An Adaptive Clustering Algorithm for Image Segmentation. IEEE
Transactions on Signal Processing 40(4), 901–914 (1992)

4. Yonghong, H., Englehart, K.B., Hudgins, B., Chan, A.D.C.: A Gaussian Mix-
ture Model Based Classification Scheme for Myoelectric Control of Powered Upper
Limb Prostheses. IEEE Transactions on Biomedical Engineering 52(11), 1801–1811
(2005)

5. Rocke, D.M., Durbin, B.: A Model for Measurement Error for Gene Expression
Arrays. Journal of Computational Biology 8(6), 557–569 (2004)

6. Bouguila, N., Ziou, D., Monga, E.: Practical Bayesian Estimation of a Finite Beta
Mixture Through Gibbs Sampling and its Applications. Statistics and Comput-
ing 16(2), 215–225 (2006)

7. Gao, Z., Belzer, B., Villasenor, J.: A Comparison of the Z, E8, and Leech Lattices
for Quantization of Low Shape-Parameter Generalized Gaussian Sources. IEEE
Signal Processing Letters 2(10), 197–199 (1995)

8. Meignen, S., Meignen, H.: On the Modeling of Small Sample Distributions with
Generalized Gaussian Density in a Maximum Likelihood Framework. IEEE Trans-
actions on Image Processing 15(6), 1647–1652 (2006)

9. Sharifi, K., Leon-Garcia, A.: Estimation of Shape Parameter for Generalized Gaus-
sian Distributions in Subband Decomposition of Video. IEEE Transactions on Cir-
cuits and Systems for Video Technology 5(1), 52–56 (1995)

10. Aiazzi, B., Alpaone, L., Baronti, S.: Estimation Based on Entropy Matching for
Generalized Gaussian PDF Modeling. IEEE Signal Processing Letters 6(6), 138–
140 (1999)



218 T. Elguebaly and N. Bouguila

11. Kokkinakis, K., Nandi, A.K.: Exponent Parameter Estimation for Generalized
Gaussian Probability Density Functions with Application to Speech Modeling. Sig-
nal Processing 85(9), 1852–1858 (2005)

12. Varanasi, M.K., Aazhang, B.: Parametric Generalized Gaussian Density Estima-
tion. The Journal of the Acoustical Society of America 86(4), 1404–1415 (1989)

13. Pi, M.: Improve Maximum Likelihood Estimation for Subband GGD Parameters.
Pattern Recognition Letters 27(14), 1710–1713 (2006)

14. Allili, M.S., Bouguila, N., Ziou, D.: Finite General Gaussian Mixture Modeling and
Application to Image and Video Foreground Segmentation. Journal of Electronic
Imaging 17(1), 1–13 (2008)

15. Fan, S.-K.S., Lin, Y.: A Fast Estimation Method for the Generalized Gaussian
Mixture Distribution on Complex Images. Computer Vision and Image Under-
standing 113(7), 839–853 (2009)

16. Robert, C.P.: The Bayesian Choice From Decision-Theoretic Foundations to Com-
putational Implementation, 2nd edn. Springer, Heidelberg (2007)

17. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods, 2nd edn. Springer,
Heidelberg (2004)
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