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There is a paradigm shift from the traditional focus on the “average” individual towards the 

definition and analysis of trait variation within individual life-history and among individuals 

in populations. This is a result of increasing availability of individual phenotypic data. The 

shift allows the use of genetic and environment-driven variations to assess robustness 

to challenge, gain greater understanding of organismal biological processes, or deliver 

individual-targeted treatments or genetic selection. These consequences apply, in particular, 

to variation in ontogenetic growth. We propose an approach to parameterise mathematical 

models of individual traits (e.g., reaction norms, growth curves) that address two challenges: 

1) Estimation of individual traits while making minimal assumptions about data distribution 

and correlation, addressed via Approximate Bayesian Computation (a form of nonparametric 

inference). We are motivated by the fact that available information on distribution of 

biological data is often less precise than assumed by conventional likelihood functions.  

2) Scaling-up to population phenotype distributions while facilitating unbiased use of individual 

data; this is addressed via a probabilistic framework where population distributions build 

on separately-inferred individual distributions and individual-trait interpretability is preserved. 

The approach is tested against Bayesian likelihood-based inference, by fitting weight and 

energy intake growth models to animal data and normal- and skewed-distributed simulated 

data. i) Individual inferences were accurate and robust to changes in data distribution and 

sample size; in particular, median-based predictions were more robust than maximum- 

likelihood-based curves. These results suggest that the approach gives reliable inferences 

using few observations and monitoring resources. ii) At the population level, each individual 

contributed via a specific data distribution, and population phenotype estimates were not 

disproportionally influenced by outlier individuals. Indices measuring population phenotype 

variation can be derived for study comparisons. The approach offers an alternative for 

estimating trait variability in biological systems that may be reliable for various applications, 

for example, in genetics, health, and individualised nutrition, while using fewer assumptions 

and fewer empirical observations. In livestock breeding, the potentially greater accuracy of 

trait estimation (without specification of multitrait variance-covariance parameters) could lead 

to improved selection and to more decisive estimates of trait heritability.
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INTRODUCTION

Phenotypic variation within and among biologically similar 
organisms (i.e., of the same species or same breed) drives population 
processes such as evolution (Roche et al., 2016), selective breeding 
(Hill, 2010), and disease epidemiology (Weiss et al., 2012). This 
variation can be used, for example, to target treatments or to 
study organism-level biological processes (Westneat et al., 2015). 
As technological and computational advances facilitate the 
measurement and analysis of individual traits, analytical and 
modelling paradigms in biological and medical research shift 
from a focus on the “average individual” to characterisations of 
individuals within populations and of populations using detailed 
individual traits. This shift is happening in diverse fields, such as 
health and physiology (Goaillard et al., 2009; Marder, 2011; Weiss 
et al., 2012; Britton et al., 2013; O’Leary and Marder, 2014; Mirams 
et al., 2016), ontogenetics and development (Speakman et al., 
2004; Nilsson-Ortman et al., 2015; Beaman et al., 2016), ecology 
and evolution (Nussey et al., 2007; Forsman, 2015), behaviour 
(Dingemanse et al., 2010; Dingemanse and Wolf, 2013; Roche et 
al., 2016), and plant and animal agricultural production and food 
supply systems (Wolfert et al., 2017).

Trait variation among individuals or within an individual’s 
life history relates to genetic characteristics and to phenotypic 
plasticity, that is, an organism’s ability to undergo individual-
specific trait changes in response to external stimuli (Nussey 
et al., 2007; Forsman, 2015; Roche et al., 2016). Mathematical 
models are a common tool to characterise phenotype expression. 
In ontogenesis, for example, models are used to summarise 
or predict responses to environmental or dietary change via 
reaction norms (Stearns and Koella, 1986; Nussey et al., 2007; 
Dingemanse et al., 2010) or to describe growth traits, such as size, 
body composition, and metabolism via nonlinear relationships 
(Emmans and Kyriazakis, 2001; Coyne et al., 2017; Filipe et al., 
2018). In this paper, we introduce a statistical approach to fit 
models to individual observations and to estimate individual- 
and population-level trait distributions.

Statistical approaches for fitting population phenotype models 
to multiple-individual multiple-observation data, while capturing 
variation at within- and between-individual scales, have been 
under development and testing. For example, extensions of 
statistical regression frameworks, such as double hierarchical 
generalised linear models (DHGLM) (Lee and Nelder, 2006), 
have been proposed to allow for individual specificity (random 
effects) in both the mean and residual (deviation from mean) 
components of regression phenotype models. The mean usually 
incorporates relationships between traits and inherent factors, 
environment factors, age, and so on. The residuals model (known 
as dispersion or noise) has both population-wide and individual-
specific parameters [often for a multivariate normal (MVN) 
distribution]. The DHGLM framework has been developed and 

applied in a variety of fields (San Cristobal-Gaudy et al., 1998; Hill 
and Mulder, 2010; Ronnegard et al., 2013; Cleasby et al., 2015), 
mostly as a frequentist but also as a Bayesian approach (Sorensen 
and Waagepetersen, 2003; Westneat et al., 2013). There are two 
important pillars to this framework. First, it is flexible in allowing 
alternative assumptions within conventional structures and 
can, for example, model long-dispersed (non-normal) residual 
distributions at the population level. However, the approach 
builds on multiple nested distributional assumptions that may 
or may not be valid in a given system and on the estimation of 
multiple mean and variance-covariance parameters to define 
them (Hill and Mulder, 2010; Cleasby et al., 2015). Second, this 
framework is necessarily a compromise in how data are deployed 
to inform individual-level parameters and population-wide 
(fixed-effect) parameters that characterise each study; however, 
as individual data are often fitted jointly, estimation of individual-
level parameters is influenced by population-level data and 
assumptions (Cleasby et al., 2015). Revisiting these pillars matters 
when researching new systems and fields, or types of data, where 
there is less experience in support of a given working assumption 
carried over from proved convention in more traditional areas.

A different type of estimation approach, such as populations of 
models (PoM) (Goaillard et al., 2009; Marder, 2011; Britton et al., 
2013; Mirams et al., 2016), has been developed that uses certain 
criteria to match trait models to data pooling multiple individual 
observations, and to generate sets of data-compatible model 
outputs interpreted as predicted interindividual trait variations. 
Here, a model corresponds to one explanatory parameter 
point. Further work (Drovandi et al., 2016) translated the PoM 
approach into a Bayesian framework (Gelman et al., 2013) using 
approximate Bayesian computation (ABC), a nonparametric 
(likelihood-free) form of Bayesian inference (Beaumont, 2010). 
As in the PoM, Drovandi et al. (2016) assumed that within-
individual variability was negligible by representing individual 
traits by point values and fitted a trait model to data pooling 
individual trajectories, generating population-level distributions 
of phenotypes. Bayesian inference incorporates parameter 
uncertainty and correlations, overcoming limitations of point 
estimation, for example, maximum likelihood estimation 
(Gutenkunst et al., 2007; Babtie and Stumpf, 2017). This 
uncertainty will have components from individual phenotypic 
variation and from data incompleteness and model inaccuracy. 
However, like most regression frameworks, conventional applied 
Bayesian inference is parametric (Gianola et al., 2009; Blasco, 
2017). Nonparametric approaches, although more difficult to 
apply, can capture data variation that is not explicitly modelled 
(Gonzalez-Recio et al., 2008). Bayesian approaches, such as ABC 
and others (Wood, 2010; Green et al., 2015), were developed for 
this reason but are usually applied to replace computationally 
intractable likelihoods in complex high-dimensional problems 
(Pritchard et al., 1999; Fearnhead and Prangle, 2012; Sunnaker 
et al., 2013) rather than as an alternative to making distributional 
assumptions in any problem, simple or complex.

In this paper, we explore a Bayesian framework combining 
principles from the above that, like Drovandi et al. (2016), offers 
alternative nonparametric Bayesian inference and, like DHGLM, 
accounts for variation within and among individuals. As a case 

Abbreviations: ABC, approximate Bayesian computation; BL, Bayesian likelihood; 

BW, body weight; DHGLM, double hierarchical generalised linear models; CrI, 

credible interval; MCMC, Markov chain Monte Carlo; MLE, maximum likelihood 

estimation (or estimator); MVN, multivariate normal (probability distribution); 

NEI, net energy intake; PD, posterior distribution (i.e., parameter PD or trait-

predictive PD).

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Likelihood-Free Modelling of Phenotype VariabilityFilipe and Kyriazakis

3 September 2019 | Volume 10 | Article 727Frontiers in Genetics | www.frontiersin.org

study, the approach is applied to ontogenetic growth focusing 
on low numbers of traits and model parameters. We test the 
following hypotheses.

• Hypothesis 1. ABC can be used as an inferential tool to estimate 
model trait distributions from individual trait data requiring 
no explicit residual distribution (i.e., noise) assumptions 
and no explicit variance-covariance parameters. Rationale: 

Intraindividual and interindividual phenotype variations 
have often unknown causes and may or may not be well 
approximated by or involve misspecification of a parametric 
likelihood. ABC can be used as a generic nonparametric tool 
(Green et al., 2015) where the noise distribution is tuned by 
the data. Moreover, parsimony is gained in that no (auxiliary) 
distributional parameters need to be estimated or guessed. 
However, in likelihood-based fitting of multiple trait models, 
a tractable multivariate distribution is required, and an MVN 
is typically assumed with a dimension-increasing number of 
variance-covariance parameters (Blasco, 2017).

• Hypothesis 2. Individual trait models are best informed when 
fitted directly to trait observations from a single organism. We 
propose a framework for scaling-up individual-level parameter 
distributions to population-level parameter and trait distributions 
based on the additivity of probability, which is suitably achieved 
in a Bayesian context. Rationale: Pooled trait data from different 
individuals may not produce patterns (e.g., growth) that could 
be biologically generated by a single individual (Begall, 1997), 
limiting the meaning of individual trait model fits. Likewise, 
fitting multiple individual data sets, allowing individual-specific 

parametric distributions but doing so jointly, grants mutual 
influence between individual and population estimates and 
could yield per-individual trait estimates with limited support 
from the individual’s specific data, that is, biased by the majority.

In animal breeding, the accuracy of the approach to estimate 
individual traits without involving multivariate variance-
covariance parameters, which will be demonstrated, could lead 
to improved selection. We will derive the formalism, explain 
the Bayesian inference methods and measures of model fit, and 
detail the case studies on empirical and simulated ontogenetic 
growth. We test the hypotheses by addressing specific questions 
in several experiments on individuals and populations (Table 1).

METHODS

A Probabilistic Framework for Modelling 
Phenotypes in Individuals and Populations
We consider a given organism and a population of biologically 
similar individuals. For each individual i in a population of 
size N (i = 1…N), we consider a phenotype defined by a set of 
observable traits Ti and a mathematical model Mi of these traits 
in terms of a given vector of covariates X,

 
M mi p= ( , ,X)iθ θ  (1)

where m is a function (representing putative mechanisms 
shared by every individual), θi is a vector of individual-specific 

TABLE 1 | Hypotheses underlying the inferential framework and their testing.

Hypothesis 1 – Individual Hypothesis 2 – All individuals in a population

Hypothesis ABC can be used as an inferential tool to estimate model-trait 

parameters and model-trait distributions from individual trait data, 

requiring neither strong distributional assumptions nor estimation 

of (auxiliary) distribution parameters.

 Individual-trait models are best informed when fitted directly to 

trait observations from a single organism. A suitable framework to 

infer population-level parameter and trait distributions is to scale-up 

individual-level parameter distributions using additivity of probability.

Questions Q1.1 Are ABC inferences as accurate as those from likelihood 

inference?

Q1.2 Are they more accurate under incorrect likelihood 

assumptions?

Q2.1 Does the populations-level distribution provide a suitable 

representation of the population data? 

Q2.2 How do the predictions change when fitting the trait model 

jointly to multiple individual data? The answers to these questions are 

conditioned by Question 1.

Experiments Fitting of Gompertz growth model (Equation 21) to one 

individual’s data set on:

 1) One empirical trait, or one simulated trait with normal or 

skewed deviations (Comparison of methods to estimate 

phenotypes – Individual single-trait phenotypes, Figures 2–6).

 2) Two empirical traits, two simulated traits with MVN deviations 

(Individual multiple-trait phenotypes, Figures 7–8).

Fitting of Gompertz growth model to every individual in a population 

(From individual phenotypes to population phenotypes, Figures 9–11): 

 1) One empirical trait in pigs fit individually;

 2) one empirical trait in chickens of two genetic lines;

 3) one empirical trait in pigs fitting pooled data.

Testing

(results summarised in 

Table S1)

Quality2 of individual-level inferences1 and agreement between 

ABC and BL inferences.

Sensitivity of ABC and BL inference quality to reduction in data 

sample size.

Sensitivity of BL to likelihood assumptions (Equations 15–17).

Plausibility of population-level inferences and agreement between 

ABC and BL inferences.

Nature of variation in individual traits (parameter mode) and its 

agreement between ABC and BL approaches.

Detection of population heterogeneity (genetic, environmental).

1 Inferences • Parameter posterior distribution and its mode and uncertainty (range).

• Trait predictive posterior distribution and its median and mode curves and uncertainty (range or credible interval)

2 Quality of the 

inferences

• Fitting empirical data (Hypotheses 1 and 2): Plausibility of the mode parameters and median and mode trait curves (when a likelihood is 

used, the mode parameters and mode trait curves are the maximum-likelihood estimates).

• Fitting simulated data (Hypothesis 1): Level of match of the expected parameters and trait curve (target).

• Fitting empirical or simulated data: Plausible uncertainty and goodness of fit (Equation 20).
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parameters, and θP is a vector of parameters shared by all 
individuals in the population or in subgroups thereof. The 
function m may be deterministic or stochastic, but here it is 
assumed to be deterministic as we do not know enough about 
the causes of variation within an individual’s trajectory along X 
to model such variation explicitly. Deviation from the data (for 
given parameters) is modelled separately (as noise, Equations 
15–17) (Hartig et al., 2011). The function m is arbitrary; it may 
be a linear or nonlinear function of the additive effects of X, 
as in regression models. Alternatively, m may have any level of 
complexity through a set of differential or algebraic equations 
or recurrent procedures defined in an algorithm, that is, m 
may not be an explicitly tractable mathematical function of X. 
Parameters θi may be thought of as model-derived phenotypic 
traits of individual i or as individual-specific conditions, and θP 
may be associated with population-wide factors, for example, 
species, genetic line, or diet, or with covariate X, for example, 
age of a cohort or environmental conditions. This separation 
of parameters conforms to hierarchical regression models and 
to mixed-effect models in particular (Hill, 2010; Gelman et al., 
2013; Blasco, 2017), where θi and θP play the roles of random-
effects and fixed-effects, respectively. We will study examples 
where Ti comprises live weight and energy intake of an animal 
at serial time points X, θi represents mature size and time to 
reach maturity for each of the traits, and θP relates to line, diet, 
and macroenvironmental conditions [it is implicit that there is 
nonmeasurable microvariation in environmental conditions 
among individuals (Hill and Mulder, 2010)].

In a Bayesian modelling framework, where all quantities 
are described by probability distributions, the traits Ti and the 
parameters are modelled by probability densities: ƒi(Mi) and 
πi(θi,θP), where Mi, θi, and θP take values over ranges defined 
by these distributions. Subscript i indicates individual-specific 
distributions and variables. One useful summary is the expected 
value of the traits:

 
E T M m( X)i i i i p i i p i p[ ] (M )dM , , ( , )d di i= =∫ ∫f θ θ π θ θ θ θ  (2)

Assuming that the population-wide factors and thus the 
associated parameter θp are held constant, it is useful to consider 
probability densities conditioned on these:

 
Πi i i i p i i p( ) ( | ) ( | )/ ( )p pθ π θ θ π θ θ π θ= =  (3)

 
F (M ) (M )/ ( )i i i p p= fi π θ  (4)

where π θ θ π θ θp i i pd( ) ( , )p i= ∫  is the marginal probability density 

of population parameters, and Π and F omit the explicit dependency 
on the latter. The conditional expectation of the traits becomes

E T | M / m( X)i p i i i p i i[ ] (M ) ( )dM , , ( )di p p iθ π θ θ θ θ= =∫ ∫f Π θθi
 (5)

At the population level, we define distributions associated 
with the same phenotype (set of traits) as for each individual 
in the population (Figure 1): ƒ({Mi,i = 1…N}) and π({θi,i = 
1…N}, θP); and, if we condition on held values of the population 
parameters, F({Mi,i = 1…N}) = ƒ({Mi,i = 1…N})/πP(θP), and 
Π({θi,i = 1…N}) = π({θi,i = 1…N},θP)/πP(θP), which, again, omit 
explicit dependency on θP. We assume that the parameters θi are 
independent variables among all individuals when conditioned 
on the same fixed values of the population or group parameters 
θP. As the parameters θi determine the observed traits Ti, this 
assumption means that each individual responds independently 
(according to its genotype, past experience, etc.) to the shared 
population conditions, such as cohort age or environmental 
stimuli. While we could treat Π as a product of individual 
distributions comprising all individual parameters, it is more 
useful to scale up the traits to population level by combining 
individual information and missing track of individual sources of 
phenotypic expression. Hence, we regard every θi as an expression 
of the same set of traits θ; or, similarly, we regard πi(θi) as an 
individual’s sample frequency of the population traits θ. Likewise, 
a population phenotype set of variables (T), qualitatively similar 

FIGURE 1 | Probabilistic phenotype framework. Schematic representation of the probabilistic framework for modelling phenotype variations in individuals and 

populations. In this example, the phenotype comprises one trait, and its population distribution is bimodal. The representation of individuals is not exhaustive, and 

the representation of the population distribution is qualitative.
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to the individual phenotype (Ti), can be defined and modelled 
for each given value θ as

 
M m  XP= ( )θ θ, ,   (6)

Hence, the population distribution of model trait parameters is 
the sum of all individual contributions

 

Π Π( )
,

θ
θ θ

θ

π

π
=

( )
( )

=

= …{ } = …{ }
∑ ∑ A w

 
 A  w

i N

i

i P

P P
i N

i

1 1

ii ( ),θ  (7)

where the weights wi Σ i N iw= …{ } =( )1 1  quantify relative 

confidence in the estimated Πi associated with the data volume 
of each individual (for the data sets we use, wi = 1) and 

A w dI i
i N

i
−

= …{ }
= ∫∑1

1
θ θΠ ( ). The associated population 

distribution of modelled phenotypes is: 

 
F M M / P P( )= ( ) ( )f π θ ,   (8)

and the population expectation of phenotype T is:

 
E T| M F M dM m X dP Pθ θ θ θ θ  = ( ) = ( )∫ ∫ , , ( ) .Π  (9)

Other useful summary statistics of this theoretical model-
specific phenotype distribution F, such as quantiles and credible 
intervals, are evaluated similarly.

In this framework (Figure 1), we regard πi(θi, θP) and ƒi(Mi) 
as inherent properties of each organism, representing potential 
intraindividual variability [phenotypical plasticity (Hill and 
Mulder, 2010)], as well as inferential uncertainty about model 
parameters and phenotype predictions. On the other hand, we 
regard π(θ,θP) and F(M) as population-specific properties on the 
same phenotypes.

Bayesian Inference
Our next step concerns how to estimate the above theoretical 
distributions from empirical data on individual traits. Given 
observation data D ≡ D(θP,X) = {Ti, i = 1…N} under population 
conditions θP and X, we are interested in estimating the 
distribution f(M) of modelled phenotypes under a certain 
phenotype model m. According to Equation 9, we need first to 
estimate the parameter distribution Π(θ). A posterior distribution 
(PD) of parameters is obtained from given trait data and a model 
(relating traits and parameters) through Bayes’ theorem (Gelman 
et al., 2013):

 
π θ θ π θ|D m L D| m /C, ,( )= ( ) ( )  (10)

that combines a prior parameter distribution (assumed by the 
user) with the likelihood L(D|θ,m) (probability of observing 
the data given model m and parameters θ). Computation of the 

constant C L D| m d  = ( ) ( )∫ θ π θ θ,  requires evaluation across the 

parameter region where likelihood x Prior > 0, and in nearly all 
applications can only be carried out through partial sampling of 
parameter space, for example, via Markov-chain Monte Carlo 
(MCMC) techniques (Gilks et al., 1997).

Nonparametric (Likelihood-Free) Inference
ABC infers the parameter PD of a model without explicit 
computation of the likelihood (Beaumont, 2010; Sunnaker et al., 
2013). In ABC, multiple model outputs are simulated for sampled 
parameter points, and these parameters are assessed according to 
a measure of discrepancy between the data and model outputs. 
Let Di(θP,X) be the data set for individual i (over a range X ≡ t = 
{t_1,..,t_ni} of the independent variable, such as age or a varying 
environmental factor). For each sampled parameter point θ, the 
model output (or outputs if the model were stochastic) is M(θ); the 
parameter is accepted if a user-defined distance between model 
and data is below a certain tolerance ε: d(Di, M(θ)) < ε. Often, 
summary statistics of the data, S(Di), are used instead to reduce 
dimensionality and computation, with acceptance criterion:

 
d S Di S M( ) ( )( )( )<, θ ε  (11)

We chose the following distance function: 

 

d Di M  
ni

M t Di t

Di t

j j

j
j

ni

,
,

θ
θ

( )( )=
( )− ( )





( )=∑1

1
 (12)

which applies to data Di > 0 and has several benefits: offers 
automatic relative scaling of model-data discrepancies; being 
an average relative error, provides immediate interpretation 
of the tolerance parameter; for example, ε = 0.05 means that 
parameters θ yielding relative discrepancy up to 5% is accepted. 
We found that this distance confers faster convergence of 
MCMC parameter sampling (see below) than a distance with 
a fixed scaling parameter (in the denominator in Equation 
12). The summation over data points (t), a common choice in 
ABC studies (Toni et al., 2009; Kypraios et al., 2017), implies 
the constraint acts on the average distance across the data set, 
allowing outliers to be above tolerance, that is, to have limited 
influence on fitting, at the cost of better-matching points. To fit 
data on multiple traits, we applied Equations 11 and 12 to each trait 
separately and conditioned parameter acceptance to satisfaction of 
every trait-specific criterion. The above distance relates to but differs 
from another used by Pritchard et al. (1999). We use a data-based 
estimate of tolerance for each trait. This estimate is based on the 
notion that the rate of change in the data partially captures the scale 
of data random variation and on averaging this rate across points:

 

ε
τ

est

j j j

j j

j
ni t t

Di t Di t

 Di t
=

−( )
( )− ( )





( )∑
−

−1

1

1

 (13)
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where τ = 1 is a dimensional constant. This estimate applies 
when the amplitude of random variation dominates over trend 
variation with t, sequential random variation is at most weakly 
correlated, and when there are frequent observations. We found 
εest to be a reasonable guide on the minimum distance to a given 
data set for the models we fitted; in the case of simulated data, 
this minimum distance can be calculated exactly, and we found it 
to be just under εest. Adjustment around this approximation may 
be necessary to ensure suitable tail off of parameter PDs within 
the prior parameter range.

We implemented ABC using MCMC sampling (Marjoram 
et al., 2003). MCMC is more efficient than simple parameter 
rejection sampling, whereas Sequential Monte-Carlo sampling 
(Toni et al., 2009) can be more cost-effective in ensuring chain 
convergence but involves more tuning (Kypraios et al., 2017). For 
the purpose of this paper, the sampling method is not central and 
MCMC is efficient enough. Details of the algorithm used are in 
Text S1. ABC software packages with efficient, widely tested, and 
user-friendly algorithms are available for general applications 
(Csillery et al., 2012; Nunes and Prangle, 2015). We used 
objective uniform parameter priors with ranges guided directly 
by the data range using the biological interpretation of the model 
parameters. Parameter PD densities were derived from MCMC 
samples using a parameter grid. For a parameter θ that relates to 
the magnitude of trait D, such as mature size (section Case Study: 
Ontogenetic Growth at the Individual and Population Levels), the 
grid cell size (inverse resolution), δθ, must exceed a minimum so 
that data-D-driven sample variation about the centre of the cell 
is predominantly contained within the cell:

 
δθ ε θ> 2 av  (14)

where θav is an average value (estimated, e.g., from an MCMC 
sample) and ε is the tolerance used for trait D. Conversely, a 
maximum tolerance given a grid resolution can be set at εmax = δθ/
θav. These relationships give meaning to the tuning of parameters, 
helping to reduce arbitrariness in their setting.

Comparison Against Likelihood-Based 
Inference
To test the performance of ABC, we compared its inferences 
with those of a Bayesian likelihood (BL) approach. Testing was 
done on data sets described below, including observation data on 
ontogenetic growth and simulated data. When fitting observation 
data, we can assess goodness of fit and apparent plausibility of 
estimated parameters and traits, but we do not know whether 
the estimates reflect accurately the underlying processes that 
originated the data. An inverse testing can be done by fitting 
simulated randomised data comparable in features and scale 
to the observation data, but for which we know the generating 
parameters and model; these generating parameters are, 
therefore, the target of the inference. A satisfactory inferential 
approach should estimate parameters close to the target, although 
random variation and incompleteness in the data prevent exact 
estimation. Using simulation also allows testing of distributional 
assumptions; we consider some deviation of the likelihood 

from the data-generating distribution. In both the ABC and BL 
approaches, the inferences consist of estimated parameter PDs 
and trait-predictive PDs. We use the mode of the parameter PDs 
as point information [known in the likelihood case as maximum 
likelihood estimate (MLE)] and percentiles of the predictive PDs 
of the traits [including median and 80% credible interval (CrI)] 
as distributional information. In the case-study data sets, there 
is a covariate (time); we evaluated the predictive PDs within and 
beyond the time range of the data to assess trait forecasting.

In BL inference, the use of uniform parameter priors (the 
same as those in ABC) implies that the posterior parameter 
density (π(θ|D,m), Equation 10) coincides with the likelihood up 
to a normalising constant specific to the prior range. To give a 
stringent test on ABC by avoiding parameter sample variation 
in BL estimation, we evaluated the likelihood on a discrete 
parameter grid, which in low-dimension problems can be 
accurate and computationally viable. In most applications below, 
we use normal (or MVN) likelihood functions that assume 
each data trait has temporally-uncorrelated noise variation with 
constant variance about a time-dependent model mean:

 
D t M t N( )− ( ) ( ), ~ ,θ 0 Σ   (15)

where D(t)-M(t,θ) is the vector of deviations between data and 
model mean for each trait at time t, and Σ is the trait’s noise 
variance-covariance matrix. In some cases, we assess the impact of 
likelihood assumptions on inference by considering a commonly 
found form of heterocedasticity, known as multiplicative noise, 
where the variance of a trait increases with the magnitude of the 
trait variable: 

 
D t M t  M   N( )− ( )



 ( )−, ~ ,θ 1 0 Σ  (16)

where M−1(t,θ) is a vector whose elements are the inverse means 
for each trait at given t, θ. The point of exploring the sensitivity of 
BL inference to distributional assumptions is that ABC captures 
the data noise distribution automatically (up to a point). In 
addition, to test the ability of ABC and likelihood to deal with 
skewed data, we consider an extreme case where data are totally 
negatively skewed

 
D t M t S( )− ( )



 −−, ~θ σ χ1

1  (17)

that assumes zero trait correlations and has variance 2σ2; 
we use σ = 0.05, which yields large multiplicative variations 
(14% multiplicative reduction at two standard deviations in 
Equation 17). Here, S = M(t,θ) or 1. This example is motivated 
by ontogenetic growth, where some temporal variation may 
result from short-term limitation in availability of resource 
and thus in downward deviation. Observation data (described 
below) were fitted using likelihoods associated with the 
different variability assumptions (Equations 15, 16) as well as 
using ABC. Simulated data were generated by superimposing 
on the trait model M(t,θ) temporally uncorrelated noise 
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sampled via Equation 15 or  17. These data were fitted 
using ABC or BL with the likelihood assuming the same 
noise model that generated the data (Equation 15 or 17) or 
a slightly erroneous noise distribution (Equation 16). The 
likelihoods associated with Equations 15 and 16 involve 
additional unknown variance and covariance parameters. 
For a phenotype specified by a single trait, the additional 
parameter is a variance; in the case of two traits, there are two 
variance parameters and one correlation parameter. We used 
initial estimates of variance based on a scaling relationship 
(see below) and estimates of correlation based on the data; 
uniform prior distributions about these estimates were 
used for these auxiliary parameters in Equations 15 and 16, 
assuming a temporally constant variance ratio in the case of 
multiple traits. The BL parameter PD used for comparison 
with ABC is marginal distribution obtained via integration on 
the auxiliary parameters in the likelihood.

Relationship Between Scales of Trait Variation 

in ABC and Likelihood Inference
In ABC inference, there are tuning parameters that partially 
substitute the role to a variance-covariance matrix in either 
BL or maximum likelihood inference. The most influential, 
apart from the distance function, are probably the tolerance 
parameters (Kypraios et al., 2017). The number of such 
parameters is similar in the ABC and BL approaches for low-
dimensional problems, but, as dimensionality increases, the 
number of likelihood auxiliary parameters increases faster, as 
n(n + 1)/2 for n variables. The likelihood variance parameter 
(element σ of Σ) and ABC tolerance parameter (ε) associated 
with a trait can be related as they represent, respectively, the 
average deviation and the average relative deviation (Equation 
12) between model and data. Hence, in the spirit of Equation 
14, we expect that:

 
σ θ ε= B av  (18)

where θav (defined in Equation 14) is the average magnitude of 
the trait; ε = εest (Equation 13), and B is a proportionality factor. 
We used Equation 18 to set a guide value for the unknown 
variances in Σ, allowing a fair comparison between ABC and BL 
PDs with least reliance on arbitrarily independently-set scales of 
trait variation. We used a uniform prior on B with range [0.5,2].

Evaluation
To assess overall model fit (how well the model replicates 
the data), we use the familiar coefficient of determination R2 
(proportion of variation in the data explained by the model) as 
an absolute measure of fit [as in other ABC studies, e.g., van der 
Vaart et al. (2015)]. R2 is adjusted for the number of parameters 
by scaling the data and model variances by the respective number 
of degrees of freedom, dfD and dfM,
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2 21 1= − −( )  (19)

Following standard Bayesian definition of test statistics 
(Gelman et al., 2013), we use a Bayesian extension of Radj

2 that 
sums squared residuals, between model point prediction and 
data, weighed by the estimated parameter PD:
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Here, ϕ = dfD/dfM. The right-hand side applies to 
deterministic models, where there is a single model prediction 
for given parameters (f(M|θ,D) = δ(M-M(θ)). Index i indicates 
that variability is intraindividual i, and index Bayes distinguishes 
this R2 from usual estimates based on parameter point estimates. 
We will drop index notation i when a single individual is 
considered. Note that, strictly, this statistic is not comparable 
among cases where different data are used. RBayes

2 is a summary 
of model residuals that does not account for potential trend; to 
assess qualitative fit and (to some extent) the predictive potential 
of the model, we use visual diagnostics of predictive PDs 
(Gelman et al., 2013) and, in Figure 3, examine their associated 
distribution of residuals across the fitted data. In addition, 
we extend prediction beyond the range of the data’s covariate 
(time) to show the extent of increase in uncertainty. Although 
the fit of data by predictive PDs can be assessed quantitatively 
via p-values on suitable test statistics, their interpretation is less 
clear than that of classical p-values (Gelman et al., 2013) and 
is even less established within ABC methods (Beaumont, 2010; 
Lintusaari et al., 2017). When using simulated data, a p-value 
could be defined on the distance between model and target, a 
statistic not used in model fitting; this was unnecessary for the 
study cases below because the inferences obtained were clearly 
close to the target.

Case Study: Ontogenetic Growth at the 
Individual and Population Levels
We use ontogenetic growth as an example application; we 
focus on individual live weight and energy intake and specify 
mathematical models and empirical data for these traits.

Body Weight Model
It is common, for example, in animal genetics (Emmans and 
Kyriazakis, 1997; Coyne et al., 2017), to use a parametric 
curve to describe observed growth trajectories of individual 
organisms. The interpretation of the curve is that the 
information contained in its parameters offers a low-
dimension summary of serial and noisy data difficult to 
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characterise per se. By assuming that a single growth curve 
applies across individuals and populations, the variation in 
model parameters offers a way of capturing interindividual and 
intraindividual variation in growth. The curve parameters may, 
therefore, be regarded as non-directly-observed traits that can 
be compared across individuals, populations, and species. We 
use a Gompertz model (Winsor, 1932) to describe individual 
growth trajectories in terms of size, that is, mass (M) measured 
through body weight, over time (t):

 

M t  K a
t

b
( )= − −













exp exp  (21)

where K and b are the mature size and a maturation timescale; 
a = ln(K/M0), and M0 = M(0) is size at a reference age when t = 
0. It is usual to think of u(t) = M(t)/K as a degree of maturity, 
which leads to:
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where b is the age when log maturity has changed by 1/e, with 
e being the base of natural logarithms. Among the multiple 
sigmoidal growth models in the literature, the Gompertz model 
offers a good balance between simplicity and applicability 
(Wellock et al., 2004), and its parameters are biologically 
interpretable.

Energy Intake Model
To extend the modelling and estimation to individual phenotypes 
defined by two traits, we consider energy intake and body weight 
as an example of correlated traits. Here, for simplicity, we consider 
energy intake to be also a Gompertz function of age, which 
captures increase and ultimate levelling-off of intake, although 
other suitable sigmoidal functions, often of body weight, have 
been used (Parks, 1982; Black, 2009). Our choice aims at using 
data to inform trait models without necessarily using previous 
knowledge, and the fact that age has smaller measurement errors 
than weight. Feed intake was converted to energy intake by 
multiplying by diet energy content; net energy is used below. As 
for body weight, it is assumed that the same energy intake model 
applies across individuals.

Data
To demonstrate the approaches to modelling phenotype 
variability, we use data on one or two traits. Data availability: 

All data analysed in this study are available online through an 
institutional data repository (Filipe et al., 2018).

Empirical Data
We use serial observations of live body weight (BW) and net-
energy intake (NEI) of individual growing pigs and broiler 
chickens; their specific genetic lines are not relevant for the 
purposes of the paper. These data cover the typical period 

of postweaning or post-hatch growth of livestock and may 
or may not include the stage of change from accelerating to 
decelerating growth. To demonstrate how the approach scales 
up from individual distributed phenotypes to population-wide 
phenotypes, we consider empirical data from multiple individual 
single-line pigs and from broilers of two distinct lines.

Simulated Data
The generation of artificial data was designed to produce data with 
ranges and trends comparable (but not identical) to those of the 
observed data and associated parameters of fitted growth curves. 
As explained above, the main purpose of fitting such data is to 
indirectly assess the accuracy of the model parameters inferred 
when fitting observation data, provided the model is a meaningful 
representation of the processes that generated the observations 
and thus that such accuracy is possible. Simulated data were 
generated in two steps: 1) Choosing a function and parameters to 
represent the temporal trend in each trait; that is, target parameters 
of the Gompertz curves for BW, (K,b)  = (100,50), and NEI, 
(K2,b2) = (25,30). 2) Overlaying on the temporal trend random 
noise sampled from a normal distribution, for a phenotype 
characterised by a single trait, or from an MVN distribution for 
a phenotype characterised by multiple correlated traits (here, 
two). The noise model in Equation 15 corresponds to zero-mean 
constant-variance noise and is a standard choice in literature; 
Equation 16 corresponds to mean-one multiplicative noise and 
is based on the observation that variation in ontogenetic growth 
tends to increase with size (Coyne et al., 2017). Equation 17 
corresponds to skewed multiplicative noise and is used to assess 
the ability to cope with strong deviations from normality; for 
example, traits associated with heath status, including feed intake, 
can exhibit skewed variation. The ability of ABC inference to 
capture standard and nonstandard data distributions can be tested 
by fitting data generated from given distributional assumptions 
(Equations 15–17). Likewise, the likelihood inference can be 
tested for robustness to change in distributional assumptions.

RESULTS

We test Hypotheses 1 and 2 by addressing Questions 1 and 2 
on individuals and populations, respectively, and by using the 
experiments and testing specified in Table 1.

Comparison of Methods to Estimate 
Phenotypes: Individual Single-Trait 
Phenotypes
Body Weight of Individual Pig
Fitting the model (Equation 21) to empirical body weight 
(BW) from one individual pig, we find the parameter posterior 
distributions (PD) estimated via ABC and normal BL (Equation 
15) are similar and have similar modes, but there are also 
differences (Figures 2A, B). The ABC and BL parameter modes 
(Table S1) and the ABC parameter uncertainty have plausible 
values [(Strathe et al., 2010), albeit comparison involves different 
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animal breeds and estimation methods]. The BL PD is wider 
because of uncertainty about the dispersion parameter [whose 
prior distribution (Equation 18) is integrated over]. The BW 
predictive PDs agree closely with the data in both approaches 
(Figures 2C, D, Table S1). Beyond the data age range (170d), 
the two approaches, but BL in particular, predict considerable 
increases in uncertainty (80% CrI) but yield distinct median 
curves (centre of yellow area); the BL median curve is above the 
mode curve (with parameters given by the parameter posterior 
mode) because of parameter PD skew (Figure 2B). The 
distributions of BW residuals in the ABC and BL approaches 
do not indicate bias, but their variance increases with size as 
scaling to size gives a temporally more stable residual amplitude 
(Figure 3). Following this hint on data heterocedasticity and 
assuming a likelihood for multiplicative noise (Equation 16) 
shifts the MLE from above to below the ABC mode (Figure S1, 
Table S1) and alters the parameter and predictive distributions, 

but without marked change in the median BW curve and in 
R2. Another relevant factor is data volume. The number of data 
points fitted, 110, is large as the data comprise daily BW records. 
Fitting only 7/110 = 6% of the data set (Figure  4) does not 
change goodness of fit (i.e., within-data predictive distribution 
and R2) but alters the PDs: With ABC, the estimated mode is 
unchanged; with BL, the mode shifts above the ABC mode 
(Table S1) and parameter uncertainty increases overall. The 
BL uncertainty in BW increases markedly particularly in 
the out-of-sample prediction. The ABC PDs, however, show 
reduced uncertainty as estimation is informed by the observed 
variation (Green et al., 2015), whereas in BL, the uncertainty 
is assessed in relation to an assumed form of data variation. 
These examples show sensitivity of likelihood-based inference 
to data distributional assumptions and data volume, whereas 
the ABC approach does not require the assumptions and was 
more robust to change in data volume.

FIGURE 2 | Body weight of individual pig. Trait parameters and temporal distribution estimated via ABC (left) and additive-normal likelihood (right) 

(Equation  15). (A, B) Posterior distribution (PD) of the parameters of the Gompertz model (Equation 21); K, mature body weight, and b, time to maturity); 

colour scale represents probability density. (C, D) Predictive PD of body weight; colour represents cumulative probability within the quantile ranges in legend 

(median curve is the centre of the yellow range; 80% credible interval is the range 10–90%). Trait uncertainty within the data range is caused by temporal 

variation (e.g., measurement error or animal status) or insufficient data (i.e., multiple curves explaining the data); beyond the data range (>180d), uncertainty 

about the predicted trait increases considerably. The mode curve (∇) refers to the Gompertz model with parameters given by the mode of the parameter 

posterior [ABC: white circle (ο) in A; likelihood: white square (◻) in B and A], which differs from the predictive posterior median unless distributions are 

symmetrical. The predictions based on standard maximum likelihood estimation are the parameter mode (in B) and mode curve (in D). R2 is a Bayesian version 

of the goodness-of-fit statistic (see Methods).
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Simulated Normally-Distributed Trait
Fitting Equation (21) to simulated growth with additive-normal 
noise (Equation 15) leads to similar parameter PDs via the 
ABC and additive-normal-BL approaches (Figures 5A, B) that 
predict the parameter target accurately (Table S1). This case is 
a test to ABC but not to the BL approach, which incorporates 
the exact data distribution and should perform optimally, 
whereas ABC utilises the data to estimate this distribution as 
well as (like BL) the model parameter distribution. Compared 
to Figure 2, the ABC parameter distribution has mildly 
different skew, whereas the BL’s is narrower because it assumes 
the exact data distribution. The trait’s predictive PDs from both 
approaches agree closely with the data (Figures 5C, D; Figures 

S2, Table S1); their spread is similar but the ABC’s uncertainty 
is slightly wider. Beyond the data range, the BL’s predicted 
median curve matches the target, whereas the ABC’s slightly 
overestimates the target (because of the parameter skew), but 
this is well within the predicted CrI. Accurate prediction of 
target parameters (and corresponding trait curve) via the 
mode of the PD depended on accord of the parameter grid 
resolution with Equation (14); too much resolution led to 
unsuitable sampling and inaccuracy. Giving BL less advantage 

by assuming a data distribution (multiplicative noise, Equation 
16) slightly different from the data-generating distribution led 
to parameter and predictive PDs identical to those of ABC 
(figure not shown).

Simulated Skew-Distributed Trait
Fitting Equation (21) to simulated trait growth with skewed 
multiplicative noise leads to somewhat different inferences via 
ABC and via an (incorrect) additive-normal-BL approach (Figures 

6A, B). The BL’s prediction of the parameter target is considerably 
less accurate (Table S1), and its parameter uncertainty is wider 
than the ABC’s. This case is a test to both approaches as none 
has suitable a priori information about the simulated data, which 
has strong skewed noise, so a close match of the target by either 
approach is unlikely. The trait predictive PDs fit the simulated 
data well in both approaches (Figures 6C,  D; Figure S3, Table 

S1). Beyond the data range, the ABC’s predicted median curve 
and uncertainty (similar to Figure 5C) had, respectively, greater 
accuracy and narrower width than those of the BL approach. 
Assuming a likelihood closer to the data-generating distribution, 
that is, multiplicative noise (Equation 16), led to predictions 
(figure not shown) closer to the target and of similar accuracy 

FIGURE 3 | Body weight of individual pig: residuals. Residual difference between the fitted data (110 points) and growth model (Equation 21) fitted in Figure 2 via 

ABC (left) and via additive-normal likelihood (right). (A, B) Absolute residuals. (C, D) Residuals scaled by observation. Colour shows cumulative probability within the 

quantile ranges in the legend (median is the centre of the yellow range).
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to ABC’s, although overall with larger estimated uncertainty; 
however, ABC did not require this knowledge.

Individual Multiple-Trait Phenotypes
Body Weight and Energy Intake of Individual Pig
Fitting Gompertz curves, with parameters K,b and K2,b2, jointly 
to empirical BW (as in Figure 2) and energy intake (NEI) of 
one individual pig poses greater inferential challenge because 
of the larger relative variation in the second trait and the larger 
number of parameters estimated. Agreement between the ABC 
and additive-normal-BL inferences depends on the volume 
of data fitted. Fitting 25% (24/96) of the data set using either 
approach leads to marginal PDs of BW parameters (Figures 

7A, B) similar to those in Figures 2A, B (except for a sampling-
driven reduction in grid resolution). The BW parameter mode 
is the same using ABC or BL inference (Table S1) but differs 
from Figure 2, which refers to a different animal. However, the 
NEI marginal parameter PDs and their modes (Figures 7C, D; 

Table S1) were statistically distinct between approaches because 
they had very limited overlap. Fitting the whole data set yielded 
NEI parameter PDs and modes similar between approaches 

(Figures S4C, D) and to those obtained via the ABC subset-
data fitting (Figure 7C). The BW predictive distribution was 
unaffected by data change in either approach (Figures 7E, F; 
Figures S4E, F), apart from a minor shift in the median due 
to a shift in the parameter distribution (Figures S4A, B). The 
NEI predictive distribution was also largely unaffected by data 
change when using ABC but was clearly affected when using 
normal BL (Figures 7G, H; Figures S4G, H). Here, the change 
in the NEI mode curve is less meaningful than the change in 
predicted quantiles, for example, median, as parameter mode 
estimates are more sensitive to large random variations such as 
that in the NEI data (as are the estimates of R2 and uncertainty). 
Figure 7 shows BW and NEI are predicted to reach maturity 
on distinct timescales. These results suggest that the ABC 
prediction has some accuracy because it is also supported by 
BL when all data are used.

Simulated Correlated Traits With Multivariate-Normal 

Noise
Two traits with a Gompertz trend are correlated via trend if their 
parameter ratios (K/b) allow the traits to increase similarly within 
the data range despite random variation. This was the case of the 

FIGURE 4 | Body weight of individual pig: effect of reduced data volume. Trait parameters and temporal distribution estimated via ABC (left) and normal likelihood 

(right) as in Figure 2, but fitting 7/110 data points (6%). (A, B) Parameter posterior distribution (PD) of the Gompertz model. (C, D) Predictive PD of body weight 

(BW). Other specifications as in Figure 2.
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empirical data (Figure 7). To extend the simulated data of Figure 5 to 
two traits, T1 and T2, we overlaid additive-normal noise (Equation 
15) with given variance-covariance onto Gompertz curves with 
parameters K,b and K2,b2 with given target values (Table S1). This 
case, like Figure 5, is a test on ABC but not on the BL approach, 
which inputs the exact data distribution (and suitable covariance 
estimates) and should perform optimally for the given noise. Fitting 
Gompertz curves to the simulated traits yields largely similar 
parameter PDs via the ABC and additive-MVN-BL approaches 
(Figures 8A–D, for pairwise-marginal distributions, Table S1). 
For T1, the target is predicted accurately by either approach, as in 
Figure 5, although the BL’s parameter distribution is wider (Figure 

8B). For T2, the target is predicted less accurately by ABC, whose 
parameter distribution is wider due to the large relative noise in the 
data but includes the target and its centre is closer to the target than 
its mode (Figure  8C). The T1 predictive-PD of either approach 
agrees with the data (Figures 8E, F), and beyond the data range 
agrees with the target curve, although the BL’s distribution has 
larger uncertainty and a median above target because of parameter 
overspread. The T2 predictive-PD of either approach also agrees 
with the data in relation to its variation (Figures 8G, H); beyond the 

data range, the medians agree with the target (with the ABC mode 
curve above target because of mode eccentricity, Figure 8C). The 
ABC T2 distribution does not agree with the target at lower ages, 
where additive noise disturbs the data disproportionally, causing 
overestimation of the timescale b2, but it agrees with the data. These 
results show that, despite the extreme random effects in the data 
and the absence of prior information on these effects, the ABC 
inferences could capture the overall variability in the data.

From Individual Phenotypes to Population 
Phenotypes
Here, we scale up estimation to populations to examine phenotype 
variation among individuals and characterise phenotypes at the 
population level. The population-level distribution incorporates 
variation among and within individuals and uncertainty.

Body Weight in a Pig Population
Estimating the PD of Gompertz parameters for BW (Equation 
21), as in Figure 2, for every individual within a pig population 
and using the probabilistic framework (see Methods) generates 

FIGURE 5 | Simulated normally-distributed individual trait. Trait parameters and temporal distribution estimated from simulated individual data, with Gompertz trend 

(Equation 21) and additive-normal noise (Equation 15), using ABC (left) and additive-normal likelihood (right). Target parameters: (K,b = 100,50). (A, B) Parameter 

posterior distribution (PD) of the Gompertz model. (C, D) Predictive PD of body weight. Data comprise 50 points at randomly distributed ages within the given 

range; noise has standard deviation 1 (four times that of the pig data). Other specifications as in Figure 2.
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a population PD of parameters. This hyperdistribution refers to 
individual parameters as it pools individual-level probabilities 
(Equation 9), and not to parameters of an average individual 
as would result from fitting pooled data (c.f. Figure 11). As the 
parameters of the BW model are often interpreted as traits, a 
point (K,b) in parameter space represents a phenotype, and the 
parameter probability distribution represents the phenotype 
landscape of the population. We fitted BW data on a group of 
pigs drawn randomly from a population with unspecified genetic 
and phenotypic heterogeneity; our purpose is to assess how 
the ABC and BL approaches characterise heterogeneity. The 
parameter distributions estimated via ABC and multiplicative-
normal BL (Equation 16) are similar and have identical modes 
(Figures 9A, B; Table S1), quantitatively different from but 
including the previous individuals (Figures 2 and 7). This mode 
is the most likely phenotype in this population, but is not much 
more likely than neighbour phenotypes in the landscape; nor 
is it average as the landscape is skewed. The population BW 
predictive distributions of the ABC and BL approaches are 
similar and fit the data well (Figures 9C, D; Table S1). Beyond 
the data range, BL predicts a higher median BW and larger 

uncertainty because of a heavier parameter distribution tail. 
Although the approaches’ inferences are largely similar at the 
population level, they differ at the individual level. One way of 
tracking the phenotype prediction of individuals is to scatterplot 
their parameter modes (Figures 9E, F). This plot shows outlier 
individuals that are either phenotypically distinct, or misfit by 
the model due to noisy or perturbed growth trajectories; the 
key difference between approaches (Figures 9E, F) is that ABC 
predicts more outliers [e.g., mature BW > 550 kg, estimated to 
be large in Strathe et al. (2010) (p. 644)]. Using additive-normal 
BL changes the population distributions slightly in relation to 
the multiplicative-normal BL. The parameter distribution shifts 
(Figures S5A, B; Table S1) and so does the BW mode curve, but 
not the BW predictive-PD (Figures S5C, D). The key change is in 
the pattern of mode scatter (Figures S5E, F), with greater mode 
clustering, around 300 kg, distancing further from the pattern 
obtained via ABC. The consistency between outcomes of the 
ABC and multiplicative-normal-BL approaches suggests that 
these outcomes may be the more accurate. Only some individuals 
had mode predictions affected by change in likelihood, which 
suggests that individuals may have specific trait distributions.

FIGURE 6 | Simulated skew-distributed individual trait. Trait parameters and temporal distribution estimated from simulated individual data with Gompertz trend 

(Equation 21) and chi-square multiplicative noise (Equation 17), using ABC (left) and normal likelihood (right). Target parameters: (K,b = 100,50). (A, B) Parameter 

posterior distribution (PD) of the Gompertz model. (C, D) Predictive PD of body weight. Data comprise 50 points at randomly distributed ages within the given 

range; noise has standard deviation 7% (deviations can be two to three times larger). Other details as in Figure 2.
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Body Weight in a Mixed-Line Chicken Population
This data set comprises an even split between two genetic lines, 
faster- and slower-growing; in the analysis we do not track 
which line each individual belongs to. Applying to this data set 
the approach applied to the pig population led to a parameter 
PD that is distinctively bimodal when obtained via ABC but has 
a single (faster-growing phenotype) mode when obtained via 
multiplicative-normal (Figures 10A, B) or additive-normal BL. 
Here, we interpret mode as a region of locally-high probability 
rather than as a point and, to visualise this detail, allow the 
probability density colour scale to differ between Figure 10A 
and Figure 10B. The BL parameter distribution (Figure 10B) 
identifies one phenotype mode in its fast-growing region but is 
relatively dispersed in the region of smaller-animal phenotypes 
(i.e., that grow less within the same timescale b). The ABC 
approach identifies the fast- and slow-growing lines with 
similar probability; this means that the BL approach does not 
fit well the slower-growing individuals. This difference between 
approaches is reflected in the population BW predictive PDs 
(Figures 10C, D): the ABC’s quantile range of 40–60% (yellow) 
correctly shifts upward and is wider than that of BL. Moreover, 
the BL’s goodness of individual fit (R2 > 0.85) is lower than the 
ABC’s (R2 > 0.98; c.f. Figure S7 for individual values). The 
scatterplot of individual phenotype modes (Figures 10E, F) 
confirms the above findings. These results further suggest that 
ABC infers individual-specific trait distributions.

Body Weight in a Pig Population: Fitting Pooled Data
To assess the approach to estimate population trait distributions 
based on fitting individuals separately (Equation  7), we 
compare with estimates based on fitting pooled data. We 
consider the case where data from multiple individuals are 
pooled as point observations (but not averaged over) and fitted 
jointly by an individual-trait model. This model represents an 
average individual in some sense but only in special cases in 
a statistical sense. Fitting the Gompertz curve (Equation 21) 
to pooled BW of the 50 pigs in Figure 9, the ABC approach 
leads to a population parameter PD (Figure 11A; Table S1) 
that shifts towards larger mature-size and timescale parameter 
values in relation to Figure 9A. The multiplicative-normal BL 
approach yields a parameter distribution with a similar mode 
but coalesces to nearly a point (Figure 11B; Table S1). The 
ABC’s population BW predictive-distribution (Figure 11C) is 
similar but with a more convex shape (later inflection point) 
than in Figure 9C, and beyond the data range has higher 
median and mode BW curves than in Figure 9C; the BL’s 
BW distribution has a similar median but is much narrower 
(Figure 11D versus Figure 9D). This pig population contains 

substantial trait variation among individuals (Figures 9E, F), 
whether caused by actual phenotypic differences or to distinct 
disturbances in the data; in this group, many animals have 
relatively lower growth that explains the lower population 
modes estimated via ABC or BL (Figure 9; Table S1). The 
shift in population distributions and increase in parameter 
mode and median BW, when fitting pooled data (Figure 11), 
are likely. The result of a greater influence from larger animals 
than when the population distributions build on individually-
fitted distributions (Equation 7). When fitting pooled data, 
the ABC approach allowed estimation of uncertainty, whereas 
the normal BL approach was limited to central estimates of 
parameters and traits. Using additive-normal BL inference, 
the parameter distribution was similar but had a lower mode 
(Table S1) that influenced BW predictive-distribution (figure 
not shown).

DISCUSSION

We proposed a Bayesian modelling framework to infer individual- 
and population-level phenotypic variations from multiple-
individual, multiple-observation trait data. The approach differs 
from established approaches by combining two steps: 1) The use 
of nonparametric Bayesian inference (ABC) as a tool for fitting trait 
models to individual data (Hypothesis 1, Table 1). The aim of this 
step is to derive data-based trait distributions that do not rely 
on an assumed residual distribution but rather on a data-driven 
form of noise; this distribution is often unknown [e.g., Barnard 
in discussion in Box (1980)] but must be assumed or guessed in 
parametric (likelihood-based) Bayesian approaches. 2) Scaling-up 
from individual trait distributions to population phenotype 
distributions (Hypothesis 2, Equation 7, Table 1). One aim of 
this step is to input maximal individual information (from stand-
alone individual fitting in step 1) in a postinference population 
estimation. Another aim is to weigh individual contributions on 
probability rather than on trait value and to tackle outliers fairly 
(i.e., without having a disproportional influence). The focus here 
was on groups or populations within which trait variation results 
from individual responses (‘random effects’) to equal factors (‘fixed 
effects’, see Equation 7). The subsequent steps in the approach to 
compare phenotypes among groups or populations by estimating 
each group’s fixed effects on the traits are discussed later.

The relevance to animal or plant breeding, in particular, is 
two-fold: first, the approach’s potential for more accurate trait 
estimation could lead to a more accurate selection of individuals 
within a generation. Selection could be improved particularly 
where the estimation of breeding value involves multiple traits, 
given the approach’s potential to infer correlations accurately 

FIGURE 7 | Body weight and energy intake of individual pig. Trait parameters and temporal distribution estimated from two observed correlated traits of 

the same individual, using ABC (left) and additive-MVN likelihood (right) (Equation 15). Only 25% of the data set is fitted (Figure S4 shows a fit to the full 

data). (A, B) Marginal parameter posterior distribution (PD) for the body weight (BW) Gompertz model (Equation 21); K, mature size; and b, time to maturity; 

(C, D) likewise for the NEI Gompertz model (K2, mature size; and b2, time to maturity); colour scale as in Figures 2A, B; (E, F) predictive PD of BW. 

(G, H) likewise for predicted NEI; colour key as in Figures 2C, D. The mode curve (∇) refers to the Gompertz model with parameters given by the mode of the 

parameter posterior [ABC: white circle (ο); likelihood: white square (◻)]. R2 is a Bayesian version of the goodness-of-fit statistic (see Methods). Other details as 

in Figure 2.
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without requiring specification of a variance-covariance matrix. 
Second, the effect of a more accurate selection would build over 
generations and potentially lead to more decisive estimates of 
trait heritability because the selected groups would be less likely 
to mix individuals with disparate responses. Semiparametric 
approaches have been proposed with the same aim of Hypothesis 
1 of weakening prior assumptions and shown to be potentially 
more accurate than fully parametric regression (Gonzalez-Recio 
et al., 2008). Other approaches [e.g., Drovandi et al. (2016)] have 
applied nonparametric Bayesian inference (as in hypothesis 1) to 
infer individual trait variations in a population but without the 
stand-alone individual fitting and the scaling-up of hypothesis 2. 
On the other hand, ABC is usually applied to complex or high-
dimensional systems as a substitute for difficult-to-calculate 
likelihoods (Fearnhead and Prangle, 2012; Sunnaker et al., 2013) 
rather than as a general nonparametric tool (Green et al., 2015). 
Like hypothesis 2, other frameworks, Bayesian and frequentist 
such as DHGLM (Lee and Nelder, 2006), aim to capture and 
differentiate variation within and among individuals in a 
population but use parametric assumptions about within- 
and between-individual trait variations (Hill and Mulder, 
2010; Cleasby et al., 2015). Multiple studies of individual trait 
variation have focused on ontogenetic growth using normal-
likelihood methods (Strathe et al., 2010; Herault et al., 2011; 
Vincenzi et al., 2014) or non-normal inference (Zhang, 2016). 
The approach we propose is exploratory but could be alternative 
in suitable cases; it applies to individual trait models of general 
nonlinearity and complexity and tackles parameter correlations 
(Babtie and Stumpf, 2017). We demonstrated six advantages of 
the approach  on parameter-parsimonious growth models that 
are widely used for the interpretability of their parameters as 
model-derived traits.

Advantages of the Approach in Relation  
to Hypothesis 1
Application of the approach to single-individual ontogenetic 
growth supported Hypothesis 1 (Table 1). ABC inference was 
at least as accurate and as consistent as BL inference (Q1.1) in 
estimating growth and size traits from simulated data (Figures 

5, 6, and 8), where distribution of noise is known, and from 
empirical data (Figures 2–4, 7 and 9). In addition (Q1.2), 
ABC inferences (including out-of-data prediction) were more 
accurate than BL inferences when the likelihood distributional 
assumptions were not accurate or when the size of the data set 
(data volume) was reduced. The results on Q1.1 give confidence 
in the ABC approach, whereas those on Q1.2 demonstrate 
flexibility and potential robustness. In general, both the ABC and 
BL inferences were more accurate than those based on maximum 

likelihood estimation. In the case of simulated data, the findings 
were derived based on proximity to known targets. In the case 
of empirical data, support for ABC inference followed from 
its agreement with BL inference under one of the likelihood’s 
assumptions, additive or multiplicative noise. Both assumptions 
have been used (Blasco et al., 2003; Strathe et al., 2010; Coyne 
et al., 2017) and are plausible but yielded distinct inferences and 
could not be selected based on goodness of fit as measured by 
a Bayesian R2. There are therefore several advantages that arise 
from the methodology developed:

Automatic Form of the Noise Distribution
ABC does not require prior knowledge of the residual distribution 
of the trait data and thus does not require specification of a noise 
distribution to generate accurate inferences. BL inference, being 
sensitive to the parametric assumptions on this distribution is 
less reliable when there is limited or no knowledge about data 
distribution, which was clearly the case of the current empirical 
data. Even when such knowledge exists, there is an additional 
requirement to estimate auxiliary multitrait variance-covariance 
parameters (Ch. 8–9 in Blasco, 2017).

Robustness to Small Sample Size
ABC had greater robustness compared to likelihood inference in 
estimating modal and median growth curves when the volume 
of data per individual was low; this suggests that ABC requires 
fewer observations, and thus smaller experimental or monitoring 
resources, to achieve meaningful point estimates. Estimation of 
uncertainty, on the other hand, is affected by data volume in both 
approaches (Green et al., 2015). However, ABC gave accurate 
point estimates and did not require a large amount of data to 
stabilise its uncertainty estimates (c.f. area of higher probability 
among Figures 4A, 2A, and 9A, where data volume increased 
from 16 to 110 (×7) and to 4,900 (×45).

No Use of Unreliable Point (Mode-Based) Estimates
Both Bayesian approaches, ABC and BL, generated median 
predictive curves that were generally robust to challenges and 
more consistent between approaches than maximum likelihood 
predictive curves. MLE estimates were particularly sensitive 
to distributional assumptions and data volume and, in some 
cases, led to out-of-data curve projections with limited data 
support (i.e., far-from-median low-posterior-probability 
curves associated with parameter skew). It is well known that 
MLE estimates have restricted meaning in systems with poorly 
constrained parameters (Gutenkunst et al., 2007). Such point 
estimation issues are generally addressed through estimation of 
confidence intervals; however, the above caveats still apply when 
the accuracy of MLE and CIs relies on distributional assumptions.

FIGURE 8 | Simulated correlated traits with multivariate normal noise. Trait parameters and temporal distribution estimated from simulated data on two correlated 

traits of the same individual (Gompertz trend, Equation 21, superimposed with MVN noise, Equation 15), using ABC (left) and additive-MVN likelihood (right) 

(Equation 15). Target parameters: (K,b) = (100,50) for trait 1, (K2,b2) = (25,30) for trait 2. (A, B) Marginal parameter posterior distribution (PD) for Gompertz model of 

trait 1 (K, maturity limit; and b, time to maturity); (C, D) likewise for Gompertz model of trait 2 (K2, maturity limit; and b2, time to maturity); colour scale as in Figures 

2A, B; (E, F) predictive PD of trait 1.(G, H) likewise for predicted trait 2; colour key as in Figures 2C, D. Data comprise 50 points at randomly distributed ages 

within the given range; the MVN noise has variance-covariance (var corr; corr var2) = (22 0.1; 0.1 42).
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Advantages of the Approach in Relation to 
Hypothesis 2
Applying the approach to ontogenetic growth of multiple 
individuals in animal populations supported Hypothesis 2 
(Table 1). The population trait and parameter PDs obtained via 
ABC or BL were similar and seemed plausible (Q2.1) when fitting 
empirical data from a population of a single genetic line (Figures 

9A–D). However, there was a difference between approaches in the 
phenotypic pattern inferred across individuals (Figures 9E, F). The 

ABC-based phenotypic landscape had more outlier individuals 
than the BL-based landscape. The outliers represent either actual 
phenotypic differences or model misfit to perturbed growth 
trajectories; in the ABC approach, there was slightly greater and 
less variable goodness-of-fit across individuals (Figure S6). The 
BL-based phenotypic landscape, in turn, differed from a more-
clustered pattern inferred via a second likelihood assumption. This 
distributional sensitivity and a lesser consistency in goodness-of-
fit of the BL approach occurred despite there being parametric 

FIGURE 9 | Body weight in a pig population. Estimation via ABC (left) and multiplicative-normal likelihood (right). (A, B) Population parameter posterior distribution 

(PD) of the body weight (BW) Gompertz model. (C, D) Population predictive PD of BW. (E, F) scatterplot of individual mode parameters (K,b); colour scale indicates 

number of individuals with parameter mode within each cell (the total number of modes equals the number of individuals). Data set with 48 individuals, including 

those in Figures 2 and 5. Other details as in Figure 2.
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flexibility in the normal likelihood used to fit each individual 
(through joint estimation of variance parameters integrated out 
in the trait parameter marginal PDs, see Methods). These results 
support the likely possibility that trait distributions are individual-
specific, and thus that the ABC fit may have been more accurate for 
some individuals (Q1.2), leading to the following consequences:

Identification of Individual Differences
An emerging strength of ABC is that it has the potential to more 
accurately identify trait differences among individuals, reflecting 

differences in genotype or in environmental factors, and thus 
to estimate trait variation within populations. ABC can flexibly 
capture the variation within each individual’s data as it does 
not rely on the residuals taking or deviating from a given form. 
Support for this adaptability was reinforced by fitting growth in 
a mixed-line bird population without inputting individual line 
information (Figure 10); ABC identified two clear phenotypic 
clusters, whereas the BL approach identified only one cluster 
(Figures 10A, B, E, and F). This outcome further illustrates 
that although hyperparameters (c.f. above) can capture some 

FIGURE 10 | Body weight in a mixed-line chicken population. Estimation via ABC (left) and multiplicative-normal likelihood (right). (A, B) Population parameters 

posterior distribution (PD) of the BW Gompertz model. (C, D) Population predictive PD of BW. (E, F) scatterplot of individual mode parameters (K,b); colour scale 

indicates the number of individuals in each parameter cell. Data set with 71 individuals and even split between two genetic lines. Other details as in Figures 2 and 7.
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individual specificity in likelihood-based trait distributions, such 
approach is still limited by the sharing of features subsumed in 
parametric frameworks (Hill and Mulder, 2010; Cleasby et  al., 
2015). The potential of ABC for more accurate estimation 
of individual traits suggests it can facilitate the estimation of 
individual phenotypic variation (random effects) and even an 
automatic detection of some group effects (fixed effects) within a 
population (Figure 10). To characterise the pattern of individual 
phenotypes in a population, we used scatterplots of individual 
trait modes (Figure 9 and Figures 10E, D); given the potential 
lack of robustness of mode estimates, alternative point estimates 
could be used to represent individuality in a population.

Tackling Outlier Individuals
A further advantage of the current framework relates to the 
tackling of outliers. At individual level, extreme variation can be 
addressed through the use of nonparametric approaches that allow 
for long-tailed residual distributions (Maier et al., 2017; Gianola 
et al., 2018). At the population level, the fact that the ABC and BL 
approaches inferred similar population phenotypic distributions 

(Figure 9) despite identifying different outlier individuals suggests 
that the population distribution (Equation 7) is robust to the 
presence of outliers (Q2.1). This property results from pooling 
individual contributions based on probability rather than on trait 
value, causing extreme-phenotype individuals to have an equal 
influence to other individuals and thus precluding trait-magnitude 
bias on population inferences and a need to remove outliers. In 
contrast, when a trait model is fitted not in stand-alone form 
but jointly to multiple individual data or to pooled data, as in 
many regression approaches, the interpretation of a population 
phenotypic distribution as a measure of variation in individual 
traits may be affected. When fitting jointly multiple individual data, 
there is some allowance for individual estimates to be influenced 
by other individuals (Cleasby et al., 2015). A more extreme case is 
the use of pooled, or even averaged, data, which in general does 
not follow an individual pattern [e.g., consider pooling live weight 
by age of individuals with differing birth weight or delay in growth 
(Begall, 1997)]. Redoing the fitting of Figure 9 but on pooled 
data (point observations without individual tags), there was 
still characterisation of phenotypic variation in the ABC-based 

FIGURE 11 | Body weight in a pig population: fitting pooled data. Estimation from the same data as in Figure 7 using ABC (left) and multiplicative-normal likelihood 

(right), but fitting a single Gompertz curve to data pooled across individuals (that is, point observations from all individuals in the population fitted jointly). This 

approach is similar to statistical regression without individual-specific random effects and with nonparametric and normal error terms for the ABC and likelihood 

approaches, respectively. (A, B) Population parameter posterior distribution (PD) of the BW Gompertz model. (C, D) Population predictive PD of BW. Other details 

as in Figure 9.
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population distributions, but convergence to a central estimate in 
the BL-based inference as the increased volume of fitted data leads 
to very narrow PDs (Figure 11). The population trait distributions 
derived from pooled data, rather than from individually fitted 
distributions, had a shift towards larger trait values, likely because 
here the influence of each individual’s data is determined by the 
individual’s trait magnitude (Q2.2). Other studies have also found 
improvement in prediction by fitting individual rather than 
population data (e.g., Vincenzi et al., 2014).

Population Characteristics
A final advantage of the current framework is that, by fitting 
individuals in stand-alone form, it is possible to infer more 
accurate population distributions, as well as central estimates; it 
is also possible to track individual phenotype patterns within a 
population (as in Figures 9, 10E, F). An improved estimation of 
population distributions could also offer a better characterisation 
of phenotypic differences among populations.

Extension and Limitations of the Approach
Indices of Intraindividual Variation
Phenotype comparisons among studies, populations, or groups 
can be made, for example, using the average and range of variation 
in the population posterior trait distributions (Figures 9, 10A–D) 
or scatterplots of individual point estimates (Figures 9, 10E, F). 
However, we can separate intraindividual from interindividual 
variation using population indices of individual variation. For 
example, repeatability in behaviour ecology (Cleasby et al., 
2015) measures variation in the individual predictability of a 
trait, a measure of plasticity. A variation index (ρ) can be defined 
in the current nonparametric Bayesian context. For example, 
evaluating a summary statistic (ρi) of the trait PD of individual i, 
such as a normalised sample variance or a credible interval, then 
ρ would be a statistic on the population distribution of ρi, such 
as the variance of the raw distribution or of a fitted parametric 
distribution. These extensions could be studied in future work. 
Given that these indices are derived postinference, Bayesian 
inference is not influenced by their choice.

Fixed and Random Effects
The approach proposed in this paper can be extended to estimate 
the influence of population-level (fixed-effect) factors on modelled 
traits, in addition to estimating individual-level (random effect) 
factors, which has been the focus so far. In the population examples 
studied (Figures 9–11), it was assumed that all individuals were 
subject to equal population or group conditions (e.g., a line, 
diet, or macroenvironment, corresponding to fixed population 
parameters θP and covariates in the trait model, section A 
Probabilistic Framework for Modelling Phenotypes in Individuals 
and Populations) and that the individuals responded independently 
to such conditions. This variation in responses (represented 
in the trait model as variation in the parameters θi, section A 
Probabilistic Framework for Modelling Phenotypes in Individuals 
and Populations) could have resulted from individual factors, for 
example, genetic or acquired differences, or from nonmeasurable 
microenvironment variation (Hill and Mulder, 2010). When both 

the responses and the factors affecting them differ among the 
individuals, the conditional independence of the responses does 
not strictly apply (section A Probabilistic Framework for Modelling 
Phenotypes in Individuals and Populations). The responses are 
correlated through the extent to which individuals share similar 
conditions, which can confound the estimates of the responses. The 
two-line chicken population (Figure 10) was a deliberate exception 
to the assumption. Here, a clear distinction emerged between 
the parameters of the two subgroups (when using ABC) because 
the line effect was predominantly binary and enough to override 
confounding. For a generic population where the individuals are 
subject to distinct factors (represented by distinct values of the 
parameters θP and covariates X in the trait model), we follow the 
assumption that hierarchical mixed-effect regression models make 
(Hill, 2010; Gelman et al., 2013; Blasco, 2017) to distinguish random 
from fixed effects, that is, that individuals can be categorised 
into equal-factor groups according to the values of θP and X. The 
remaining question is how to estimate all the parameters of the 
model, θi and θP. One possible method is to apply the approach 
of section A Probabilistic Framework for Modelling Phenotypes in 
Individuals and Populations separately to each group, to calculate 
group-specific posterior averages of the modelled responses or 
of the parameters of the model, and then to compare the group-
specific phenotype averages. The fixed-effects and interactions are 
given by the differences between phenotype averages of suitable 
groups. This method builds on the notion of fixed-effects as group-
specific additive components of the responses (Blasco, 2017) or of 
the parameters (Coyne et al., 2017), and is computationally simple 
as it is postinferential to the Bayesian approach in this paper. In the 
case where the model is a linear additive mixed-effect model, it is 
easy to relate fixed effects on responses and on parameters; here, 
the outcomes of this method are expected to be equivalent to those 
of mixed-effect regression because the mean of the random effects 
is zero. In the case of nonlinear mixed-effect models, the estimates 
obtained via either method may or may not be similar. Further 
formalisation of this approach could be further work. A second 
method would be to estimate jointly the two types of effects. The 
iterative estimation would relate to iterative approaches used in 
many hierarchical regression models (Coyne et al., 2017) but would 
be Bayesian. As a joint estimation of individual- and group-level 
parameters would depend directly on the number of individuals, 
it could become an inferential problem of high dimension (in 
parameters and data). One approach to the problem is to fit trait 
models jointly to multiple individuals (e.g., Cleasby et al., 2015). 
Alternatively, Bayesian parameter sampling schemes mixing group-
parameter proposals and stand-alone fitting of individual data 
could be feasible, depending on balancing numbers of parameters 
and individuals and computation. There has been progress in 
developing ABC techniques for sampling correlated parameters in 
such high-dimensional problems (e.g., Kousathanas et al., 2016).

Interpretation of ABC
There is growing interest in the application of ABC for its 
flexibility in tackling large complex inferential problems (Robert 
et al., 2011; Fearnhead and Prangle, 2012; Sunnaker et al., 
2013), but there are also limitations and criticisms to ABC, most 
referring to those systems. First, when used as an approximation to 
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a problem with a known data distribution, ABC produces a sample 
from a PD that is not the exact one supported by the likelihood as 
the tolerance parameter is non-zero (Robert et al., 2011; Wilkinson, 
2013; Kypraios et al., 2017). However, this point is less relevant when 
the data distribution is not known with confidence, which is the 
case we consider. Moreover, in the simulated-data examples, we did 
not find evidence of poor approximation. Second, prior parameter 
assumptions can influence inference. We took a least-assumption 
stand by adopting wide uniform prior distributions (suggested 
directly by the data range, and whose potential computational 
cost was tackled through methods in Text S1), and diagnosed the 
posterior distributions. Third, ABC may not reliably discriminate 
competing trait models when fitting insufficient summary statistics 
as loss of information can cause misidentification (Robert et al., 
2011). The data and models in the case studies, while realistic and 
having shown worth of applying this nonparametric approach, were 
simple enough not to demand the use of such statistics. Moreover, 
we tested alternative noise models but not competing trait models 
as that was not the purpose here; however, comparing alternative 
models for ontogenetic growth based on the procedures presented 
here is desirable and feasible [e.g. as in Toni et al. (2009)]. Finally, 
the level of computation required by ABC depends on the problem’s 
dimensions, that is, number of traits, individuals, and model 
parameters. We showed examples with up to four model parameters, 
but higher-dimensional applications are emerging, for example, 
more than 10 parameters in systems biology (van der Vaart et al., 
2015; Drovandi et al., 2016; Saa and Nielsen, 2016; Daly et al., 2017),  
although not necessarily using multiple-individual data.

CONCLUSIONS

We proposed a nonparametric approach to quantify phenotype 
variations in groups and populations of organisms. This work 
may be relevant to areas where phenotype variation is important 
and, more generally, to areas where there is interest in methods 
to fit mathematical models to biological data with unknown data 
distribution, with outliers, and with few or irregular observations 
per individual.

ETHICS STATEMENT

The empirical data used in this paper were not generated 
in this study. The data originated from animals treated 
under normal husbandry procedures and for this reason 
no Institutional or other relevant ethics board approval was 
required for its collection.

AUTHOR CONTRIBUTIONS

JF conceptualised, developed, and tested the methods; analysed 
the data; and wrote the original draft. JF and IK designed the 
study, acquired data, verified the results, and reviewed and edited 
the manuscript. IK acquired the funding. Both authors approved 
the final version of the manuscript for publication.

FUNDING

This research was funded in part by the European Commission 
(Grant agreement no: 633531) under the EU Framework 
Programme for Research and Innovation Horizon 2020. The 
Commission accepts no responsibility or liability whatsoever 
with regard to the material in this paper. The funders had no role 
in study design, data collection and analysis, decision to publish, 
or preparation of the manuscript.

ACKNOWLEDGMENTS

We thank Egbert Knol and Panagiotis Sakkas for providing access 
to unpublished data. We thank Maciek Misiura for comments 
on a previous version of this manuscript, and we thank two 
anonymous referees for their comments and suggestions.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: 
https://www.frontiersin.org/articles/10.3389/fgene.2019.00727/
full#supplementary-material

TEXT S1 | Algorithm for Approximate Bayesian Computation Markov-chain 

Monte Carlo.

TABLE S1 | Results and assessment of fitting the growth model to the datasets.

FIGURE S1 | Body weight of individual pig: multiplicative-normal likelihood.

FIGURE S2 | Simulated normally-distributed individual trait: residuals.

FIGURE S3 | Simulated skew-distributed individual trait: diagnostic of ABC-

MCMC Convergence.

FIGURE S4 | Body weight and energy intake of individual pig: fitting the full dataset.

FIGURE S5 | Body weight in a pig population: additive-normal likelihood.

FIGURE S6 | Body weight in a pig population: Goodness of fit across individuals.

FIGURE S7 | Body weight in a genetically-heterogeneous chicken population: 

Goodness of fit across individuals.

REFERENCES

Babtie, A. C., and Stumpf, M. P. H. (2017). How to deal with parameters 

for whole-cell modelling. J. R. Soc. Interface 14 (133), 11. doi: 10.1098/

rsif.2017.0237

Beaman, J. E., White, C. R., and Seebacher, F. (2016). Evolution of plasticity: 

mechanistic Link between development and reversible acclimation. Trends 

Ecol. Evol. 31 (3), 237–249. doi: 10.1016/j.tree.2016.01.004

Beaumont, M. A. (2010). “Approximate Bayesian Computation in Evolution and 

Ecology,” in Annual Review of Ecology, Evolution, and Systematics, Vol 41. Eds. 

D. J. Futuyma, H. B. Shafer, and D. Simberloff (Palo Alto: Annual Reviews), 

379–406. doi: 10.1146/annurev-ecolsys-102209-144621

Begall, S. (1997). The application of the Gompertz model to describe body growth. 

Growth Dev. Aging 61 (2), 61–67.

Black, J. L. (2009). “Models to predict feed intake,” in Voluntary feed intake in pigs. Eds. 

D. Torrallardona and R. Roura. The Netherlands: Wageningen Academic Publishers.

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fgene.2019.00727/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2019.00727/full#supplementary-material
https://doi.org/10.1098/rsif.2017.0237
https://doi.org/10.1098/rsif.2017.0237
https://doi.org/10.1016/j.tree.2016.01.004
https://doi.org/10.1146/annurev-ecolsys-102209-144621


Likelihood-Free Modelling of Phenotype VariabilityFilipe and Kyriazakis

23 September 2019 | Volume 10 | Article 727Frontiers in Genetics | www.frontiersin.org

Blasco, A. (2017). Bayesian Data Analysis for Animal Scientists: The Basics. Cham, 

Switzerland Springer International PU.

Blasco, A., Piles, M., and Varona, L. (2003). A Bayesian analysis of the effect of 

selection for growth rate on growth curves in rabbits. Genet. Selection Evol. 35 

(1), 21–41. doi: 10.1051/gse:2002034

Box, G. E. P. (1980). Sampling and Bayes inference in scientific modeling and 

robustness. J. R. Stat. Soc. Ser. A Stat. Soc. 143, 383–430. doi: 10.2307/2982063

Britton, O. J., Bueno-Orovio, A., Van Ammel, K., Lu, H. R., Towart, R., Gallacher, 

D. J., et al. (2013). Experimentally calibrated population of models predicts and 

explains intersubject variability in cardiac cellular electrophysiology. Proc. Natl. 

Acad. Sci. U. S. A. 110 (23), E2098–E2105. doi: 10.1073/pnas.1304382110

Cleasby, I. R., Nakagawa, S., and Schielzeth, H. (2015). Quantifying the 

predictability of behaviour: statistical approaches for the study of between-

individual variation in the within-individual variance. Methods Ecol. Evol. 6 

(1), 27–37. doi: 10.1111/2041-210X.12281

Coyne, J. M., Matilainen, K., Berry, D. P., Sevon-Aimonen, M. L., Mantysaari, 

E. A., Juga, J., et al. (2017). Estimation of genetic (co)variances of Gompertz 

growth function parameters in pigs. J. Anim. Breed. Genet. 134 (2), 136–143. 

doi: 10.1111/jbg.12237

Csillery, K., Francois, O., and Blum, M. G. B. (2012). abc: an R package for 

approximate Bayesian computation (ABC). Methods Ecol. Evol. 3 (3), 475–479. 

doi: 10.1111/j.2041-210X.2011.00179.x

Daly, A. C., Cooper, J., Gavaghan, D. J., and Holmes, C. (2017). Comparing two 

sequential Monte Carlo samplers for exact and approximate Bayesian inference 

on biological models. J. R. Soc. Interface 14 (134), 18. doi: 10.1098/rsif.2017.0340

Dingemanse, N. J., Kazem, A. J. N., Reale, D., and Wright, J. (2010). Behavioural 

reaction norms: animal personality meets individual plasticity. Trends Ecol. 

Evol. 25 (2), 81–89. doi: 10.1016/j.tree.2009.07.013

Dingemanse, N. J., and Wolf, M. (2013). Between-individual differences in 

behavioural plasticity within populations: causes and consequences. Anim. 

Behav. 85 (5), 1031–1039. doi: 10.1016/j.anbehav.2012.12.032

Drovandi, C. C., Cusimano, N., Psaltis, S., Lawson, B. A. J., Pettitt, A. N., Burrage,  P., 

et al. (2016). Sampling methods for exploring between-subject variability in 

cardiac electrophysiology experiments. J. R. Soc. Interface 13 (121), 12. doi: 

10.1098/rsif.2016.0214

Emmans, G., and Kyriazakis, I. (2001). Consequences of genetic change in farm 

animals on food intake and feeding behaviour. Proc. Nutr. Soc. 60 (1), 115–125. 

doi: 10.1079/PNS200059

Emmans, G. C., and Kyriazakis, I. (1997). Models of pig growth: problems and 

proposed solutions. Livestock Prod. Sci. 51 (1–3), 119–129. doi: 10.1016/

S0301-6226(97)00061-4

Fearnhead, P., and Prangle, D. (2012). Constructing summary statistics 

for approximate Bayesian computation: semi-automatic approximate 

Bayesian computation. J. R. Stat. Soc. Ser. B Stat. Method 74, 419–474. doi: 

10.1111/j.1467-9868.2011.01010.x

Filipe, J. A. N., and Kyriazakis, I. (2019) Trait data of individual animals, Available: 

Newcastle University Data Repository, https://data.ncl.ac.uk/ doi: 10.25405/

data.ncl.8937704

Filipe, J. A. N., Leinonen, I., and Kyriazakis, I. (2018). “The quantitative principles 

of animal growth,” in Feed Evaluation Science. Ed. W. H. Paul Moughan. 

(Wageningen: Wageningen Academic Publishers), 387–422. 

Forsman, A. (2015). Rethinking phenotypic plasticity and its consequences for 

individuals, populations and species. Heredity 115 (4), 276–284. doi: 10.1038/

hdy.2014.92

Gelman, A. B., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, 

D., (2013). Bayesian Data Analysis Third Edition. 3rd Edition. Boca Raton, FL: 

CRC Press.

Gianola, D., Cecchinato, A., Naya, H., and Schön, C.-C. (2018). Prediction of 

Complex Traits: Robust Alternatives to Best Linear Unbiased Prediction. Front. 

Genet. 9, 195. doi: 10.3389/fgene.2018.00195

Gianola, D., de los Campos, G., Hill, W. G., Manfredi, E., and Fernando, R. (2009). 

Additive Genetic Variability and the Bayesian Alphabet. Genet. 183 (1), 347–

363. doi: 10.1534/genetics.109.103952

Gilks, W. R., Richardson, S., and Spiegelhalter, D. J., (1997). Markov chain Monte 

Carlo in practice. London: Chapman and Hall. 

Goaillard, J. M., Taylor, A. L., Schulz, D. J., and Marder, E. (2009). Functional 

consequences of animal-to-animal variation in circuit parameters. Nat. 

Neurosci. 12 (11), 1424–1430. doi: 10.1038/nn.2404

Gonzalez-Recio, O., Gianola, D., Long, N., Weigel, K. A., Rosa, G. J. M., and 

Avendano, S. (2008). Nonparametric methods for incorporating genomic 

information into genetic evaluations: An application to mortality in broilers. 

Genetics 178 (4), 2305–2313. doi: 10.1534/genetics.107.084293

Green, P. J., Latuszynski, K., Pereyra, M., and Robert, C. P. (2015). Bayesian 

computation: a summary of the current state, and samples backwards and 

forwards. Stat Comput. 25 (4), 835–862. doi: 10.1007/s11222-015-9574-5

Gutenkunst, R. N., Waterfall, J. J., Casey, F. P., Brown, K. S., Myers, C. R., and Sethna, 

J. P. (2007). Universally sloppy parameter sensitivities in systems biology models. 

Plos Comput. Biol. 3 (10), 1871–1878. doi: 10.1371/journal.pcbi.0030189

Hartig, F., Calabrese, J. M., Reineking, B., Wiegand, T., and Huth, A. (2011). 

Statistical inference for stochastic simulation models - theory and application. 

Ecol. Lett. 14 (8), 816–827. doi: 10.1111/j.1461-0248.2011.01640.x

Herault, B., Bachelot, B., Poorter, L., Rossi, V., Bongers, F., Chave, J., et al. (2011). 

Functional traits shape ontogenetic growth trajectories of rain forest tree 

species. J. Ecol. 99 (6), 1431–1440. doi: 10.1111/j.1365-2745.2011.01883.x

Hill, W. G. (2010). Understanding and using quantitative genetic variation. Philos. 

Trans. R. Soc. B Biol. Sci. 365 (1537), 73–85. doi: 10.1098/rstb.2009.0203

Hill, W. G., and Mulder, H. A. (2010). Genetic analysis of environmental variation. 

Genet. Res. 92 (5–6), 381–395. doi: 10.1017/S0016672310000546

Kousathanas, A., Leuenberger, C., Helfer, J., Quinodoz, M., Foll, M., and Wegmann, D. 

(2016). Likelihood-Free Inference in High-Dimensional Models. Genet. 203 

(2), 893–904. doi: 10.1534/genetics.116.187567

Kypraios, T., Neal, P., and Prangle, D. (2017). A tutorial introduction to Bayesian 

inference for stochastic epidemic models using Approximate Bayesian 

Computation. Math Biosci. 287, 42–53. doi: 10.1016/j.mbs.2016.07.001

Lee, Y., and Nelder, J. A. (2006). Double hierarchical generalized linear models. J. R. 

Stat. Soc. Ser. C App. Stat. 55, 139–167. doi: 10.1111/j.1467-9876.2006.00538.x

Lintusaari, J., Gutmann, M. U., Dutta, R., Kaski, S., and Corander, J. (2017). 

Fundamentals and recent developments in approximate Bayesian computation. 

Syst. Biol. 66 (1), E66–E82. doi: 10.1093/sysbio/syw077

Maier, C., Loos, C., and Hasenauer, J. (2017). Robust parameter estimation for 

dynamical systems from outlier-corrupted data. Bioinformatics 33 (5), 718–

725. doi: 10.1093/bioinformatics/btw703

Marder, E. (2011). Variability, compensation, and modulation in neurons 

and circuits. Proc. Natl. Acad. Sci. U. S. A. 108, 15542–15548. doi: 10.1073/

pnas.1010674108

Marjoram, P., Molitor, J., Plagnol, V., and Tavare, S. (2003). Markov chain Monte 

Carlo without likelihoods. Proc. Natl. Acad. Sci. U. S. A. 100 (26), 15324–15328. 

doi: 10.1073/pnas.0306899100

Mirams, G. R., Pathmanathan, P., Gray, R. A., Challenor, P., and Clayton, R. H. 

(2016). Uncertainty and variability in computational and mathematical models 

of cardiac physiology. J. Physiol. London 594 (23), 6833–6847. doi: 10.1113/

JP271671

Nilsson-Ortman, V., Rogell, B., Stoks, R., and Johansson, F. (2015). Ontogenetic 

changes in genetic variances of age-dependent plasticity along a latitudinal 

gradient. Heredity 115 (4), 366–378. doi: 10.1038/hdy.2014.126

Nunes, M. A., and Prangle, D. (2015). abctools: An R Package for tuning approximate 

Bayesian computation analyses. R. J. 7 (2), 189–205. doi: 10.32614/RJ-2015-030

Nussey, D. H., Wilson, A. J., and Brommer, J. E. (2007). The evolutionary ecology 

of individual phenotypic plasticity in wild populations. J. Evol. Biol. 20 (3), 

831–844. doi: 10.1111/j.1420-9101.2007.01300.x

O’Leary, T., and Marder, E. (2014). Mapping neural activation onto behavior in 

an entire animal. Science 344 (6182), 372–373. doi: 10.1126/science.1253853

Parks, J. R. (1982). A theory of feeding and growth of animals. Berlin; New York: 

Springer-Verlag. doi: 10.1007/978-3-642-68330-5

Pritchard, J. K., Seielstad, M. T., Perez-Lezaun, A., and Feldman, M. W. (1999). 

Population growth of human Y chromosomes: a study of Y chromosome 

microsatellites. Mol. Biol. Evol. 16 (12), 1791–1798. doi: 10.1093/oxfordjournals.

molbev.a026091

Robert, C. P., Cornuet, J. M., Marin, J. M., and Pillai, N. S. (2011). Lack of 

confidence in approximate Bayesian computation model choice. Proc. Natl. 

Acad. Sci. U. S. A. 108 (37), 15112–15117. doi: 10.1073/pnas.1102900108

Roche, D. G., Careau, V., and Binning, S. A. (2016). Demystifying animal 

‘personality’ (or not): why individual variation matters to experimental 

biologists. J. Exp. Biol. 219 (24), 3832–3843. doi: 10.1242/jeb.146712

Ronnegard, L., Felleki, M., Fikse, W. F., Mulder, H. A., and Strandberg, E. (2013). 

Variance component and breeding value estimation for genetic heterogeneity 

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://doi.org/10.1051/gse:2002034
https://doi.org/10.2307/2982063
https://doi.org/10.1073/pnas.1304382110
https://doi.org/10.1111/2041-210X.12281
https://doi.org/10.1111/jbg.12237
https://doi.org/10.1111/j.2041-210X.2011.00179.x
https://doi.org/10.1098/rsif.2017.0340
https://doi.org/10.1016/j.tree.2009.07.013
https://doi.org/10.1016/j.anbehav.2012.12.032
https://doi.org/10.1098/rsif.2016.0214
https://doi.org/10.1079/PNS200059
https://doi.org/10.1016/S0301-6226(97)00061-4
https://doi.org/10.1016/S0301-6226(97)00061-4
https://doi.org/10.1111/j.1467-9868.2011.01010.x
https://data.ncl.ac.uk/
https://doi.org/10.1038/hdy.2014.92
https://doi.org/10.1038/hdy.2014.92
https://doi.org/10.3389/fgene.2018.00195
https://doi.org/10.1534/genetics.109.103952
https://doi.org/10.1038/nn.2404
https://doi.org/10.1534/genetics.107.084293
https://doi.org/10.1007/s11222-015-9574-5
https://doi.org/10.1371/journal.pcbi.0030189
https://doi.org/10.1111/j.1461-0248.2011.01640.x
https://doi.org/10.1111/j.1365-2745.2011.01883.x
https://doi.org/10.1098/rstb.2009.0203
https://doi.org/10.1017/S0016672310000546
https://doi.org/10.1534/genetics.116.187567
https://doi.org/10.1016/j.mbs.2016.07.001
https://doi.org/10.1111/j.1467-9876.2006.00538.x
https://doi.org/10.1093/sysbio/syw077
https://doi.org/10.1093/bioinformatics/btw703
https://doi.org/10.1073/pnas.1010674108
https://doi.org/10.1073/pnas.1010674108
https://doi.org/10.1073/pnas.0306899100
https://doi.org/10.1113/JP271671
https://doi.org/10.1113/JP271671
https://doi.org/10.1038/hdy.2014.126
https://doi.org/10.32614/RJ-2015-030
https://doi.org/10.1111/j.1420-9101.2007.01300.x
https://doi.org/10.1126/science.1253853
https://doi.org/10.1007/978-3-642-68330-5
https://doi.org/10.1093/oxfordjournals.molbev.a026091
https://doi.org/10.1093/oxfordjournals.molbev.a026091
https://doi.org/10.1073/pnas.1102900108
https://doi.org/10.1242/jeb.146712


Likelihood-Free Modelling of Phenotype VariabilityFilipe and Kyriazakis

24 September 2019 | Volume 10 | Article 727Frontiers in Genetics | www.frontiersin.org

of residual variance in Swedish Holstein dairy cattle. J. Dairy Sci. 96 (4), 2627–

2636. doi: 10.3168/jds.2012-6198

Saa, P. A., and Nielsen, L. K. (2016). Construction of feasible and accurate kinetic 

models of metabolism: a Bayesian approach. Sci. Rep. 6, 13. doi: 10.1038/

srep29635

San Cristobal-Gaudy, M., Elsen, J. M., Bodin, L., and Chevalet, C. (1998). 

Prediction of the response to a selection for canalisation of a continuous 

trait in animal breeding. Genet. Selection Evol. 30 (5), 423–451. doi: 10.1051/

gse:19980502

Sorensen, D., and Waagepetersen, R. (2003). Normal linear models with genetically 

structured residual variance heterogeneity: a case study. Genet. Res. 82 (3), 

207–222. doi: 10.1017/S0016672303006426

Speakman, J. R., Krol, E., and Johnson, M. S. (2004). The functional significance 

of individual variation in basal metabolic rate. Physiol. Biochem. Zool. 77 (6), 

900–915. doi: 10.1086/427059

Stearns, S. C., and Koella, J. C. (1986). The evolution of phenotypic plasticity in 

life-history traits - predictions of reaction norms for age and size at maturity. 

Evolution 40 (5), 893–913. doi: 10.2307/2408752

Strathe, A. B., Danfaer, A., Sorensen, H., and Kebreab, E. (2010). A multilevel 

nonlinear mixed-effects approach to model growth in pigs. J. Animal Sci. 88 

(2), 638–649. doi: 10.2527/jas.2009-1822

Sunnaker, M., Busetto, A. G., Numminen, E., Corander, J., Foll, M., and Dessimoz, C. 

(2013). Approximate Bayesian computation. PloS Comput. Biol. 9 (1), 10. doi: 

10.1371/journal.pcbi.1002803

Toni, T., Welch, D., Strelkowa, N., Ipsen, A., and Stumpf, M. P. H. (2009). 

Approximate Bayesian computation scheme for parameter inference and 

model selection in dynamical systems. J. R. Soc. Interface 6 (31), 187–202. doi: 

10.1098/rsif.2008.0172

van der Vaart, E., Beaumont, M. A., Johnston, A. S. A., and Sibly, R. M. (2015). 

Calibration and evaluation of individual-based models using approximate 

Bayesian computation. Ecol. Model. 312, 182–190. doi: 10.1016/j.

ecolmodel.2015.05.020

Vincenzi, S., Mangel, M., Crivelli, A. J., Munch, S., and Skaug, H. J. (2014). 

Determining individual variation in growth and its implication for life-

history and population processes using the empirical bayes method. PloS 

Comput. Biol. 10 (9), 16. doi: 10.1371/journal.pcbi.1003828

Weiss, J. N., Karma, A., MacLellan, W. R., Deng, M., Rau, C. D., Rees, C. M., et al. 

(2012). “Good Enough Solutions” and the Genetics of Complex Diseases. Circ. 

Res. 111 (4), 493–504. doi: 10.1161/CIRCRESAHA.112.269084

Wellock, I. J., Emmans, G. C., and Kyriazakis, I. (2004). Describing and 

predicting potential growth in the pig. Anim. Sci 78, 379–388. doi: 10.1017/

S1357729800058781

Westneat, D. F., Schofield, M., and Wright, J. (2013). Parental behavior exhibits 

among-individual variance, plasticity, and heterogeneous residual variance. 

Behav. Ecol. 24 (3), 598–604. doi: 10.1093/beheco/ars207

Westneat, D. F., Wright, J., and Dingemanse, N. J. (2015). The biology hidden 

inside residual within-individual phenotypic variation. Biol. Rev. 90 (3), 729–

743. doi: 10.1111/brv.12131

Wilkinson, R. D. (2013). Approximate Bayesian computation (ABC) gives exact 

results under the assumption of model error. Stat. Appl. Genet. Mol. Biol. 12 (2), 

129–141. doi: 10.1515/sagmb-2013-0010

Winsor, C. P. (1932). The Gompertz curve as a growth curve. Proc. Natl. Acad. Sci. 

U. S. A. 18, 1–8. doi: 10.1073/pnas.18.1.1

Wolfert, S., Ge, L., Verdouw, C., and Bogaardt, M. J. (2017). Big Data in Smart 

Farming - a review. Agric. Syst. 153, 69–80. doi: 10.1016/j.agsy.2017.01.023

Wood, S. N. (2010). Statistical inference for noisy nonlinear ecological dynamic 

systems. Nature 466 (7310), 1102–U1113. doi: 10.1038/nature09319

Zhang, Z. Y. (2016). Modeling error distributions of growth curve models 

through Bayesian methods. Behav. Res. Methods 48 (2), 427–444. doi: 10.3758/

s13428-015-0589-9

Conflict of Interest Statement: The authors declare that the research was 

conducted in the absence of any commercial or financial relationships that could 

be construed as a potential conflict of interest.

Copyright © 2019 Filipe and Kyriazakis. This is an open-access article 

distributed under the terms of the Creative Commons Attribution License 

(CC BY). The use, distribution or reproduction in other forums is permitted, 

provided the original author(s) and the copyright owner(s) are credited and 

that the original publication in this journal is cited, in accordance with accepted 

academic practice. No use, distribution or reproduction is permitted which does 

not comply with these terms.

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://doi.org/10.3168/jds.2012-6198
https://doi.org/10.1038/srep29635
https://doi.org/10.1038/srep29635
https://doi.org/10.1051/gse:19980502
https://doi.org/10.1051/gse:19980502
https://doi.org/10.1017/S0016672303006426
https://doi.org/10.1086/427059
https://doi.org/10.2307/2408752
https://doi.org/10.2527/jas.2009-1822
https://doi.org/10.1371/journal.pcbi.1002803
https://doi.org/10.1098/rsif.2008.0172
https://doi.org/10.1016/j.ecolmodel.2015.05.020
https://doi.org/10.1016/j.ecolmodel.2015.05.020
https://doi.org/10.1371/journal.pcbi.1003828
https://doi.org/10.1161/CIRCRESAHA.112.269084
https://doi.org/10.1017/S1357729800058781
https://doi.org/10.1017/S1357729800058781
https://doi.org/10.1093/beheco/ars207
https://doi.org/10.1111/brv.12131
https://doi.org/10.1515/sagmb-2013-0010
https://doi.org/10.1073/pnas.18.1.1
https://doi.org/10.1016/j.agsy.2017.01.023
https://doi.org/10.1038/nature09319
https://doi.org/10.3758/s13428-015-0589-9
https://doi.org/10.3758/s13428-015-0589-9
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Bayesian, Likelihood-Free Modelling of Phenotypic Plasticity and Variability in Individuals and Populations
	Introduction
	Methods
	A Probabilistic Framework for Modelling Phenotypes in Individuals and Populations
	Bayesian Inference
	Nonparametric (Likelihood-Free) Inference
	Comparison Against Likelihood-Based Inference
	Relationship Between Scales of Trait Variation in ABC and Likelihood Inference

	Evaluation
	Case Study: Ontogenetic Growth at the Individual and Population Levels
	Body Weight Model
	Energy Intake Model

	Data
	Empirical Data
	Simulated Data


	Results
	Comparison of Methods to Estimate Phenotypes: Individual Single-Trait Phenotypes
	Body Weight of Individual Pig
	Simulated Normally-Distributed Trait
	Simulated Skew-Distributed Trait

	Individual Multiple-Trait Phenotypes
	Body Weight and Energy Intake of Individual Pig
	Simulated Correlated Traits With Multivariate-Normal Noise

	From Individual Phenotypes to Population Phenotypes
	Body Weight in a Pig Population
	Body Weight in a Mixed-Line Chicken Population
	Body Weight in a Pig Population: Fitting Pooled Data


	Discussion
	Advantages of the Approach in Relation 
to Hypothesis 1
	Automatic Form of the Noise Distribution
	Robustness to Small Sample Size
	No Use of Unreliable Point (Mode-Based) Estimates

	Advantages of the Approach in Relation to Hypothesis 2
	Identification of Individual Differences
	Tackling Outlier Individuals
	Population Characteristics

	Extension and Limitations of the Approach
	Indices of Intraindividual Variation
	Fixed and Random Effects
	Interpretation of ABC


	Conclusions
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


