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BAYESIAN LINEAR REGRESSION WITH SPARSE PRIORS

BY ISMAËL CASTILLO1,∗, JOHANNES SCHMIDT-HIEBER2,†

AND AAD VAN DER VAART2,†

CNRS Paris∗ and Leiden University†

We study full Bayesian procedures for high-dimensional linear regres-
sion under sparsity constraints. The prior is a mixture of point masses at zero
and continuous distributions. Under compatibility conditions on the design
matrix, the posterior distribution is shown to contract at the optimal rate for
recovery of the unknown sparse vector, and to give optimal prediction of the
response vector. It is also shown to select the correct sparse model, or at
least the coefficients that are significantly different from zero. The asymp-
totic shape of the posterior distribution is characterized and employed to the
construction and study of credible sets for uncertainty quantification.

1. Introduction. Consider estimation of a parameter β ∈ R
p in the linear re-

gression model

Y = Xβ + ε,(1.1)

where X is a given, deterministic (n × p) matrix, and ε is an n-variate standard
normal vector. The model is standard, but we are interested in the sparse setup,
where n ≤ p, and possibly n � p, and “many” or “most” of the coefficients βi

of the parameter vector are zero, or close to zero. We study a Bayesian approach
based on priors that set a selection of coefficients βi a priori to zero; equivalently,
priors that distribute their mass over models that use only a (small) selection of
the columns of X. Bayes’s formula gives a posterior distribution as usual. We
study this under the “frequentist” assumption that the data Y has in reality been
generated according to a given (sparse) parameter β0. The expectation under the
previous distribution is denoted Eβ0 .

Specifically, we consider a prior � on β that first selects a dimension s from a
prior πp on the set {0, . . . , p}, next a random subset S ⊂ {1,2, . . . , p} of cardinality
|S| = s and finally a set of nonzero values βS := {βi : i ∈ S} from a prior density
gS on R

S . Formally, the prior on (S,β) can be expressed as

(S,β) �→ πp

(|S|) 1( p
|S|

)gS(βS)δ0(βSc),(1.2)
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where the term δ0(βSc) refers to the coordinates βSc := (βi : i ∈ Sc) being zero.
We focus on the situation where gS is a product ⊗g of densities over the coordi-
nates in S, for g a fixed continuous density on R, with the Laplace density as an
important special case. The prior πp is crucial for expressing the “sparsity” of the
parameter. One of the main findings of this paper is that weights πp(s) that de-
crease slightly faster than exponential in the dimension s give good performance.

Priors of the type of (1.2) were considered by many authors, including [8, 20,
21, 26, 34, 41, 48]. Other related contributions include [2, 3, 33]. The paper [16]
contains a theoretical analysis similar to the present paper, but restricted to the
special case that the regression matrix X is the identity and p = n; see Example 1.
The general model (1.1) shares some features with this special case, but is different
in that it must take account of the noninvertibility of X and its interplay with
the sparsity assumption, especially for the case of recovering the parameter β , as
opposed to estimating the mean Xβ . While the proofs in [16] use a factorization of
the model along the coordinate axes, exponential tests and entropy bounds, in the
present paper we employ a direct and refined analysis of the posterior ratio (1.4),
exploiting the specific form of the prior Laplace density g. Furthermore, even for
the case that X is the identity matrix, the present paper provides several new results
of interest: distributional approximations to the posterior distribution, insight in
the scaling of the prior on the nonzero coordinates and oracle formulations of the
contraction rates.

Algorithms for the computation of the posterior distribution corresponding
to (1.2), especially for the “spike and slab” prior described in Example 5 below,
are routine for small dimensions p and n (e.g., [18, 21, 25–27, 34, 41, 48]). For
large dimensions the resulting computations are intensive, due to the large number
of possible submodels S. Many authors are currently developing algorithms that
can cope with larger numbers of covariates, in the sparse setup considered in the
present paper. In Section 5 we review recent progress on various methods, of which
some are feasible for values of p up to hundreds or thousands [7, 8, 16, 31, 35,
38–40, 42, 43, 47]. Although this upper bound will increase in the coming years,
clearly it falls far short of the dimensions attainable by (point) estimation methods
based on convex programming, such as the LASSO. Other Bayesian approaches to
sparse regression that do not explicitly include model selection (e.g., [14, 23, 24])
can cope with somewhat higher dimensions, but truly high-dimensional models
are out of reach of fully Bayesian methods at the present time.

Not surprisingly to overcome the nonidentifiability of the full parameter vector
β in the overspecified model (1.1), we borrow from the work on sparse regression
within the non-Bayesian framework; see [1, 6, 9, 10, 13, 19, 29, 36, 49, 50]. Good
performance of the posterior distribution is shown under compatibility and smallest
sparse eigenvalue conditions; see Section 2. Although the constants in these results
are not as sharp as results for the LASSO, the posterior contraction rates obtained
are broadly comparable to convergence rates of the LASSO.
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The LASSO and its variants are important frequentist methods for sparse signal
recovery. As the LASSO is a posterior mode (for an i.i.d. Laplace prior on the βi ), it
may seem to give an immediate link between Bayesian and non-Bayesian methods.
However, we show in Section 3 that the LASSO is essentially non-Bayesian, in the
sense that the corresponding full posterior distribution is a useless object.

In contrast, the posterior distribution resulting from the prior (1.2) gives both
reasonable reconstruction of the parameter β and a quantification of uncertainty
through the spread in the posterior distribution. We infer this from combining re-
sults on the contraction rate of the full posterior distribution with distributional
approximations. The latter show that the posterior distribution behaves asymptot-
ically as a mixture of Bernstein–von Mises type approximations to submodels,
where the location of the mixture components depends on the setting. The latter
approximations are new, also for the special case that X is the identity matrix.

It is crucial for these results that the prior (1.2) models sparsity through the
model selection prior πp , and separates this from modeling the nonzero coordi-
nates through the prior densities gS . For instance, in the case that gS is a product
of Laplace densities, this allows the scale parameter to be constant or even to tend
to zero, thus making this prior uninformative. This is in stark contrast to the choice
of the smoothing parameter in the (Bayesian) LASSO, which must tend to infinity
in order to shrink parameters to zero, where it cannot differentiate between truly
small and nonzero parameters. Technically this has the consequence that the essen-
tial part of the proofs is to show that the posterior distribution concentrates on sets
of small dimension. This sets it apart from the frequentist literature on sparse re-
gression, although, as mentioned, many essential ideas reappear here in a Bayesian
framework.

The paper is organized as follows. In Section 2 we present the main results of
the paper. We specialize to Laplace priors on the nonzero coefficients and investi-
gate the ability of the posterior distribution to recover the parameter vector β , the
predictive vector Xβ and the set of nonzero coordinates. Furthermore, we derive
a distributional approximation to the posterior distribution, and apply this to con-
struct and study credible sets. In Section 3 we present the negative result on the
Bayesian interpretation of the LASSO. Next in Section 4 we show that for recovery
of only the predictive vector Xβ , significantly milder conditions than in Section 2
suffice. Proofs are deferred to Section 6 and the supplementary material [15].

1.1. Notation. For a vector β ∈ R
p and a set S ⊂ {1,2, . . . , p} of indices, βS

is the vector (βi)i∈S ∈ R
S , and |S| is the cardinality of S. The support of the

parameter β is the set Sβ = {i : βi 
= 0}. The support of the true parameter β0 is
denoted S0, with cardinality s0 := |S0|. Similarly, for a generic vector β∗, we write
S∗ = Sβ∗ and s∗ = |S∗|. We write s = |S| if there is no ambiguity to which set S is
referred to. For 1 ≤ q < ∞ and β ∈ R

p , let ‖β‖q := (
∑p

i=1 |βi |q)1/q .
We let X·,i be the ith column of X, and

‖X‖ = max
i=1,...,p

‖X·,i‖2 = max
i=1,...,p

(
XtX

)1/2
i,i .(1.3)
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For the prior � defined above, Bayes’s formula gives the following expression for
the posterior distribution �[·|Y ]. For any Borel set B of Rp ,

�[B|Y ] =
∫
B

e−‖Y−Xβ‖2
2/2 d�(β)

/ ∫
e−‖Y−Xβ‖2

2/2 d�(β).(1.4)

2. Main results.

2.1. Prior. In this section we consider the prior (1.2), with gS the product of
|S| Laplace densities β �→ 2−1λ exp(−λ|β|). We allow the (inverse) scale param-
eter λ to change with p, within the range, with ‖X‖ defined in (1.3),

‖X‖
p

≤ λ ≤ 2λ, λ = 2‖X‖
√

logp.(2.1)

The quantity λ in the upper bound is the usual value of the regularization param-
eter λ of the LASSO [as in (3.1) below]. Its large value causes the LASSO to
shrink many coordinates βi to zero, as is desired in the sparse situation. However,
in our Bayesian setup, sparsity should be induced by model selection, through
the prior πp on the model dimension, and the Laplace prior densities model only
the nonzero coordinates. Large values of λ would shrink the nonzero coordinates
to zero, which is clearly undesirable and unnatural. Thus it is natural to assume
λ � λ, and fixed values of λ, and even values decreasing to zero, may well be
natural, depending on the regression setting. We shall see that small values of λ

permit a distributional approximation to the posterior distribution centered at un-
biased estimators. The results below hold for all λ in the range (2.1), but they are
meant to be read for a specific sequence of λ and are not suitable for optimization
over λ.

The precise interpretation of the size of λ is confounded with the regression
setting, the error variance (which we have set to unity for simplicity of notation)
and the scaling of the regression matrix. The following three special cases shed
some light on this.

EXAMPLE 1 (Sequence model). In the sequence model considered in [28]
and [16], the observation is a vector (Y1, . . . , Yn) of independent coordinates
Yi ∼ N(βi,1). This corresponds to X = I and n = p in the present setting (1.1),
whence ‖X‖ = 1. Condition (2.1) then reduces to p−1 ≤ λ ≤ 4

√
logp. Fixed val-

ues of λ, as considered in [16], are easily included. As there is only one observation
per parameter, it may not be unreasonable to consider λ → 0, in order to create
noninformative priors for the nonzero coefficients. This is allowed easily also.

EXAMPLE 2 (Sequence model, multiple observations). In an extension of
the sequence model of the preceding example, the n observations are from nor-
mal distributions N(βi, σ

2
n ) with variances σ 2

n → 0. By defining the Yi as σ−1
n
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times the original observations, we can fit this into model (1.1), which has unit
error variances. If we keep the original definition of the βi , then the regression
matrix is X = σ−1

n I , and hence ‖X‖ = σ−1
n . Condition (2.1) then reduces to

σ−1
n /n ≤ λ ≤ 4σ−1

n

√
logn. Fixed values of λ are included if nσn � 1, and values

tending to zero if nσn → ∞. By sufficiency of the sample mean in the normal lo-
cation problem this corresponds to a sufficient number of replicate measurements
on every parameter βi in the original problem.

EXAMPLE 3 (Response model). If every row of the regression equation Y =
Xβ + ε refers to a measurement of an instance of a fixed relationship between an
input vector Xi,· ∈ R

p and the corresponding output Yi , then the entry Xi,j of X

is the value of individual i on the j th covariable. It is then reasonable to think
of these entries as being sampled from some fixed distribution, independent of
n and p, in which case ‖X‖ will (typically) be of the order

√
n. A fundamental

example is the case where the entries of X are independent standard Gaussian
N (0,1). Condition (2.1) then reduces to

√
n/p ≤ λ ≤ 4

√
n
√

logp. Fixed values
of λ, as considered in [16], are included, provided p �√

n.

Although condition (2.1) does not exclude shrinkage through large values of λ,
as for the LASSO, the most interesting situation is that sparsity is induced through
model selection. The prior πp on model dimension is crucial; it must downweight
big models, but at the same time give sufficient mass to the true model. Exponential
decrease turns out to work.

ASSUMPTION 1 (Prior dimension). There are constants A1,A2,A3,A4 > 0
with

A1p
−A3πp(s − 1) ≤ πp(s) ≤ A2p

−A4πp(s − 1), s = 1, . . . , p.(2.2)

EXAMPLE 4. Assumption (2.2) is met by the priors of the form, for constants
a, c > 0,

πp(s) ∝ c−sp−as, s = 0,1, . . . , p.(2.3)

We refer to these priors as complexity priors, as their rate of decrease reflects the
number of models

(p
s

)
of given size s for s � p; cf. [16].

EXAMPLE 5 (Slab and spike). Modeling the coordinates β1, . . . , βp as i.i.d.
variables from a mixture (1 − r)δ0 + rG, of a Dirac measure δ0 at zero and a
Laplace distribution G, is included in (1.2) with πp the binomial distribution with
parameter p and r . The size r of the point mass at zero controls the model selec-
tion. The overall prior obtained by choosing r from a Beta (1,pu) hyper prior with
u > 1 satisfies (2.3); cf. Example 2.2 in [16]. This prior is universal in that it is free
of unknown smoothing parameters.
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To conclude the discussion on the prior, we briefly comment on the case that the
noise vector has unknown variance σ 2 > 0; that is, we observe Y = Xβ + σε. In
this case one may use an empirical Bayesian approach, which replaces the un-
known parameter by an estimator, or a hierarchical Bayesian approach, which
puts a prior on σ 2, a common choice being an inverse Gamma prior. Since
Y/σ = X(β/σ) + ε, it is natural to apply the prior, as in this paper, to the pa-
rameter β/σ . Thus given σ 2 and a model S, we choose the prior density on
the nonzero values βS = {βi : i ∈ S} as the product of |S| Laplace densities
β �→ λ/(2σ) exp(−λ|β|/σ), conditional on the estimated or prior value of σ .

2.2. Design matrix. The parameter β in model (1.1) is not estimable without
conditions on the regression matrix. For the interesting case p > n, it is even nec-
essarily unidentifiable. If β is known to be sparse, then “local invertibility” of the
Gram matrix XtX is sufficient for estimability, even in the case p > n. This is
made precise in the following definitions, which are based on the literature, but
with simplified notation suited to our Bayesian setup. For accessibility we include
short discussions on the relations between the various concepts.

DEFINITION 2.1 (Compatibility). The compatibility number of model S ⊂
{1, . . . , p} is given by

φ(S) := inf
{‖Xβ‖2|S|1/2

‖X‖‖βS‖1
: ‖βSc‖1 ≤ 7‖βS‖1, βS 
= 0

}
.

The compatibility number (which is φcomp(7, S)/‖X‖ in the notation of [10],
page 157) compares the 
2-norm of the predictive vector Xβ to the 
1-norm of the
parameter βS . A model S is considered “compatible” if φ(S) > 0. It then satisfies
the nontrivial inequality ‖Xβ‖2|S|1/2 ≥ φ(S)‖X‖‖βS‖1. We shall see that true
vectors β0 with compatible support Sβ0 can be recovered from the data, uniformly
in a lower bound on the size of their compatibility numbers.

The number 7 has no particular interest, but for simplicity we use a numerical
value instead of an unspecified constant. Since the vectors β in the infimum sat-
isfy ‖βS‖1 ≤ ‖β‖1 ≤ 8‖βS‖1, it would not be a great loss of generality to replace
βS in the denominator of the quotient by β . However, the factor |S|1/2 in the nu-
merator may be seen as resulting from the comparison of the 
1- and 
2-norms
of βS through the Cauchy–Schwarz inequality: ‖βS‖1 ≤ |S|1/2‖βS‖2. Replacing
‖βS‖1/|S|1/2 by ‖βS‖2 would make the compatibility number smaller, and hence
give a more restrictive condition.

The compatibility number involves the full vectors β (also their coordinates out-
side of S) and allows to reduce the recovery problem to sparse vectors. The next
two definitions concern sparse vectors only, but unlike the compatibility number,
they are uniform in vectors up to a given dimension. In the notation of [10] (pages
156–157) the numbers in the definitions are the minima over |S| ≤ s of the num-
bers �min,1(�1,1(S))/‖X‖ and �min(�1,1(S))/‖X‖, respectively.
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DEFINITION 2.2 (Uniform compatibility in sparse vectors). The compatibility
number in vectors of dimension s is defined as

φ(s) := inf
{‖Xβ‖2|Sβ |1/2

‖X‖‖β‖1
: 0 
= |Sβ | ≤ s

}
.

DEFINITION 2.3 (Smallest scaled sparse singular value). The smallest scaled
singular value of dimension s is defined as

φ̃(s) := inf
{ ‖Xβ‖2

‖X‖‖β‖2
: 0 
= |Sβ | ≤ s

}
.(2.4)

For recovery we shall impose that these numbers for s equal to (a multiple
of) the dimension of the true parameter vector are bounded away from zero.
Since ‖β‖1 ≤ |Sβ |1/2‖β‖2 by the Cauchy–Schwarz inequality, it follows that
φ̃(s) ≤ φ(s), for any s > 0. The stronger assumptions on the design matrix im-
posed through φ̃(s) will be used for recovery with respect to the 
2-norm, whereas
the numbers φ(s) suffice for 
1-reconstruction. In Definition 2.3, “scaled” refers
to the scaling of the matrix X by division by the maximum column length ‖X‖; if
the latter is unity, then φ̃(s) is just the smallest scaled singular value of a submatrix
of X of dimension s.

The final and strongest invertibility condition is in terms of “mutual coherence”
of the regression matrix, which is the maximum correlation between its columns.

DEFINITION 2.4 (Mutual coherence). The mutual coherence number is

mc(X) = max
1≤i 
=j≤p

|〈X·,i ,X·,j 〉|
‖X·,i‖2‖X·,j‖2

.

The “(K, s) mutual coherence condition” is that this number is bounded above
by (Ks)−1, in which case reconstruction is typically possible for true vectors β

of dimension up to s. As correlations are easy to interpret, conditions of this type,
which go back to [19], have been used by many authors. (Notably, Bunea, Tsy-
bakov and Wegkamp [11] show that for reconstructions using the 
1- and 
2-
norms, taking the maximum over all correlations can be relaxed to a maximum
over pairs that involve at least one “active” coordinate.) The following lemma
shows that they are typically stronger than conditions in terms of compatibility
numbers or sparse singular values. The lemma is embodied in Lemma 2 in [32],
and is closely related to the inequalities obtained in [46]. For ease of reference we
provide a proof in the supplementary material [15].

LEMMA 1. φ(S)2 ≥ φ(1)2 −15|S|mc(X); φ(s)2 ≥ φ̃(s)2 ≥ φ(1)2 −s mc(X).

By evaluating the infimum in Definition 2.2 with β equal to unit vectors, we
see that φ̃(1) = φ(1) = mini ‖X·,i‖2/‖X‖, which will typically be bounded away
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from zero. Thus the lemma implies that compatibility numbers and sparse singular
values are certainly bounded away from zero for models up to size a multiple of
1/mc(X), that is, models of size satisfying the “mutual coherence condition.” This
makes the mutual coherence the strongest of the three “sparse invertibility” indices
introduced previously. We note that the reverse inequalities do not hold in general,
and indeed the compatibility constant can easily be bounded away from zero, even
if the mutual coherence number is much larger than 1/s.

For many other possible indices (including “restricted isometry” and “irrep-
resentability”), and extensive discussion of their relationships, we refer to Sec-
tions 6.13 and 7.5 of [10]. In particular, the diagram on page 177 exhibits compat-
ibility as the weakest condition that still allows oracle bounds for prediction and
reconstruction by the LASSO for the 
2- and 
1-norms. The results on posterior
contraction and model selection presented below are in the same spirit. In addition
we consider contraction with respect to the 
∞-norm, and for (only) the latter we
employ the more restrictive mutual coherence number, analogously to the study
of [32] of the LASSO and the Dantzig estimator under the supremum norm. Thus
mutual coherence is useful in two ways: it may provide a simple (albeit crude) way
to bound the other indices, and it may allow to use stronger norms. Direct verifi-
cation of compatibility may be preferable, as this applies to a much broader set of
regression matrices.

The following well-studied examples may help appreciate the discussion:

EXAMPLE 6 (Sequence model). In the sequence model of Example 1 the re-
gression matrix X is the identity, and hence the compatibility numbers are 1, and
the mutual coherence number is zero. This is the optimal situation, under which all
results below are valid. (The compatibility numbers are maximally 1, as follows
by evaluating them with a unit vector.)

Regression with orthogonal design can be transformed to this situation.

EXAMPLE 7 (Response model). In the response setting of Example 3 it is
reasonable to assume that the entries of X are i.i.d. random variables. Under ex-
ponential moment conditions, it is shown in [12] that in this situation and for not
extremely large p the mutual coherence number is with high probability bounded
by a multiple of (n/ logp)−1/2. [Specifically, this is true for logp = o(n) or
logp = o(nα/(4+α)) if the entries are bounded or possess an exponential mo-
ment of order α, resp.] In view of Lemma 1 the compatibility and sparse singular
value indices of models up to dimension a multiple of

√
n/ logp are then bounded

away from zero. This implies that the results on model selection and 
1- and 
2-
contraction rates in the following certainly apply if the number of nonzero regres-
sion coefficients is smaller than this order. For a survey on more recent results on
lower bounds of the compatibility number and the smallest sparse eigenvalue, see
Section 6.2 of [45].
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EXAMPLE 8. By scaling the columns of the design matrix it can be ensured
that the (p × p)-matrix C := XtX/n has unit diagonal. Then ‖X‖ = √

n, and the
off-diagonal elements Ci,j are the correlations between the columns.

It is shown in [51] that if Ci,j is equal to a constant r with 0 < r < (1 + cs)−1,
or |Ci,j | ≤ c/(2s − 1), for every i 
= j , then models up to dimension s satisfy the
“strong irrepresentability condition” and hence are consistently estimable. Since
these examples satisfy the mutual coherence condition, up to a constant, these ex-
amples are also covered in the present paper, for every norm and aspect considered.

As another example, Zhao and Yu [51] consider correlations satisfying Ci,j =
ρ|i−j |, for 0 < ρ < 1 and p = n. In this case all eigenvalues of C are bounded
away from zero by a margin that depends on ρ only, whence the numbers φ̃(s)

are bounded away from zero, for every dimension s. This implies that the results
on dimensionality, model selection and 
1- and 
2-rates obtained below are valid.
On the other hand, the mutual coherence number is equal to ρ, which excludes the

∞-results.

As a final example, the authors of [51] consider matrices C that vanish except
in small blocks along the diagonal. Such matrices can also not be handled in gen-
eral through the mutual coherence number, but do cooperate with the other sparse
invertibility indices.

2.3. Dimensionality, contraction, model selection. For simplicity the main re-
sults are stated in limit form, for p,n → ∞. More precise assertions, including
precise values of “large” constants, can easily be deduced from the proofs.

The results are obtained under the assumption of Gaussian noise in model (1.1).
In fact, as indicated in Remark 1 in the supplementary material [15], many of the
assertions are robust under misspecification of the error distribution.

The first theorem shows that the posterior distribution does not overshoot the
true dimension of the parameter by more than a factor. In the interesting case that
λ � λ, this factor can be simplified to 1 + M/A4 for any constant M > 2 if the
true parameter is compatible. The constant A4 comes from condition (2.2). As
a consequence, 1 + M/A4 can be made arbitrarily close to one by choosing a
suitable prior on the dimension. (Although the convergence to zero in this and the
following theorems is uniform, it can be read off from the proofs that the speed
of convergence deteriorates for very small λ. Also only the dominating terms in
the dependence of the dimension or contraction rate are shown. Thus the theorems
as stated are not suitable for optimization over λ. In particular, it should not be
concluded that the smallest possible λ is optimal.)

THEOREM 1 (Dimension). If λ satisfies (2.1) and πp satisfies (2.2) then, with
s0 = |Sβ0 | and for any M > 2,

sup
β0

Eβ0�

(
β : |Sβ | > s0 + M

A4

(
1 + 16

φ(S0)2

λ

λ

)
s0

∣∣∣Y)
→ 0.
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The theorem is a special case of Theorem 10 in Section 6. As all our results, the
theorem concerns the full posterior distribution, not only a measure of its center.
However, it may be compared to similar results for point estimators, as in Chapter 7
of [10].

The second theorem concerns the ability of the posterior distribution to recover
the true model from the data. It gives rates of contraction of the posterior distri-
bution both regarding prediction error ‖Xβ − Xβ0‖2 and regarding the parameter
β relative to the 
1- and 
2- and 
∞-distances. Besides on the dimensionality, the
rate depends on compatibility. Set

ψ(S) = φ

((
2 + 3

A4
+ 33

φ(S)2

λ

λ

)
|S|

)
,

(2.5)

ψ̃(S) = φ̃

((
2 + 3

A4
+ 33

φ(S)2

λ

λ

)
|S|

)
.

In the interesting case that λ � λ, these numbers are asymptotically bounded be-
low by φ((2 + 4

A4
)|Sβ |) and φ̃((2 + 4

A4
)|Sβ |) if φ(Sβ) is bounded away from zero.

Thus the following theorem gives rates of recovery that are uniform in true vectors
β such that φ(Sβ) and φ((2+ 4

A4
)|Sβ |) or φ̃((2+ 4

A4
)|Sβ |) are bounded away from

zero. [Again the theorem, even though uniform in λ satisfying (2.1), is meant to be
read for a given sequence of λ.]

THEOREM 2 (Recovery). If λ satisfies (2.1), and πp satisfies (2.2), then for
sufficiently large M , with S0 = Sβ0 ,

sup
β0

Eβ0�

(
β : ∥∥X

(
β − β0)∥∥

2 >
M

ψ(S0)

√|S0| logp

φ(S0)

∣∣∣Y)
→ 0,

sup
β0

Eβ0�

(
β : ∥∥β − β0∥∥

1 >
M

ψ(S0)2

|S0|√logp

‖X‖φ(S0)2

∣∣∣Y)
→ 0,

sup
β0

Eβ0�

(
β : ∥∥β − β0∥∥

2 >
M

ψ̃(S0)2

√|S0| logp

‖X‖φ(S0)

∣∣∣Y)
→ 0.

Furthermore, for every c0 > 0, any d0 < c2
0(1 + 2/A4)

−1/8, and sn with
λsn

√
logp/‖X‖ → 0, for sufficiently large M ,

sup
β0:φ(S0)≥c0,ψ̃(S0)≥c0

|S0|≤sn,|S0|≤d0 mc(X)−1

Eβ0�

(
β : ∥∥β − β0∥∥∞ > M

√
logp

‖X‖
∣∣∣Y)

→ 0.

The first three assertions of the theorem are consequences of the following the-
orem of oracle type, upon choosing β∗ = β0 in this theorem. The fourth assertion
is proved in Section 6 under the conditions of Theorem 6 below. In the framework
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of Example 3, for instance say for i.i.d. Gaussian design and λ = 1, the fourth
assertion is true with large probability uniformly over sparse vectors such that
|S0| ≤ sn = o(

√
n/ logp).

An oracle inequality for the prediction error of a point estimator β̂ is an asser-
tion that with large probability, and some penalty function pen(β),∥∥X

(
β̂ − β0)∥∥2

2 � inf
β∗

∥∥X
(
β∗ − β0)∥∥2

2 + pen
(
β∗);

see, for example, [10], Theorem 6.2, or [6] for the LASSO or the Dantzig selector.
Few oracle-type results for posterior measures have been developed. (The results
of [4], for projection estimators in white noise, are close relatives.) The following
theorem is an example of such a statement. Given compatibility it shows that the
bulk of the vectors β in the support of the posterior distribution satisfy an oracle
inequality with penalty pen(β) = |Sβ |.

THEOREM 3 (Recovery, oracle). If λ satisfies (2.1), and πp satisfies (2.2),
then, for ψ and ψ̃ given in (2.5), there exists a constant M such that uniformly
over β0 and β∗ with |S∗| ≤ |S0|, where S∗ = Sβ∗ ,

Eβ0�

(
β : ∥∥X

(
β − β0)∥∥

2 >
M

ψ(S0)

[∥∥X
(
β∗ − β0)∥∥

2 +
√|S∗| logp

φ(S∗)

]∣∣∣Y)
→ 0,

Eβ0�

(
β : ∥∥β − β0∥∥

1 >
∥∥β∗ − β0∥∥

1

+ M

ψ(S0)2

[‖X(β∗ − β0)‖2
2

‖X‖√logp
+ |S∗ |√logp

‖X‖φ(S∗)2

]∣∣∣Y)
→ 0,

Eβ0�

(
β : ∥∥β − β0∥∥

2 >
M

‖X‖ψ̃(S0)2

[∥∥X
(
β∗ − β0)∥∥

2 +
√|S∗| logp

φ(S∗)

]∣∣∣Y)
→ 0.

Besides the choice β∗ = β0, which yields the first three assertions of Theorem 2,
other choices of β∗ also give interesting results. For instance, in the sequence
model of Example 1, the choice β∗ = 0 gives that

sup
β0

Eβ0�
(
β : ∥∥β − β0∥∥

2 > M
∥∥β0∥∥

2|Y
) → 0.

For ‖β0‖2
2 smaller than |Sβ0 | logp, this improves on Theorem 2, by quantifying

the rate in the sizes and not only the number of nonzero coordinates in β0.
The posterior distribution induces a distribution on the set of models S ⊂

{1,2, . . . , p}, which updates the prior masses given to these models by (1.2). It
is desirable that this puts most of its mass on the true model Sβ0 . As the support of
a vector β0 is defined only in a qualitative manner by its coordinates β0

i being zero
or not, this will not be true in general. However, the following theorem shows,
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under (only strong) compatibility, that the posterior distribution will not charge
models that are strict supersets of the true model, no matter the magnitudes of the
nonzero coordinates in β0. This may be considered the effect of model selection
through the prior πp , which under our assumptions prefers smaller models, enough
so that it will not add unnecessary coordinates when all truly nonzero coordinates
are present.

THEOREM 4 (Selection: no supersets). If λ satisfies (2.1), and πp satis-
fies (2.2) with A4 > 1, then for every c0 > 0 and any sn ≤ pa with snλ

√
logp/

‖X‖ → 0 and a < A4 − 1,

sup
β0:φ(S0)≥c0

|S0|≤sn,ψ̃(S0)≥c0

Eβ0�(β : Sβ ⊃ Sβ0, Sβ 
= Sβ0 |Y) → 0.

A nonzero coordinate of β0 that is too close to zero cannot be detected as being
nonzero by any method. Consequently, the posterior distribution may well charge
models S that contain only a subset of the true model Sβ0 and possibly other coor-
dinates, which is not excluded by the preceding theorem. The following theorem
gives thresholds for detection, which become smaller as the compatibility con-
ditions become stronger. The theorem may be compared to results in terms of
beta-min conditions for point estimators; see, for example, [10], Corollary 7.6.

THEOREM 5 (Selection). If λ satisfies (2.1), and πp satisfies (2.2), then, for
sufficiently large M ,

inf
β0

Eβ0�

(
β : Sβ ⊃

{
i : ∣∣β0

i

∣∣ ≥ M

ψ(S0)2

|S0|√logp

‖X‖φ(S0)2

}∣∣∣Y)
→ 1,

inf
β0

Eβ0�

(
β : Sβ ⊃

{
i : ∣∣β0

i

∣∣ ≥ M

ψ̃(S0)2

√|S0| logp

‖X‖φ(S0)

}∣∣∣Y)
→ 1.

Furthermore, for every c0 > 0, any d0 ≤ c2
0(1 + 2/A4)

−1/8, and any sn with
λsn

√
logp/‖X‖ → 0,

inf
β0:φ(S0)≥c0,ψ̃(S0)≥c0

|S0|≤sn,|S0|≤d0 mc(X)−1

Eβ0�

(
β : Sβ ⊃

{
i : ∣∣β0

i

∣∣ ≥ M
√

logp

‖X‖
}∣∣∣Y)

→ 1.

By combining Theorems 4 and 5 we see that under the assumptions of the theo-
rems the posterior distribution consistently selects the correct model if all nonzero
coordinates of β0 are bounded away from 0 by the thresholds given in Theorem 5.
For M as in the preceding theorem, let

B̃ =
{
β : min

i∈Sβ

|βi | ≥ M

ψ̃(S)2

√|Sβ | logp

‖X‖φ(Sβ)

}
.
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Define B similarly with
√|Sβ | logp in the threshold replaced by |Sβ |√logp and

with ψ instead of ψ̃ .

COROLLARY 1 (Consistent model selection). If λ satisfies (2.1), and πp satis-
fies (2.2) with A4 > 1, and sn ≤ pa such that a < A4 −1 and snλ

√
logp/‖X‖ → 0,

then, for every c0 > 0,

inf
β0∈B̃:φ(S0)≥c0

|S0|≤sn,ψ̃(S0)≥c0

Eβ0�(β : Sβ = Sβ0 |Y) → 1.

The same is true with B̃ and φ̃ replaced by B and φ.

Consistent posterior model selection implies in particular, that the model with
the largest posterior mass is model selection consistent in the frequentist sense.
This can be established as in the proof of Theorem 2.5 in [22].

2.4. Distributional approximation. In this section we show that the posterior
distribution can be approximated by a mixture of normal distributions. Moreover,
given consistent selection of the true model, this mixture collapses to a single nor-
mal distribution. We restrict to what we shall refer to as the small lambda regime,

λ

‖X‖|Sβ0 |
√

logp → 0.(2.6)

In this case the centering of the normal distributions does not depend on the size
of scaling parameters λ. In contrast, in the “large lambda regime,” which includes
the usual order of magnitude of the smoothing parameter in the LASSO, the poste-
rior distribution mimics the LASSO, and gives a biased reconstruction of the true
parameter; see Theorem 1 in the supplementary material [15].

The small lambda regime includes a variety of possible choices within our gen-
eral assumption (2.1). A smaller value of λ corresponds to a noninformative prior
on the nonzero coordinates of the parameter vector. Here “small” is relative, de-
pending on the model and the number of observations.

EXAMPLE 9 (Small lambda regime). For the minimal choice λ = ‖X‖/p
in (2.1) the small lambda regime (2.6) simplifies to |Sβ0 | � p/

√
logp. Thus the

regime applies to a wide range of true parameters.
In the sequence model with multiple observations given in Example 2 and the

response model of Example 3, we have ‖X‖ = σ−1
n and ‖X‖ ∼ n1/2, respectively,

and λ is in the small lambda regime if λ|Sβ0 | is much smaller than 1/(σn

√
logp)

and
√

n/ logp, respectively. The second allows λ = O(1) if |Sβ0 |√logp/n → 0.

For a given model S ⊂ {1, . . . , p} let XS be the n× |S|-submatrix of the regres-
sion matrix X consisting of the columns X·,i with i ∈ S, and let β̂(S) be a least
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square estimator in the restricted model Y = XSβS + ε, that is,

β̂(S) ∈ arg min
βS∈RS

‖Y − XSβS‖2
2.

In case the restricted model would be correctly specified, the least squares estima-
tor would possess a N (β0

S, (Xt
SXS)−1)-distribution, and the posterior distribution

(in a setting where the data washes out the prior) would be asymptotically equiv-
alent to a N (β̂(S), (X

t
SXS)−1)-distribution, by the Bernstein–von Mises theorem.

In our present situation, the posterior distribution is approximated by a random
mixture of these normal distributions, of the form

�∞(·|Y) = ∑
S∈S0

ŵSN
(
β̂(S),

(
Xt

SXS

)−1) ⊗ δSc ,

where δSc denotes the Dirac measure at 0 ∈ R
Sc

, the weights (ŵS)S satisfy

ŵS ∝ πp(s)(p
s

) (
λ

2

)s

(2π)s/2∣∣Xt
SXS

∣∣−1/2
e(1/2)‖XSβ̂(S)‖2

21S∈S0(2.7)

and, for a sufficiently large M

S0 =
{
S : |S| ≤

(
2 + 4

A4

)
|Sβ0 |,∥∥β0

Sc

∥∥
1 ≤ M|Sβ0 |

√
logp/‖X‖

}
.

The weights (ŵS) are a data-dependent probability distribution on the collection
of models S0. The latter collection can be considered a “neighborhood” of the
support of the true parameter, both in terms of dimensionality and the (lack of)
extension of the true parameter outside these models.

A different way of writing the approximation �∞ is

�∞(B|Y) =
∑

S∈S0
(πp(s)/

(p
s

)
)(λ/2)s

∫
BS

e−(1/2)‖Y−XSβS‖2
2 dβS∑

S∈S0
(πp(s)/

(p
s

)
)(λ/2)s

∫
e−(1/2)‖Y−XSβS‖2

2 dβS

,(2.8)

where BS = {βS : (βS,0Sc) ∈ B} is the intersection (and not projection) of
B ⊂ R

p with the subspace R
S . To see this, decompose Y − XSβS = (Y −

XSβ̂(S)) + XS(β̂(S) − βS), and observe that the two summands are orthogonal.
The Lebesgue integral dβS can be interpreted as an improper prior on the param-
eter βS of model S, and the expression as a mixture of the corresponding pos-
terior distributions, with model weights proportional to the prior weights times
(λ/2)s(2π)s/2 ∫

e−(1/2)‖Y−XSβS‖2
2 dβS . It follows that the Laplace priors gS on the

nonzero coordinates wash out from the components of the posterior. On the other
hand, they are still visible in the weights through the factors (λ/2)s . In general,
this influence is mild in the sense that these factors will not change the relative
weights of the models much.
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THEOREM 6 (Bernstein–von Mises, small lambda regime). If λ satisfies (2.1),
and πp satisfies (2.2), then for every c0 > 0 and any sn with snλ

√
logp/‖X‖ → 0,

sup
β0:φ(S0)≥c0

|S0|≤sn,ψ(S0)≥c0

Eβ0
∥∥�(·|Y) − �∞(·|Y)

∥∥
TV → 0.

COROLLARY 2 (Limit under strong model selection). Under the combined
assumptions of Corollary 1 and Theorem 6,

sup
β0∈B̃:φ(S0)≥c0

|S0|≤sn,ψ̃(S0)≥c0

Eβ0
∥∥�(·|Y) −N

(
β̂(S0),

(
Xt

S0
XS0

)−1) ⊗ δSc
0

∥∥
TV → 0.

The distributional results imply that the spread in the posterior distribution gives
a correct (conservative) quantification of remaining uncertainty on the parameter.
One way of making this precise is in terms of credible sets for the individual pa-
rameters βj . The marginal posterior distribution of βj is a mixture π̂j δ0 + Ĥj of
a point mass at zero and a continuous component Ĥj . Thus a reasonable upper
0.975 credible limit for βj is equal to

R̂j =

⎧⎪⎪⎨
⎪⎪⎩

Ĥ−1
j (0.975), if 0.975 ≤ Ĥj (0),

0, if Ĥj (0) ≤ 0.975 ≤ Ĥj (0) + π̂j ,

Ĥ−1
j (0.975 − π̂j ), if Ĥj (0) + π̂j ≤ 0.975.

It is not difficult to see that under the conditions of Corollary 2, Pβ0(β0
j ≤ R̂j ) →

0.975 if j ∈ S0 and Pβ0(β0
j = 0) → 1 if j /∈ S0.

3. The LASSO is not fully Bayesian. The LASSO (cf. [44])

β̂LASSO
λ = arg min

β∈Rp

[‖Y − Xβ‖2
2 + 2λ‖β‖1

]
(3.1)

is the posterior mode for the prior that models the coordinates βi as an i.i.d. sam-
ple from a Laplace distribution with scale parameter λ, and thus also possesses a
Bayesian flavor. It is well known to have many desirable properties: it is computa-
tionally tractable; with appropriately tuned smoothing parameter λ it attains good
reconstruction rates; it automatically leads to sparse solutions; by small adapta-
tions it can be made consistent for model selection under standard conditions.
However, as a Bayesian object it has a deficit: in the sparse setup the full pos-
terior distribution corresponding to the LASSO prior does not contract at the same
speed as its mode. Therefore the full posterior distribution is useless for uncertainty
quantification, the central idea of Bayesian inference.

We prove this in the following theorem, which we restrict to the sequence model
of Example 1, that is, model (1.1) with X = I the identity matrix. In this setting
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the LASSO estimator is known to attain the (near) minimax rate s logn for the
square Euclidean loss over the “nearly black bodies” {β : |Sβ | ≤ s}, and a near
minimax rate over many other sparsity classes as well, if the regularity parameter
λ is chosen of the order

√
2 logn. The next theorem shows that for this choice

the LASSO posterior distribution �LASSO
λ (·|Y) puts no mass on balls of radius

of the order
√

n/(logn)1/2, which is substantially bigger than the minimax rate
(s logn)1/2 (except for extremely dense signals).

Intuitively, this is explained by the fact that the parameter λ in the Laplace
prior must be large in order to shrink coefficients βi to zero, but at the same time
reasonable so that the Laplace prior can model the nonzero coordinates. That these
conflicting demands do not affect the good behavior of the LASSO estimators must
be due to the special geometric, sparsity-inducing form of the posterior mode, not
to the Bayesian connection.

THEOREM 7. Assume that we are in the setting of Example 1. For any λ = λn

such that
√

n/λn → ∞, there exists δ > 0 such that, as n → ∞,

Eβ0=0�
LASSO
λn

(
β : ‖β‖2 ≤ δ

√
n

(
1

λn

∧ 1
)∣∣∣Y)

→ 0.

4. Prediction for arbitrary design. The vector Xβ is the mean vector of the
observation Y in (1.1), and one might guess that this is estimable without identifi-
ability conditions on the regression matrix X. In this section we show that the pos-
terior distribution based on the prior (1.2) can indeed solve this prediction problem
at (nearly) optimal rates under no condition on the design matrix X. These results
are inspired by [17] and Theorem 8 below can be seen as a full Bayesian version of
the results on the PAC-Bayesian point estimators in the latter paper; see also [36]
for prediction results for mixtures of least-squares estimators.

We are still interested in the sparse setting, and hence the regression matrix X

still intervenes by modeling the unknown mean vector EY as a linear combination
of a small set of its columns.

First, we consider the case of priors (1.2) that model the mean vector indirectly
by modeling the set of columns and the coefficients of the linear combination. The
prior πp(s) comes in through the constant

Cπ =
p∑

s=0

9s

(
p

s

)1/2 √
πp(s).(4.1)

For the choice of prior on coordinates βi , the best results are obtained with heavy-
tailed densities g. In general the rate depends on the Kullback–Leibler divergence
between the measure with distribution function GS0 (corresponding to the prior
density gS0 ) and the same measure shifted by β0

S0
. Let KL be the Kullback–Leibler

divergence, and set

Dβ0 =
(p
s0

)
πp(s0)

e
KL(GS0 (·−β0

S0
),GS0 )+(1/2)

∫ ‖XβS0‖2
2 dGS0 (βS0 )

.(4.2)
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THEOREM 8. For any prior πp and Cπ as in (4.1), any density g that is sym-
metric about 0, any β0, β∗ ∈ R

p and r ≥ 1,

Eβ0�
(∥∥X

(
β − β0)∥∥

2 > 7
∥∥X

(
β∗ − β0)∥∥

2 + 4
√

log
(
C2

πDβ∗
) + 8

√
r|Y

)
� e−r .

If the prior on the dimension satisfies (2.2) with A4 > 1, then Cπ is bounded
in p, and the rate for squared error loss is determined by

ρn

(
β0) := logDβ0

� |Sβ0 | logp + KL
(
GS0

(· − β0
S0

)
,GS0

) + 1

2

∫
‖XβS0‖2

2 dGS0(βS0).

This rate might be dominated by the Kullback–Leibler divergence for large sig-
nal β0. However, for heavy tailed priors g the induced constraints on the signal
to achieve the good rate |Sβ0 | logp are quite mild. Consider the prior distribution
(1.2) with gS a product of |S| univariate densities g of the form

g(x) ∝ λ

1 + |λx|μ , x ∈ R, λ > 0,μ > 3.(4.3)

COROLLARY 3. If πp satisfies (2.3) with a ≥ 1, and g is of the form (4.3) with
λ = ‖X‖ and μ > 3, then for sufficiently large M ,

sup
β0

Eβ0�
(
β ∈ R

p : ∥∥Xβ − Xβ0∥∥2
2 > Mρn

(
β0)|Y ) → 0,

for ρn(β) = |Sβ | logp ∨ ∑
i∈Sβ

log(1 + ‖X‖μ|βi |μ).

REMARK 1. The constant 7 in Theorem 8 can be improved to 4 + δ, for an
arbitrary δ > 0, by a slight adaptation of the argument. Using PAC-Bayesian tech-
niques Dalalyan and Tsybakov [17] obtain an oracle inequality with leading con-
stant 1 for a so-called pseudo-posterior mean: the likelihood in (1.4) is raised to
some power, which amounts to replacing the 1/2 factor by 1/β . The “inverse tem-
perature” β must be taken large enough; the case β = 2 corresponding to the Bayes
posterior as considered here is not included; see also [30].

Theorem 8 and its corollary address the question of achieving prediction with
no condition on X, and the same rate is achieved as in Section 2 with the same type
of priors, up to some slight loss incurred only for true vectors β0 with very large
entries. As shown in the corollary, this slight dependence on β0 can be made milder
with flatter priors. We now consider a different approach specifically targeted at
the prediction problem and which enables to remove dependency on the size of the
coordinates of β0 completely.

Because the prediction problem is concerned only with the mean vector, and the
columns of X will typically be linearly dependent, it is natural to define the prior
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distribution directly on the corresponding subspaces. For any S ⊂ {1, . . . , p}, let
YS := {Xβ,Sβ ⊆ S} be the subspace of Rn generated by the columns Xj, j ∈ S

of X. Let V denote the collection of all distinct subspaces YS .
Define a (improper) prior � on R

n by first selecting an integer t in {0,1, . . . , n}
according to a prior πn, next given t selecting a subspace V ∈ V of dimension t

uniformly at random among subspaces in V of dimension t ; finally, let � given V

be defined as Lebesgue measure on V if dim(V ) ≥ 1, and let � be the Dirac mass
at {0} for V = {0}. Note that the posterior distribution �[·|Y ] is a well-defined
probability measure on R

n.
We choose, for a fixed d ≥ 4 (the numerical constant 4 is for simplicity),

πn(t) := πn,p(t) = e−dt logp∑n
t=0 e−dt logp

, t = 0,1, . . . , n.(4.4)

Let V 0 := YS
β0 and t0 be the dimension of V 0.

THEOREM 9. Let � be the improper prior on R
n defined above with πn as

in (4.4). For M large enough,

sup
β0

Eβ0�
[
γ ∈ R

n,
∥∥γ − Xβ0∥∥2

2 > M(t0 ∨ 1) logp|Y ] → 0.

The result is uniform in β0 ∈ R
p . Also, note that t0 ≤ |Sβ0 | = s0 and that one

may have t0 = o(s0). The obtained rate thus may improve on the previous predic-
tion rates. It has a simple interpretation: up to an additional logarithmic factor, it
is the rate of the natural estimate γ ∗ = ProjV 0Y if the true subspace V 0 is known,
where ProjV 0 denotes the orthogonal projection in R

n into the subspace V 0.

5. Computational algorithms. In this section we survey computational
methods to compute posterior distributions in the regression model (1.1) based
on model selection priors (1.2). In most cases, this is a “spike and slab” prior, as
discussed in Example 5, implemented with auxiliary 0–1 variables that indicate
whether a parameter βj is included in the model or not. The slab distribution is
typically chosen a scale mixture of Gaussian distributions, which may include the
Laplace law, which is an exponential mixture. Most implementations also allow
an unknown error variance (which is taken to be unity in the present paper), with
the inverse gamma distribution as the favorite prior.

For low-dimensional regression problems, computation of the posterior given
mixture priors was studied by many authors, including [18, 21, 26, 27, 34, 41, 48].
Higher-dimensional settings have been considered recently: most of the following
papers have appeared in the last five years, and a number of them are preprints.

Several authors [7, 8, 25, 31, 35, 43] have implemented MCMC schemes to
simulate from the posterior distribution, coupled with stochastic search algorithms
that limit the model space, so as to alleviate the curse of dimensionality. Besides
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computation time, monitoring the convergence of the samplers is an issue. For
higher dimensions it is impossible to sample from the complete model space, but
this should also not be necessary, as in sparse situations the posterior will concen-
trate on lower-dimensional spaces, as is also apparent from our theoretical results.
Bottolo et al. [7] provide ready-made software, which runs on dimensions up to
several thousands. The same authors have also exploited hardware solutions, such
as graphical processing units, to speed up computations in genomic data analy-
ses.

Sequential Monte Carlo methods or particle filters can be viewed as MCMC
schemes that can more readily incorporate correct moves in the model space that
ensure good approximation to the posterior distribution. In [39, 42] such methods
are shown to perform well for model selection in regression models with up to
hundreds of covariates.

The shrinkage-thresholding Metropolis adjusted Langevin algorithm (or
STMALA) introduced in [40] is another variation on earlier MCMC algorithms,
targeted to work for p > n, in, for instance, imaging applications. It jointly sam-
ples a model and a regression vector in this model, using proposals based on the
gradient of the logarithm of the smooth part of the posterior distribution (as in
MALA) combined with applying a shrinkage-thresholding operator to set coordi-
nates to zero. Geometric convergence of the algorithm, which is capable of moving
between rather distant models, is guaranteed for slab prior densities of the form
∝ exp(−λ‖β‖1 − μ‖β‖2

2), where μ > 0. Illustrations showing good practical per-
formance are given in [40] (Section 5.2) for values of (n,p) equal to (100,200) or
(39,300).

An alternative to simulation from the exact posterior is to compute an exact,
analytic approximation to the posterior. A relatively simple and computationally
efficient variational Bayes approximation is proposed in [47] and is shown to per-
form satisfactorily, but examples in the paper are limited to cases where p ≤ n.

By relaxing the spike at zero to a Gaussian distribution with small variance,
Ročková and George [38] succeeded in reducing computations of aspects of the
posterior distribution, such as means and moments, to iterations of an efficient
EM-algorithm. They show good performance with exponentially decreasing priors
on model dimension, as considered in the present paper.

Closely related to the spike and slab prior is exponential weighting, where each
of the 2p models is given a prior weight, which is then updated with the likelihood
function. A survey and numerical simulations in high-dimensional settings using
the Metropolis–Hastings algorithm can be found in [37]. Stable reconstructions in
dimensions up to p = 500, n = 200 and sparsity level s0 = 20 are shown to require
usually no more than 2000 iterations.

An (empirical, pseudo-) Bayes approach with a spike and Gaussian slabs cen-
tered at the least square solutions of the underlying model is implemented in [33].
The algorithm, which can be initialized at the LASSO estimator, is shown to per-
form well for n up to 100 and p up to 1000. Because the slabs are centered on
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data-based quantities, the target of this algorithm is different from the posterior
distribution in the present paper. However, since the prior puts mass on all models,
its computational complexity is comparable to the procedure in the present paper.

For the sequence model of Example 1, an algorithm to compute posterior quanti-
ties such as modes and quantiles based on generating polynomials is implemented
in [16]. This is efficient in terms of computation time, but requires large memory.
Up to n = p = 500 standard software and hardware suffice. The method may be
extended to other designs by making suitable transformations [5].

6. Proofs for Section 2. Denote by pn,β the density of the N (Xβ, I )-
distribution, and the corresponding log likelihood ratios by

�n,β,β∗(Y ) = pn,β

pn,β∗
(Y ) = e−(1/2)‖X(β−β∗)‖2

2+(Y−Xβ∗)tX(β−β∗).(6.1)

LEMMA 2. For p sufficiently large and any β∗ ∈ R
p , with support S∗ and

s∗ := |S∗|, and � given by (1.2) with gS a product of Laplace densities with scale λ,
we have, almost surely,∫

�n,β,β∗(Y ) d�(β) ≥ πp(s∗)
p2s∗ e−λ‖β∗‖1e−1.

PROOF. For s∗ = 0 the right-hand side is πp(0)e−1, while the left-hand side
is bounded below by �n,0,0πp(0) = πp(0), by (1.2). Thus we may assume that
s∗ ≥ 1.

First we prove that for any set S and s = |S| > 0,∫
‖βS‖1≤r

gS(βS) dβS = e−λr
∞∑

k=s

(λr)k

k! ≥ e−λr (λr)s

s! .(6.2)

If (Li)i=1,...,s are i.i.d. random variables with the Laplace distribution with scale
parameter λ, then (|Li |)i=1,...,s are i.i.d. exponential variables of the same scale.
Hence the left-hand side of the display, which is equal to P(

∑s
i=1 |Li | ≤ r), is the

probability that the first s events of a Poisson process of intensity λ occur before
time r . This is identical to the probability that the Poisson process has s or more
events in [0, r], which is the sum in the display.

By (1.2), the left-hand side of the lemma is bounded below by

πp(s∗)(p
s∗

) ∫
�n,β,β∗(Y )gS∗(βS∗) dβS∗

≥ πp(s∗)(p
s∗

) e−λ‖β∗‖1

∫
e−(1/2)‖XbS∗‖2

2+(Y−Xβ∗)tXbS∗ gS∗(bS∗) dbS∗,

by (6.1), the change of variables βS∗ − β∗
S∗ → bS∗ and the inequality gS∗(βS∗) ≥

e−λ‖β∗‖1gS∗(bS∗). The finite measure μ defined by the identity dμ =
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exp(−1
2‖XbS∗‖2

2)gS∗(bS∗) dbS∗ is symmetric about zero, and hence the mean of
bS∗ relative to μ is zero. Let μ̄ denote the normalized probability measure cor-
responding to μ, that is, μ̄ := μ/μ(R|S∗|). Let Eμ̄ denote the expectation opera-
tor with respect to μ̄. Define Z(bS∗) := (Y − Xβ∗)tXbS∗ . By Jensen’s inequality
Eμ̄ exp(Z) ≥ exp(Eμ̄Z). However, Eμ̄Z = 0, by the just mentioned symmetry
of μ. So the last display is bounded below by

πp(s∗)(p
s∗

) e−λ‖β∗‖1

∫
e−(1/2)‖XbS∗‖2

2gS∗(bS∗) dbS∗,

almost surely. Using that ‖Xβ‖2 = ‖∑p
i=1 βiX·,i‖2 ≤ ‖β‖1‖X‖, and then (6.2),

we find that the integral in the last display is bounded below by

e−1/2
∫
‖X‖‖bS∗‖1≤1

gS∗(bS∗) dbS∗ ≥ e−1/2 e−λ/‖X‖(λ/‖X‖)s∗
s∗! .

With (2.1), e−λ/‖X‖(λ/‖X‖)s∗ is bounded from below by e−1/2p−s∗ , if λ/‖X‖
≤ 1/2 and by e−4

√
logp2−s∗ , if λ/‖X‖ ≥ 1/2. Since s∗ > 0 and e−4

√
logp de-

cays to zero slower than any polynomial power of p, we find e−λ/‖X‖(λ/‖X‖)s∗
≥ e−1/2p−s∗ in both cases, provided that p is sufficiently large. The lemma follows
upon substituting these bounds and the bound

(p
s

)
s! ≤ ps in the display. �

LEMMA 3. For any β,β∗ ∈ R
p and random variable 0 ≤ U = U(Y ) ≤ 1,

EβU ≤ e(1/2)‖X(β−β∗)‖2
2(Eβ∗U)1/2.

PROOF. Write the left-hand side as Eβ∗[U�n,β,β∗], and use the Cauchy–
Schwarz inequality; see, for example, [16], Lemma 6.1. �

LEMMA 4.

Pβ0
(∥∥Xt (Y − Xβ0)∥∥∞ > 2

√
logp‖X‖) ≤ 2

p
.

PROOF. Under the probability measure Pβ0 the vector ε = Y −Xβ0 possesses
an n-dimensional standard normal distribution, whence the p coordinates of the
vector Xtε are normal with variances (XtX)i,i ≤ ‖X‖. Now P(‖Xtε‖∞ > x) ≤∑p

i=1 P((Xtε)i > x), which can be bounded by the tail bound for the normal dis-
tribution. �

THEOREM 10 (Dimension, general result). If λ satisfies (2.1) and the prior
πp satisfies (2.2), then for any M > 2,

sup
β0,β∗

Eβ0�

(
β : |Sβ | > |S∗| + M

A4

(
1 + 16

φ(S∗)2

λ

λ

)
|S∗| + M

A4

‖X(β0 − β∗)‖2
2

logp

∣∣∣Y)

→ 0.
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PROOF. By the definition of λ in (2.1) and Lemma 4, the complement of the
event T0 = {‖Xt(Y −Xβ0)‖∞ ≤ λ} has Pβ0 -probability bounded by 2/p. By com-
bining this with Lemma 3 we see that for any β∗ and any measurable set B ⊂ R

p ,

Eβ0�(B|Y) ≤ e(1/2)‖X(β0−β∗)‖2
2
(
Eβ∗

[
�(B|Y)IT0

])1/2 + 2

p
.(6.3)

By Bayes’s formula followed by Lemma 2, with �n,β,β∗(Y ) the likelihood ratio
given in (6.1),

�(B|Y) =
∫
B �n,β,β∗(Y ) d�(β)∫
�n,β,β∗(Y ) d�(β)

(6.4)

≤ ep2s∗

πp(s∗)
eλ‖β∗‖1

∫
B

e−(1/2)‖X(β−β∗)‖2
2+(Y−Xβ∗)tX(β−β∗) d�(β).

Using Hölder’s inequality |αtβ| ≤ ‖α‖∞‖β‖1 and the Cauchy–Schwarz inequal-
ity, we see that on the event T0,(

Y − Xβ∗)t
X

(
β − β∗)

= (
Y − Xβ0)t

X
(
β − β∗) + (

Xβ0 − Xβ∗)t
X

(
β − β∗)

(6.5)

≤ λ
∥∥β − β∗∥∥

1 + ∥∥X
(
β0 − β∗)∥∥2

2 + 1
4

∥∥X
(
β − β∗)∥∥2

2 =: L(β).

Therefore, on the event T0, the expected value under Eβ∗ of the integrand on the
right-hand side of (6.4) is bounded above by

e−(1/2)‖X(β−β∗)‖2
2Eβ∗

[
e(1−λ/(2λ))(Y−Xβ∗)tX(β−β∗)

IT0

]
e(λ/(2λ))L(β)

= e−(1/2)(1−(1−λ/(2λ))2)‖X(β−β∗)‖2
2e(λ/(2λ))L(β)

≤ e‖X(β0−β∗)‖2
2e−(λ/(8λ))‖X(β−β∗)‖2

2+(λ/2)‖β−β∗‖1,

where we use that λ ≤ 2λ. It follows that the expected value Eβ∗[�(B|Y)IT0]
under β∗ of (6.4) over T0 is bounded above by

≤ ep2s∗

πp(s∗)
eλ‖β∗‖1

∫
B

e‖X(β0−β∗)‖2
2e−(λ/(8λ))‖X(β−β∗)‖2

2+(λ/2)‖β−β∗‖1 d�(β).(6.6)

By the triangle inequality,∥∥β∗∥∥
1 + 1

2

∥∥β − β∗∥∥
1 ≤ ‖βS∗‖1 + 3

2

∥∥βS∗ − β∗∥∥
1 + 1

2‖βSc∗‖1

≤ −1
4

∥∥β − β∗∥∥
1 + ‖β‖1,

for 7‖βS∗ −β∗‖1 ≤ ‖βSc∗‖1, as is seen by splitting the norms on the right-hand side
over S∗ and Sc∗. If ‖βSc∗‖1 < 7‖βS∗ − β∗‖1, then we write 3/2 = 2 − 1/2 and use
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the definition of the compatibility number φ(S∗) to find that

‖βS∗‖1 + 3

2

∥∥βS∗ − β∗∥∥
1 + 1

2
‖βSc∗‖1

≤ ‖βS∗‖1 + 2
‖X(β − β∗)‖2s

1/2∗
‖X‖φ(S∗)

− 1

2

∥∥βS∗ − β∗∥∥
1 + 1

2
‖βSc∗‖1

≤ ‖βS∗‖1 + 1

8λ

∥∥X
(
β − β∗)∥∥2

2 + 8s∗λ
‖X‖2φ(S∗)2 − 1

4

∥∥β − β∗∥∥
1 + ‖β‖1.

We combine the last three displays to see that (6.6) is bounded above by

ep2s∗

πp(s∗)
e‖X(β0−β∗)‖2

2e8λλs∗/(‖X‖2φ(S∗)2)
∫
B

e−(λ/4)‖β−β∗‖1+λ‖β‖1 d�(β).

For the set B = {β : |Sβ | > R} and R ≥ s∗, the integral in this expression is
bounded above by

∑
S:|S|>R

πp(s)(p
s

) (
λ

2

)s ∫
e−(λ/4)‖βS−β∗‖1 dβS

≤
p∑

s=R+1

πp(s)4s

≤ πp(s∗)4s∗
(

4A2

pA4

)R+1−s∗ ∞∑
j=0

(
4A2

pA4

)j

,

by assumption (2.2). Combining the preceding with (6.3), we see that

Eβ0�(B|Y) � (4p)s∗e‖X(β0−β∗)‖2
2+4λλs∗/(‖X‖2φ(S∗)2)

(
4A2

pA4

)(R+1−s∗)/2

+ 2

p
.

Using that λ
2 = 4‖X‖2 logp, we can infer the theorem by choosing R = s∗ +

MA−1
4 (‖X(β0 − β∗)‖2

2/ logp + s∗ + 16s∗(λ/λ)/φ(S∗)2) for fixed M > 2. �

PROOF OF THEOREM 3. By Theorem 10 the posterior distribution is asymp-
totically supported on the event E := {β : |Sβ | ≤ D∗ ∧ D0}, for

D∗ =
(

1 + 3

A4
+ 33

A4φ(S∗)2

λ

λ

)
s∗ + 3

A4

‖X(β0 − β∗)‖2
2

logp
(6.7)

and D0 the same expression with β∗ replaced by β0. Thus it suffices to prove that
the intersections of the events in the theorem with the event E tends to zero. By
combining (6.4), (6.5) and the inequality λ‖β∗‖1 ≤ 2λ‖β −β∗‖1 +λ‖β‖1, we see
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that on the event T0 = {‖Xt(Y − Xβ0)‖∞ ≤ λ}, the variable �(B|Y) is bounded
above by

ep2s∗

πp(s∗)

∫
B

e−(1/4)‖X(β−β∗)‖2
2+3λ‖β−β∗‖1+‖X(β0−β∗)‖2

2+λ‖β‖1 d�(β).

By Definition 2.2 of the uniform compatibility number,

(4 − 1)λ
∥∥β − β∗∥∥

1 ≤ 4λ‖X(β − β∗)‖2|Sβ−β∗ |1/2

‖X‖φ(|Sβ−β∗ |) − λ
∥∥β − β∗∥∥

1(6.8)

≤ 1

8

∥∥X
(
β − β∗)∥∥2

2 + 32λ
2|Sβ−β∗ |

‖X‖2φ(|Sβ−β∗ |)2
− λ

∥∥β − β∗∥∥
1.(6.9)

Since |Sβ−β∗ | ≤ |Sβ | + s∗ ≤ D∗ ∧D0 + s∗, on the event E and s∗ ≤ s0 by assump-
tion, it follows from (2.5) that for a set B ⊂ E,

�(B|Y)IT0 ≤ ep2s∗

πp(s∗)
e‖X(β0−β∗)‖2

2+32λ
2
(D∗+s∗)/(‖X‖2ψ(S0)

2)

(6.10)
×

∫
B

e−(1/8)‖X(β−β∗)‖2
2−λ‖β−β∗‖1+λ‖β‖1 d�(β).

Since Pβ0(T0) ≤ 2/p it suffices to show that the right-hand side tends to zero for
the relevant event B .

Proof of first assertion. On the set B := {β ∈ E : ‖X(β − β0)‖2 > 4‖X(β∗ −
β0)‖2 + R}, we have ‖X(β − β∗)‖2

2 > 9‖X(β∗ − β0)‖2
2 + R2, by the triangle

inequality. Note that πp(s∗) ≥ (A1p
−A3)s∗πp(0). It follows that for the set B , the

preceding display is bounded above by

ep2s∗

πp(s∗)
e32λ

2
(D∗+s∗)/(‖X‖2ψ(S0)

2)e−(1/8)R2
∫

e−λ‖β−β∗‖1+λ‖β‖1 d�(β)

� p(2+A3)s∗A−s∗
1 e32λ

2
(D∗+s∗)/(‖X‖2ψ(S0)

2)e−(1/8)R2
p∑

s=0

πp(s)2s,

by (2.2) and a calculation similar to the proof of Theorem 10. For

1

8
R2 = (3 + A3)s∗ logp + 32λ

2
(D∗ + s∗)

‖X‖2ψ(S0)2
� logp(D∗ + s∗)

ψ(S0)2

=: R2∗,

this tends to zero. Thus we have proved that for some sufficiently large constant M ,

Eβ0�
(
β : ∥∥X

(
β − β0)∥∥

2 ≥ 4
∥∥X

(
β∗ − β0)∥∥

2 + MR∗|Y ) → 0.
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Proof of second assertion. Similar to (6.8),

λ
∥∥β − β0∥∥

1

≤ λ
∥∥β∗ − β0∥∥

1 + 1

2

∥∥X
(
β − β∗)∥∥2

2 + λ
2|Sβ−β∗ |

2‖X‖2ψ(S0)2

≤ ∥∥X
(
β − β0)∥∥2

2 + λ
∥∥β∗ − β0∥∥

1 + ∥∥X
(
β∗ − β0)∥∥2

2 + λ
2|Sβ−β∗ |

2‖X‖2ψ(S0)2
.

The claim follows now from the first assertion.
Proof of third assertion. Note that ‖X(β −β0)‖2 ≥ φ̃(|Sβ−β0 |)‖X‖‖β −β0‖2 ≥

ψ̃(S0)‖X‖‖β − β0‖2. Now, the proof follows from the first assertion. �

PROOF OF THEOREM 6. The total variation distance between a probability
measure � and its renormalized restriction �A(·) := �(· ∩ A)/�(A) to a set A

is bounded above by 2�(Ac). We apply this to both the posterior measure �(·|Y)

and the approximation �∞(·|Y), with the set

A :=
{
β : ∥∥β − β0∥∥

1 ≤ Ms0
√

logp

‖X‖ψ(S0)2φ(S0)2

}
,

where M is a sufficiently large constant. By Theorem 2 the probability �(A|Y)

tends to one under Pβ0 , and at the end of this proof we show that �∞(A|Y) tends
to one as well. Hence it suffices to prove Theorem 6 with �(·|Y) and �∞(·|Y)

replaced by their renormalized restrictions to A.
The measure �∞

A (·|Y) is by its definition a mixture over measures correspond-
ing to models S ∈ S0. By Theorems 1 and 2 the measure �A(·|Y) is asymptotically
concentrated on these models. If (ṽS) is the renormalized restriction of a probabil-
ity vector (vS) to a set S0, then, for any probability measures �S ,∥∥∥∥∑

S

ṽS�S − ∑
S

vS�S

∥∥∥∥
TV

≤ ∥∥(ṽS) − (vS)
∥∥

TV ≤ 2
∑
S /∈S0

vS,

by the preceding paragraph. We infer that we can make a further reduction by
restricting and renormalizing the mixing weights of �(·|Y) to S0. More precisely,
define probability measures by

�(1)(B|Y) ∝ ∑
S∈S0

πp(s)(p
s

) (
λ

2

)s ∫
(B∩A)S

e−(1/2)‖Y−XSβS‖2
2e−λ‖βS‖1 dβS,

�(2)(B|Y) ∝ ∑
S∈S0

πp(s)(p
s

) (
λ

2

)s ∫
(B∩A)S

e−(1/2)‖Y−XSβS‖2
2e−λ‖β0‖1 dβS.

Then it suffices to show that Eβ0‖�(1)(·|Y) − �(2)(·|Y)‖TV → 0. (The factor

e−λ‖β0‖1 in the second formula cancels in the normalization, but is inserted to
connect to the remainder of the proof.)
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For any sequences of measures (μS) and (νS), we have∥∥∥∥
∑

S μS

‖∑
S μS‖TV

−
∑

S νS

‖∑
S νS‖TV

∥∥∥∥
TV

≤ 2
∑

S ‖μS − νS‖TV

‖∑
S μS‖TV

≤ 2 sup
S

∥∥∥∥1 − dνS

dμS

∥∥∥∥∞
if νS is absolutely continuous with respect to μS with density dνS/dμS , for ev-
ery S. It follows that∥∥�(1)(·|Y) − �(2)(·|Y)

∥∥
TV ≤ 2 max

S∈S0
sup
β∈A

∣∣eλ‖βS‖1−λ‖β0‖1 − 1
∣∣

≤ 2 max
S∈S0

sup
β∈A

eλ‖βS−β0‖1λ
∥∥βS − β0∥∥

1.

This tends to zero by the definition of A and the assumptions on β0.
Finally we show that �∞(A|Y) → 1. For �n,β,β0 , the likelihood ratio given

in (6.1), we have

�∞(
Ac|Y ) =

∫
Ac �n,β,β0(Y ) dU(β)∫

�n,β,β0(Y ) dU(β)

for dU(β) = ∑
S∈S0

πp(s)(p
s

) (
λ

2

)s

dβS ⊗ δSc .

By (6.1) the denominator in �∞(·|Y) satisfies∫
�n,β,β0(Y ) dU(β)

≥ πp(s0)(p
s0

) (
λ

2

)s0 ∫
e
−(1/2)‖X(βS0−β0

S0
)‖2

2+(Y−Xβ0)tX(βS0−β0
S0

)
dβS0

≥ πp(s0)(p
s0

) (
λ

2

)s0 ∫
e−(1/2)‖XbS0‖2

2 dbS0 = πp(s0)(p
s0

) (
λ

2

)s0 (2π)s0/2

|�S0 |1/2 ,

where �S = Xt
SXS , and for the second inequality we use Jensen’s inequality simi-

larly as in the proof of Lemma 2.
Using Hölder’s inequality |αtβ| ≤ ‖α‖∞‖β‖1, we see that on the event T0 =

{‖Xt(Y − Xβ0)‖∞ ≤ λ},(
Y − Xβ0)t

X
(
β − β0) ≤ λ

∥∥β − β0∥∥
1

≤ 2
λ‖X(β − β0)‖2|Sβ−β0 |1/2

‖X‖φ(|Sβ−β0 |) − λ
∥∥β − β0∥∥

1

≤ 1

2

∥∥X
(
β − β0)∥∥2

2 + 2λ
2|Sβ−β0 |

‖X‖2φ(|Sβ−β0 |)2
− λ

∥∥β − β0∥∥
1.
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Since λ(|Sβ−β0 |) ≥ ψ(|S0|) for every Sβ ∈ S0, it follows that on T0 the numerator
in �∞(Ac|Y) is bounded above by

e
(2λ

2|S
β−β0 |/(‖X‖2ψ(S0)

2))−(λMs0
√

logp/(2‖X‖ψ(S0)
2φ(S0)

2))
∫

e−(1/2)λ‖β−β0‖1 dU(β)

≤ e
(8|S

β−β0 | logp/(ψ(S0)
2))−(Ms0 logp/(2ψ(S0)

2φ(S0)
2))

p∑
s=0

πp(s)4s .

It follows that �∞(Ac|Y) is bounded above by(p
s0

)
πp(s0)

(
2

λ

)s0 |�S0 |1/2

(2π)s0/2 e
(8|S

β−β0 | logp/ψ(S0)
2)−(Ms0 logp/(2ψ(S0)

2φ(S0)
2))

p∑
s=0

πp(s)4s .

By Jensen’s inequality applied to the logarithm |�S | ≤ (s−1 tr(�S))s ≤ ‖X‖2s , and
hence |�S |1/2/λs ≤ ps , by (2.1). The prior mass πp(s) can be bounded below by
powers of p−s by (2.2). This shows that the display tends to zero for sufficiently
large M . �

PROOF OF THEOREM 4. Let � be the collection of all sets S ∈ S0 such that
S ⊃ S0 and S 
= S0. In view of Theorem 6 it suffices to show that �∞(β : Sβ ∈
�|Y) → 0.

Note that due to A4 > 1, any set in S ∈ S0 has cardinality smaller 6s0. By (2.7),
with �S = Xt

SXS ,

�∞(β : Sβ ∈ �|Y) ≤ ∑
S∈�

ŵS

≤
6s0∑

s=s0+1

πp(s)
(p
s0

)(p−s0
s−s0

)
πp(s)

(p
s

) max
S∈�,

|S|=s

|�S0 |1/2

|�S |1/2

(
λ

√
π

2

)s−s0

× e(1/2)‖Xβ̂(S)‖2
2−(1/2)‖Xβ̂(S0)‖2

2 .

We shall show below that the factors on the right-hand side can be bounded as
follows: for any fixed r > 2,

λs−s0 |�S0 |1/2|�S |−1/2 ≤ (4
√

logp)s−s0ψ̃(S0)
s0−s,(6.11)

P
(‖XSβ̂(S)‖2

2 − ‖XS0 β̂(S0)‖2
2 ≤ r(s − s0) logp, for all S ∈ �

) → 1.(6.12)

Combining these estimates with assumption (2.2) shows that for T , the event in
the second relation,

�∞(β : Sβ ∈ �|Y)IT ≤
6s0∑

s=s0+1

(
A1p

−A4
)s−s0

(
s

s0

) (√
8π logp

ψ̃(S0)

)s−s0

pr(s−s0)/2.
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For s0 ≤ pa we have
( s
s0

) = ( s
s−s0

) ≤ ss−s0 ≤ (6pa)s−s0 . Thus the expression tends
to zero if a − A4 + r/2 < 0. Since r can be chosen arbitrarily close to 2, this
translates into a < A4 − 1.

To prove bound (6.11), we apply the interlacing theorem to the principal subma-
trix �S0 of �S to see that λj (�S0) ≤ λj (�S), for j = 1, . . . , s0, where λ1 ≥ λ2 ≥ · · ·
denote the eigenvalues in decreasing order, whence

|�S0 | =
s0∏

j=1

λj (�S0) ≤
s0∏

j=1

λj (�S) ≤ λmin(�S)s0−s |�S |

≤ (
φ̃

(|S|)‖X‖)2(s0−s)|�S |.
Assertion (6.11) follows upon combining this with (2.1).

To bound the probability of the event T in (6.12), we note that by the projec-
tion property of the least squares estimator, for S ⊃ S0 the difference ‖XSβ̂(S)‖2

2 −
‖XS0 β̂(S0)‖2

2 is the square length of the projection of Y onto the orthocomplement
of the range of XS0 within the range of XS , a subspace of dimension s − s0. Be-
cause the mean Xβ0 of Y = Xβ0 +ε is inside the smaller of these ranges, it cancels
under the projection, and we may use the projection of the standard normal vector
ε instead. Thus the square length possesses a chi-square distribution with s −s0 de-
grees of freedom. There are N = (p−s0

s−s0

)
models S ∈ � that give rise to such a chi-

square distribution. Since logN ≤ (s − s0) logp ∨ 1, we can apply Lemma 5 with

d = s − s0 to give that P(T c) is bounded above by
∑

s>s0

(p−s0
s−s0

)−(r−2)/4
ec(s−s0).

This tends to zero as p → ∞, due to
(p−s0
s−s0

) ≥ (p − s)s−s0 ≥ (p/2)s−s0 , where the
last inequality follows from s0/p ≤ s0λ/‖X‖ → 0. �

LEMMA 5. For every r > 2, there exists a constant c independent of N ≥
2 and d ≥ 1 such that for any variables Q1, . . . ,QN that are marginally χ2(d)

distributed,

P

(
max

1≤i≤N
Qi > r logN

)
≤

(
1

N

)(r−2)/4

ecd .

PROOF. By Markov’s inequality, for any u > 0,

P

(
max

1≤i≤N
Qi > r logN

)
≤ e−ur logN

E max
1≤i≤N

euQi ≤ N−urN
√

1 − 2u
−d

.

The results follows upon choosing u = 1/4 + 1/(2r), giving ur − 1 = (r − 2)/4
and 1 − 2u = 1/2 − 1/r . �

PROOF OF THEOREM 5. Proof of first two assertions. Because ‖βS0 −β0‖1 ≤
‖β − β0‖1, the posterior probability of the set{

β : ∥∥βS0 − β0∥∥
1 >

M

ψ(S0)2

|S0|√logp

‖X‖φ(S0)2

}
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tends to zero by Theorem 3. This implies the first assertion. The second assertion
follows similarly from the second assertion of Theorem 3.

Proof of third assertion. First we prove that the largest coefficient in absolute
value, say β0

m, is selected by the posterior if this is above the threshold. By Theo-
rem 6 it is enough to show that Eβ0�∞(β : m ∈ Sβ |Y) → 1. For any given set S

with m /∈ S, let Sm := S ∪ {m} and s = |S|. Then

�∞(β : m /∈ Sβ |Y) = ∑
S∈S0:m/∈S

ŵS.

We shall bound this further by showing that ŵS � ŵSm , for every S in the sum.
The quotient of these weights is equal to

ŵSm

ŵS

= λ

√
π

2

πp(s + 1)

πp(s)

(p
s

)
( p
s+1

) |�S |1/2

|�Sm |1/2 e(1/2)‖XSmβ̂(Sm)‖2
2−(1/2)‖XSβ̂(S)‖2

2

� λp−A3
s + 1

p − s

|�S |1/2

|�Sm |1/2 e(1/2)‖XSmβ̂(Sm)‖2
2−(1/2)‖XSβ̂(S)‖2

2,

in view of (2.2). By the interlacing theorem, the eigenvalues λi in increasing
order of the matrices �S and �Sm satisfy λi(�Sm) ≤ λi(�S) ≤ λi+1(�Sm), for
any 1 ≤ i ≤ s. This implies that |�S |/|�Sm | ≥ λs+1(�Sm)−1. Since ‖Xβ‖2 ≤
‖X‖‖β‖1 ≤ √|Sβ |‖X‖‖β‖2, for any β , the largest eigenvalue λs+1(�Sm) is at most
(s + 1)‖X‖2. Combining this with (2.1), we conclude that the preceding display is
bounded below by

λ

‖X‖p−A3−1e(1/2)‖XSmβ̂(Sm)‖2
2−(1/2)‖XSβ̂(S)‖2

2

≥ p−A3−2e(1/2)‖XSmβ̂(Sm)‖2
2−(1/2)‖XSβ̂(S)‖2

2 .

By definition of the least squares estimator, the difference of the square norms
in the exponent is the square length of the projection of Y = Xβ0 + ε onto the
orthocomplement FS of the range of XS in the range of XSm , the one-dimensional
space spanned by the vector Xm − PSXm, where PS denotes the projection onto
the range of XS . If, with an abuse of notation, PFS

is the projection onto FS , then

‖XSmβ̂(Sm)‖2
2 − ‖XSβ̂(S)‖2

2 = ‖PFS
Y‖2

2 ≥ 1

2

∥∥PFS
Xβ0∥∥2

2 − ‖PFS
ε‖2

2
(6.13)

= 〈Xβ0,Xm − PSXm〉2

2‖Xm − PSXm‖2
2

− 〈ε,Xm − PSXm〉2

‖Xm − PSXm‖2
2

.

We shall show that the first term on the right is large if |β0
m| is large, and the second

is small with large probability.
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We start by noting that for j /∈ S and any S,

‖PSXj‖2
2 = 〈

Xj,XS�−1
S Xt

SXj

〉 ≤ 1

φ̃(s)2‖X‖2

∥∥Xt
SXj

∥∥2
2

(6.14)

= 1

φ̃(s)2‖X‖2

∑
i∈S

(
XtX

)2
i,j ≤ s mc(X)2‖X‖2

φ̃(s)2
.

It follows from the definitions that φ̃(1)‖X‖ ≤ ‖Xj‖ ≤ ‖X‖, for every j . Com-
bined, this shows that ‖Xj − PSXj‖2 ≥ 3‖X‖φ̃(1)/4 if

√
s mc(X) ≤ φ̃(s)φ̃(1)/4.

We write Xβ0 = Xmβ0
m + X−mβ0−m, for X−m the matrix obtained by removing

the column Xm from X, and split the first inner product in (6.13) in the two parts∣∣〈Xmβ0
m,Xm − PSXm

〉∣∣ = ∣∣β0
m

∣∣‖Xm − PSXm‖2
2,∣∣〈X−mβ0−m,Xm − PSXm

〉∣∣ =
∣∣∣∣ ∑
j 
=m

β0
j 〈Xj − PSXj ,Xm − PSXm〉

∣∣∣∣
≤ ∑

j 
=m,j /∈S

∣∣β0
j

∣∣(mc(X)‖X‖2 + ‖PSXj‖2‖PSXm‖2
)

≤ s0
∣∣β0

m

∣∣(mc(X)‖X‖2 + s mc(X)2‖X‖2

φ̃(s)2

)
,

using that Xj −PSXj = 0 if j ∈ S, the definition of mc(X) to bound 〈Xj,Xm〉, the
Cauchy–Schwarz inequality on 〈PSXj ,Xm〉 = 〈PSXjzPSXm〉 and (6.14). Putting
the estimates together we find that for (s0 ∨ s)mc(X) ≤ φ̃(s)φ̃(1)/4,∥∥PFS

Xβ0∥∥
2 ≥ ∣∣β0

m

∣∣‖X‖φ̃(1)1
4 .

We can split the random inner product in (6.13) in the two parts 〈ε,Xm〉 and
〈ε,PSXm〉. For

√
s mc(X) ≤ φ̃(s)φ̃(1)/2,

‖PFS
ε‖2 ≤ |〈ε,Xm〉|

3‖X‖φ̃(1)/4
+ |〈ε,PSXm〉|

3‖X‖φ̃(1)/4
.

Each variable 〈ε, v〉 is normally distributed with mean zero and variance ‖v‖2
2, for

any v ∈ R
n. When m varies over 1, . . . , p and S over all subsets of size s that do

not contain m, there are p possible variables in the first term and p
(p−1

s

)
possible

variables in the second. For φ̃(s) ≥ ψ̃(S0) ≥ c0 the variances of the variables in
the two terms are of the orders 1/c2

0 and s mc(X)2/c4
0, respectively. Therefore the

means of the two suprema are of the orders
√

logp and
√

log
(p
s

)
s1/2 mc(X) ≤√

logp, respectively, if s mc(X) ≤ 1. With probability O(p−μ) these variables do
not exceed a multiple of their means.

We conclude that for (s0 ∨ s)mc(X) ≤ φ̃(s)φ̃(1)/4 and φ̃(s) ≥ c0, the left-
hand side of (6.13) is, with probability tending to one, bounded below by
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‖X‖2(β0
m)2c2

0/16−O(logp), whence for |β0
m| ≥ M

√
logp/‖X‖ for large M , uni-

formly in S,m,

ŵSm

ŵS

≥ p−A3−2ecM2 logp ≥ pμ,

for μ > 0 as large as desired (depending on M) and c a suitable positive constant.
So, with overwhelming probability,

�∞(β : m /∈ Sβ |Y) ≤ p−μ
∑

S∈S0:m∈S

ŵS ≤ p−μ.

Thus Eβ0�∞(m /∈ S|Y) → 0 at the order p−μ.
Next, for βm2 the second largest coefficient, we consider �∞(m2 /∈ S|m1 ∈

S,Y ). By reasoning similar to the preceding, we show that the index m2 is in-
cluded asymptotically, etc. �
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SUPPLEMENTARY MATERIAL

Bayesian linear regression with sparse priors (DOI: 10.1214/15-
AOS1334SUPP; .pdf). In the supplement we state a Bernstein–von Mises type
result for large lambda and give the remaining proofs.
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