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Abstract—In this work we address the problem of static state
estimation (SE) in distribution grids by leveraging historical
meter data (pseudo-measurements) with real-time measurements
from synchrophasors (PMU data). We present a Bayesian linear
estimator based on a linear approximation of the power flow
equations for distribution networks, which is computationally
more efficient than standard nonlinear weighted least squares
(WLS) estimators. We show via numerical simulations that
the proposed strategy performs similarly to the standard WLS
estimator on a small distribution network. A key advantage of the
proposed approach is that it provides explicit off-line computation
of the estimation error confidence intervals, which we use to
explore the trade-offs between number of PMUs, PMU placement
and measurement uncertainty. Since the estimation error in
distribution systems tends to be dominated by uncertainty in
loads and scarcity of instrumented nodes, the linearized method
along with the use of high-precision PMUs may be a suitable
way to facilitate on-line state estimation where it was previously
impractical.

Keywords—Distribution Systems State estimation, Phasor Measure-
ment Unit, Smart Grid, Power System Modeling, Smart Meters.

I. INTRODUCTION

Optimal management of power networks depends on
knowledge of the network state in real-time. Consequently,
state estimation (SE) has long been recognized as a fundamen-
tal problem in power networks. Classic SE in transmission net-
works is based on real and reactive power injected at each bus,
along with voltage and current measurements sampled every
several seconds at substations and other suitable locations via
Supervisory Control and Data Acquisition (SCADA) systems
[1]. More recently, the introduction of phasor measurement
units (PMUs) in transmission networks has increased the
accuracy of SE algorithms, by measuring not only voltage
magnitudes, but also voltage angle differences at different
nodes [2]. However, since PMUs are still expensive, most of
the recently proposed SE algorithms rely on measurements
from a small number of PMUs along with conventional
(magnitude only) measurements, as for example in [3], [4].
So the SE problem remains intrinsically nonlinear and hard
to solve. Although there is a well-established tradition and
an extensive literature on SE for transmission networks, only
recently the SE problem has been taken into consideration at
the distribution level. Primarily, this is because measurement
data in distribution networks tend to be very scarce and often
nonexistent beyond the substation. Also, distribution networks
rely mostly on radial topologies and one-way power flows,
which require evaluating just peak loads and fault currents,

rather than tracking the network operating state in real-time [5].
These circumstances have changed in recent years, due to the
increasing penetration of distributed energy resources, which
may introduce variability, uncertainty and even instabilities.
Consequently, there is a growing interest in SE estimators
based on pseudo-measurements [6] and measurements from
relatively inexpensive PMUs tailored to the distribution context
[5], [7]. However, not only distribution networks are radial,
but the line reactance-resistance ratio (X/R) is substantially
lower than the X/R ratio of transmission networks, thus making
standard approximations such as the so-called DC power flow
model inadequate [8]. Moreover, while the three phases are
quite well balanced at the transmission level (owing to the
statistics of aggregation), this is not true at the distribution
level.To correctly capture these phenomena, some SE solutions
rely explicitly on three-phase branch currents [9], [10], on
linearized models for pseudo-measurements [11], or on unsyn-
chronized phasor measurements [12]. In this paper, we address
the problem of distribution SE based on PMU measurements
and load pseudo-measurements for a small, balanced distribu-
tion network. While it remains to be extended to more general
cases, the contribution of the present work is twofold. First, a
Bayesian linear state estimator (BLSE) based on a fully linear
approximation of the power flow equations is used [13], [14].
The second contribution is an integrated evaluation of the SE
algorithm performance with respect to phasor measurement
accuracy, pseudo-measurements uncertainty, number of PMUs,
and PMU placement sequence. Specifically, we show via
numerical Monte Carlo simulations on a small distribution grid
that the BLSE offers the same performance as the traditional
nonlinear weighted least squares (WLS) state estimator, but
with the benefit of being numerically faster and more robust.
A key feature of the proposed BLSE is that it allows the com-
putation of estimation error confidence bounds off-line, since
these do not depend on the actual measurements (in contrast to
WLS, where estimation error confidence intervals have to be
computed on-line since they depend on measurements). These
confidence bounds can be used, for example, to decide where
to optimally place the PMUs if only a limited number of
them is available. Finally, some numerical simulations show
that deploying few, but accurate, PMUs can provide better
performance than using a larger number of less accurate
instruments, thus shedding some light on possible trade-offs
between number, accuracy and cost of PMUs.

II. POWER NETWORK MODEL

A grid is modelled as a graph G = {V, E} where V =
{0, 1, . . . , N} are the ordered nodes or buses of the grid and
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E = {1, 2, . . . , E} are the ordered lines of the grid. Each
edge � is represented by the �-th row of the incidence matrix
A ∈ {−1, 0, 1}E×(N+1) where all elements are zeros except
for one entry set to −1 (source node) and another entry set
to 1 (terminal node). The impedance matrix Z ∈ CE×E is
a diagonal complex matrix given by Z = diag{z1, . . . , zE},
where z� is the impedance of the �-th line. Without loss of
generality we assume that the 0-th node correspond to the
point of common coupling (PCC), i.e. the substation or point
where the distribution network under analysis is connected to
the main grid. Let be v0, v1, . . . , vN ∈ C and i0, . . . , iN ∈ C

the vectors representing the voltage and current phasors at
each node, respectively. The symbol ik represents the phasor
of the current injected into the k-th node. We also denote with
ξ1, . . . , ξE ∈ C the phasors of the currents flowing across
the �-th line from the source node to the sink node defined
by the �-th row of the incidence matrix A. Let us define
the complex column vectors v+ = [v0 . . . vN ]T ∈ CN+1,
i+ = [i0 . . . iN ]T ∈ CN+1, and ξ = [ξ1 . . . ξE ]

T ∈ CE

where (·)T indicates the transpose operator. The Kirchhoff’s
laws at all nodes and lines of the grid can be compactly written
as:

AT ξ + i+ = 0, (KCL), Av+ + Zξ = 0, (KV L)

Since Z is invertible we can combine the previous two
equations into a single matrix expression that relates voltage
and current phasors at each node of the grid:

L+v+ = i+, L+ := ATZ−1A (1)

where L+ ∈ C(N+1)×(N+1) is referred to as the admittance
matrix of the grid.

We assume that the node representing the PCC acts as an
ideal voltage source generator, i.e.

v0 = V0 (2)

where V0 ∈ R is the nominal voltage at the PCC. The previous
expression implies that |v0| = V0 and ∠v0 = 0. We also
assume that all the power loads (also referred to as PQ loads)
are constant i.e.

sk = vkik = pk + jqk, k = 1, . . . , N (3)

where si ∈ C is the (complex) power, pk is the active power, qk
is the reactive power, and the symbol (·) indicates the complex
conjugate. Note that when pk > 0 then the active power
is injected into the node according to the current direction
defined above. If no load is attached to a specific node k, as,
for example, in the case of nodes connecting a lateral line with
the main line, we can simply assume sk = 0, which indirectly
implies ik = 0 since under normal grid operating conditions
vk �= 0.

III. STEADY STATE POWER FLOW COMPUTATION

The previous section define the set of equations that voltage
and current phasors need to satisfy in each node of the network.
Let us define the complex column vectors v = [v1 . . . vN ]T ∈
CN , i = [i1 . . . iN ]T ∈ CN . Under assumption (2), then the
constraints given by Eqn. (1) can be equivalently rewritten as:[

L00 L01

L10 L

]
︸ ︷︷ ︸

L+

[
v0
v

]
︸ ︷︷ ︸

v+

=

[
i0
i

]
︸ ︷︷ ︸

i+

⇔ L10V0 + Lv = i

i0 = −∑N
k=1 ik

If the grid is connected, then L ∈ CN×N is invertible, therefore
we have v = L−1(i−L10V0). Since L1N = 1N and v0 = V0,
then L−1L10 = −1N , therefore the previous equation can be
written as

v = V01N + L−1i (4)

If we define the complex column vector s =
[s1 . . . sN ]T ∈ CN , then equations (2), (3) and (4) can be
equivalently written as:

v0 = V0 (5)

v ◦ ī = s (6)

v − L−1i = V01N (7)

i0 +

N∑
k=1

ik = 0 (8)

where the symbol ◦ denotes the component-wise product and
ī is the component-wise complex conjugate of the current
vector i. If the PCC voltage V0 and the load vector s are
known, then the previous equations represent a set of 2(N+1)
(complex) nonlinear equations in 2(N+1) (complex) unknown
variables v0, . . . , vN , i0, . . . , iN . The previous set of nonlinear
equations may have no solutions or multiple solutions. Under
the assumption that there exists at least one feasible solution,
the solution of the previous set of equations reduces to the
problem of solving Eqn. (7) and Eqn. (6). One possible
numerical procedure to compute a feasible solution (which is
also the most efficient in terms of power loss over the lines)
is expressed by Algorithm 1. This algorithm coincides with

Algorithm 1 Power Flow computation

Require: s ∈ CN , V0 ∈ R, r ∈ (0, 1), T ∈ N

1: v[0] = V01N

2: τ = 0
3: repeat
4: τ = τ + 1
5: i[τ ] = s̄

v[τ−1] � Component-wise division

6: v[τ ] = V01N + L−1i[τ ]
7: s[τ ] = v[τ ] ◦ i∗[τ ]
8: until ‖s[τ ]− s‖ < r‖s‖ or τ > T
9: if τ > T then

10: No solution found
11: end if

the forward-backward sweep method used to solve power flow
equations [15] when the grid is radial, but it is somewhat more
general since it can also be used for mesh networks. Alternative
approaches for power flow analysis are the well-known Gauss-
Seidel and Newton-Raphson methods [16]. In our simulations,
we adopted the proposed algorithm, since it also provides a
link with the linear model approximation described below.

IV. MEASUREMENT MODEL

Our goal is to estimate the state of the grid that can
be uniquely determined by the voltage phasors of all nodes.
We assume that two types of sources of information are
available for estimating the state of the grid. The first source
of information comes from historical time series of active and
reactive power values collected at each node by smart-meters.
The time-series can be used to predict the active and reactive
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load power at a certain time in the future. Being a prediction,
these estimates of active and reactive power at each load are
affected by large uncertainty. As shown in [6], from historical
time series it is possible to forecast day-ahead active and
reactive power consumptions within 30%−50% of the nominal
value. Therefore, the active and reactive power values at node
k at a specific time t can be written as

Pk(t) = pk + wp
k(t), E[(wp

k(t))
2] = σ2

Lp
2
k (9)

Qk(t) = qk + wq
k(t), E[(wq

k(t))
2] = σ2

Lq
2
k (10)

where pk and qk are the nominal active and reactive power
values (also used for prediction when pseudo-measurements
are used), wp

k(t) and wq
k(t) are zero-mean random variables,

and σL ≈ 0.3−0.5 is the relative load (and prediction) uncer-
tainty. In order to simplify the state estimation problem, we
further assume that active and reactive power prediction error
are uncorrelated, i.e. E[wp

k(t)w
q
k(t)] = E[wp

k(t)]E[w
q
k(t)] = 0.

As suggested in [6], it is also fair to assume that prediction
errors at two different nodes k and h are uncorrelated, i.e.
E[wp

k(t)w
p
h(t)] = E[wq

k(t)]E[w
q
h(t)] = 0.

The second source of information comes from possible
phasor measurement units (PMUs) which are able to measure
both the magnitude and the phase of voltage phasor at some
nodes. More formally, the PMU measurements at a node k at
time t can be written as:

Vk(t) = |vk(t)|+ wV
k (t), E[(wV

k (t))2] = b2V 2
0 (11)

θk(t) = ∠vk(t) + wθ
k(t), E[(wθ

k(t))
2] = c2 (12)

where b and c represent the relative and absolute standard
deviations of magnitude and phase measurement data, respec-
tively. In the following, magnitude and angle measures will be
assumed to be uncorrelated both at the same node and between
nodes, i.e. E[wV

k (t)wθ
k(t)] = 0 and E[wV

k (t)wV
h (t)] = 0 for

h �= k. Probably this assumption is expected to be relaxed
in future. Finally, in order to simplify the analysis, we will
suppose that

b = c = σPMU (13)

where σPMU is a constant value depending on PMU technol-
ogy.

V. LINEAR APPROXIMATION OF POWER FLOW

The power flow equations (5)-(8) are highly non-linear and
this makes the problem of state estimation in the presence
of noisy measurements and uncertainty very difficult and
numerically intensive. Recently, a linear approximation has
been proposed for modeling the power flow equations. This
approximation can be obtained by stopping the power flow
computation in Algorithm 1 after the first iteration, i.e.

i[1] =
1

V0
s̄, v[1] = V01N +

1

V0
L−1s̄ (14)

The previous two equations show that the current and the
voltage phasors are approximately linear in the power loads
s. Obviously, the linearization error is not zero, i.e. e[1] :=
v − v[1] �= 0, v being the actual voltage vector of the grid

nodes. However, it has been shown that if the term
‖L−1‖‖s‖

V 2
0

is sufficiently smaller than unity, then the linearization error is
small. As we will show later, this assumption is acceptable for
distribution systems, where the voltage magnitude drop and

the phase angle difference between the PCC and any node in
the network are smaller that 5− 10% and 2− 5o, respectively
[17].

VI. STATE ESTIMATION

The purpose of state estimation is to find the values of the
voltage phasors at time t for a given amount of information,
such as the active and reactive load predictions and the PMU
measurements. In the following, we will assume that statistical
information about the loads is available at each node of grid,
i.e. Pk(t) and Qk(t) are known for k = 1, . . . , N . Moreover,
we will assume that M PMUs are placed at the locations
defined by the set M = {m1, . . . ,mM} ⊆ {1, . . . , N}. If
no PMU is available, then M = ∅. Therefore, the state
estimation problem consists in finding a function v̂(t) =
f(P (t), Q(t), V (t), θ(t))≈v(t) where P =[P1 . . . PN ]T , Q =
[Q1 . . . QN ]T , V =[Vm1

. . . VmM
]T , θ=[θm1

. . . θmM
]T .

We will present two state estimation approaches: the first
approach is based on Bayesian estimation using the linear
approximated power flow model described in Section V, while
the second is based on the well-known nonlinear weighted
least squares (WLS) approach [1]. We also restrict our analysis
to static estimation, i.e. estimation based only on information
available at time t. Thus, to simplify the notation we will drop
the time dependence in all the variables, i.e. we will simply
write v̂ = f(P,Q, V, θ), where the variables are to be intended
at some time instant t.

A. Bayesian Linear State Estimator (BLSE)

In this section, we adopt the linear approximation of the
power flow equations described in (14) and we derive the
best estimator in a Bayesian framework. More specifically, the
prediction of active and reactive power of the loads can be used
to derive a-priori information about the statistical distributions
of voltage phasors. Such distributions can be computed off-
line and, once PMU measurements are available, they can be
used to improve the estimate of the true voltage phasors and
to reduce the uncertainty given by the a-posteriori statistical
distributions of the state estimate errors. We start by defining
Sk = Pk+ jQk ∈ C and S = [S1 . . . SN ] ∈ CN . The a-priori
information about loads gives rise to the following a-priori
information about voltage phasors:

v0 := E[v] = V01N +
1

V0
L−1S (15)

Σ0 : = E[(v−v0)(v−v0)∗] = σ2
L

1

V 2
0

L−1Σs(L
−1)∗ (16)

Σs = diag{|S1|2, . . . , |SN |2} (17)

where the symbol ()∗ indicates the transpose complex con-
jugate operator. The previous estimator is the optimal esti-
mator among all possible linear estimators based on pseudo-
measurements. The vector v0 corresponds to the nominal
voltage phasors according to the load prediction and Σ0 is
the corresponding error covariance. Note that, because pseudo-
measurements are assumed to be available at all nodes, then
the state of the grid is observable even without any PMU mea-
surement. Adding PMU measurements will simply improve
estimation performance. If a PMU measurement is available
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at node k, we define the complex measurement voltage phasor
as

uk := Vke
jθk

The distribution of this phasor is not centered in the true
voltage phasor vk. However, since in distribution networks the
voltage drop across a feeder is generally small, the measure-
ment process can be approximated as

uk = vk+V0w
rl
k +jV0w

im
k , E[(wrl

k )2] = E[(wim
k )2] = σ2

PMU

where wrl
k and wim

k are independent and zero-mean uncertainty
contributions. Observe that

E[uk] = vk, E[|uk − vk|2] = 2V 2
0 σ

2
PMU

. Thus, the PMU measurement provides an unbiased estimate
of the true voltage phasor with variance twice as large as
V 2
0 σ

2
PMU . If we define uM := [um1 . . . umM

]T ∈ CM , then
we can write

uM = CMv + V0w
rl
M + jV0w

im
M ,

E[wrl
M(wrl

M)∗] = E[wim
M (wim

M )∗] = σ2
PMUIM

where wrl
M and wim

M are the measurement uncertainty terms
associated with the PMUs belonging to set M, IM is the M×
M identity matrix, and CM ∈ RM×N is a matrix whose �-th
row has all zeros except for the m�-th entry which is set to one.
In practice CM is a selection matrix that associates the PMU
measurement um�

with the corresponding voltage vm�
. In the

context of Bayesian estimation, the optimal voltage estimate
based on uM and on the prior distribution v0, is given by

v̂ := E[v |uM] = v0 +K(uM − CMv0) (18)

ΣM = Σ0−Σ0C
T
M(CMΣ0C

T
M+2V 2

0 σ
2
PMUIM )−1︸ ︷︷ ︸

K

CMΣ0 (19)

where Σv = E[(v− v̂)(v− v̂)∗]. Note that the matrices K,ΣM
can be computed off-line, i.e. they do not depend on the actual
PMU measurement vector uM. Therefore, the computation
of (18) can be performed very rapidly on-line even for very
large networks.

B. Non-linear Weighted Least Square Estimator (WLS)

Let x = [θT , V T ]T be the state vector including the bus
voltage magnitude and phases. If we assume to measure both
the real and reactive power injected in each bus and a variable
number of bus voltage phasors, the following measurement
model holds, i.e.

z = h(x) + e =

⎡⎢⎣ P (x)
Q(x)
V (x)
θ(x)

⎤⎥⎦+ e (20)

where e is the column vector including all measurement
uncertainty contributions and P = [P1 . . . PN ]T , Q =
[Q1 . . . QN ]T , V = [Vm1 . . . VmM

]T , θ = [θm1 . . . θmM
]T ,

in accordance with the notation used in the previous Section.
Note that in (20) all quantities are functions of the state vector.
Evidently, the elements of V (x) and θ(x) are identically equal
to the respective state variables by definition, whereas the
explicit expressions of P (x), Q(x) as a function of the state
are widely available in the literature (e.g. in [1]), so they are
not reported for the sake of brevity.

Observe also that system (20) consists of M ′ equations, with
M ′ ≤ 2N + 2M − 1 (N denotes the number of nodes)
depending on the number M of PMUs actually used to monitor
the grid in excess of the pseudo-measurements. Assuming that
all the measurement uncertainty contributions have zero-mean
and are uncorrelated (i.e. E{eiej} = 0, ∀i �= j = 1, . . . ,M ′),
the classic Non-linear Weighted Least Square estimator (WLS)
relies on the minimization of the cost function

J(x) = [z − h(x)]TR−1[z − h(x)] (21)

where R = diag(σ2
1 , . . . , σ

2
M ′) is built using the variances of

the available true or pseudo-measurements. From the Taylor’s
series of the gradient of J(x) truncated to the first order around
xk for k ≥ 0, it can be shown that the state at iteration k + 1
can be obtained using the Gauss-Newton method as follows [1]

xk+1=xk+[HT (xk)R
−1H(xk)]

−1HT (xk)R
−1(z−h(xk))

(22)
where H(x) is the Jacobian of h(x) computed at state xk.
The solution described above relies on the so-called normal
equations (NE). This approach works correctly in most cases,
but sometimes (e.g. when the elements of R are very small) it
can suffer from numerical instabilities leading to poor accuracy
or even to divergence. In order to tackle this problem, a prelim-
inary QR Cholesky orthogonal factorization of R−1/2H(xk)
can be performed in (22). In this way, the Gauss-Newton
method is applied to a better conditioned system [1].

VII. PERFORMANCE METRICS AND PMU PLACEMENT

The state estimation procedure described in Section VI-A
also provides uncertainty bounds that can be used to evaluate
the performance of the BLSE estimator. A possible perfor-
mance metric is the mean square error averaged over the
number of nodes and under square root, which is defined as

ARMSE(M) :=

√√√√ 1

N

N∑
k=1

E[|vk−v̂k|2]=
√

1

N
trace(ΣM) (23)

and that corresponds to the average prediction error. If a limited
number of PMUs is available for state estimation, a relevant
problem is where to place them to achieve best accuracy. If
the cost function is the ARMSE, then the desired optimization
problem is given by:

Mop(M) := argminM ARMSE(M) (24)

s.t. |M| = M

ARMSEop(M) := ARMSE(Mop(M))(25)

where ARMSE is a function of the PMU placement set M
according to (19), and ARMSE∗(M) denotes the best accu-
racy when M PMUs are used. Obviously ARMSEop(M) ≥
ARMSEop(M + 1), i.e. it is monotonically non-increasing
function of the number of PMUs. Moreover, after some simple
manipulations, it is possible to verify that

ARMSEop(0) =

√
1

N
trace(Σ0) (26)

ARMSEop(N) =

√
1

N
trace

(
Σ−1

0 +
1

2σ2
PMUV

2
0

IN

)−1

(27)
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Fig. 1. Small 15-node rural network [19].

However, (24) is a combinatorial problem, so its solution
could be unfeasible when large grids are considered. For this
reason, we also propose a greedy PMU placement procedure
based on the sequential addition of one PMU at a time
able to provide the best local performance improvement. This
procedure is described formally in Algorithm 2, and it is
computationally more tractable than the original problem.

In fact, ARMSE(M) has to be computed for
N(N−1)

2
different sets M to obtain the greedy PMU position set
Mgr(N). The greedy algorithm is in general suboptimal, i.e.
ARMSEgr(M) ≥ ARMSEop(M), ∀M = 2, . . . , N −1,
while equality is guaranteed only for M = 0, 1, N .

Algorithm 2 Greedy PMU placement

Require: Σ0, V0, σPMU

1: Mgr(0) := ∅,M(0) := {1, . . . , N}
2: for τ = 1 to N do
3: m∗(τ)=argminm∈M(τ−1)ARMSE(Mgr(τ−1)∪m)
4: Mgr(τ) = Mgr(τ − 1) ∪m∗(τ)
5: M(τ) = M(τ − 1) \m∗(τ)
6: ARMSEgr(τ) = ARMSE(Mgr(τ))
7: end for

VIII. SIMULATION RESULTS

In this section the proposed BLSE state estimator is com-
pared with the classic WLS-based approach, whose behavior
has been extensively analyzed in [18]. In the present example,
the small 15-node distribution rural network shown in Fig. 1
and introduced in [19] is considered. The parameters of the
network and the nominal load values are available in [20]. The
performance of BLSE and WLS estimators has been evaluated

in Matlab by computing the parameter ̂ARMSE(M) :=√
1

NT

∑T
t=1 ‖v[t] − v̂[t]‖2 over T = 2000 Monte Carlo runs,

where v[t] indicates the state vector of the t-th Monte Carlo
run. All ARMSE values are expressed in per-unit (p.u.).

In the first test case the accuracy of BLSE and WLS
is evaluated as a function of σL assuming that active and
reactive power pseudo-measurements only are considered.

Fig. 2 reports the empirical performance ̂ARMSE for both
BLSE and WLS methods. At the beginning, the BSLE esti-
mation accuracy is worse than WLS. However, the difference
between the results of such techniques becomes small for
σL > 0.3 (30%), which is typical when pseudo-measurements
are considered. The figure also reports the theoretical ARMSE
curve of the BSLE estimator as it results from (26). This looks

0 20 40 60 80 100
0

0.005

0.01

0.015

σ
L
[%]

A
R

M
S

E

 

 Theoretical
BLSE
WLS

Fig. 2. ARMSE voltage curves corresponding to different values of load
standard deviation, σL, for BLSE (red dashed line), WLS (blue solid line)
and theoretical ARMSE value Eqn.(31) (black solid line with markers).

slightly optimistic compared to the Monte-Carlo performance,
probably because of the linearization error.

The second test case, reported in the left panel of Fig. 3,
compares the accuracy of BSLE and WLS-based state esti-
mators when both active/reactive power pseudo-measurements
with σL = 0.5 (50%) and a growing number of PMUs are
used. Three different values of PMU accuracy are considered,
i.e. σPMU = (1%, 0.1%, 0.01%). In all cases the PMU
location results from the greedy placement Algorithm 2. The
figure shows that as soon as at least one PMU is included, the
theoretical performance computed according to (23) matches
almost exactly the results obtained through simulations with
both BSLE and WLS for σPMU < 0.1%. The figure also
shows that a single PMU with accuracy 0.1% provides better
performance than using PMUs with accuracy 1% at all nodes.
Similarly, using three PMUs with accuracy 0.01% assures
better results than using PMUs with accuracy 0.1% at all
nodes, thus indicating a possible trade-off between PMU
deployment costs and accuracy.

The third test case, reported in the middle panel of Fig. 3,
compares the optimal and greedy-based theoretical ARMSE
curves as a function of the number of PMUs, when σL =
0.5 (50%) and σPMU = 0.001 (0.1%). The sequence based on
the greedy placement algorithm (excluding the feeder at node
1) is Mgr(N) = {3, 7, 13, 15, 10, 14, 8, 12, 5, 11, 6, 9, 4, 2}.
Although the PMU placement is in general different for the
two strategies (for up to 4 PMUs the optimal placement
sets are Mop(1) = {3},Mop(2) = {3, 7},Mop(3) =
{7, 12, 15},Mop(4) = {7, 10, 12, 15}), performances are very
close, thus suggesting that the greedy algorithm might be a vi-
able solution for PMU placement in large networks, where the
true optimal positions can be hardly found for computational
limits in solving the general combinatorial problem.

The final test case, reported in the right panel of Fig. 3,

shows the ̂ARMSE values associated with the WLS-based
estimator as a function of the number of instruments when
voltage magnitudes only are measured. Also in this case, all
pseudo-measurements are affected by 50% uncertainty, while
the instrument accuracy is 1%, 0.1% or 0.01%. The results of
this figure confirm the importance of measuring phasor angles.
In fact, the magnitude-only measurements cannot improve
estimation accuracy beyond a certain limit even when such
measurements are extremely accurate (i.e. σPMU = 0.01%).
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Fig. 3. ARMSE curves as a function of number of PMUs. In all cases, the relative uncertainty of pseudo-measurements is σL = 0.5%. Left panel: BLSE
(red dashed line), WLS (blue solid line) and theoretical ARMSE values (black marker line) for σPMU = (1%, 0.1%, 0.01%). Middle panel: theoretical BLSE
results obtained with both the greedy-based and the optimal PMU placement. Right panel: Simulation-based results associated with the WLS estimator assuming
to measure nodal voltage magnitudes only with 1%, 0.1% or 0.01% accuracy. Again, instruments are positioned sequentially according to the greedy placement
algorithm.

IX. CONCLUSIONS

In this work we addressed the problem of state estimation
in distribution networks based on pseudo-measurements and
PMU measurements. The proposed Bayesian linear state esti-
mator (BLSE) is shown to provide the same performance of
the standard non-linear weighted least square estimator (WLS)
but with major computational benefits. The main novelty of
this approach is that the performance can be computed off-
line and can be used to address several problems such as
optimal PMU placement or trade-offs between number of
PMUs versus their accuracy, without running extensive Monte-
Carlo simulations. Moreover, because the estimation error in
distribution systems tends to be dominated by uncertainty
in loads and scarcity of instrumented nodes, the linearized
method along with the use of high-precision PMUs may be a
suitable way to facilitate on-line state estimation where it was
previously impractical. Future research directions include the
extension of the proposed strategy to unbalanced three-phase
networks, large scale networks, and dynamic state estimation
such as Kalman-filtering.
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