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Abstract— In urban areas, GNSS localization quality is often
degraded due to signal blockage and multi-path reflections.
When several GNSS signals are blocked by buildings, the
remaining unblocked GNSS satellites are typically in a poor
geometry for localization (nearly collinear along the street
direction). Multi-path reflections result in pseudo range mea-
surements that can be significantly longer than the line of
sight path (true range) resulting in biased geolocation esti-
mates. If a 3D map of the environment is available, one can
address these problems by evaluating the likelihood of GNSS
signal strength and location measurements given the map. We
present two approaches based on this observation. The first
is appropriate for cases when network connectivity may be
unavailable or undesired and uses a particle filter framework
that simultaneously improve both localization and the 3D map.
This approach is shown via experiments to improve the map of
a section of a university campus while simultaneously improving
receiver localization. The second approach which may be more
suitable for smartphone applications assumes that network
connectivity is available and thus a software service running in
the cloud performs the mapping and localization calculations.
Early experiments demonstrate the potential of this approach to
significantly improve geo-localization accuracy in urban areas.

I. INTRODUCTION

The widespread use of consumer electronics such as

smartphones and tablets which are both network capable

and Global Navigation Satellite Systems (GNSS) equipped

has had an enormous impact on society. Real time location

is critical to many mobile applications such as navigation,

ride sharing, geo-fencing, and mobile coupons. However, in

urban areas GNSS localization quality is often degraded due

to signal blockage and multi-path reflections from buildings,

trees, and other terrain [1]. In cluttered urban areas poor

cross-street positioning accuracy results from some of the

GNSS signals being blocked by buildings and leaving the

remaining unblocked GNSS satellites in a poor geometry

for localization. When signals reflect off of buildings but

eventually reach the GNSS receiver the resulting pseudo

range measurements can be significantly larger than the line-

of-sight (LOS) path (true range), leading to large localization

uncertainty.

In addition to geo-location coordinates, GNSS receivers

also have the ability to record per-satellite identifier, azimuth,
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Fig. 1. Satellite SNR readings depend on LOS/NLOS path between receiver
and satellite. NLOS paths are often characterized by low SNR.

elevation, and signal-to-noise ratio (SNR) information. A

non-line-of-sight (NLOS) path, where the LOS path between

a GNSS receiver and a particular satellite is occluded can be

characterized by a statistically lower SNR when compared

to the LOS SNR. See Figure 1 for an example scenario

including both LOS and NLOS paths. By observing these

SNR measurements, one can make inferences about the

existence of NLOS/LOS channels (and thus obstacles/clear

sky) in various directions relative to the geo-location of the

GPS receiver. By fusing information from multiple receiver

locations and multiple satellites, it becomes possible to

determine the geo-location of obstacles. Based on this simple

observation we propose to use a Bayesian framework to

jointly build 3-dimensional maps of unknown environments

and refine the receiver geo-location estimate.

In our prior work [2], we have shown that the posterior

probability distribution of the map and receiver locations

represents a factor graph, on which Loopy Belief Propagation

(LBP) was used to efficiently estimate the probabilities of

each cell being occupied or empty, along with the probability

of the particles for each receiver location. By using the factor

graph with Loop Belief Propagation approach we compute

the full map posterior and geo-location estimates in one batch

operation. In the work proposed here, a Bayes filter is used

to estimate the posterior probability of occupancy for each

grid cell individually, thus losing the ability to represent

dependencies among neighboring cells. This tradeoff is made

to allow for an algorithm that is suitable for use in real-

time on a portable consumer electronics device such as a

smartphone, tablet, or in car navigation system.

Contributions: We present two solutions to the simulta-

neous localization and mapping problem using only GNSS
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information. The first approach is similar to the grid-based

FastSLAM algorithm [3] and can be summarized in the

following steps. The map is be modeled as a discrete set

of binary state cells (occupancy grid), and the posterior

distribution of both the map and the receivers location is

approximated by a set of weighted particles. At each time

step, each prior particle is passed through a motion model to

sample from the motion posterior. The importance weight of

each particle is assigned based on the joint likelihood of each

GNSS SNR and geo-location measurement returned by the

GNSS receiver given the geo-location and map estimate of

the particle. Next, each map particle is updated in a recursive

manner using a log odds representation of occupancy and an

inverse sensor model that maps SNR and satellite elevation

measurements to probability of occupancy. Finally, particles

are resampled with replacement based on the importance

weights. These resampled particles form the priors for the

next time step. The second approach is a hybrid solution

that separates the mapping aspect of the problem from the

real-time localization. The 3D map is periodically refined in

a batch operation using techniques developed in [2] while

the most recent map is used to perform particle filter based

map matching. The map matching filter operates in a very

similar fashion to the filter in the first approach without the

need to maintain an estimate of the map state. This approach

greatly reduces the computational complexity and thus may

prove more attractive in practice.

Related Work: A technique which has been used to

achieve significant localization improvement in cluttered

urban areas where GNSS accuracy is often degraded is called

Shadow Matching (SM) [1], [4]. Essentially, SM constrains

the space of possible receiver locations by classifying signals

as LOS/NLOS based on SNR readings and matching their

points of reception to areas outside/inside the “shadows” of

obstacles based on known 3D environment models. In [5],

3D maps are used to detect erroneous GNSS pseudoranges

due to multipath reflections. These pseudoranges are then

removed from the sensor fusion process resulting in im-

proved geo-location accuracy. Implementation details of a

real-time shadow matching smartphone positioning system

are provided in [6], [7]. The shadow matching algorithm

reduces cross-street position errors by around 70%. However,

all shadow matching techniques rely on up-to-date 3D city

models obtained from an external source which are not

always available and can be expensive to obtain.

The problem of obtaining 3D environment models from

GNSS signal strength measurements has received relatively

little attention. Non-probabilistic heuristics based on ray

tracing have been used to reconstruct environment maps after

learning shadows of buildings from GNSS SNR measure-

ments [8], [9]. In our prior work [2], a systematic Bayesian

approach was used to simultaneously build 3D environment

maps while correcting geo-location estimates of a large

batch of GNSS receiver measurements. We believe that a

probabilistic approach is more appropriate in general due

to the large measurement uncertainty involved. To the best

of our knowledge this was the first attempt to combine the

problems of localization improvement and 3D map building

in the context of GNSS SNR measurements.

The application of Bayesian approaches to localization

and mapping problems is quite common [10], often both

the environment and sensor readings are modeled proba-

bilistically. However, most Bayesian related approaches to

SLAM are based on implicit or explicit measurements of

distances to obstacles, using a variety of sensing methods

such as lidar/radar [11], [12], mono/stereo camera [13], [14],

and WiFi [15]. The GNSS SNR measurement model for a

given satellite is quite different in that no range to obsta-

cle information is available, only probabilistic LOS/NLOS

information about the path to the satellite.

II. PROBLEM FORMULATION

We represent the unknown region with an Occupancy

Grid. Formally, the occupancy grid is defined a 3D grid

of binary-valued “cells”, m = {mi}
L
i=1, with mi 2 {0, 1}

where mi = 0 denotes “empty” and mi = 1 “occupied”.

The space of possible GNSS receiver trajectories x =
{xt}

T
t=1 is represented using a set of weighted particles, so

that individual positions are xt 2 {x
[k]
t }Kk=1. The SLAM

problem is then formulated as estimating the posterior dis-

tributions of each latent variable m and x given only the

measurements available from commercially available GNSS

receivers, namely geo-location coordinates of the receiver

and per-satellite identifier, azimuth, elevation, and SNR.

A. SNR measurement model

The satellite SNR measurements, which are noisy and

consist of T vector SNR readings, z = {zt}
T
t=1, where zt =

[zt,1, . . . , zt,Nt
], and Nt is the number of satellites in view for

the tth data sample. Associated with each SNR readings, are

relative satellite elevations and azimuths [θt,n,φt,n], which

we consider noiseless. Under the assumption of a static world

(where the map m does not change over time), the SNR

measurements can be modeled as conditionally independent

given the map and poses, yielding the following factorization

p(z|m,x) =
Y

t,n

p(zt,n|m,xt). (1)

Detailed statistical models exist for the narrowband Land

to Mobile Satellite (LMS) channels of interest, such as

those presented in [16], [17]. In previous work [2], we

have proposed a simplified sensor model in which SNR

readings are modeled differently based on LOS vs. NLOS.

An SNR reading is LOS-distributed if all cells intersected

by its associated receiver-satellite ray are empty; otherwise,

it is NLOS-distributed. The SNR under LOS and NLOS

hypotheses was modeled using Rician and log-normal distri-

butions respectively. However, in this work we propose the

following slightly more complicated yet similar empirically

derived sensor model that also depends on satellite elevation,

p(zt,n|m,xk
t ) =

(

flos(zt,n, θt,n), mi = 0 8i 2 M(t, n, k)

fnlos(zt,n, θt,n), otherwise

(2)
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where M(t, n, k) contains the indices of the cells intersected

by the ray starting at particle x
[k]
t , in the direction of satellite

n at time t. Example LOS/NLOS distributions are shown

in Figure 2 for elevations of 15 and 60 degrees. Notice

the NLOS distribution for the lower elevation satellite has

a wide flat distribution to account for the fact that low

elevation satellites typically provide noisier measurements.

The detailed description and fitting of this model is beyond

the scope of this document and left for future work.
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Fig. 2. The forward sensor model distributions for both LOS and NLOS
satellite channels.

B. Geo-Location measurement model

The second type of information used are the receiver po-

sition estimates (GNSS fixes), which are noisy and modeled

as independent Gaussian random variables

yt = xt + et, et ⇠ N (0, Ct). (3)

As in Chapter 7 from [18], we estimate the error covariance

matrix Ct using the formula for HDOP scaled by the

uncertainty reported by the receiver. Let θt = [θt,1, . . . , θt,Nt
]

and φt = [φt,1, . . . ,φt,Nt
], and define the following (3⇥Nt)

matrix where each column is a unit vector,

Ht =

2

4

cos(θt). ⇤ cos(φt)
cos(θt). ⇤ sin(φt)
sin(θt)

3

5 (4)

where .⇤ indicates element by element multiplication. The

DOP matrix is then given by,

Ct = σ2
UERE

(HtH
|

t )
−1 (5)

where σUERE represents the accuracy reported by the GNSS

receiver.

III. GNSS PARTICLE FILTER SLAM

The first algorithm which we will refer to as GNSS Particle

Filter SLAM is based on the grid-based FastSLAM algorithm

from Chapter 13 in [19], but uses only passive measurements

available from GNSS receivers. We assume that when the

algorithm is activated a prior map is available such as one

built from crowd-sourced GNSS data as in our previous work

[2]. A block diagram schematic showing data flow can be

seen in Figure 3. Here a “master” map exists on a server

and when network communication is available the relevant

section of the map can be downloaded to the GNSS device.

It may be that network communication becomes unavailable

or undesirable due to data usage concerns. In this case, the

GNSS device can use the the GNSS Particle Filter SLAM

algorithm to both update the prior map and geo-location

estimate.

Batch
Map
Creation

Particle
Filter
SLAM

Data
Manager

mzt, yt

zt, yt m

GNSS
Device

Fig. 3. The block diagram description of data flow between the GNSS
Particle Filter SLAM algorithm and the server containing the “master” map.

The GNSS Particle Filter SLAM algorithm is summarized

along with function interface definitions for each of the re-

quired functions in Algorithm 1. Here each particle contains

an estimate of both geo-location and the map, therefore M
copies of the map must be maintained. The kth copy of the

map at time t is denoted as m
[k]
t and contains L cells such

that the ith cell of the kth map is denoted as m
[k]
t,i .

Algorithm 1 GNSS Particle Filter SLAM(Xt−1, zt, yt):

1: X̄t = Xt = ;
2: for k = 1 to M do

3: x
[k]
t = sample-motion-model(x

[k]
t−1)

4: w
[k]
t = measurement-model-map(zt, yt, x

[k]
t ,m

[k]
t−1)

5: m
[k]
t = update-map(zt, yt, x

[k]
t ,m

[k]
t−1)

6: X̄t = X̄t + hx
[k]
t ,m

[k]
t , w

[k]
t i

7: end for

8: for k = 1 to M do

9: draw i with probability / w
[i]
t

10: add hx
[i]
t ,m

[i]
t i to Xt

11: end for

12: return Xt

• sample-motion-model(x
[k]
t−1)

To represent the motion model for the receiver we have
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chosen the following linear model,

x
[k]
t = f(x

[k]
t−1, dt)

=

2

6

6

6

4

1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

3

7

7

7

5

x
[k]
t−1 + dt, (6)

where d represents additive process noise. Note a more

appropriate motion model f(.) could be chosen if more

information were known about the transportation of the

receiver (i.e. if it were in a vehicle).

• measurement-model-map(zt, yt, x
[k]
t ,m

[k]
t−1)

Next we need a function that computes w
[k]
t , the likelihood of

the measurements zt and yt given the pose x
[k]
t represented

by the k-th particle and given the map m
[k]
t−1 computed at

the previous measurement index. From (3) we see that

p(yt | x
[k]
t ) = N (yt;x

[k]
t , Ct) (7)

The measurement model for map matching and SNR is a bit
more complicated but can be written as,

p(zt | x
[k]
t ) =

Nt
Y

j=1

0

@

Y

i∈M(t−1,j,k)

1− p(m
[k]
t−1,i)

1

A flos(zt,j , θt,j)

+

0

@1−

Y

i∈M(t−1,j,k)

1− p(m
[k]
t−1,i)

1

A fnlos(zt,j , θt,j) (8)

Combining the two,

w
[k]
t = p(yt | x

[k]
t )p(zt | x

[k]
t ) (9)

• update-map(zt, x
[k]
t ,m

[k]
t−1)

Additionally, we need a function that updates the occupancy

grid map, given the current pose x
[k]
t of the k-th particle,

the measurements zt and yt, and the map m
[k]
t−1 computed at

the previous measurement index. The update-map algorithm

summarized in Algorithm 2 is a standard binary Bayes filter

with a log-odds representation of occupancy.

Algorithm 2 update-map(zt, yt, x
[k]
t ,m

[k]
t−1):

1: for i = 1 to L do

2: lt−1,i = log(m
[k]
t−1,i/(1�m

[k]
t−1,i))

3: for n = 1 to Nt do

4: if i 2 M(t, n, k) then

5: lt,i = lt−1,i+inverse-sensor-model(zt,n, θt,n) �
l0

6: else

7: lt,i = lt−1,i

8: end if

9: end for

10: m
[k]
t,i = 1� 1/(1 + exp(lt,i))

11: end for

12: return m
[k]
t

The last remaining function to describe is

• inverse-sensor-model(zt, θt)

Prior to conversion to log-odds form, the inverse sensor

model is,

m
[k]
t,i = α�

arctan
⇣

(zt,n � z̄)
⇣

1−cos(θt,n)
λ

⌘⌘

π
, (10)

and can be seen in Figure 4. The tuning parameters α,λ,
and z̄ can be used to adjust how aggressively the map will

be altered by a single measurement. The values of {α =
0.5, λ = 5, z̄ = 30} were used in Figure 4 and were chosen

to be very conservative with a goal of doing no harm to the

existing map. For instance low elevation satellites which can

have very noisy SNR readings have little bearing on the map

regardless of the SNR value. Additionally, higher elevation

satellites have a significant influence only if the SNR value

deviates far from the center value.
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Fig. 4. The inverse sensor model that maps GNSS SNR and elevation to
probability of occupancy.

After performing the importance based resampling in the

second for-loop of the algorithm we are left with a set of

particles Xt which contains M geo-location particles and

M occupancy grid maps. If the goal is to use the SLAM

algorithm to improve localization, then geo-location particles

can fused to report a single estimate of geo-location xt.

IV. GNSS PARTICLE FILTER MAP MATCHING

The second algorithm which we will refer to as GNSS

Particle Filter Map Matching is similar to Algorithm 1

without the map update step thus eliminating the need to

maintain M copies of the map. It is our vision that this

algorithm would run on the cloud, but it could conceivable

run on the GNSS device provided that network availability

is sufficient to maintain downloads of them most up to date

map from the server. A block diagram schematic showing

data flow can be seen in Figure 5. Here a “master” map

is periodically built in a batch process from crowd sourced

GNSS data as in our previous work [2]. The relevant section

of the “master” map can be passed to the GNSS Particle

Filter Map Matching algorithm by the Data Manager as

needed.
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Fig. 5. The block diagram description of data flow between the GNSS
Particle Filter Map Matching algorithm and the server containing the
“master” map.

For completeness, the GNSS Particle Filter Map Matching

algorithm is summarized in Algorithm 3 along with function

interface definitions for each of the required functions.

Algorithm 3 GNSS Map Matching(Xt−1,m, zt, yt):

1: X̄t = Xt = ;
2: for k = 1 to M do

3: x
[k]
t = sample-motion-model(x

[k]
t−1)

4: w
[k]
t = measurement-model-map(zt, yt, x

[k]
t ,m)

5: X̄t = X̄t + hx
[k]
t , w

[k]
t i

6: end for

7: for k = 1 to M do

8: draw i with probability / w
[i]
t

9: add hx
[i]
t i to Xt

10: end for

11: return Xt

The functions sample-motion-model(x
[k]
t−1) and

measurement-model-map(zt, yt, x
[k]
t ,m) are identical

to (6) and (7)-(9) with the exception that (8) uses the

“master” map instead of a particle estimate of the map.

V. EXPERIMENTAL RESULTS

To verify the efficacy of the proposed algorithms we used

a Samsung Galaxy Tablet 2.0 running the Android operating

system to collect GPS/Glonass information along known

paths on the eastern corner of the University of California,

Santa Barbara campus (see Figure 7). This recorded data set

was then fed as inputs to each algorithm proposed in this

work. The map in Figure 6 was generated using information

from Open Street Maps and algorithms presented in [2], and

was treated as the “master” map in these experiments. This

map uses cells of dimension 3 m ⇥ 3 m ⇥ 3 m has a max

height of 24 m.

A. GNSS Particle Filter SLAM

The first goal of the GNSS Particle Filter SLAM algorithm

is to improve localization. A data-set corresponding to a

Fig. 6. The horizontal slice (3-6 meter height) of the relevant portion of
the prior map of UCSB campus used in experiments. Cells with high/low
probability of occupancy are colored with black/white. The red lines indicate
building boundaries according to Open Street Maps.

known path by the receiver was recorded for analysis, and the

resulting geo-location estimates can be seen in Figure 7. The

known path of the receiver is shown as a dashed black line,

and the receiver latitude/longitude fixes and corresponding

uncertainty ellipses are shown in blue. The improved po-

sition estimate and an ellipse corresponding to the sample

covariance of the particles are shown in cyan. Of particular

interest are the points in the north-west corner of the building

where the original fix has errors of several meters in the

direction of the building. The proposed algorithm pushes the

particles away from the building and back on the sidewalk

near the true path. Additionally, the resulting map would

have underestimated the occupancy of the cells in this area

without this position correction.

−
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20 m

Fig. 7. The resulting geo-location improvement from Algorithm 1. The
blue ellipses represent geo-location reported by the GNSS receiver. The cyan
ellipses represent the geo-location estimates resulting from the Algorithm
1. The black dashed line represents ground truth of the GNSS receiver
trajectory.

The second goal of the GNSS Particle Filter SLAM

algorithm is to maintain and improve the quality of the initial

3D city map. The resulting map from running Algorithm 1 on
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the sampled data-set was compared to the original “master”

map from Figure 6. The horizontal slice corresponding to

3 � 6 m and 6 � 9 m heights can be seen in Figures

8 and 9 respectively. The color of each cell indicates the

difference between the probability of occupancy before and

after running Algorithm 1. Dark cells indicate increasing

probability of occupancy. The red lines indicate building

boundaries according to Open Street Maps. Notice that most

of the cells are unchanged, but most of the changes to the

map resulted in increasing the probability of occupancy for

cells inside the red contour.
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Fig. 8. After applying Algorithm 1 the resulting changes to the horizontal
slice (3-6 meter height) of the map.
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Fig. 9. After applying Algorithm 1 the resulting changes to the horizontal
slice (6-9 meter height) of the map.

B. GNSS Particle Filter Map Matching

The same data-set from above was used to evaluate the

Particle Filter Map Matching algorithm, and the resulting

geo-location estimates can be seen in Figure 10. The known

path of the receiver is shown as a dashed black line,

and the receiver latitude/longitude fixes and corresponding

uncertainty ellipses are shown in blue. The improved position

estimate and an ellipse corresponding to the sample covari-

ance of the particles are shown in cyan. The geo-location

improvements are very similar to Figure 7, as was expected

since the “master” map from Figure 6 was accurate to begin

with. If the primary goal is geo-localization improvement

and a high quality map exists, then Algorithm 3 performs

well without the memory overhead of Algorithm 1.
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Fig. 10. The resulting geo-location improvement from Algorithm 3. The
blue ellipses represent geo-location reported by the GNSS receiver. The cyan
ellipses represent the geo-location resulting from using the map matching
algorithm. The black dashed line represents ground truth of the GNSS
receiver trajectory.

VI. CONCLUSION

Two approaches were presented to help alleviate large geo-

location errors in urban environments due to GNSS blocked

signals and multi-path reflections. Both approaches assume

the existence of a prior 3D environment map and uses the

map to infer when GNSS signals are LOS or NLOS. This

information is fused with the geo-location estimate provided

by the GNSS receiver and an appropriate motion model in

a particle-based Bayes filter framework. The first approach

seeks to simultaneously improves both localization and the

3D map. This approach may be appropriate when network

connectivity is unavailable or undesired but comes with the

caveat of requiring enough memory to maintain a large

number of map estimates. Initial experiments, conducted on

UCSB campus, demonstrate the ability of this algorithm

to both improve the map while simultaneously improving

receiver localization. The second approach relies on a soft-

ware service running in the cloud to perform the mapping

and localization calculations. Here a single “master” map

is stored (and periodically updated) on a server and a

particle-based Bayes filter is used to perform map matching.

Early experiments, conducted on UCSB campus, show a

comparable geo-location improvement to the first approach

without the memory requirements necessary to maintain

many map estimates. Ongoing work involves implementing

the proposed approaches in a cloud computing framework,

developing a mobile application, and improving the methods

used to build and maintain the “master” maps.
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