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1 INTRODUCTION 

Due to cyclic fatigue loading and other environmen-
tal factors, fatigue damage accumulates and structur-
al performance degrades with service time. The core 
tasks of structural integrity management are devel-
oping and implementing an effective condition in-
spection and maintenance programme. As a result of 
development in non-destructive evaluation, sensing 
and monitoring technologies, it becomes easier to 
obtain crack condition information. Many research-
ers thus put efforts in developing CBM strategies 
that rely on condition information to make mainte-
nance decisions 1-4. In marine and offshore engineer-
ing, visual inspection and magnetic particle inspec-
tion (MPI), represent commonly-adopted means to 
examine fatigue crack conditions. Following inspec-
tion activities, repairs or replacement may be per-
formed to recover structural integrity and increase 
structural reliability, to avoid failures. Inspection da-
ta can also be employed to validate existing structur-
al design codes or to identify potential conservatism 
in design codes. In addition, any human errors in the 

design and manufacture process potentially can be 
identified by operational inspections 5, 6. 

 
The challenge is that inspection and maintenance 

tasks are cumbersome and expensive work for large 
steel structures with a large number of fatigue-prone 
structural details, e.g., ship structures, offshore oil 
platforms and offshore wind farms, etc. There are 
many stress concentration areas in these structures 
(e.g. in the vicinity of joints, connections, openings, 
etc.), where fatigue cracks are likely to occur and 
propagate leading to structural integrity loss. The 
costs associated with inspection and repair activities 
are often responsible for a large part of life cycle 
costs (LCC) of marine structures, due to a large 
number of areas susceptive to fatigue cracks, limited 
access to the damage locations, significant downtime 
loss, etc. 7. In this regard, formulation of an efficient 
inspection and maintenance strategy is crucial for 
reducing LCC, improving structural reliability and 
mitigating failure risk. Planning and optimizing life-
time maintenance interventions holistically at the 
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beginning of service life can improve maintenance 
efficiency significantly. 

 
Optimal maintenance planning needs to take 

sources of uncertainty into account, e.g. the uncer-
tainty associated with material properties, fatigue 
loading and resistance computation, crack detection 
and measurement, etc. Probabilistic modelling and 
reliability methods have been applied to tackle with 
uncertainties consistently in maintenance modelling 
and optimization of structural assets, e.g. in offshore 
engineering, nuclear engineering and bridge engi-
neering, etc. 8-11. By integration of probabilistic 
modelling with life cycle cost modelling, cost based 
probabilistic optimization approaches have also been 
developed in support of rational and optimal mainte-
nance decision-making under uncertainty 5, 12, 13. A 
limitation of these probabilistic optimization ap-
proaches is that a decision rule need to be set up in 
advance and then optimization is performed on the 
maintenance strategy defined by the decision rule 14. 
In most of these studies, the predefined decision rule 
is that: carry out maintenance if it is found by an in-
spection that the crack size exceeds a threshold val-
ue and do nothing otherwise, i.e. a CBM strategy. 
Then the CBM strategy with the optimal threshold is 
sought for 15. Under a specific decision rule or strat-
egy, the maintenance decision making is constrained 
and a really optima decision may not be found in 
some maintenance decision making problems. In ad-
ditional, there is also uncertainty in crack detection 
and measurement techniques, and thus a mainte-
nance decision made based only on inspection in-
formation may not be really reliable. Moreover, it is 
likely that inspection information does not add value 

and the CBM strategy which relies on inspection in-
formation isn’t the optimal strategy in some mainte-
nance decision making problems. 
 

The VoI provides a rational metric for quantify-
ing the add value brought by information to decision 
making under uncertainty. The costs of obtaining in-
formation are justified only when VoI > 0. Without 
explicit computation of the VoI, maintenance deci-
sion makers in face of uncertainty often pursue more 
information and involve more information collecting 
activities. For example, when planning maintenance 
interventions, decision-makers often develop inspec-
tion or monitoring programme and rely on inspec-
tion or monitoring information to make decisions, 
i.e. adopting CBM strategy. However, it should be 
noted that the CBM strategy is cost-effective only 
when VoI is quantified and it is confirmed that 
VoI > 0. 

 
Only by explicit VoI computation it is possible to 

judge whether the information provided by envis-
aged inspection or monitoring activities add value or 
not. If VoI = 0, then there is no need to carry out in-
spections and it is better to make maintenance deci-
sions based on existing crack information. In the last 
decade, VoI computation methods have been pro-
posed in structural engineering to quantify the added 
value brought by condition inspection or monitoring 
activities before they are implemented 16, 17and ac-
cordingly optimize inspection or monitoring strate-
gies 18-21. There are however few studies on relating 
VoI computation to optimal maintenance planning 
under uncertainty. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1. A flowchart of the proposed approach 
 
In this paper, a Bayesian maintenance decision 

optimization (BDO) approach via computing the 
VoI from condition inspections is proposed. The ap-

proach is applied to various maintenance decision 
making problems characterized by different cost ra-
tios. It is shown that the approach is reliable in yield-



ing optimal maintenance decisions associated with 
the minimum LCC in various decision problems, 
based on explicit VoI computation and modelling of 
available decision alternatives. It is found that the 
value of inspection information is equal to zero in 
some maintenance decision making problems and 
the CBM strategy is not the optimal strategy for such 
problems. The proposed maintenance decision opti-
mization and VoI computation are carried out at the 
beginning of service life, in support of rational and 
optimal maintenance planning under uncertainty. 
The proposed approach can be divided into 4 steps 
which are illustrated by Figure 1. Step1: initial crack 
size distribution with time and initial failure risk are 
obtained by Monte Carlo simulations based on a 
probabilistic crack growth model and associated in-
put variables. Herein the simulated crack size distri-
bution represents crack information prior to condi-
tion inspections (i.e. prior information). Step 2: the 
LCC associated with all maintenance decision alter-
natives without involving inspections (Table 4) are 
computed based on prior crack size distribution. The 
decision associated with the minimum LCC is the 
prior optimal decision. The min LCC is the prior 
min LCC without involving inspections. The compu-
tations are defined as prior decision optimization. 
Step 3: the LCC associated with all maintenance de-
cision with the availability of inspections (Table 5) 
are computed based on posterior crack size distribu-
tion considering inspection results. The decision as-
sociated with the minimum LCC is the posterior op-
timal decision. The min LCC is the posterior min 
LCC with availability of inspections. The computa-
tions are defined as posterior decision optimization. 
Step 4: The VoI is the difference between the prior 
min LCC and posterior min LCC. If VoI = 0, then 
the obtained prior optimal maintenance decision 
without involving inspections (in Step 2) is the op-
timal decision. On the other hand, if VoI > 0, then 
the obtained posterior optimal maintenance decision 
with availability of inspections (in Step 3) is the op-
timal decision. Therefore, the proposed approach 
can give optimal strategies for various maintenance 
decision problems, while the CBM strategy is effi-
cient only in problems where VoI > 0. The proposed 
approach overcomes the limitation of CBM. 

 
It should be noted that this study is different from 

those studies concentrating on comparing two spe-
cific maintenance strategies, e.g. CBM and time 
based maintenance (TBM) 3, 22. This study is in a 
Bayesian decision analysis perspective, and consid-
ers all available maintenance decision alternatives 
(Tables 4 and 5) in both prior and posterior decision 
optimizations.  

 
The rest of the paper is organized as follows. Sec-

tion 2 introduces a representative marine structural 
model under investigation, and some of its design 

considerations. Section 3 proposes a probabilistic 
crack growth modelling approach to the fatigue dete-
rioration. Section 4 formulates the maintenance 
planning problem and discusses the maintenance ef-
fect model and inspection techniques under consid-
eration. Section 5 formulates the methodology of 
Bayesian maintenance decision optimization and 
VoI computation. In particular, all maintenance de-
cisions alternatives in prior optimization and poste-
rior optimization are analyzed, and the approach to 
calculated the expected LCC associated with a 
maintenance decision or strategy is developed. Sec-
tion 6 gives the derived optimal decisions and VoI 
under different cost ratios (which represent different 
maintenance decision making contexts) and inspec-
tion techniques (which provide different crack in-
formation). The cost ratios and maintenance decision 
making contexts where VoI = 0 and CBM is not the 
optimal strategy are discussed in detail. The impacts 
of inspection techniques on the VoI are shown. Sec-
tion 7 draws conclusions from the study. 

2 FATIGUE-SENSITIVE STRUCTURAL 
COMPOENTS 

Marine and offshore structures are typically exposed 

to sea and wave environments, which can cause fa-

tigue crack initiation and growth in structural com-

ponents, especially in the areas with stress concen-

tration. Figure 2 shows a typical fatigue-prone 

stiffened plate under fatigue loading caused by 

waves, which are common in marine vessels 3. Nor-

mally, stiffeners and frames improve plate stability, 

but can lead to d fatigue performance decrease, due 

to stress concentration, poor welding quality and 

presence of initial flaws, etc. These are typical trig-

ger factors of crack initiation. 

 

In this study, we investigate the fatigue reliability 

of the structure and optimal maintenance strategies 

contributing to reliability growth with reasonably 

low maintenance costs. In this example the required 

service life is 𝑇𝑆𝐿 =20 years. The frequency of wave 

loading that the structure experiences is about 0.16 

Hz 23, which means that the annual fatigue load cy-

cles are approximately equal to 𝑁0 = 5 × 106. At 

the design stage, the fatigue limit state has been 

checked against design codes. Fatigue resistance of 

the structure detail is rated as F class and a repre-

sentative S-N curve is given by a classification soci-

ety 24. The structure is designed with a fatigue de-

sign factor (FDF) of 3 and the plate thickness is 𝑇 =
25 mm . Table 1 lists the design parameters, in 

which 𝑎1̅̅ ̅ and 𝑎2̅̅ ̅ are fatigue strength coefficients, 

and 𝑚1 and 𝑚2 are fatigue strength exponents ac-

cording to 24.  



 
Figure 2. The structural model  

 
Table 1. Design parameters of the structural model 

Parameter Unit Value 

𝑇𝑆𝐿  Year 20 

𝑁0 Cycle 5 × 106 

FDF - 3 

𝑇 mm 25 

log10 𝑎1̅̅ ̅ [N, mm] 11.855 

log10 𝑎2̅̅ ̅ [N, mm] 15.091 

𝑚1 - 3 

𝑚2 - 5 

𝑚 - 3 

∆𝐾𝑡ℎ [N, mm] 0 

𝑎𝑐 mm 25 

∆𝑡 Years 10/7 

3 FATIGUE DETERIORATION MODELLING  

Herein a probabilistic fracture mechanic model is 

employed for fatigue crack growth modelling. The 

obtained crack size predictions represent prior crack 

information (before adopting inspections), which are 

basis of prior maintenance decision optimization. 

 

From a fracture mechanics perspective, there are 

typically initial flaws or cracks (the initial size 𝑎0) 

in structures. Initial cracks propagate under a stress 

range and then reach a critical size 𝑎𝑐, which de-

fines the final failure (Figure 3). The critical crack 

size can be defined based on serviceability analysis, 

e.g. the plate in Figure 3 would not be watertight if a 

through-thickness crack occurs. Hence, the critical 

crack size 𝑎𝑐 is set to be equal to the plate thick-

ness, i.e. 𝑎𝑐 = 𝑇.  

 

 
 

Figure 3. An illustration of the crack propagation 
process 

 
Based on one-dimensional Paris’s law 25, the rela-

tionship between crack growth rate and local stress 
range is given by Equation (1).  

 
𝑑𝑎

𝑑𝑁
= 𝐶∆𝐾𝑚, ∆𝐾𝑡ℎ ≤ ∆𝐾 ≤ 𝐾𝑚𝑎𝑡     (1) 

 
where 𝑎 is crack depth; 𝑁 is the number of fatigue 
load cycles; 𝑑𝑎 𝑑𝑁⁄ is crack propagation 
rate; 𝐶 and 𝑚 are material parameters; ∆𝐾 is the 
range of stress intensity factor; 𝐾𝑚𝑎𝑡 is material 
fracture toughness; ∆𝐾𝑡ℎ is the threshold value of 
∆𝐾. 

 
The stress intensity factor range ∆𝐾 is given by 

Equation (2). The values of the input parameters are 
listed in Table 1. 

 
∆𝐾 = ∆𝜎𝑌(𝑎)√𝜋𝑎           (2) 

 
where 𝑌(𝑎) is geometry function and ∆𝜎 is stress 
range.  
 

Table 2. Statistical data for random variables 

Variable Distribution Unit Mean SD 

𝑎0 Exponential mm 0.04 0.04 

log10 𝐶 Normal [N, mm] -12.74 0.11 

𝐵 Normal - 1.00 0.15 

𝑎𝑑 Exponential mm 0.89/4.35 0.89/4.35 

 
Essentially, crack propagation is a stochastic pro-

cess and therefore main sources of uncertainty in the 
Paris’s model (Equations (1) and (2)) need to be tak-
en into account, i.e. uncertainty associated with the 
initial crack size 𝑎0, crack growth rate 𝐶, and stress 
range ∆𝜎. In this paper, uncertainty in the initial 
crack size 𝑎0 is modelled via an exponential distri-
bution with a mean value 𝐸(𝑎0) = 0.04 23. Uncer-
tainty associated with calculation of stress range ∆𝜎 
generally comes from the adopted wave load charac-
terization method, structural response calculation 
method, stress concentration factor calculation 
method, etc. Herein the uncertainty in the stress 



range ∆𝜎 is modelled with a normally distributed 
variable 𝐵. The statistical descriptors for 𝐵 are: the 
mean value 𝐸(𝐵) = 1 and the standard deviation 
(SD) 𝜇(𝐵) = 0.15 10. The crack growth rate 𝐶 is 
generally regarded as a material property, although it 
is affected by other factors as well. For marine struc-
tures, the crack growth rate 𝐶 is often modelled to 
be lognormally distributed 23 while 𝑚 = 3.  The 
statistical descriptors of all variables are summarized 
in Table 2. 

 
We then integrate the probabilistic crack growth 

model into a probabilistic optimization framework, 
by which the expected LCC associated with all 
available maintenance strategies are evaluated and 
the optimal strategy is derived. More sophisticated 
crack growth models are available 26. However, 
when these models are integrated into a probabilistic 
optimization framework, computational costs in-
crease significantly.  

4 MAINTENANCE PROBLEM FORMULATION 

The actual fatigue life of the structure at the opera-
tion stage may be shorter than that predicted by the 
S-N approach at the design stage due to presence of 
initial cracks. S-N curves are typically obtained 
based on specimen test data with smaller initial 
flaws and the actual loading conditions can be dif-
ferent from those adopted at the design stage. De-
veloping and implementing a SIM strategy at the 
operation stage, especially an effective maintenance 
strategy, is therefore important for keeping structural 
integrity and safe operation of the asset. In this paper 
(Section 5), we develop a Bayesian maintenance de-
cision optimization (BDO) approach to derive the 
optimal maintenance decision (or strategy) and 
quantify the expected information value from envis-
aged condition inspections. 

 
The proposed approach is applied to investigating 

the effects of both one and two maintenance inter-
ventions (𝑛 = 1 or 2) on structural reliability and 
LCC. The maintenance intervention(s) is/are sched-
uled to service year(s) with equal intervals 27, 28. The 
time intervals (∆𝑡) and intervention timings (𝑡1, 𝑡2) 
are listed in Table 3. 

 
Table 3. The number of maintenance interventions 

and time intervals of interventions  

𝑛 ∆𝑡 (years) 𝑡1, 𝑡2 (year) 

1 10 10th  

2 7 7th, 14th  

 
A renewal maintenance model is adopted, i.e. af-

ter repair the structural detail is renewed to its initial 
state 28-30. The maintenance strategies derived by the 

BDO approach are compared with three mainte-
nance strategies: CBM, time-based maintenance 
(TBM) and no action (NA). The efficiencies of these 
strategies are evaluated using the metric of LCC 
(Section 5). Under TBM, inspections are not in-
volved and the structure is maintained periodically. 
Under CBM, inspections are performed periodically 
and maintenance is carried out when necessary.  

 
The effects of two inspection methods are inves-

tigated: MPI and visual inspection (VI). The mean 
values of the detectable crack size (𝑎𝑑) of MPI and 
VI are 0.89 mm and 4.35 mm respectively 11, 31. It is 
very clear that a smaller value of 𝑎𝑑  signifies a 
higher capability and reliability in crack detection. 

5 BDO AND VOI COMPUTATION 

Bayesian decision optimization (BDO) and value of 
information (VoI) computation are performed at the 
beginning of the operation stage to develop optimal 
inspection and maintenance strategies. A limit state 
function is given by below Equation (3).  

 

ℎ(𝑡) = 𝑎𝑐 − 𝑎(𝑡)             (3) 

 

where ℎ(𝑡) ≤ 0 signifies failure. As discussed in 

Section 3, 𝑎𝑐= T. 

 
Based on the limit state function, the probability 

of failure by time t is obtained by Equation (4). Note 
that the lifetime failure probability is 𝑝𝑓(𝑇𝑆𝐿). Reli-
ability index is calculated by Equation (5), where 
Φ−1[∙] is the inverse function of standard normal 
cumulative density function. The failure probability 
and reliability index are calculated by Monte Carlo 
simulations 32. 
 

𝑝𝑓(𝑡) = 𝑃(ℎ(𝑡) < 0)           (4) 

 

𝛽(𝑡) = −Φ−1(𝑝𝑓(𝑡))           (5) 

 

 
 

Figure 4. Decision tree analysis of two maintenance 
interventions adopting [CBM, CBM] 

 



In order to evaluate the effects of different 
maintenance strategies on LCC, the probabilities of 
failure, of inspection (if any) and of maintenance 
need to be formulated, taking scheduled mainte-
nance into account. The probabilities are formulated 
based on decision tree analysis. For example, Figure 
4 shows the decision tree analysis of two mainte-
nance interventions scheduled to 𝑡1 and 𝑡2 respec-
tively, both of which adopt CBM, denoted by [CBM, 
CBM]. In Figure 4, ‘F’, ‘D’ and ‘M’ mean the event 
of failure, detection and maintenance respectively 
while �̅� and �̅� denote survival and no detection 
respectively. Note that the structure of the decision 
tree is different when different maintenance strate-
gies are adopted. Based on the decision tree, the 
probability of failure is calculated by summation of 
the probability of failure associated with all failure 
branches in the figure.  

 
This paper addresses structural maintenance at 

the operation stage of the asset. Thus, design and 

construction costs are the same for all maintenance 

strategies and not included in the LCC analysis. The 

LCC, given by Equation (6), is comprised of the 

costs of failure, inspections and maintenance, given 

by Equations (7) – (9) respectively. 

 
𝐿𝐶𝐶 = 𝐶𝐼 + 𝐶𝑀 + 𝐶𝐹          (6) 

 
𝐶𝐹 =  𝑝𝑓𝑛 ∙ 𝑐𝑓0            (7) 

 

𝐶𝐼 = ∑ 𝑝𝑖𝑘 ∙ 𝑐𝑖0
𝑛
𝑘=1 ∙

1

(1+𝑟)𝑡𝑘
       (8) 

 

𝐶𝑀 = ∑ 𝑝𝑚𝑘 ∙ 𝑐𝑚0
𝑛
𝑘=1 ∙

1

(1+𝑟)𝑡𝑘
     (9) 

 
where 𝑝𝑓𝑛 is the probability of failure taken into 
account the effect of n maintenance interventions; 
𝑐𝑓0 is economic loss of failure; 𝑝𝑖𝑘 and 𝑝𝑚𝑘 are 
the probability of inspection and maintenance at the 
kth maintenance intervention; 𝑡𝑘 is the time of the 
kth maintenance intervention; 𝑐𝑖0 and 𝑐𝑚0 are the 
costs associated with an inspection and an mainte-
nance activity respectively, and; 𝑟 is average annu-
al discount rate of money. 
 

By quantifying the information value brought by 
envisaged inspections explicitly, it is possible to de-
termine whether to adopt a maintenance strategy uti-
lizing inspection information or a maintenance strat-
egy based on prior information without any 
inspection. The VoI is computed as utility incre-
ments due to availability of the information 33. Here-
in the VoI and utility increments are quantified via 
LCC reductions, given by Equation (10), where 
𝐿𝐶𝐶min is the LCC associated with the prior optimal 
maintenance decision, and 𝐿𝐶𝐶min

′  is the LCC as-

sociated with the posterior optimal maintenance de-
cision. The 𝐿𝐶𝐶min  and 𝐿𝐶𝐶min

′  are obtained by 
systematic Bayesian decision optimization.  
 

𝑉𝑜𝐼 = 𝐿𝐶𝐶min − 𝐿𝐶𝐶min
′        (10)                                                  

5.1 Prior decision optimization 

 

Herein ‘prior’ means prior to the availability of addi-

tional information, e.g. without involving inspec-

tions. The available maintenance decision (or strate-

gy) alternatives are given by Table 4. Note that there 

are 2 decision alternatives for each intervention: ‘T’ 

(time-based maintenance) and ‘N’ (no action) and 

thus 4 alternative decisions for two interventions. 

The LCC associated with all these decision alterna-

tives are calculated by Equations (6) – (9) based on 

prior crack information, i.e. the crack growth simu-

lated by the probabilistic model in Section 2. The 

maintenance strategy associated with the minimum 

LCC is the prior optimal strategy 𝑑opt (Equation 

(11)). The prior minimum life cycle costs 𝐿𝐶𝐶min 

are obtained by Equation (12).  

 

𝑑opt = arg min
𝑑𝑖

𝐿𝐶𝐶(𝑑𝑖)       (11) 

                                        
𝐿𝐶𝐶min = 𝐿𝐶𝐶(𝑑opt)         (12) 

 
Table 4. Maintenance decision alternatives in prior 

decision optimization 

The number of 

interventions (𝑛) 
Decision  

alternatives (𝑑𝑖) 

1 
T (time-based maintenance),  

N (no action) 

2 (T, T), (T, N), (N, T), (N, N) 

 

5.2 Posterior decision optimization.  

 
Table 5. Maintenance decision alternatives in poste-

rior decision optimization 

The number of 

interventions (𝑛) 
Decision  

alternatives (𝑑𝑖
′) 

1 
T (time-based maintenance), N (no ac-
tion), C (condition based maintenance) 

2 
(T, T), (T, C), (T, N), (C, T), (C, C), (C, N), 
(N, T), (N, C), (N, N) 

 

Herein ‘posterior’ means posterior to the availability 

of additional inspection information. The available 

maintenance decision (or strategy) alternatives are 

given by Table 5. Note that there are 3 decision al-



ternatives for each intervention: ‘T’ (time-based 

maintenance), ‘N’ (no action) and ‘C’ (condition-

based maintenance) and thus 9 alternative decisions 

for two interventions. It should be stressed that even 

when inspection information is available, the deci-

sion alternatives without utilizing inspection infor-

mation (e.g. (T, T), (T, N), (N, T), (N, N)) should be 

considered in decision optimization, because inspec-

tion information may does not add value. The LCC 

associated with all these decision alternatives are 

calculated by Equations (6) – (9) based on posterior 

crack information, i.e. integration of the crack 

growth model prediction and inspection information. 

The maintenance strategy associated with the mini-

mum LCC is the posterior optimal strategy 𝑑opt
′  

(Equation (13)). The posterior minimum life cycle 

costs 𝐿𝐶𝐶min
′  are obtained by Equation (14).  

 

𝑑opt
′ = arg min

𝑑𝑖
′

𝐿𝐶𝐶(𝑑𝑖
′)       (13)          

                                     
𝐿𝐶𝐶min

′ = 𝐿𝐶𝐶(𝑑opt
′ )         (14) 

 

Based on Equations (10) – (14), the below conclu-

sions can be drawn. 

 

a. If the optimal maintenance decisions (or strate-

gies) with or without the inspection information 

are the same, then VoI = 0, which means that 

there is no need in obtaining the inspection in-

formation. 

b. Inspection information adds value (i.e. VoI > 0) 

only when the optimal maintenance decision (or 

strategy) with the availability of the inspection 

information is different from the prior optimal 

decision without the inspection information. 

 

Herein the cost ratio λ = 𝑐𝑚0 𝑐𝑓0⁄  is identified 

as the main parameter charactering maintenance de-

cision making context. Different λ values essential-

ly mean different decision making problems and 

contexts. The VoIs are computed and the optimal 

maintenance strategies are derived under different 

maintenance decision making contexts, i.e. different 

λ values (0.001, 0.01, 0.1, 0.4). A small λ value 

represents the decision contexts where the costs of 

an maintenance intervention is very small compared 

with the costs of failure, while a relatively large λ 

value indicates the contexts where the costs of an 

maintenance intervention is relatively high. The 

costs of failure is set as a reference value 𝑐𝑓0 = 

10000, and the costs of an inspection is 𝑐𝑖0 = 5. It is 

considered that the value of 𝑐𝑖0 is small, compared 

with the value of 𝑐𝑚0. 

6 RESULTS AND DISCUSSIONS 

Table 6 gives the prior failure probabilities without 
any maintenance in different service years. Clearly, 
the failure probabilities would become decreased 
with maintenance. The failure probabilities would 
become lower and lower with a larger number of 
maintenance interventions. Generally, the TBM 
strategy results in lower failure probabilities than the 
CBM strategy, but also leads to higher maintenance 
costs. Hence, a trade-off between failure probability 
and maintenance costs needs to be achieved. The 
proposed approach is employed to derive the optimal 
strategies with the best trade-off under various deci-
sion making contexts. 
 

Tables (7) – (9) provide the results when the 

number of scheduled maintenance 𝑛 = 1. Tables (7) 

and (8) give the life cycle costs and value of infor-

mation when adopting MPI and VI respectively, 

where LCC(CBM) denotes the life cycle costs when 

CBM is adopted, LCCmin and LCCmin
′  are the min-

imum life cycle costs obtained by the proposed prior 

and posterior decision optimization respectively. 

Table 9 summarizes the optimal maintenance strate-

gies derived by the proposed BDO approach, when 

MPI is considered (BDO(MPI)), VI is considered 

(BDO(VI)) and both of the inspection methods are 

considered (BDO) respectively. 

 

Tables (10) – (12) provide the results when the 

number of scheduled maintenance 𝑛 = 2. Similarly, 

Tables (10) & (11) give the life cycle costs and val-

ue of information when adopting MPI and VI re-

spectively. Table 12 summarizes the optimal 

maintenance strategies derived by the proposed 

BDO approach when MPI, VI and both of them are 

considered. In Table 12, the strategy [CBM(MPI), 

NA] means that CBM strategy and MPI is scheduled 

for the 1st maintenance intervention, and NA is 

adopted for the 2nd maintenance intervention.  

 
Table 6. Prior failure probabilities without any 

maintenance in different service years. 

Service year (𝑡)  7 10 14 20 

Initial failure 

probability (𝑝𝑓) 

2.3∙10-4 4.0∙10-3 2.9∙10-2 0.13 

 
Table 7. Life cycle costs (LCC) and value of infor-

mation (VoI) (MPI, 𝑛=1) 

λ LCCmin LCCmin
′  LCC(CBM) VoI 

0.001 92.9 65.1 65.1 27.8 

0.01 182.5 99.1 99.1 83.4 

0.1 1078.8 439.8 439.8 639.8 

0.4 1329.4 1329.4 1575.4 0 



Table 8. Life cycle costs (LCC) and value of infor-
mation (VoI) (VI, 𝑛=1) 

λ LCCmin LCCmin
′  LCC(CBM) VoI 

0.001 92.9 92.9 663.2 0 

0.01 182.5 182.5 669.3 0 

0.1 1078.8 730.0 730.0 348.8 

0.4 1329.4 932.3 932.3 397.1 

 
Table 9. Optimal maintenance strategies (𝑛=1) 

𝜆 BDO (MPI) BDO (VI) BDO  

0.001 CBM TBM CBM(MPI) 

0.01 CBM TBM CBM(MPI) 

0.1 CBM CBM CBM(MPI) 

0.4 NA CBM CBM(VI) 

 
Table 10. Life cycle costs (LCC) and value of in-

formation (MPI, 𝑛=2) 

𝜆 LCCmin LCCmin
′  LCC(CBM) VoI 

0.001 15.4 15.4 19.7 0 

0.01 105.3 77.7 77.7 27.6 

0.1 1004.7 339.2 657.9 665.5 

0.4 1329.4 852.5 2592.0 476.9 

 
Table 11. Life cycle costs (LCC) and value of in-

formation (VI, 𝑛=2) 

λ LCCmin LCCmin
′  LCC(CBM) VoI 

0.001 15.4 15.4 185.8 0 

0.01 105.3 105.3 203.9 0 

0.1 1004.7 384.1 384.1 620.6 

0.4 1329.4 984.8 984.8 344.6 

 
Table 12. Optimal maintenance strategies (𝑛=2) 

λ BDO (MPI) BDO (VI) BDO 

0.001 (TBM, TBM) (TBM, TBM) (TBM, TBM) 

0.01 (CBM, CBM) (TBM, TBM) [CBM(MPI), 
CBM(MPI)] 

0.1 (CBM, NA) (CBM, CBM) [CBM(MPI), NA] 

0.4 (CBM, NA) (CBM, CBM) [CBM(MPI), NA] 

 

It can be seen from the Tables that the VoI pro-

vided by an inspection can be zero. e.g. when 𝜆 = 

0.4 and MPI is considered (Table 7); when 𝜆 = 

0.001 or 0.01 and VI is considered (Table 8). The 

VoI provided by two inspections can also be zero. 

e.g. when 𝜆 = 0.001 and MPI is considered (Table 

10); when 𝜆 = 0.001 or 0.01 and VI is considered 

(Table 11). In addition, when two inspections are 

considered, the VoI provided by one of the inspec-

tions can be zero (i.e. one of the inspections is not 

necessary). For example, when 𝜆 = 0.1 or 0.4 and 

MPI is considered (Table 12), the maintenance strat-

egy derived by the proposed approach is [CBM, 

NA], which means that No Action (NA) is a more 

optimal strategy than CBM for the 2nd maintenance 

intervention and thus an inspection for the 2nd inter-

vention is not necessary. Therefore, it is important to 

perform VoI computation and to confirm that VoI > 

0 before adopting inspections and CBM. 

 

The tables clearly show that when VoI = 0, the 

optimal maintenance strategies obtained by the pro-

posed approach is not CBM. For example, when 𝜆 

= 0.4 and MPI is considered, VoI = 0 (Table 7) and 

the optimal strategy is NA (Table 10); when 𝜆 = 

0.001 or 0.01 and VI is considered, VoI = 0 (Table 

8), and the optimal strategy is TBM (Table 9). 

Hence, when VoI = 0, the optimal maintenance 

strategies derived by the proposed approach is the 

prior optimal maintenance strategies without involv-

ing inspections (e.g. NA or TBM). When VoI > 0, 

the obtained optimal maintenance strategies are 

CBM. These results show that the proposed ap-

proach can result in optimal maintenance strategies 

reliably (whether VoI > 0 or =0) and applicable to a 

wide range of maintenance decision making con-

texts, while the CBM strategy is not optimal in deci-

sion making contexts where VoI = 0.  

 

Generally, VoI = 0 indicates that the information 

provided by the given inspection method (character-

ized by a specific detectable crack size (𝑎𝑑)) does not 

add value to the given maintenance decision making 

problem (characterized by a specific 𝜆 value). For 

such a decision problem, the prior optimal mainte-

nance decision derived based on prior crack growth 

predictions without involving inspections (e.g. NA 

or TBM) is the optimal decision, and CBM (e.g. 

conditional replacement based on crack detection 

threshold 𝑎𝑑) is not the optimal decision. Specifical-

ly, when 𝜆 = 0.001 (or 0.01) and VI is considered 

(Table 8), the costs of an maintenance intervention is 

relative cheap and thus more maintenance is desira-

ble. However, the mean detectable of VI is relatively 

large (𝑎𝑑 = 4.35 mm) and thus the probability of de-

tection and maintenance would be low (leading to 

insufficient maintenance). So, in these maintenance 

decision making contexts (𝜆 = 0.001 or 0.01), VI is 

not a good choice (VoI = 0) and the optimal strategy 

is TBM (Table 9). On the other hand, when 𝜆 = 0.4 

and MPI is considered (Table 7), the costs of an 

maintenance intervention is relatively high and thus 

less maintenance is desirable. However, the mean 

detectable of MPI is very small (𝑎𝑑 = 0.89 mm) and 

the probability of detection and maintenance would 

be high (leading to excessive maintenance). So, in 

this maintenance decision making context (𝜆 = 0.4), 



MPI is not a good choice (VoI = 0) and the optimal 

strategy is NA (Table 9). 

 

It is also shown that depending on the specific 

maintenance decision making context, the VoI pro-

vided by an inspection method with a smaller mean 

detectable crack size (MPI) may be lower than the 

VoI provided by an inferior inspection method (VI). 

For example, when 𝜆 = 0.4 and 𝑛 = 1, VoI (MPI) 

= 0 (Table 7) while VoI (VI) = 397.1 (Table 8). 

Thus, when 𝜆 = 0.4 and 𝑛  = 1, VI is a better 

choice than MPI and the optimal strategy is CBM 

(VI), not CBM (MPI) (Table 9). This is because the 

VoI depends on information utilization in a specific 

decision making context, and the VoI is higher when 

the information can be better acted on. When 𝜆 = 

0.4, it indicates that the costs of an maintenance in-

tervention are high. Under such a decision context, 

less maintenance is desirable and repair of small 

cracks is not cost-beneficial. Under such a decision 

context, although MPI can detect smaller cracks than 

VI, it is not sensible to act on such detection infor-

mation (i.e. repair of detected small cracks) and the 

detection information would not be utilized. Note 

this conclusion is subjected to the specific mainte-

nance decision making context which is character-

ized by the value of 𝜆. When the value of 𝜆 is dif-

ferent, the VoIs provided by both MPI and VI are 

different and the conclusion is different. However, 

this example shows that the information provided by 

an inspection method with higher crack detection 

capacity does not necessarily add more value to a 

specific maintenance decision making problem. 

Hence, this study highlights the importance of per-

forming VoI computation and accordingly selecting 

an appropriate inspection method that adds value in 

a specific maintenance decision making context be-

fore carrying out inspections and adopting CBM. 

7 CONCLUSIONS 

We have addressed the structural integrity manage-

ment problem in marine and offshore engineering by 

developing a Bayesian decision optimization (BDO) 

approach to optimal maintenance planning under 

uncertainty. The approach explicitly models uncer-

tainties that affect maintenance decision making, 

stochastics of crack growth, maintenance effects and 

crack detection capacities of inspection methods. Al-

so, the approach considers all available maintenance 

strategies with and without condition inspections in 

searching for an optimal maintenance strategy, by 

which the value of information (VoI) provided by 

future inspections is computed. The approach has 

been tested under different maintenance decision 

making contexts (which is characterized by the cost 

ratio of maintenance to failure), different inspection 

methods, and different number of maintenance in-

terventions. The results show that the BDO approach 

can result in optimal maintenance strategies reliably 

and is applicable to a wide range of maintenance de-

cision making problems. 
 
It has been shown that VoI computation is im-

portant and necessary before adopting condition-

based maintenance (CBM). It has been found the 

VOI is equal to zero in various maintenance decision 

making contexts. For example, when the costs of 

maintenance are very low (compared with the costs 

of failure), the VoI provided by an inspection meth-

od with low crack detection capability (e.g. VI) may 

be zero. When the costs of maintenance are high, the 

VoI provided by an inspection method with high 

crack detection capability (e.g. MPI) may be zero. 

When multiple inspections are considered, the VoI 

provided by some of the inspections may be zero.  
 
When the VoI is equal to zero, CBM is not the 

optimal strategy and the optimal maintenance strate-

gy derived by the BDO approach is the prior optimal 

strategy based on prior crack information (without 

involving inspections). When the VoI is larger than 

zero, the optimal maintenance strategy obtained by 

the BDO approach is CBM. Thus, the BDO ap-

proach is reliable in resulting in optimal strategies in 

various maintenance decision making problems 

while the CBM is not optimal in the maintenance 

decision making problems where VoI is equal to ze-

ro. The advantage of the BDO approach is attributed 

to the fact that by the approach both prior crack pre-

diction information and additional crack information 

(e.g. inspection results) are utilized in decision-

making process while by adopting the CBM, 

maintenance decisions are directly based on inspec-

tion results.  

 

The proposed approach can be used to support ra-

tional maintenance planning under uncertainty. This 

study has demonstrated potentials of applying the 

proposed approach to various maintenance decision 

making problems and contexts, which essentially 

can be modelled and solved within the framework of 

the proposed approach. Firstly, the approach can 

take all available maintenance decisions or strategies 

in account, which include the strategies relying on 

inspection or monitoring information (e.g. detection 

or condition based maintenance, preventive mainte-

nance), as well as strategies without involving in-

spections (e.g. time or age based maintenance). Sec-

ondly, by VoI computation, it is possible to 

determine whether to adopt inspections and CBM or 



not. If the VoI is large than zero, then inspections 

and CBM are recommended. If the VoI is equal to 

zero, then CBM is not cost-beneficial and the 

maintenance strategy obtained by prior decision op-

timization is the optimal one. Lastly, utility incre-

ment is a metric for evaluation of the available 

maintenance strategies, and can be represented by 

any metric specifically defined by a maintenance 

policy-maker, e.g. revenue increments, cost reduc-

tions, etc. 
 
In the study, it is considered that the costs of both 

inspections (𝑐𝑖0), i.e. MPI and VI, are much lower 
than the costs of a maintenance intervention (𝑐𝑚0). 
This is reasonable for most structural components. 
Thus, the costs between MPI and VI are assumed to 
be the same. In fact, the costs of MPI are higher than 
VI. However, the influence of this difference on 
LCC are marginal, compared with high costs of 
maintenance interventions and failure. If this differ-
ence was considered, the VoI by MPI (in Tables 7 
and 10) would be slightly lower. Then it would be 
more likely the VoI provided by MPI is lower than 
the VoI provided by VI in some maintenance deci-
sion making contexts. 

 
There are other parameters that influence deriva-

tion of an optimal maintenance strategy under uncer-
tainty. For example, the effects of a maintenance 
strategy can be influenced by intervention timings. 
In this study, the timings are obtained based on peri-
odic maintenance intervention policy, which is wide-
ly adopted in the literature, because periodic inter-
ventions are more easy to be implemented from a 
management perspective 27, 28, 34. Also, the input pa-
rameters of the probabilistic crack growth model in 
Section 2 can affect the results of optimal mainte-
nance decision making. The values of these parame-
ters are inputs of this study and represent existing or 
prior knowledge about the fatigue crack growth phe-
nomenon. 
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