
Bayesian Map Learning in Dynamic

Environments

Kevin P. Murphy

Computer Science Division

University of California

Berkeley, CA 94720-1776

murphyk@cs.berkeley.edu

Abstract

We consider the problem of learning a grid-based map using a robot

with noisy sensors and actuators. We compare two approaches:

online EM, where the map is treated as a fixed parameter, and

Bayesian inference, where the map is a (matrix-valued) random

variable. We show that even on a very simple example, online EM

can get stuck in local minima, which causes the robot to get "lost"

and the resulting map to be useless. By contrast, the Bayesian

approach, by maintaining multiple hypotheses, is much more ro

bust. We then introduce a method for approximating the Bayesian

solution, called Rao-Blackwellised particle filtering. We show that

this approximation, when coupled with an active learning strategy,

is fast but accurate.

1 Introduction

The problem of getting mobile robots to autonomously learn maps of their envi

ronment has been widely studied (see e.g., [9] for a collection of recent papers).

The basic difficulty is that the robot must know exactly where it is (a problem

called localization), so that it can update the right part of the map. However, to

know where it is, the robot must already have a map: relying on dead-reckoning

alone (Le., integrating the motor commands) is unreliable because of noise in the

actuators (slippage and drift).

One obvious solution is to use EM, where we alternate between estimating the

location given the map (the E step), and estimating the map given the location

(the M step). Indeed, this approach has been successfully used by several groups

[8, 11, 12]. However, in all of these works, the trajectory of the robot was specified

by hand, and the map was learned off-line. For fully autonomous operation, and to

cope with dynamic environments, the map must be learned online.

We consider two approaches to online learning: online EM, and Bayesian inference,

1016 K. P Murphy

a c

Figure 1: (a) The POMDP represented as a graphical model. L t is the location,

Mt(i) is the label of the i'th grid cell, At is the action, and Zt is the observation.

Dotted circles denote variables that EM treats as parameters. (b) A one-dimensional

grid with binary labels (white = 0, black = 1). (c) A two-dimensional grid, with

four labels (closed doors, open doors, walls, and free space).

where we treat the map as a random variable. In Section 3, we show that the

Bayesian approach can lead to much better results than online EM; unfortunately,

it is computationally intractable, so in Section 4, we discuss an approximation based

on Rao-BIackwellised particle filtering.

2 The model

We now precisely define the model that we will use in this paper; it is similar to, but

much simpler than, the occupancy grid model in [12]. The map is defined to be a

grid, where each cell has a label which represents what the robot would see at that

point. More formally, the map at time t is a vector of discrete random variables,

M t (i) E {I, ... , No}, where 1 ::; i ::; N L. Of course, the map is not observed

directly, and nor is the robot's location, L t E {I, ... , NL}. What is observed is

Zt E {l, ... ,No}, the label of the cell at the robot's current location, and At E

{I, ... ,N A}, the action chosen by the robot just before time t. The conditional

independence assumptions we are making are illustrated in Figure l(a). We start

by considering the very simple one-dimensional grid shown in Figure l(b), where

there are just two actions, move right (-+) and move left (f-), and just two labels,

off (0) and on (1). This is sufficiently small that we can perform exact Bayesian

inference. Later, we will generalize to two dimensions.

The prior for the location is a delta function with all its mass on the first (left-most)

cell, independent of AI. The transition model for the location is as follows.

{

Pa if j = i + 1, j < N

P (·1 . A) 1 - Pa if j = i, j < N
r Lt = J Lt-I =~, t =-+ = 1 if j = i = N

o otherwise

where Pa is the probability of a successful action, i.e., 1 - Pa is the probability that

the robot's wheels slip. There is an analogous equation for the case when At =f-.
Note that it is not possible to pass through the "rightmost" cell; the robot can use

this information to help localize itself.

The prior for the map is a product of the priors for each cell, which are uniform.

(We could model correlation between neighboring cells using a Markov Random

Field, although this is computationally expensive.) The transition model for the

map is a product of the transition models for each cell, which are defined as follows:

Bayesian Map Learning in Dynamic Environments 1017

the probability that a 0 becomes a 1 or vice versa is Pc (probability of change), and

hence the probability that the cell label remains the same is 1 - Pc.

Finally, the observation model is

Pr(Zt = klMt = (mI , ... , mNL), Lt = i) = { Po
1- Po

if mi = k

otherwise

where Po is the probability of a succesful observation, Le. , 1 - Po is the probability

of a classification error. Another way of writing this, that will be useful later, is to

introduce the dummy deterministic variable, Z:, which has the following distribu

tion: Pr(Z: = klMt = (mI, ... ,mNL) ,Lt = i) = 8(k,mi) , where 8(a, b) = 1 if a = b
and is 0 otherwise. Thus Z: acts just like a multiplexer, selecting out a component

of Mt as determined by the "gate" Lt. The output of the multiplexer is then passed

through a noisy channel, which flips bits with probability 1 - Po, to produce Zt.

3 Bayesian learning compared to EM

For simplicity, we assume that the parameters Po, Pa and Pc, are all known. (In this

section, we use Po = 0.9, Pa = 0.8 and Pc = 0, so the world is somewhat "slippery",

but static in appearance.) The state estimation problem is to compute the belief

state Pr(Lt , MtIYl:t), where Yt = (Zt, At) is the evidence at time t; this is equiv

alent to performing online inference in the graphical model shown in Figure 1(a).

Unfortunately, even though we have assumed that the components of M t are a pri

ori independent , they become correlated by virtue of sharing a common child, Zt.

That is, since the true location of the robot is unknown, all of the cells are possible

causes of the observation, and they "compete" to "explain" the data. Hence all of

the hidden variables become coupled, and the belief state has size O(NL2NL).

If the world is static (Le. , Pc = 0) , we can treat M as a fixed , but unknown,

parameter; this can then be combined with the noisy sensor model to define an

HMM with the following observation matrix:

B(i , k) ~ Pr(Zt = kiLt = i ; M) = L Pr(Zt = klZ: = j)8(M(i),j)
j

We can then learn B using EM, as in [8, 11, 12]. (We assume for now that the HMM

transition matrix is independent of the map, and encodes the known topology of

the grid, Le., the robot can move to any neighboring cell, no matter what its label

is. We will lift this restriction in the 2D example.

We can formulate an online version of EM as follows. We use fixed-lag s"moothing

with a sliding window of length W, and compute the expected sufficient statis

tics (ESS) for the observation matrix within this window as follows: Ot(i, k) =

2:~=t-W : Z ," =k LT1t(i) , where LTlt(i) = Pr(LT = iIYl:t)· We can compute L using

the forwards-backwards algorithm, using Lt-W-Ilt-I as the prior. (The initial con

dition is L = 11", where 11" is the (known) prior for Lo.) Thus the cost per time step is

O(2W Nl). In the M step, we normalize each row of Ot + d x Ot-l, where 0 < d < 1

is a decay constant, to get the new estimate of B . We need to downweight the

previous ESS since they were computed using out-of-date parameters; in addition,

exponential forgetting allows us to handle dynamic environments. [1] discuss some

variations on this algorithm.

1018 K. P. Murphy

__ ',.'I!'. _al_ ... , ,,' ... ~Ir! ' .

lei
a b c d

Figure 2: (a) The full joint posterior on P(Mt !Yl:t). 0 and 255, on the axis into the

page, represent the maps where every cell is off and every cell is on, respectively; the

mode at t = 16 is for map 171, which corresponds to the correct pattern 01010101.

(b-d) Estimated map. Light cells are more likely to contains Os, so the correct

pattern should have light bars in the odd rows. (b) The marginals of the exact

joint. (c) Online EM. (d) Omine EM.

As the window length increases, past locations are allowed to look at more and

more future data, and hence their estimates become more accurate; however, the

space and time requirements increase. Nevertheless, there are occasions when even

the maximum window size (i.e., looking all the way back to 'T = 0) will perform

poorly, because of the greedy hill-climbing nature of EM. For a simple example of

this, consider the environment shown in Figure 1 (b). Suppose the robot starts in

cell 1, keeps going right until it comes to the end of the "corridor", and then heads

back "home". Suppose further that there is a single slippage error at t = 4, so the

actual path and observation sequence of the robot is as follows:

t 1 2

L t 1 2

Zt 0 1

At --7

3 4

3 4

o 1

--7 --7

5 6 7 8

456 7

101 0

--7 --7 --7 --7

9 10 11

876

101

+- +- +-

12 13 14 15 16

54321

01010

+- +- +- +- +-

To study the effect of this sequence, we computed Pr(Mt , Lt !Yl:t) by applying the

junction tree algorithm to the graphical model in Figure l(a). We then marginalized

out L t to compute the posterior P(Mt): see Figure 2(a). At t = 1, there are 27

modes, corresponding to all possible bit patterns on the unobserved cells. At each

time step, the robot thinks it is moving one step to the right. Hence at t = 8, the

robot thinks it is in cell 8, and observes O. When it tries to move rightf it knows

it will remain in cell 8 (since the robot knows where the boundaries are). Hence at

t = 9, it is almost 70% confident that it is in cell 8. At t = 9, it observes a 1, which

contradicts its previous observation of O. There are two possible explanations: this

is a sensor error, or there was a motor error. Which of these is more likely depends

on the relative values of the sensor noise, Po, and the system noise, Pa. In our

experiments, we found that the motor error hypothesis is much more likely; hence

the mode of the posterior jumps from the wrong map (in which M(5) = 1) to the

right map (in which M(5) = 0). Furthermore, as the robot returns to "familiar

territory", it is able to better localize itself (see Figure 3(a)), and continues to learn

the map even for far-away cells, because they are all correlated (in Figure 2(b), the

entry for cell 8 becomes sharper even as the robot returns to cell 1)

We now compare the Bayesian solution with EM. Online EM with no smoothing

was not able to learn the correct map. Adding smoothing with the maximum

window size of Wt = t did not improve matters: it is still unable to escape the local

Bayesian Map Learning in Dynamic Environments 1019

I
a b c

Figure 3: Estimated location. Light cells are more likely to contain the robot.

(a) Optimal Bayes solution which marginalizes out the map. (b) Dead-reckoning

solution which ignores the map. Notice how "blurry" it is. (c) Online EM solution

using fixed-lag smoothing with a maximal window length.

minimum in which M(5) = 1, as shown in Figure 2(c). (We tried various values of

the decay rate d, from 0.1 to 0.9, and found that it made little difference.) With the

wrong map, the robot "gets lost" on the return journey: see Figure 3(c). Offline

EM, on the other hand, does very well, as shown in Figure 2(d); although the initial

estimate oflocation (see Figure 3(b)) is rather diffuse, as it updates the map it can

use the benefit of hindsight to figure out where it must have been.

4 Rao-Blackwellised particle filtering

Although the Bayesian solution exhibits some desirable properties, its running time

is exponential in the size of the environment. In this section, we discuss a sequential

Monte Carlo algorithm called particle filtering (also known as sm filtering, the

bootstrap filter, the condensation algorithm, survival of the fittest, etc; see [10, 4]

for recent reviews). Particle filtering (PF) has already been successfully applied to

the problem of (global) robot localization [5]. However, in that case, the state space

was only of dimension 3: the unknowns were the position of the robot, (x, y) E lR?,

and its orientation, () E [0,211"]. In our case, the state space is discrete and of

dimension 0(1 + NL), since we need to keep track of the map as well as the robot's

location (we ignore orientation in this paper).

Particle filtering can be very inefficient in high-dimensional spaces. The key obser
vation which makes it tractable in this context is that, if Ll:t were known, then the
posterior on M t would be factored; hence M t can be marginalized out analytically,
and we only need to sample Lt. This idea is known in the statistics literature as Rao
Blackwellisation [10, 41. In more detail, we will approximate the posterior at time t
using a set of weighted particles, where each particle specifies a trajectory L1:t , and
the corresponding conditionally factored representation of P(Mt) = TIi P(Mt(i));

we will denote the j'th particle at time t as bF). Note that we do not need to actu
ally store the complete trajectories Ll:t: we only need the most recent value of L.
The approach we take is essentially the same as the one used in the conditional lin
ear Gaussian models of [4, 3], except we replace the Kalman filter update with one
which exploits the conditionally factored representation of P(Mt). In particular,
the algorithm is as follows: For each particle j = 1, ... , N s , we do the following:

1. Sample L~~l from a proposal distribution, which we discuss below.

2. Update each component of the map separately using L~~l and Zt+1

Pr(Mt~lIL~~l = i,bP),Zt+l) oc Pr(zt+1IMt~l(i)) rrPr(Mi~l(k)IMF)(k))
k

1020 K. P. Murphy

IIK _ _ ... '~I ~ I.

I I I
a b c d

Figure 4: (a-b) Results using 50 particles. (c-d) Results using BK.

. (j) (j) (j) (j) .
3. Update the weIghts: Wt+l = u t+1 wt ,where Ut+l IS defined below.

We then res ample Ns particles from the normalised weights, using Liu's residual

resampling algorithm [10], and set WWl = 1/ Ns for all j. We consider two proposal

distributions. The first is a simple one which just uses the transition model to

predict the new location: Pr(Lt+1lb~j), at+1) . In this case, the incremental weight

is U~~l <X P(zt+1IL~~l,b~j)). The optimal proposal distribution (the one which

minimizes the variance of the importance weights) takes the most recent evidence

into account, and can be shown to have the form Pr(Lt+1lb~j), at+l, Zt+l) with

incremental weight Ut+1 <X P(Zt+1lb~j)) . Computing this requires marginalizing out

Mt+l and Lt+l' which can be done in O(NL) time (details omitted).

In Figure 4, we show the results of applying the above algorithm to the same problem

as in Section 3; it can be seen that it approximates the exact solution- very closely,

using only 50 particles. The results shown are for a particular random number seed;

other seeds produce qualitatively very similar results, indicating that 50 particles

is in fact sufficient in this case. Obviously, as we increase the number of particles,

the error and variance decrease, but the running time increases (linearly).

The question of how many particles to use is a difficult one: it depends both on

the noise parameters and the structure of the environment (if every cell has a

unique label, localization is easy). Since we are sampling trajectories, the number

of hypotheses, and hence the number of particles needed, grows exponentially with

time. In the above example, the robot was able to localize itself quite accurately

when it reached the end of the corridor, where most hypotheses "died off". In

general, the number of particles will depend on the length of the longest cycle in

the environment, so we will need to use active learning to ensure tractability.

In the dynamic two-dimensional grid world of Figure l(c), we chose actions so as

to maximize expected discounted reward (using policy iteration), where the reward

for visiting cell i is

where H(·) is the normalized entropy. Hence, if the robot is "lost", so H(Lt) ~ 1,

the robot will try to visit a cell which it is certain about (see [6] for a better

approach); otherwise, it will try to explore uncertain cells. After learning the map,

the robot spends its time visiting each of the doors, to keep its knowledge of their

state (open or closed) up-to-date.

We now briefly consider some alternative approximate inference algorithms. Exam

ining the graphical structure of our model (see Figure l(a)) , we see that it is identical

Bayesian Map Learning in Dynamic Environments 1021

to a Factorial HMM [7] (ignoring the inputs). Unfortunately, we cannot use their

variational approximation, because they assume a conditional Gaussian observa

tion model, whereas ours is almost deterministic. Another popular approximate

inference algorithm for dynamic Bayes nets (DBNs) is the "BK algorithm" [2, 1].
This entails projecting the joint posterior at time t onto a product-of-marginals

representation

P(Lt, Mt(1) , . . . , Mt(NdIYl:t) = P(Lt IYl :t) II P(Mt(i)IYl :t)
i

and using this as a factored prior for Bayesian updating at time t + 1. Given a

factored prior, we can compute a factored posterior in O(NL) time by conditioning

on each L t+1, and then averaging. We found that the BK method does very poorly

on this problem (see Figure 4), because it ignores correlation between the cells. Of

course, it is possible to use pairwise or higher order marginals for tightly coupled

sets of variables. Unfortunately, the running time is exponential in the size of the

largest marginal , and in our case, all the Mt(i) variables are coupled.

Acknowledgments

I would like to thank Nando de Freitas for helping me get particle filtering to work,
Sebastian Thrun for an interesting discussion at the conference, and Stuart Russell for
encouraging me to compare to EM. This work was supported by grant number ONR
N00014-97-1-0941.

References

[1) X. Boyen and D. Koller. Approximate learning of dynamic models. In NIPS, 1998.

[2) X. Boyen and D. Koller . Tractable inference for complex stochastic processes. In
UAI, 1998.

[3) R. Chen and S. Liu. Mixture Kalman filters . Submitted, 1999.

[4) A. Doucet, S. Godsill, and C. Andrieu. On sequential Monte Carlo sampling methods
for Bayesian filtering. Statistics and Computing, 1999.

[5) D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte carlo localization: Efficient
position estimation for mobile robots. In AAAI, 1999.

[6) D. Fox, W . Burgard, and S. Thrun. Active Markov localization for mobile robots .
Robotics and Autonomous Systems, 1998.

[7] Z. Ghahramani and M. Jordan. Factorial Hidden Markov Models. Machine Learning,
29:245- 273, 1997.

[8) S. Koenig and R. Simmons. Unsupervised learning of probabilistic models for robot
navigation. In ICRA, 1996.

[9] D. Kortenkamp, R. Bonasso, and R. Murphy, editors. Artificial Intelligence and
Mobile Robots: case studies of successful robot systems. MIT Press, 1998.

[10] J . Liu and R. Chen. Sequential monte carlo methods for dynamic systems. JASA ,
93:1032-1044, 1998.

[11) H. Shatkay and L. P. Kaelbling. Learning topological maps with weak local odometric
information. In IlCAI, 1997.

[12) S. Thrun, W . Burgard, and D. Fox. A probabilistic approach to concurrent mapping
and localization for mobile robots. Machine Learning, 31:29- 53, 1998.

