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Abstract

We composed an R-based script for Image-based Bayesian random-effect meta-analysis of

previous fMRI studies. It meta-analyzes second-level test results of the studies and

calculates Bayes Factors indicating whether the effect in each voxel is significantly different

from zero. We compared results from Bayesian and classical meta-analyses by examining

the overlap between the result from each method and that created by NeuroSynth as the

target. As an example, we analyzed previous fMRI studies focusing on working memory

extracted from NeuroSynth. The result from our Bayesian method showed a greater

overlap than the classical method. In addition, Bayes Factors proved a better way to

examine whether the evidence supported hypotheses than p-values. Given these, Bayesian

meta-analysis provides neuroscientists with a better meta-analysis method for fMRI studies

given the improved overlap with the NeuroSynth result and the practical and

epistemological value of Bayes Factors that can directly test presence of an effect.

Keywords: fMRI, Meta-analysis, p-value, Bayesian inference, Bayes Factors, Bayesian

random-effect meta-analysis
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Bayesian Meta-analysis of fMRI Image Data

Introduction

Meta-analysis has been regarded as a feasible way to address limitations in functional

neuroimaging studies, particularly those associated with weak statistical power, which has

been a source of serious concerns in cognitive neuroscience (Lieberman & Cunningham,

2009). Neuroscientists, psychologists, and statisticians have collaborated to develop

statistical methods for meta-analysis of fMRI studies. Many of them, such as the ALE

(Activation Likelihood Estimation), use coordinate-based meta-analysis (CBMA) that

estimates the locations and sizes of activation clusters from coordinates of activation foci

reported in published articles (Salimi-Khorshidi, Smith, Keltner, Wager, & Nichols, 2009).

Although CBMA can be conveniently performed by end-users because it only requires

coordinates information reported in articles, it comes with several notable limitations

(Salimi-Khorshidi et al., 2009). Particularly, because CBMA estimates activation clusters

from coordinates reported in published articles, instead of real image data, loss of

important information, such as the actual formation and shape of activation clusters, could

be a significant issue. In addition, CBMA is known to be sensitive to reported coordinates

information, choice of thresholding scheme, and the type of reporting method employed in

each individual study, which limits its reliability and validity.

Image-based meta-analysis (IBMA) has also been recommended by neuroimaging

researchers (Salimi-Khorshidi et al., 2009). IBMA is similar to higher-level analysis of

statistics image files produced by fMRI studies; it meta-analyzes the reported statistics

value in each voxel in previous studies, instead of finding estimated activation clusters as

CBMA does. In fact, a previous study reported that IBMA showed a better performance

compared to CBMA (Salimi-Khorshidi et al., 2009). Although the availability of shared

fMRI images has been an issue for IMBA, recent efforts to establish platforms for image

and data sharing, such as Open Science Framework (https://osf.io), NeuroVault

(https://neurovault.org), OpenfMRI (https://openfmri.org), may improve feasibility of
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IMBA among researchers.

Although the aforementioned meta-analytic approaches have been widely utilized in

neuroscience, some statistical issues related to interpreting results should be considered. To

date, the majority of meta-analysis methods, including both CBMA and IBMA, have relied

on classical or frequentist inference procedures, which focus on thresholding based on

p-values, while interpreting results. Unfortunately, over-reliance on such classical

procedures would lead us to serious statistical issues (Wagenmakers, 2007). First, p-values

themselves do not inform us anything about whether the data supports our hypothesis

(e.g., the presence of significant effect in a certain voxel in a certain task condition). In

fact, ’a p-value, the probability that one will observe values of the test statistic that are as

extreme or more extreme than is actually observed does not directly quantify the likelihood

that H0 or H1 is correct (p. 3) (Han & Park, 2018).’ Second, because statistical testing in

neuroimaging studies tends to involve comparisons in more than several hundred thousand

voxels, inflated false-positive rates can also be a serious concern (Lieberman &

Cunningham, 2009). In fact, previous research has indicated that careless utilization of

widely-used analytic tools may cause false positive rates to be higher than the nominal p

<.05 (Eklund, Nichols, & Knutsson, 2016), resulting in erroneous reports with Type I

errors.

Here we propose that Bayesian hypothesis testing can address the aforementioned

issues (Han & Park, 2018). Before discussing the associated benefits, a brief introduction

about the ’Bayesian’ way of testing hypotheses is in order. Instead of computing a p-value,

Bayesians compute what is called the ’Bayes Factor (BF)’ (Kass & Raftery, 1995). A BF is

defined as the ratio of two marginal probabilities, say P (D|H0)/P (D|H1), which is the

ratio of probabilities of observing the data at hand under the null and the alternative.

Based on whether the BF exceeds a pre-specified threshold, say 3, one accepts the null or

the alternative (Rouder, Speckman, Sun, Morey, & Iverson, 2009).

Hypothesis testing via BFs has several advantages when compared to that using
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p-values; here we discuss three of them which we deem are most relevant. First, BFs are

epistemologically preferable to p-values. Their interpretation is more straightforward than

that of p-values because BFs deal with the probability of observing the dataset at hand,

not that of observing a dataset as extreme or more extreme than the observed one. This

feature of p-values has consistently led researchers to mistakenly believe that they were the

probability that the null hypothesis is true (Gigerenzer, 2004). Bayesian hypothesis testing

directly deals with such a type of probability.

Second, using a BF allows one to actually accept the null hypothesis. This contrasts

the Bayesian approach to the classical one in a stark way. A strict reading of the classical

statistical principles tells us that one cannot literally accept the null; one can only ’fail to

reject’ the null. Although it could be argued that this assertion is false because the

decision-theoretic approach, or Neyman-Pearson school of frequentism, allows one to accept

the null, it requires one to specify the utility, or loss, function to be incorporated in the

decision process, which might be hard to do due to the uncertainty of relative costs in

practice. Also, because the decision-theoretic approach is, lamentably, usually intermingled

with the Fisherian approach that does not allow one to accept the null, and it is rarely the

case that the pure decision theoretic approach is used in practice, we do not consider such

a possibility seriously. Despite the aforementioned limitations of classical inference, it is

very common for researchers to conclude that there is ’no difference’ between experimental

groups based on a p > .05 (Gigerenzer, 2004). This cannot be justified in the classical

framework and is a questionable practice. When it comes to neuroscience, this means that

one cannot conclude that a voxel’s activation is strictly equal to zero when using p-values.

In contrast, because one directly compares the probabilities of the data under the null and

the alternative, one can ’accept’ the null when the BF, P (D|H0)/P (D|H1), is sufficiently

large. This is an attractive feature of BFs when the null hypothesis is theoretically

meaningful, as in the case of fMRI studies where the null says that a voxel is not activated.

By using BFs, one can legitimately accept the null, which cannot be done in the frequentist
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framework.

Third, Bayesian inference has the potential to addresses concerns about multiple

comparison and inflated false positive rates. In our approach, specifically, this is achieved

by setting an appropriate threshold for each Bayes factor to be considered as sufficient to

accept the alternative hypothesis. We intentionally set the threshold high to address the

problem of inflated Type I error rate, which is similar in spirit to the case of Bonferroni

correction. This is, in essence, the same approach advocated by traditional Bayesians

(Scott & Berger, 2006; Westfall, Johnson, & Utts, 1997). They have proposed to calibrate

the prior probability of the alternative hypothesis for each test such that the overall

probability that the null is true in all the tests is controlled at some level, specified by the

analyst. That is, they adjust the priors to counter the multiplicity problem. However,

adjusting the prior is equivalent to adjusting the BF because the posterior odds, which is

ultimately used for deciding whether or not to reject the null, is the product of the prior

odds and the BF; one can adjust whichever to have the same effect on the resulting

posterior odds. Furthermore, instead of adjusting the BF for a fixed threshold, we adjust

the threshold for the same BF; contrary to the case of priors, which can be adjusted at the

researchers’ will, the BF cannot be arbitrarily changed. By changing the threshold for

rejecting the null, however, we have the same effect on the result of testing.

Our proposed strategy has been shown to work successfully in practice. For instance,

a previous study that compared results from Bayesian versus frequentist second-level fMRI

analyses using SPM 12 reported that the former with BF thresholds based on statistical

guidelines exhibited better sensitivity and selectivity than the latter that had used

frequentist multiple comparison methods, such as voxelwise and clusterwise familywise

error correction (Han & Park, 2018). This example shows that Bayesian inference can

remedy the problems of inflated false positive rates and multiple comparison in the field of

neuroscience.

A possible objection to the use of BF as an alternative to p-values is that it still
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requires one to set an arbitrary threshold, which seems to be a bad idea. An answer to this

criticism is that BF are still preferable to p-values in terms of interpretability, as pointed

out earlier. At least, by replacing p-values with BF, one can quantify the relative evidence

in favor of the null and the alternative. In addition, it has been reported that BF are less

in favor of the alternative, thereby generating less type I errors (Wetzels et al., 2011),

which is also reflected in the better sensitivity and selectivity (Han & Park, 2018).

In addition, it could be argued that posterior probabilities should be used instead of

BFs because posteriors are the key quantities in Bayesian inferences. Although we basically

agree with the general principle, we recommend using BFs for the following reasons. First,

posterior probabilites about the model parameters do not allow one to directly compare the

null and the alternative and to quantify the relative evidence provided by the data.

Second, BFs do not depend on the model prior that is often difficult to specify. Relatedly,

BFs are directly linked to posterior probabilities in case of uniform priors. The use of an

equal prior as a reflection of the attitude towards scientific objectivity has been

championed (Berger et al., 2006; Rouder et al., 2009). In that case, a Bayes factor is equal

to the ratio of marginal posterior probabilities of the hypotheses, or the posterior odds, due

to the following equality:

P (H0|D)

P (H1|D)
=

P (D|H0)

P (D|H1)
× P (H0)

P (H1)

where D denotes the data. Thus, computing a BF is equivalent to obtaining the posterior

odds.

In fact, there have been previous studies that applied Bayesian meta-analysis of fMRI

data (Kang, Johnson, Nichols, & Wager, 2011; Samartsidis et al., 2018; Yue, Lindquist, &

Loh, 2012). They might be able to address the aforementioned issues associated with

classical inference; moreover, given that the aforementioned previous studies performed

Bayesian meta-analysis, so they can be benefited by the aforementioned statistical

advantages of Bayesian inference. However, because they performed CBMA, not IBMA, so

they could also suffer the limitations of CBMA. Thus, it would be necessary to explore a
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way to implement Bayesian statistics-applied IBMA to address the possible limitations of

meta-analyses that have been conducted in the previous studies.

In the present study, we wrote an R script to perform image-based Bayesian

meta-analysis of fMRI studies. In addition, as a preliminary exploration, we evaluated its

performance by examining the outcome from our Bayesian meta-analysis and that from the

large-scale meta-analysis of web-based database, NeuroSynth

(http://www.neurosynth.org). We also compared the performance of Bayesian

meta-analysis with that of classical meta-analysis. In this processes, we meta-analyzed

fMRI statistics image files shared by a web-based image repository. In particular, we

focused on the topic of ’working memory’ because of the availability of shared image files.

Methods

Materials

We collected images containing results from group-level analysis in previous fMRI

studies via NeuroVault. We selected this image repository because NeuroVault aims to

collect statistics images resultant from fMRI analysis instead of raw images. We used a

keyword, ’working memory,’ to search for image collections including analysis results

focusing on working memory. As a result, twenty collections were found (as of May 23,

2018). Among them, we downloaded six image files in NIfTI format from five collections.

All of these images were demonstrating results from the comparisons between working

memory versus non-working memory task condisions. Our image selection process and

rationale are presented in Figure S1, and the list of meta-analyzed images is reported in

Table S1.

All downloaded images were transformed into MNI152 space (91x109x91). Because

all image files reported either T - or Z -statistic, we converted all values into standardized

effect sizes in the format of Fisher’s z with reported sample sizes. We calculated an effect

size indicator, Pearson’s r from a given T - or Z -statistic value. Once T - or Z -statistic was
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converted into Pearson’s r, r was standardized by using a formula as follows:

z :=
1

2
ln(

1 + r

1 − r
) = arctanh(r)

Then, the standard error (se) of each study was calculated as follows:

se =
1√

N − 3

This se value enables us to include an important study characteristic, the sample size of a

specific study, in the meta-analysis model. If the sample size of a specific study is small,

the 95% confidence interval of the effect of this study becomes wide. On the other hand,

the 95% confidence interval of the effect of a large study becomes narrow in a

meta-analysis model. As a result, in the meta-analysis model, the larger study yields an

estimate with the higher precision, while the smaller study yields an estimate with the

lower precision. The precision of each individual study determines its impact on the final

meta-analysis result (Borenstein, Hedges, Higgins, & Rothstein, 2010).

We used processed image files containing the Fisher’s z value of each voxel for further

Bayesian and classical meta-analysis.

fMRI meta-analysis

Bayesian meta-analysis. Once all six images were converted into Fisher’s z

images, they were meta-analyzed with our customized R scripts (related source codes and

data files are shared via GitHub, https://github.com/xxelloss/BFMeta). Readers may

analyze their own dataset with a script shared in the repository. If readers intend to run

the script, there are a couple of steps that they have to complete before running the script.

First, NIfTI images containing z or t-statistics produced by each individual study should

be prepared; the coordinates system used in the NIfTI files should be MNI coordinates (91

x 109 x 91), or the sections in the script dealing with the coordinates system should be

modified. Second, the readers should create (or modify) list.csv file that contains the

filename, sample size, and type of statistics of each study.
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For Bayesian meta-analysis, we used R package named metaBMA (Gronau et al.,

2017; Heck, Gronau, & Wagenmakers, 2017). A vector containing converted effect size

values in previous studies in a specific voxel was created. We entered this vector and a list

of the standard error of each study to a meta-analysis model. In this process, we used

meta_random function that implemented random-effect meta-analysis to address potential

between-study heterogeneity (Gronau et al., 2017). Because Bayesian inference requires

prior distributions as inputs, we used these priors for main effect, r, and standard deviation

of study effects, τ , that were suggested by Gronau et al.(Gronau et al., 2017):

r ∼ Cauchy(
1√
2

)

τ ∼ β(1, 2)

Then, the prior probability distribution of effect was updated with data through iterations.

In these processes, the Markov chain Monte Carlo (MCMC) method was employed. After

4,000 burnin iterations, 10,000 samples were used for iterative processes in the MCMC

simulation. Once the iterative processes were completed, three output values, a BF, and

estimated mean and median effect size, for each voxel were calculated. We created three

NIfTI image files containing the aforementioned three values. Mean and median effect size

values were converted into Pearson’s r for interpretation as follows:

r =
exp(2z) − 1

exp(2z) + 1
= tanh(z)

For further evaluations, we thresholded resultant images based on BF. Following Kass

and Raftery’s guidelines (Kass & Raftery, 1995), we used 2logBF values. Three

thresholded mask images were created using three different BF thresholds, 2logBF = 2,

2logBF = 6, and 2logBF = 10, represent the presence of positive, strong, and very strong

evidence supporting effects, respectively.

Because our sample size (n = 6) was small, we examine the robustness of the Cauchy

prior. This robustness check was performed to test whether the result was enormously
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sensitive to the change in the prior distribution or the reported result was merely resulted

from peculiarity. Following the prior robustness check method implemented in JASP

(Quintana & Williams, 2018), we plotted the resultant BF value in a specific voxel while

changing the parameter of the Cauchy distribution from .01 to 1.5. In addition, to examine

whether the type of the prior distribution significantly influenced the posterior distribution,

we performed the same robustness check with a normal distribution. We also plotted the

calculated BF values while changing the standard deviation parameter of the normal

distribution from .01 to 5.0 (Mean = .00).

Classical meta-analysis. To compare performance of Bayesian and classical

inference in meta-analysis, we performed classical meta-analysis with the same images with

our customized R scripts (source codes are available via our GitHub repository). The same

effect size images and standard error values used in Bayesian meta-analysis were reused.

All effect size values were transformed into Fisher’s z. Instead of meta_random function in

metaBMA package, we performed classical random-effect meta-analysis with rma function

implemented in metafor package (Viechtbauer, 2010). In this process the Maximum

Likelihood approach was employed for estimation. As outputs, images containing the

z-score and estimated effect size in Pearson’s r of each voxel were produced.

For evaluations, we thresholded z-score images based on p-values. We created two

thresholded mask images using different voxelwise thresholds. Following Salimi-Khorshidi

et al. (2009), we decided to use p <.05 after correcting for the false positive discovery rate

(FDR) as a primary threshold. Given that we are mainly interested in the way how end

users perform meta-analysis, the aforementioned de facto primary threshold for classical

inference in IBMA was employed in the present study. For exploratory purposes, we

applied more stringent thresholds, p <.01, p <.005, and p <.001 after a FDR correction.

The FDR correction was performed with xjview (Cui, Li, & Song, 2015).
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Performance evaluation

We assessed the performance of each meta-analysis method by utilizing the result

from large-scale synthesis as a standard. We used a result from NeuroSynth that

meta-analyzes 3,489 published neuroimaging studies (Yarkoni, Poldrack, Nichols, Van

Essen, & Wager, 2011). We particularly focused on results from reverse inference because

reverse inference identifies ’the probability that a term (task) would occur in an article

given the presence of activation in a particular brain region (p. 667 (Yarkoni et al., 2011)),’

P (term|activation). On the other hand, the traditional inference method, forward

inference quantifies ’the probability that there would be activation in specific brain regions

given the presence of a particular term (task), P (activation|term) (p. 667 (Yarkoni et al.,

2011)).’ Because we were mainly interested in the specific neural activity pattern of the

task condition of our interest, working memory, we decided to use reverse inference as the

primary source of evaluation. However, for exploratory purposes, we also compared results

from meta-analyses and the result from NeuroSynth forward inference as well.

We extracted a NIfTI image containing the result of reverse inference by using a

term, ’working memory,’ in NeuroSynth webpage

(http://neurosynth.org/analyses/terms/working%20memory/). The automatically created

synthesis image was downloaded for further evaluations. Then, we calculated an overlap

index that indicates whether results from different meta-analysis methods well overlapped

with the synthesis image by using a formula as follows:

Iovl =
2 VovlVovl

VmetaVsynth

Vovl

Vmeta
+ Vovl

Vsynth

where Vovl is the number of voxels showing significant activity in both images, and Vmeta

and Vsynth are the number of voxels showing significant activity in the result of our

meta-analysis and that from NeuroSynth, respectively (Han & Glenn, 2018). This overlap

index was employed in the present study because it does take into account both false

positive voxels, voxels reported to be active in the meta-analysis result image but are not
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in fact active in the standard image, and false negative voxels, voxels reported to be

inactive in the meta-analysis image but are in fact active in the standard image. In our

study, we assumed that the higher overlap index indicates the higher performance of a

meta-analysis method.

In addition to the overlap index, we also used the ratio of the number of voxels

showing results inconsistent with the NeuroSynth standard to that of voxels showing

results consistent with the NeuroSynth standard. This ratio can be calculated as follows:

Rerrortocorrect =
Vfalsealarm + Vmiss

Vovl

Vfalse alarm is the number of voxels that were found to be significantly activated from our

meta-analysis, but were not actually significantly activated in a NeuroSynth image. On the

other hand, Vmiss represents the number of voxels that showed significant activity in our

meta-analysis, but were not in fact significantly active in a NeuroSynth image. We use this

ratio to examine to which extent a specific meta-analysis method produced results

inconsistent with the NeuroSynth result. We assumed that the higher Rerror to correct

indicates the worse performance of a specific meta-analysis method.

In addition to the reverse and forward inference NeuroSynth results, we used one

more meta-analysis image from a previous study as a standard for comparisons (Rottschy

et al., 2012). The previous study meta-analyzed 189 fMRI experiments focusing on working

memory tasks with ALE, a CBMA algorithm, to examine the common neural correlates of

working memory processing. We downloaded the result of the meta-analysis from

NeuroVault (https://neurovault.org/images/12186/) in the format of NIfTI. The previous

study used a cluster-level corrected threshold of p < .05 with a cluster-forming threshold at

voxel-level p < .001.

Performance evaluation with simulation data

We conducted performance evaluation with an additional dataset that contains both

original images (n = 6) and simulation images to increase the overall sample size; in
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addition, we also intended to examine whether Bayesian analysis is more robust when

image files that contain a noise are analyzed. To produce additional image files, we added

the random noise to each original image file. We added the random noise (SD = 5% of the

mean signal strength in each original image) while creating new image files Han and Park

(2018). As a result, for this additional performance evaluation, we used a total of twelve

image files, six original and six newly created image files from simulation that contain the

random noise.

These twelve files were meta-analyzed with Bayesian and classical IBMA methods by

using our customized R scripts as explained in prior sections. The same meta-analysis

procedures, and BF (2logBF = 2, 6, and 10) and p-value thresholds (p < .05, .01, .005, and

.001 after FDR corrected) were applied. For performance evaluation, we calculated IOvl and

Rerror to correct in all cases.

Results

Results from Bayesian meta-analysis are presented in Figures 1a-c. First, as shown in

Figure 1a, applying the more stringent 2logBF threshold resulted in the less survived

voxels after thresholding. Voxels demonstrating significant activation in NeuroSynth are

also presented in the same figure for reference. Mean and median effect size maps are

presented in Figures 1b and c, respectively. Figure 1d demonstrates voxels survived p-value

thresholding from classical meta-analysis. Similar to Bayesian meta-analysis, applying the

application of the more stringent threshold (.01 vs. .05) resulted in the less survived voxels.

We evaluated the performance of each meta-analysis method by comparing

meta-analysis outcomes and results from NeuroSynth reverse inference, NeuroSynth

forward inference, and previous CBMA ALE meta-analysis. NeuroSynth maps created by

using a keyword, ’working memory,’ at NeuroSynth were compared with thresholded

images from our meta-analyses. In addition, the same comparison was performed with the

previous CBMA ALE meta-analysis result. We quantified the degree of overlap in terms of
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an overlap index, and results are reported in Figure 2a. In addition, Rerror to correct values

are presented in Figure 2b. As shown in the figures, Bayesian meta-analysis in general

showed greater overlap indices and lower Rerror to correct values compared with classical

meta-analysis. The overlap index was highest when 2logBF = 6 that indicates the presence

of strong evidence was used for thresholding. One exception was the comparison with

NeuroSynth forward inference. Once the more stringent thresholds (e.g., p < .01, .005, or

.001) were applied, classical inference reported slightly better outcomes compared with

Bayesian inference even when 2logBF = 6 was used for the Bayesian inference threshold.

The prior robustness check was performed with a voxel value at (0, -6, 0). We

selected this specific voxel because it was closest voxel to the center, (0, 0, 0), with the

calculated BF greater than 2logBF = 6 threshold. The original calculated 2logBF value at

this voxel was 7.06. Figure 3 shows results from the prior robustness checks. When we

changed the parameter of the Cauchy distribution prior, in all cases, the calculated BF was

greater than 2logBF = 2 threshold representing the presence of positive evidence

supporting a significant effect; in the most cases, the BF exceeded 2logBF = 6 threshold

suggesting the presence of strong evidence (see Figure 3a). Similar results were reported

when we tested the normal distribution prior. Except for extreme cases, when the

distribution was extremely sharp (SD < .10), the calculated BF was greater than either

2logBF = 2 or 2logBF = 6 threshold (see Figure 3b).

Finally, results from the performance analysis of the additional dataset are presented

in Figures S1 and S2. Similar to the results from meta-analyses of six images, Bayesian

IBMA demonstrated better performance compared with classical IBMA when twelve

images were meta-analyzed. Interestingly, when 2logBF = 6 or 2logBF = 10 threshold was

applied, Bayesian IBMA outperformed classical IBMA regardless of which p-value

threshold was applied and which meta-analysis image was used as a standard for

comparison. Even in the case of the comparison with the forward inference image,

Bayesian IBMA reported better performance indicators compared with classical IBMA
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when 2logBF = 6 or 2logBF = 10 BF threshold was utilized.

Discussion

We developed an R program performing image-based Bayesian meta-analysis of fMRI

studies, and evaluated its performance by examining the overlap index using the output

from NeuroSynth, a tool for synthesis of large datasets from fMRI articles. We also

compared the result from Bayesian meta-analysis with that from classical meta-analysis.

The comparison demonstrated that Bayesian meta-analysis showed a higher overlap index

than the classical meta-analysis did, particularly when 2logBF = 6 was used for

thresholding. Given our assumption pertaining to the meaning of the overlap index, this

result implies that Bayesian meta-analysis performed better when compared to the classical

meta-analysis. This result is consistent with a previous neuroimaging study that examined

the performance of Bayesian second-level analysis. In the study, the best performance was

produced when 2logBF = 6 threshold indicating presence of strong evidence supporting

existence of significant effect was used (Han & Park, 2018). Of course, classical inference

reported slightly better outcomes when thresholds more stringent than p < .05 were

applied. However, as Salimi-Khorshidi et al. (2009) mentioned, p < .05 with FDR

correction has been regarded as a suggested threshold for end users in the case of IBMA

due to the statistical power issue, and the more stringent thresholds were employed in this

study to examine extreme cases for explorations. Hence, from the perspectives of end users,

Bayesian IBMA would perform better compared with classical IBMA in ordinary

circumstances. The improved performance of Bayesian meta-analysis might originate from

the nature of Bayesian inference that is robust against fluctuations in sample sizes and

variations in the data (Han & Park, 2018). Furthermore, although the small size of our

dataset, six images, may limit the credibility of analysis outcomes, our Bayesian

meta-analysis demonstrated that it could show a better performance compared with

classical inference within such a limited circumstance.
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Interestingly, when we analyzed an additional dataset with twelve images, which also

includes six images created by adding the random noise to the original six images, Bayesian

IMBA outperformed Classical IBMA even when the forward inference image was used for

the performance evaluation. Although Classical IBMA showed a slightly better

performance compared with Bayesian inference when extremely stringent thresholds were

applied (i.e., p < .01, .005, or .001 after FDR correction) and the forward inference

NeuroSynth image was used, we could not see such a result in the case of this additional

performance evaluation. The results from the additional performance evaluation may

suggest that first, Bayesian analysis is more robust against the possible noise existing in

images compared with classical analysis when the image quality is suboptimal as argued by

Han and Park (2018), and second, Bayesian IMBA can show better performance compared

with classical IMBA as a sample size increases.

In addition to the improved performance, we stress that employing Bayes hypothesis

testing has epistemological benefits as well. To recapitulate, a p-value is all about the null;

it does not tell us whether the alternative hypothesis is true given the observed data. As

discussed earlier, however, hypothesis testing via BF allow us to directly compare the null

and alternative hypotheses, and to accept one of them when the BF is sufficiently small or

large. In that process, the researcher has to make the alternative hypothesis explicit and

clear, which is another benefit of adopting the Bayesian hypothesis testing framework.

Furthermore, the possibility of accepting the null is not a feature which the classical

hypothesis testing framework can afford; it is an exclusive benefit of using BFs for

hypothesis testing. Considering the goal of neuroscientific research in the context of fMRI

studies where one has to determine if a voxel became active or not under some cognitive or

affective task, such a benefit must be taken seriously.

Several limitations remain to be addressed. One major issue is the limitation

associated with the sample size and data availability. Availability of shared fMRI image

files could be a significant issue hindering the application of image-based Bayesian
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meta-analysis. Although NeuroVault has been developed as a repository for image files

reporting results from statistical analyses, we could not download sufficient image files for

our meta-analysis from the database. Of course, although we could show that Bayesian

meta-analysis could work better than classical meta-analysis with the limitation of the

small sample size and the results were not significantly altered in our prior robustness

check, further analyses should be done with more datasets within more diverse functional

domains for better generalization. A study using full simulation data might be a possible

way to address this issue. Although we conducted a performance evaluation with an

additional dataset that included simulation data containing the random noise, we could not

use a dataset that solely consisted of simulation data in the present study. In fact, we were

mainly interested in how Bayesian meta-analysis would work from the perspective of end

users, who might attempt to analyze their own real data. In addition, we intended to

utilize results from previous meta-analyses based on larger datasets as standards for our

performance evaluation. Therefore, evaluating meta-analysis methods using fully

hypothetical simulation data could not be a viable option because it is practically

impossible to find previous meta-analyses using full simulation data whose property and

nature are identical to full simulation data that we would create and meta-analyze. Given

these reasons, we considered that utilizing full simulation data was out of the scope of the

present study. More considerations regarding the possible application of the simulation

method to evaluate the performances of meta-analysis methods may need to be done in

future studies.

In addition to the aforementioned major limitation, there are minor limitations that

should be considered as well. First, the development of a user-friendly tool for Bayesian

meta-analysis was out of the scope of the present study and yet to be achieved. End-users

may need to modify the R code shared via GitHub to perform their own meta-analysis.

Second, because it is well-known that choice of prior could significantly affect the result in

Bayesian analysis (Sinharay & Stern, 2002), it is necessary to carefully examine the impact
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of prior on the result of meta-analysis. Of course, our prior robustness check reported that

the BF outcomes were not sensitive to the change in the prior distribution; however, we

only examined Cauchy and normal distributions, so other distributions may need to be

tested in future research. Third, although one of the benefits of using Bayesian analysis is

that it is possible to set prior distributions based on findings from previous studies, we

could not do so in the present study. In fact, a previous study suggested that prior

distributions could be formed from results from meta-analysis of relevant previous studies

(Jones, Ades, Sutton, & Welton, 2018). However, we could not utilize the aforementioned

approach in our study because, first, in the case of fMRI analysis, it is required to set a

prior distribution for each individual voxel, and second, we intended to use results from

previous meta-analysis as standards for performance evaluation so it would be

inappropriate to use the same meta-analysis data to form prior distributions. Researchers

may need to consider how to implement such an approach in Bayesian fMRI analysis in

future studies.
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(a) (b)

(c) (d)

Figure 1 . Results from Bayesian and classical meta-analysis. (a) Thresholded mask image

from Bayesian meta-analysis. Red: voxels survived 2logBF = 10. Yellow: voxels survived

2logBF = 6. Green: voxels survived 2logBF = 2. Blue to black: NeuroSynth result. (b)

Mean effect size image from Bayesian meta-analysis. (c) Median effect size image from

Bayesian meta-analysis. (d) Thresholded mask image from classical meta-analysis. Red to

orange: voxels survived FDR .01. Yellow to orange: voxels survived FDR .05. Blue to

black: NeuroSynth result. / Online-only color for all figures
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(a) Overlap index comparison between Bayesian
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comparison between Bayesian and classical

meta-analysis with different thresholds.

Figure 2 . Performance evaluation results
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Figure 3 . Prior robustness check results
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Figure S1. Overlap index comparison between Bayesian and classical meta-analysis with different threshold when noise-added simulation data was 

added.  
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Figure S2. Ratio of error voxels to correct voxels comparison between Bayesian and classical meta-analysis with different threshold when noise-

added simulation data was added.  
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