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ABSTRACT OF THE DISSERTATION

Bayesian Methods for

Non-Standard Missing Data Problems

by Jerry Q. Cheng

Dissertation Director: David Madigan and Minge Xie

Missing data presents challenges to statistical analysis in many applications such

as clinical trials, cluster detection, etc. This thesis analyzes and develops method-

ologies in some non-standard missing data problems.

We first consider non-ignorable drop-out in longitudinal clinical trials. Com-

mon simple approaches such as complete case analysis or last observation carried

forward can lead to biased estimates and underestimation of uncertainty. We

pursue a model-based approach in the context of Bayesian framework to provide

more useful inferences.

Second, non-compliance is another way to deviate from pre-designed protocols.

Traditional methods circumvent the issue with simplifying assumptions such as

intention to treat. Consequently they might produce misleading results. We adopt

a counterfactual approach, known as the Rubin Causal Model, essentially reducing

the analysis to a missing data problem. We address the issue in particular when

drop-out is also involved.
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In relation to the first two research topics to provide better and more accurate

assessment of a treatment or procedure, we develop a Bayesian sequential meta-

analysis framework to aggregate results from all available studies. We conduct a

case study and build a risk profile of a treatment to provide early alert of emerging

problems.

Last, the question whether a spatial pattern is randomly distributed has been

of interest in many applications. We extend and generalize a latent model ap-

proach to overlapping cluster detection. We employ this methodology to design

an urban mobile sensor network for the surveillance of nuclear materials. With

simulation studies, we demonstrate that the method is efficient and powerful in

detection of overlapping clusters.
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Chapter 1

Introduction

Missing data presents challenges to statistical analysis in many applications such

as clinical trials, cluster detection, etc. This thesis analyzes and develops method-

ologies in some non-standard missing data problems. We present the main ideas

of these methods below.

Non-Ignorable Drop-out

In longitudinal trials, especially those with serious adverse events, subjects can

often drop out of the study and we are no longer able to collect their measurement

data. In handling missing data due to drop-outs, various methods exist in the lit-

erature, for example, complete case analysis, observed data method, imputation,

last observation carried forward, model-based method, etc. Simple approaches

tend to yield biased estimates. Comparatively, the model-based method is very

complex but it can explore various realistic assumptions about the drop-out pro-

cess.

In this thesis, we apply the model-based method in the context of Bayesian

framework in which missing data are treated the same way as parameters. We

model response and drop-out status jointly. As a case study, we pick a large

three-year Vioxx clinical trial. We divide the three year trial span into twelve

90-day periods and build longitudinal models for the endpoints of systolic blood

pressure (SBP) and confirmed thrombotic cardiovascular (CVT) adverse event.
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We find that the effect of the drug on SBP shows marked sensitivity to assump-

tions about the missing data mechanism, whereas the effect on CVT events shows

less sensitivity.

Non-Compliance

Besides drop-out, non-compliance is another way to deviate from pre-designed

protocols where a patient stops taking his assigned treatment or takes an incorrect

dose. Traditional analysis methods such as intention-to-treat compare responses

solely on the basis of treatment assignment, but not on the treatment that a

subject actually receives. Consequently, these methods can produce misleading

results when substantial non-compliance exists.

In dealing with this problem, we adopt a counterfactual approach, known as

the Rubin Causal Model, essentially reducing the analysis to a missing data prob-

lem. The treatment effect is estimated as a population level causal effect for the

compliers. We address the problem in particular when drop-out is also involved.

We build various models on the counterfactual variables of response, compliance

and missing status for each subject. These models allow explorations of the data

and different drop-out mechanisms. Since they might yield different results, we

use Bayes factors for model selection and calculate the weighted average of the

causal effect from the model averaging perspective. All these steps constitute a

general and flexible framework to deal with the important issue of non-compliance

combined with drop-out in clinical trials.

As with the drop-out study, we use the same Vioxx trial to conduct the analysis

using the same endpoints. We find that for both SBP and CVT, the causal effects

of Vioxx are positive. This indicates that the drug increased patients’ blood

pressure and also the likelihood to incur a CVT adverse event.
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Bayesian Sequential Meta-Analysis

Complex drugs usually involve multiple underlying mechanisms and can produce

adverse effects on various timelines. As a result, major drug development pro-

cesses typically include many different clinical trials focused on different doses,

routes of administration, indications, endpoints, etc. In relation to the first two

research topics to provide better and more accurate assessment of a new treat-

ment, we develop a Bayesian sequential meta-analysis method to aggregate results

from all available studies.

A flexible framework for analysis of randomized trials was proposed by Spiegel-

halter at el. (1994). They used a Bayesian approach in which a family of priors

was adopted instead of a single prior. In addition, a simple Gaussian model to

summarize hazard ratio of interest was used in each individual trial. Our research

extends this study to the meta-analysis context and generalizes it in two aspects.

First, we model directly event counts with Poisson distributions in both treat-

ment arms thereby reducing model assumptions. Second, we build hierarchical

models to explore different data structures with varying complexities. Since stud-

ies are often put into groups with similar design and target, we introduce a block

configuration in these models.

For a case study, we pick the set of placebo-controlled trials for Vioxx. We

model the relative risk of the CVT adverse events using fixed effect, random

effect, block effect and random block effect model under the family of priors over

an eight year period. The result indicates that four years before the drug was

withdrawn from the market, the probability of the relative risk exceeding 1.1 -

a safety threshold, is above 50%. This demonstrates that Bayesian sequential

meta-analysis can monitor risk profiles over the life time of a drug and provide

earlier alert for emerging problems.
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A Latent Model Approach for Cluster Detection

The question whether a spatial pattern is randomly distributed over space after

adjusting for a known inhomogeneity has been of interest in many applications.

A traditional statistical method to detect a cluster of events is via scan statistics

which has been successful in detecting a single cluster and multiple clusters of

fixed sizes. However, problems arise for detecting clusters of varying sizes.

To address this problem, Sun (2008) developed a latent model approach

for multiple spatial cluster detection. With probability distributions to model

the clusters and mimic the sample generation process, the approach used an

EM/MCMC algorithm and likelihood inference to estimate model parameters,

detect significant clusters, and identify their locations and sizes. In the study, all

the clusters are assumed to be non-overlapping. This assumption simplifies the

theoretical formation as well as its implementation. We extend and generalize

the latent model approach to overlapping case. Simulation studies suggest that

our method can achieve better detection powers than the original algorithm when

the true clusters overlap.

In an application with potentially significant impact, we employ this method-

ology to design an urban mobile sensor network for the surveillance of nuclear

materials. We design the network with a certain number of vehicles (e.g., taxi-

cabs in New York City), on which nuclear sensors and Global Position System

(GPS) tracking devices are installed. Real time readings of the sensors are to

be processed at a central command center, where the latent modeling algorithm

is used to analyze data and detect significant clusters which might indicate the

locations of nuclear sources.
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Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 discusses our method to

handle non-ignorable drop-out in longitudinal clinical trials. Chapter 3 deals with

the issue of non-compliance using causal inference approach. Chapter 4 proposes

a general and flexible framework to conduct Bayesian sequential meta-analysis.

Chapter 5 extends and generalizes the latent model approach to overlapping clus-

ter detection. Finally Chapter 6 concludes the thesis and provides future research

directions.
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Chapter 2

Non-Ignorable Drop-out in Longitudinal Clinical

Trials

2.1 Introduction

Longitudinal clinical trials follow up participants over time to collect treatment-

related measurements. Participants can deviate from the prescribed protocol in

a variety of ways, either by ceasing to be evaluated (drop-out) or by failing to

comply with their assigned treatments (non-compliance). We consider drop-out

in this chapter and defer the non-compliance problem in the next one.

Participants that drop out provide no subsequent measurements thereby cre-

ating a missing data problem. The literature describes a wide variety of methods

for handling missing data (Little and Rubin, 2002; Schafer, 1997). In many clin-

ical trial settings, the standard methodology used to analyze incomplete data is

based on such methods as last observation carried forward (LOCF), complete case

analysis (CC), or simple forms of imputation. There are underlying assumptions

for these methods. For example, the LOCF assumes that the missing data after

the patient’s withdrawal are the same as the last value observed for that pa-

tient. The CC methods discard all patients who did not complete their trials and

analyze the remaining data. Imputation method fill in the missing data values

using information from observed data. Therefore these simple approaches tend to

oversimplify problems with strong and often unrealistic assumptions. As a result,

they can lead to biased estimates and an underestimation of uncertainty.

Model-based approaches (Little, 1993; Carpenter et al., 2002; Little and An,
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2004) can present significant statistical and computational challenges, but can

also provide more useful inferences. The general approach that we adopt here

follows that of Carpenter et al. (2002).

The outline of the chapter is as follows. Section 2.2 describes Vioxx and

its clinical trials that motivate our work. Section 2.3 details the elements of

our approach to drop-out. Section 2.4 presents a simulation study to illustrate

the drop-out mechanism and its impact on the estimation of treatment effect.

Section 2.5 applies our approach to the Vioxx Data. Section 2.6 concludes the

chapter with discussions.

2.2 Data

Vioxx is a COX-2 selective, non-steroidal anti-inflammatory drug (NSAID). The

FDA approved Vioxx in May 1999 for the relief of the signs and symptoms of

osteoarthritis, the management of acute pain in adults, and for the treatment of

menstrual symptoms. The COX-2 class of drugs offered the hope of lower rates of

gastrointestinal adverse effects as compared with standard NSAIDs like naproxen

and ibuprofen. Instead, studies would eventually show that Vioxx causes an array

of cardiovascular thrombotic side effects such as myocardial infarction, stroke, and

unstable angina, leading to Merck’s September 2004 withdrawal of the Vioxx from

the market.

The APPROVe (Adenomatous Polyp Prevention on Vioxx) trial was the key

study that lead to the withdrawal of Vioxx. APPROVe was a multi-center, ran-

domized, placebo-controlled, double-blind study to determine the effect of 156

weeks (three years) of treatment with Vioxx (25mg daily) on the recurrence of

neoplastic polyps of the large bowel. The trial enrolled 2,600 patients with a

history of colorectal adenoma. We exclude 13 patients that inadvertently took

the wrong dose of Vioxx. Of the remaining 2,587 patients 728 dropped out of the
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study. Of these patients, 410 had been randomly assigned to Vioxx whereas 318

were assigned to placebo.

Upon enrollment, the trial gathered an array of demographic and medical

data from each patient. Patients then paid office visits periodically, though not

at rigidly fixed intervals. Those visits captured vital sign measurements, lab-

oratory testing results, as well as information on potential adverse events. In

what follows, and to highlight methodological nuances, we focus on two partic-

ular safety endpoints, systolic blood pressure (SBP) and confirmed thrombotic

cardiovascular (CVT) adverse events.

The possibility that drop-out could be causally related to either or both of our

safety endpoints seems well founded. Increased blood pressure might well lead a

subject to drop out of the trial, as could the prequelae of a serious thrombotic

event. If, as is now believed, Vioxx causes these events, the Vioxx arm of the trial

could be deprived of the very patients most likely to suffer these adverse events.

All published analyses of the APPROVe trial assume drop-out is unrelated to

safety endpoints of interest (“ignorable”) and hence could plausibly underestimate

the effects of interest.

2.3 Drop-out in Clinical Trials

2.3.1 Notations

We consider a randomized longitudinal clinical trial including N patients over J

time periods. For subject i at time period j, let yi,j denote primary response,

i = 1, . . . , N ,j = 1, . . . , J . In what follows, yi,j can be real valued - yi,j ∈ � (e.g.,

SBP), or binary - yi,j ∈ {0, 1} (e.g., CVT). Let Y denote the N × J matrix of

primary responses for all the subjects at all time periods. Let yi = Yi,1:J denote

row i of Y - responses at all time periods for ith subject.

We assume that there are C covariates such as age, sex, diabetes status,
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treatment type, etc. Let X denote the N × C covariate matrix for all subjects.

xi = Xi,1:C denotes the covariates for subject i.

Let M denote the N × J matrix for the dropout status for all the subjects at

all time periods. The (i, j) element of M takes a value of one when the subject i

drops out at time period j, and zero otherwise. We will only consider monotone

missingness in this chapter - once a patient drops out he cannot return to the

trial. So, the row vector mi = Mi,1:J comprises a set of 0’s possibly followed by

a set of 1’s. This vector represents the dropout status for subject i for period 1

through period J . We use the terms missingness and dropout interchangeably.

For simplicity in notation, we drop the index i and j when there is no confu-

sion, and use only one covariate X though there might be several in practice. The

primary response variable is split according to whether its value is recorded or

missing with a shorthand notation: y = {yobs, ymiss}. Equations (2.1) and (2.2)

describe the relationship between Y and M for subject i:

yobs
i = {yi,j : Mi,j = 0, j ∈ {1, 2, . . . , J}} (2.1)

ymiss
i = {yi,j : Mi,j = 1, j ∈ {1, 2, . . . , J}} (2.2)

Note that |yobs
i | + |ymiss

i | = J . (yobs, ymiss, M , X) represents the “complete

data.”

2.3.2 Joint Model for Response and Missingness

We start with the full likelihood function of the complete response y and M given

covariates X. Let Ω denote the parameter space for the joint probability model.

We factor Ω into subspaces that dissect the full likelihood function. Let ΩR ⊂ Ω

relate the response y to the covariates X, ΩMAR ⊂ Ω relate M to yobs and X,

and ΩNIM ⊂ Ω relate M to ymiss,

Ω = ΩR ∪ ΩMAR ∪ ΩNIM . (2.3)
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We consider parameter vectors β ∈ ΩR, α ∈ ΩMAR, and δ ∈ ΩNIM where β is of

primary interest.

The complete data likelihood function is then:

p(y,M |X,α, β, δ) = p(yobs, ymiss,M |X,α, β, δ) (2.4)

Since we consider that subjects in the trial are independent, the joint likelihood

in equation (2.4) factors as:

p(yobs, ymiss,M |X,α, β, δ) =
∏

1≤i≤N

p(yobs
i , ymiss

i , mi|xi, α, β, δ) (2.5)

We can further factorize the ith component in Equation (2.5) into the marginal

model of yi given xi and the conditional model of mi given yi and xi:

p(yobs
i , ymiss

i , mi|xi, α, β, δ) = p(mi|yobs
i , ymiss

i , xi, α, δ)p(y
obs
i , ymiss

i |xi, β) (2.6)

Equation (2.6) represents a so-called selection model, in which dropout de-

pends on both observed and unobserved response variables as well as covariates.

The observed data likelihood is given by:

p(yobs,M |X,α, β, δ) =

∫
p(yobs, ymiss,M |X,α, β, δ)dymiss. (2.7)

Coupled with the selection model (2.6), this becomes:

p(yobs,M |X,α, β, δ) =
∏

1≤i≤N

∫
p(mi|yobs

i , ymiss
i , xi, α, δ)p(y

obs
i , ymiss

i |xi, β)dymiss
i .

(2.8)

Before we discuss inference using (2.8), we first consider different standard

simplifications of p(mi|yobs
i , ymiss

i , xi, α, δ). Little and Rubin (1987) considered

three general categories for the missing data mechanism:

1. Missing completely at random (MCAR) where missingness does not depend

on the response - either yobs or ymiss:

p(M |yobs, ymiss, X, α, δ) = p(M |X,α) (2.9)
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2. Missing at random (MAR) where missingness does not depend on the un-

observed response ymiss:

p(M |yobs, ymiss, X, α, δ) = p(M |yobs, X, α) (2.10)

3. Non-ignorable (NIM) where missingness depends on ymiss and possibly on

yobs and covariates.

In the NIM scenario, the parameter δ plays a key role, defining, as it does, the

relationship between dropout and missing values. Unfortunately, the data provide

little or no information about δ, and checking the sensitivity of the ultimate

inferences to different choices of δ is central to our approach. In APPROVe, as

we discussed above, an assumption of MAR or MCAR may not be tenable.

Inference Under MCAR and MAR

The assumption of MCAR simplifies the observed likelihood for ith subject using

(2.9):

p(yobs
i , mi|xi, α, β, δ) =

∫
p(mi|xi, α)p(yobs

i , ymiss
i |xi, β)dymiss

i

= p(mi|xi, α)

∫
p(yobs

i , ymiss
i |xi, β)dymiss

i

= p(mi|xi, α)p(yobs
i |xi, β) (2.11)

Similarly under MAR the observed likelihood becomes:

p(yobs
i , mi|xi, α, β, δ) =

∫
p(mi|yobs

i , xi, α)p(yobs
i , ymiss

i |xi, β)dymiss
i

= p(mi|yobs
i , xi, α)p(yobs

i |xi, β) (2.12)

Equations (2.11) and (2.12) show that the joint observed likelihood of response

and missingess can factor into a product of the likelihood of the observed re-

sponse and that of the missing data mechanism. We represent this partition in a

shorthand notation as:

[yobs,M |X,α, β, δ] = [M |yobs, X, α][yobs|X, β] (2.13)



12

If ΩR ∩ ΩMAR = 0 and ΩR ∩ ΩNIM = 0, in other words β is distinct from α

and δ, inference about β depends only on the p(yobs|X, β). Hence aforementioned

CC method is justified. However, the CC method is often inefficient because a

substantial amount of valuable information has to be discarded. Multiple impu-

tation (MI) is the main approach to handling missing data under the MCAR or

MAR assumption (Rubin, 1987, 1996; Schafer, 1999). The key step in MI is to

impute missing data from the predictive distribution [ymiss|yobs, X,M ]. The de-

fault method for that is Markov Chain Monte Carlo (MCMC) with initial values

derived from an initial EM-run. A further, non-parametric alternative is offered

by Rubin’s approximate Bayesian bootstrap approach (Rubin, 1987).

Inference Under NIM

Under NIM , no simplification of the likelihood is possible and the integration in

(2.8) cannot be accomplished in closed form. Therefore, we will use an approxi-

mation to this integral.

Computationally, the maximum likelihood estimate (MLE) for missing data

can be derived using EM (Expectation and Maximization) (Dempster et al., 1977)

and extensions. However, when data are sparse or incomplete, likelihood surfaces

can behave poorly and the EM algorithm may not converge to the MLE (Schafer

1997). This may occur with multivariate incomplete data where sample size is

small, rate of missing data is high and models are over-parameterized.

Instead of the observed likelihood function (2.8), we can conduct analysis

based on the full likelihood as in (2.6). MCMC methods are well suited in this

context although they require the specification of prior distributions for all model

parameters. Combining the full likelihood with these priors leads to a full prob-

ability model that can then be analyzed according to the Bayesian paradigm.

The main point is that it is generally feasible to obtain a posterior sample from

the model parameters and missing values (α, β, ymiss), that is, a sample from the
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distribution

[α, β, ymiss|yobs,M,X, δ] (2.14)

In the Bayesian framework, ymiss is unknown and is treated as a parame-

ter. With (2.6) for i = 1, ..., N , and priors for the parameters, we can obtain

all marginal and conditional distributions are well defined, as is the distribution

in (2.14). For example, we are interested in estimating the treatment effect from

[β|yobs,M,X, δ]. Clearly, this involves inestimable non-ignorable drop-out param-

eter δ whose behavior cannot be accessed directly from the data at hand. In a

sensitivity study, we vary the value of δ and assess sensitivity to departures from

ignorability (MCAR and MAR).

2.4 A Simulation Study

Before turning to the APPROVe data, we conduct a simulation study to shed

some light on the robustness of the inferences about the primary parameters of

interest to mismatches between the true value of δ and the assumed value of δ in

a sensitivity analysis.

We set the number of subjects N to 800. For subject i, we generate data as

follows:

• Step 1: With equal probability, generate covariate xi to take value of 1 or

0, where 1 indicates the assignment of a hypothetical drug and 0 placebo.

• Step 2: Generate the response variable yi via a simple regression model:

yi = βxi + εi (2.15)

where β=2, εi ∼ N(0, σ2) and σ=1, i = 1, ..., 800.

• Step 3: Generate the missing data indicator mi via a logistic regression

model:

logit(P (mi = 1)) = α0 + α1xi + δyi (2.16)
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where α0 = 1, α1 = 1, δ varies from -1 to 1 with increment of 0.2.

• Step 4: With the missing data indicatormi controlled by δ from the previous

step, reset the response to be missing (yi = NA) when mi = 1.

For each preset value of δ, we generate a set of complete data: (y, x,m). We

fit the data jointly with models (2.15) and (2.16) to estimate β, α0 and α1. In the

drop-out model (2.16), we vary the assumed value of non-ignorable parameter (δ∗

hereafter) from -1 to 1 with increment of 0.2.

With each combination of (δ,δ∗) and diffuse priors, we draw 10,000 MCMC

iterations discarding first 200 to obtain the Bayesian estimate (posterior mean)

of β - the “treatment effect” (β̂ hereafter). The MCMC convergence appears

satisfactory. After smoothing via a two dimensional LOESS algorithm (Cleveland

et al., 1988; Cleveland and Grosse, 1991), Figure (2.1) shows the the contour of

β̂ as a function of (δ, δ∗).

The plot shows a striking pattern: the upper left corner over-estimates the

true value of 2 while the lower right corner under-estimates. Along the diagonal

where δ∗ is close to the true δ, the estimates are close to the true value of 2.

The treatment effect β represents the expected change of the response between

the trial drug and the placebo. When the underlying non-ignorable drop-out

parameter δ is positive, the high valued response is more likely to be missing.

If we do not acknowledge this and estimate the treatment effect only using the

observed data, the β̂ will be smaller, i.e., biased downward. If we misjudge the

drop-out mechanism to use negative values of δ∗ in the modeling, we will impute

responses with smaller values. As the result, we will underestimate the treatment

effect - this is what happens in the lower right corner of the plot. Similarly, we

will overestimate the treatment effect when the true δ is negative but we assume

a positive δ∗ as can be seen in the upper left corner of the plot.

From the plot, we can also observe that when the missing mechanism is indeed
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Figure 2.1: Smoothed contour plot of the estimated treatment effect. The hori-
zontal axis is δ and the vertical axis is δ∗.

ignorable (δ = 0), we will get biased estimates if we set δ∗ to be either positive

or negative for NIM . Meanwhile when the missing is truly NIM , the choice of

δ∗ impacts on the bias on the estimate.

This simulation shows that the estimation of the treatment effect can depend

on the non-ignorable drop-out mechanism. With a range of δ∗, we can get an

interval on which the estimated parameter falls. If the interval is narrow, the

estimation is not sensitive to the choice of non-ignorable drop-out parameter.

2.5 Analysis of Vioxx Data

To facilitate the longitudinal study of the trial, we divide the three year trial span

into twelve 90-day periods. The two endpoints have different rules to determine

the drop-out status M . Since most patients did not re-enter the study once they
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dropped out, we assume the monotone missingness pattern for the data analysis.

The details to set the values for M are as follows:

• For SBP: find the last period which has the observed blood pressure for a

subject. Then the periods after it will have m = 1 (missing), the earlier

periods will have m = 0.

• For CVT: set m = 1 (missing) for periods after all patient contact ceases

and set m = 0 for other periods.

The rules to set the response y are as follows:

• For SBP: in the quarters with m = 0, set y = NA if there is no response;

set the average to y if there are multiple measurements in the same period.

• For CVT: in the quarters with m = 0, set y = 1 if there is at least one CVT

event; set y = 0 otherwise. The reason for the latter is that the missingness

means the subject does not have any CVT events when the subject stays

in the study.

• For periods with m = 1, set y = NA for both endpoints.

From model selection procedure, we include two covariates namely treatment

type (Tr) and an indicator of high cardiovascular disease risk (Hc). Both co-

variates are binary: Tr=1 for assignment of Vioxx, 0 for placebo; Hc=1 if the

subject has high cardiovascular disease risk, 0 otherwise.

2.5.1 Non-Longitudinal Analysis

We begin with a non-longitudinal analysis focusing on the treatment effects at

the end of the trial with the selection model (2.6). For subject i (i = 1, ..., 2584),

the response model is:
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• For SBP:

yi = β0 + βtrTri + βhHci + εi (2.17)

where εi ∼ N(0, σ2), yi is the change of SBP from the baseline period to

the period measured between 990 and 1080 days - a 90 day window before

the end of the 3rd year - if such a measurement is available.

• For CVT:

logit(p(yi = 1)) = β0 + βtrTri + βhHci (2.18)

where Yi is the indicator from day 1 to day 1080.

The drop-out model for M is:

logit(p(mi = 1)) = α0 + αtrTri + αhHci + δyi (2.19)

As in Section (2.3.2), we call δ in (2.19) the non-ignorable drop-out parameter

since it relates the drop-out probability to the current response which might be

missing. Hence we can make the missing data mechanism an MCAR when δ=0,

and an NIM when δ is not zero.

As in the simulation study, we use WinBUGS to perform MCMC with 20,000

iterations discarding the first 1,000. MCMC convergence appears to be satisfac-

tory. We list the posterior mean β̂tr and its standard deviation in Table 2.1 for

the two endpoints from various assumed values in δ.

Table 2.1: Bayesian estimate of treatment effects at the end of the third year
under various assumed values of the non-ignorable drop-out parameter.

Scenario SBP CVT
Estimated Mean Estimated SD Estimated Mean Estimated SD

δ=4 0.475 0.135 0.670 0.281
δ=0 0.300 0.124 0.669 0.280
δ=-4 0.213 0.126 0.669 0.280
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From the table, the results under the MCAR (δ=0) and NIM (δ �= 0) are

quite different for SBP. This indicates that the estimated treatment effect is sen-

sitive to the underlying non-ignorable missing data assumption. Moreover β̂tr

decreases as δ decreases. The explanation for this phenomenon follows. If we as-

sume that a bigger increase in blood pressure is more likely to result in drop-out,

we can undertake appropriate weighting to reduce unbiasedness, i.e., δ = 4 in this

case. Here we impute more higher values of SBP which are missing. Therefore

the resulting treatment effect will be in the higher end. In the case of δ = −4,

the same reasoning works except that now we will compensate more in the lower

blood pressure region. Thereby we obtain a smaller treatment effect estimate.

For this endpoint, the result of estimation is sensitive to the choice of δ under

NIM .

The result of β̂tr for CVT follows the same trend. However, because the num-

ber of incidences for this endpoint is quite small so that the estimated standard

error is large (about one half of β̂tr). Therefore the estimation is not sensitive to

the assumption of NIM versus MCAR. The MCAR with covariates will work

fine for CVT.

2.5.2 Longitudinal Study

We expand the single time-point study in Section 2.5.1 to the longitudinal setting.

The total number of periods is 12 and each period has 90 days.

We specify here the two likelihood functions in the selection model (2.6). The

response model for patient i (i = 1, ..., 2584) at period j (j=1,...,12) is:

• For SBP:

yi,j = β0
j + βtr

j Tri + βh
j Hci + βtm

j j + εi,j (2.20)

where εi,j ∼ N(0, σ2).
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• For CVT:

logit(p(yi,j = 1)) = β0
j + βtr

j Tri + βh
j Hci + βtm

j j (2.21)

where βtm
j is introduced for the possible time-dependence of y.

Because of the serious adverse events from Vioxx, we attribute responses such

as blood pressure and CVT occurrence from current or past office visits to possible

dropout from the trials. Hence we propose the model for drop-out status mi,j to

include the end point observation from both current period and the previous

period. Equation (2.22) shows the model for the first period:

logit(p(mi,1 = 1)) = α0
1 + αtr

1 Tri + αh
1Hci + αtm

1 + δyi,1 (2.22)

For the other periods (j=2,...,12), we add an additional term, i.e., Yi,j−1 the

response from the previous period :

logit(p(mi,j = 1)) = α0
j + αtr

j Tri + αh
jHci + αtm

j j + αprevyi,j−1 + δyi,j (2.23)

Again δ in (2.22) and (2.23) is the non-ignorable drop-out parameter. In (2.23) we

make the missing data mechanism an MCAR when δ=0 and αprev=0, an MAR

when both δ=0 and αprev is not 0, and an NIM when δ is not zero.

Following the inference under NIM in Section (2.3.2), we combine the likeli-

hood functions in Equations (2.20)-(2.23) with diffuse (but proper) prior distribu-

tion. For the priors of the same group of parameters for different time periods, we

adopt a hierarchical approach under which the parameters come from the same

hyper-prior distribution thereby smoothing the values over periods. For j=1,2....
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12,

β0
j ∼ N(µ0

β , (σ
0
β)2)

βtr
j ∼ N(µtr

β , (σ
tr
β )2)

βh
j ∼ N(µh

β , (σ
h
β)2)

βtm
j ∼ N(µtm

β , (σtm
β )2)

α0
j ∼ N(µ0

α, (σ
0
α)2)

αtr
j ∼ N(µtr

α , (σ
tr
α )2)

αh
j ∼ N(µh

α, (σ
h
α)2)

αtm
j ∼ N(µtm

α , (σtm
α )2)

With 200,000 iterations and 1,000 burn-ins, the MCMC convergence appears

satisfactory. We list the posterior mean µ̂tr
β and its standard deviation in Table 2.2

for the two endpoints from various values in (δ, αprev) pair.

As in the non-longitudinal setting, the effect of Vioxx on blood pressure shows

marked sensitivity to assumptions about the missing data mechanism, whereas

the effect on CVT events shows less sensitivity.

Table 2.2: Bayesian estimate and its deviations under various values of the non-
ignorable drop-out parameter.

Scenario SBP CVT
Estimated Mean Estimated SD Estimated Mean Estimated SD

δ = 0, αprev = 0 0.23 0.05 0.49 0.30
δ=4 0.32 0.05 0.53 0.22
δ=0 0.23 0.05 0.52 0.30
δ=-4 0.18 0.06 0.48 0.30
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2.6 Discussion and Conclusion

In this chapter, we explore a Bayesian approach to handle the missing data result-

ing from drop-out. We emphasize sensitivity to assumptions about the ignorabil-

ity of the drop-out mechanism. We present a simulation study to demonstrate

the robustness of the inferences about treatment effect to mismatches between

true value of non-ignorable parameter and its assumed value. This exploration

clearly provides insights to the non-ignorable drop-out issue. We also explore

other simulations with a general form of response such as adding an intercept

term, etc. Although we observe the impact of treatment effect estimation due to

different assumed non-ignorable parameters, the patterns are not as obvious as

those in Figure 2.1 and explanations are not as straightforward.

In the analysis of longitudinal clinical trials, we advocate a hierarchical prior

distribution approach of same group of parameters from different time periods.

By doing so, we smooth the variations from these parameters’ prior distributions

and reduce the standard deviations of the parameters’ posterior estimates.

We apply the techniques to analyze specific cardiovascular endpoints in AP-

PROVe, a placebo-controlled randomized clinical trial concerning the pain killer

Vioxx. The data sets suggested that the treatment effect on the SBP change over

baseline period is sensitive to the non-ignorable drop-out parameter. Hence we

adopt NIM for the data analysis. Otherwise we will have biased results. But for

CVT, we find it unnecessary to use NIM as the missing data mechanism.
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Chapter 3

Non-Compliance and Complier Average Causal

Effect

3.1 Introduction

Longitudinal clinical trials follow up with patients over a period of time to evaluate

their responses to a particular treatment. Due to various reasons, especially when

there exist serious side-effects from a new drug or treatment, patients often do not

adhere to their trial protocols. There are two possible forms of such a deviation:

drop-out and non-compliance. We considered and dealt with the drop-out issue

in Chapter 2. Besides dropping out of trials, subjects may fail to comply with

their assigned treatments (“non-compliance”). For example, a patient can stop

taking the assigned drug, or takes the incorrect dose, or takes the incorrect drug

(if he has the access to it). Meanwhile he might still stay in the study and supply

measurement data.

The traditional and standard methods to evaluate drugs’ effectiveness do not

consider the complication of non-compliance. For example, intention-to-treat

(ITT) studies a drug on basis of the assignment, instead of the actual treatment

that the subject receives. Consequently, whenever there are a large number of

non-compliances, ITT might produce misleading results.

As an alternative and complimentary tool, Rubin Causal Model combines

Bayesian analysis with counterfactual concepts. In this chapter, we adopt this

approach and essentially reduce the analysis to a missing data problem. We

build elaborate models and provide an accurate estimate of treatment effect -
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a population level causal effect for the compliers. We address the problem in

particular when drop-out is also involved. We model jointly the variables of

response, compliance and missing status for each subject. From this, we allow

explorations of the data and various drop-out mechanisms. Since different models

might yield different results, we use Bayes factors for model selection and calculate

the weighted average of the causal effect from model averaging perspective. All

these steps constitute a general and flexible framework to deal with the important

issue of non-compliance coupled with drop-out in clinical trials.

The rest of the chapter is arranged as follows. In Section 3.2, we elaborate

our Bayesian approach to handle both non-compliance and drop-out. Section 3.3

conducts a simulation study to illustrate the concepts. In Section 3.4, we conduct

a case study of the same Vioxx trial as in Chapter 2 using one continuous and one

binary endpoint. Section 3.5 concludes the chapter with discussions and future

research directions.

3.2 Non-compliance and Drop-out

3.2.1 Notations and Rubin Causal Model

A statistical study for causal effects compares the results of two or more treat-

ments on a population of units, each of which in principle could be exposed to

any of the treatments (Rubin, 1990). In what follows, we shall assume that the

trial comprises two treatments which we label “T” or “1” for an experimental new

treatment (“T” for Treatment) and “C” or “1” for an existing or placebo therapy

(“C” for Control). The trial follows N subjects for a specified time period and

measures some health outcome Y (e.g. survival) at the end of that period. The

idea of Rubin Causal Model (RCM) is to estimate the causal effect of T relative to

C. Intuitively, this causal effect for a particular subject is the difference between

the result if the subject had been exposed to T and the result if, instead, the
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subject had been exposed to C (Rubin, 1978).

Let Y j
i be the health outcome for subject i if all subjects were assigned to

treatment j (i = 1, ..., N ; j = 0, 1). We define the ITT causal effect of assignment

for subject i to be Y 1
i −Y 0

i . This definition does not make much sense without the

Stable-Unit-Treatment-Value-Assumption (SUTVA) (Lewis, 1963; Rubin, 1978;

Imbens and Rubin, 1997a,b). The assumption says that that Y j
i is stable in

the sense that it would take the same value for all other treatment allocations

such as subject i receives treatment j. This assumption is not innocuous - the

health outcome for subject A could depend on subject B’s treatment assignment

if, for example, A and B were in the same household and the treatment has a

psychological component. However, SUTVA is generally not contentious in the

randomized studies considered in this chapter. With SUTVA we can consider Y j
i

to be the outcome for subject i if subject i were assigned to treatment j. We note

also that other causal effect definitions are possible, e.g. Y 1
i /Y

0
i . The difference

seems to match the treatment effect concept well in the traditional clinical trial

setting.

Population-level causal effects are usually of more interest than subject-level

effects and we adopt the common approach of simply averaging the subject-level

causal effects. In what follows we will be especially interested in sub-population

average causal effect, such as : ave(Y 1
i − Y 0

i |i-th subject is male).

To help categorize population according to their compliance behavior, we

define Dj
i to be the compliance indicator for the treatment that subject i would

receive given the assignment j (j = 0, 1). For example, if a i-th subject receives

the new treatment while he has been assigned with the control, then D0
i = 1. We

now have a 4-vector of “semi-latent” variables for i-th subject: (D0
i , D

1
i , Y

0
i , Y

1
i ).

These variables are semi-latent in the sense that for any one subject, we will

generally observe at most two of the four variables, i.e., either D0
i and Y 0

i , or D1
i

and Y 1
i . For any particular subject, either or both potentially observable variables
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sometimes termed as potential outcomes may be missing.

For each subject, Di = (D0
i , D

1
i ) describes the compliance behavior. Imbens

and Rubin (1997a) distinguished four categories of subjects. For treatment j

(j=0,1), subject i is a:

• Complier if Dj
i = j, or the subject complies to whatever he has been as-

signed to.

• Never-taker if Dj
i = 0, or the subject takes placebo all the time.

• Always-taker if Dj
i = 1, or the subject takes new treatment all the time.

• Defier if Dj
i = 1− j, or the subject takes the opposite of what he has been

assigned to.

With the above definition, we are ready to define some sub-population causal

effects of interest. The most often used - the complier average causal effect

(CACE) is give by:

CACE = avgi(Y
1
i − Y 0

i |D0
i = 0, D1

i = 1). (3.1)

Similarly we can define the defier average causal effect (DACE), the always-taker

causal effect (AACE), and the never-taker causal effect (NACE). Of the four

subpopulation causal effects, AACE and NACE do not address causal effects of

the receipt of treatment since the former compares outcomes both with treat-

ment, and the latter compares outcomes both without treatment. For compliers,

assignment to treatment agrees with receipt of treatment and CACE compares

outcomes with drug to outcomes without drug. For such complier subjects, fol-

lowing Imbens and Rubin (1997a), we will attribute the effect on Y of assignment

to treatment to the effect of receipt of treatment. This attribution is what trial-

ists typically do in randomized trials with full compliance. The DACE is also of

some interest although in what follows, we will focus on the CACE as the primary

estimand of interest.
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3.2.2 Non-Compliance Coupled with Drop-out

When a subject stops to be evaluated, we say that he drops out of the study. In

Chapter 2, we treated drop-out under a Bayesian framework and jointly modeled

the response and missing data indicator. In practice, both non-compliance and

drop-out can occur. Yau and Little (2001) developed a model for inference about

the CACE which allows for the inclusion of baseline covariates and handles drop-

outs in the repeated outcome measures. Their study used missing at random

(MAR) as the missing data mechanism.

In this chapter, we generalize the problem dealing both non-compliance and

drop-out with non-ignorable missing data mechanism. Similar to the definitions

of Y j
i and Dj

i , we extend the missing data indicator in the context of causal

inference. We define M j
i to be an indicator for the drop-out status that the

subject i would have given the assignment j(j = 0, 1). M j
i is binary with the

value of 1 for drop-out and 0 otherwise.

The set of the data for i-th subject now has six random variables: Y 0
i , M0

i ,

D0
i , Y

1
i , M1

i and D1
i . When we know the treatment assignment for a subject, the

variables in the other treatment group (also termed as counter-factual group) are

all latent. Figure 3.1 lists various scenarios of a trial involving non-compliance

and drop-out when the assigned treatment is a new drug. For example in Case

3, at the time point of consideration, we will have the measurement data for

Y 1, D1=1 (complier), M1=0 (still in study), the variables in the counter factual

group: Y 0, D0, M0 are all unknown (NA). With the assignment of a placebo,

Case 1’ to 5’ are the counterparts of Case 1 to 5. The values for the six variables

are set in Table 3.1 for all the cases.

After setting up the variables, we are ready to build models on them. Re-

cent developments in Bayesian computation render the estimation of the CACE

straightforward. Imbens and Rubin (1997a) present a detailed description of

a particular approach to estimation. Here we frame the task in the context of
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Figure 3.1: Different cases of a trial involving non-compliance and drop-out when
the assigned treatment is a new drug.

Table 3.1: Various cases for the values of health outcome, compliance and missing
indicators.

Treatment
Case Assignment Y 1

i D1
i M1

i Y 0
i D0

i M0
i

1 1 available 1 0 NA NA NA
2 1 NA 1 0 NA NA NA
3 1 available 0 0 NA NA NA
4 1 NA 0 0 NA NA NA
5 1 NA NA 1 NA NA NA
1’ 0 NA NA NA available 1 0
2’ 0 NA NA NA NA 1 0
3’ 0 NA NA NA available 0 0
4’ 0 NA NA NA NA 0 0
5’ 0 NA NA NA NA NA 1

Bayesian graphical models (Spiegelhalter and Lauritzen, 1990; Madigan and York,

1995) which simplifies the procedures and makes extensions to models involving

covariates and multiple compliance indicators direct and transparent, at least in

principle.

For example, we can build five possible Bayesian graphical models in Figure

3.2 for the six random variables (Y 0, M0, D0, Y 1, M1, D1). The covariates are

not shown in the model for the sake of an easy presentation. The covariates might

have links to all other stochastic nodes in the models.
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Figure 3.2: Bayesian network model: covariates are omitted

3.2.3 Bayesian Methods to Calculate CACE and Bayes

Factor

With the aid of Bayesian graphical models, we can lay out the conditional likeli-

hood functions for each node given its parent nodes including covariates. Using

X as a covariate, we list the likelihood functions for Graphic Model 1 in Figure

3.2 for a i-th subject as follows:

1. Logistic regression models for conditional likelihood of binary compliance

indicators: [D1
i |Xi] and [D0

i |D1
i , Xi]:

logit(p(D1
i = 1)) = α1

1 + α1
2Xi

logit(p(D0
i = 1)) = α0

1 + α0
2Xi + α0

3D
1
i

2. Linear regression models for conditional likelihood of continuous health

outcome, or logistic regression model for that of binary health outcome:

[Y 1
i |D1

i , Xi] and [Y 0
i |D0

i , Y
1
i , Xi]:

• for continuous type

Y 1
i = β1

1 + β1
2Xi + β1

3D
1
i + ε1i

Y 0
i = β0

1 + β0
2Xi + β0

3D
0
i + β0

4Y
1
i + ε1i

where ε1i ∼ N(0, σ2
v), ε

0
i ∼ N(0, σ2

p).



29

• for binary type:

logit(p(Y 1
i = 1)) = β1

1 + β1
2Xi + β1

3D
1
i

logit(p(Y 0
i = 1)) = β0

1 + β0
2Xi + β0

3D
0
i + β0

4Y
1
i

3. Logistic regression models for conditional likelihood of drop-out indicators:

[M1
i |Y 1

i , D
1
i , Xi] and [M0

i |D0
i , Y

0
i ,M

1
i , Xi]:

logit(p(M1
i = 1)) = γ1

1 + γ1
2Xi + γ1

3D
1
i + δ1Y 1

i

logit(p(M0
i = 1)) = γ0

1 + γ0
2Xi + γ0

3D
0
i + γ0

4M
1
i + δ0Y 0

i

The CACE is calculated as the mean of the average casual effect of compliers

out of each MCMC iteration (see Appendix A).

ĈACE =
1∑N

i=1

[
D̂1

i (1 − D̂0
i )

] N∑
i=1

[
(Ŷ 1

i − Ŷ 0
i )D̂1

i (1 − D̂0
i )

]
(3.2)

With noninformative priors for all the parameters in the likelihood function(α1
1,

α1
2, ..., γ0

1 , γ
0
1 , γ

0
2 , γ

0
3 , γ

0
4 as well as latent random variables), we use posterior

draws of the latent variables from MCMC iterations to get its Bayesian estimate

(posterior mean).

Bayes Factor for Model Selection and Averaging

We follow the same steps to fit other models and obtain the estimations of the

CACE. Since different models might yield different results, we use Bayes factor

(Kass and Raftery, 1995) for model selection. The Bayes factor for model M1

against another modelM0 given data D is the ratio of the two marginal likelihoods.

The marginal likelihood is the probability of the data D given a model, and is

obtained by averaging over the priors assigned to the parameters. Let Φ denote

the set of parameters in the models. The Bayes factor of model 2 against 1 B12

is

B21 =
[D|M2]

[D|M1]
=

∫
[D|Φ,M2][Φ|M2]dΦ∫
[D|Φ,M1][Φ|M1]dΦ

(3.3)
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The Bayes factor expresses the support given by the data for one or the other of

the models, in a similar way to the conventional likelihood ratio. However, unlike

classical significance procedures, the Bayes factor does not tend to reject the null

hypothesis more frequently as sample sizes become large. Taking twice the log of

the Bayes factor gives the same scale as the conventional deviance and likelihood

ratio statistics. Approximate values for interpreting B21 and 2 logeB21 are as in

Table 3.2 (Jeffreys, 1961; Kass and Raftery, 1995).

Table 3.2: Guidelines for Bayes factors.

B21 2 loge B21 Interpretation
Under 1 Negative Support model 1

1 - 3 0 - 2 Weak support for model 2
3 - 20 2 - 6 Support for model 2

20 - 150 6 - 10 Strong evidence for model 2
Over 150 Over 10 Very strong support for model 2

With missing data, from either non-compliance or drop-out, we partition the

complete data into the observed and the missing parts: D = (Dobs,Dmiss). The

“observed ” Bayes factor is

Bobs
21 =

[Dobs|M2]

[Dobs|M1]
=

∫
[Dobs,Dmiss|M2]

[Dobs|M1]
dDmiss

=

∫
[Dobs,Dmiss|M2]

[Dobs,Dmiss|M1]

[Dobs,Dmiss|M1]

[Dobs|M1]
dDmiss

=

∫
B21 × [Dmiss|Dobs,M1]dD

miss (3.4)

Since the integral in (3.4) does not have closed form in most cases, we approx-

imate it by the Monte Carlo simulations. With sample draws from distribution

[Dmiss|Dobs,M1] - the result obtained from the MCMC steps from calculating

CACE, we calculate the average of B21 with Dmiss being replaced by the samples.

Several methods are available to calculate the marginal likelihood [D|Mi] (i=1,2).

For binary response, we use the exact method from Cooper and Herskovits (1992)
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and Heckerman (1996). For real valued response, we use asymptotic approxi-

mation such as Laplace’s method or the Bayesian information criterion (BIC)

method. The approximation methods are quite computationally intensive since

they require maximization of a likelihood function in each MCMC step. Appendix

B details some of the commonly used methods to compute Bayes factor.

Assume there are K available models. Let CACEi is the complier average

causal effect from the i-th model, Bobs
i1 be the observed Bayes factor of i-th model

against the first one (Bobs
11 = 1). We can get the weighted average of the CACE

from model averaging perspective as:

CACE =

∑K
i=1B

obs
i1 × CACEi∑K
i=1B

obs
i1

(3.5)

3.3 A Simulation Study

Before analyzing the real data set, we conduct a simulation study to shed some

light on model dependent results of CACE. We start to generate data from Graph-

ical Model 1, then fit the data using Model 1 through 5.

For i = 1, 2, ..., 1000, the sequential steps to simulate data is as follows:

1. Generate treatment Trti and covariateXi as two independent Bernoulli(0.5)

random variables.

2. Generate D1
i via logit(p(D1

i = 1)) = 4 +Xi

3. Generate D0
i via logit(p(D0

i = 1)) = −4 +Xi + αD1
i

4. Generate Y 1
i via Y 1

i = 2 +Xi +D1
i + ε1i where ε1i ∼ N(0, 0.01)

5. Generate Y 0
i via Y 0

i = 1 +Xi +D0
i − αY 1

i + ε0i where ε0i ∼ N(0, 0.01)

6. Generate M1
i via logit(p(M1

i = 1)) = β +Xi + δ1Y 1
i

7. Generate M0
i via logit(p(M0

i = 1)) = β +Xi +D0
i + αM1

i + δ0Y 0
i
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8. When Trti = 0 (placebo), set NA to D1
i , Y

1
i , and M1

i ; when Trti = 1

(treatment), set NA toD0
i , Y

0
i , andM0

i . This step is to set the couterfactual

group.

9. When M1
i = 1 (missing), set NA to Y 1

i and D1
i ; when M0

i = 1 (missing),

set NA to Y 0
i and D0

i

where α is set to 5, β to -8, δ1 and δ0 to 2.

For each subject, we simulate the value of (D1, D0, Y 1, Y 0) from Step 1 through

7. From that, we calculate the average of causal effect Y 1 − Y 0 for all the com-

pliers, which is 18.5. The true CACE can be computed as:

E(Y 1 − Y 0|D1 = 1, D0 = 0) = E[Y 1 − (1 +X − 5Y 1)|D1 = 1, D0 = 0)]

= 3.5 − 1.5 + 5 × 3.5 = 19.5

Step 8 and 9 let the missingness and non-compliance take effect. There are

29% drop-outs and 11% non-compliers. With the simulated data, Using the five

different graphical models under three assumed non-ignorable drop-out parameter

δ1 and δ0, we draw 2,000,000 MCMC iterations discarding first half to obtain the

Bayesian estimate (posterior mean) of CACE. The MCMC convergence appears

satisfactory. From the simulation results in Table 3.3, the estimated CACE’s from

Table 3.3: Estimated CACE and its standard deviation from simulated data.

BGM 1 BGM 2 BGM 3 BGM 4 BGM 5

Drop-out Mechanism ̂CACE (s.d.) ̂CACE (s.d.) ̂CACE (s.d.) ̂CACE (s.d.) ̂CACE (s.d.)
δ1=2, δ0=2 19.04 (0.06) 17.83 (0.22) 18.02 (0.16) 18.01 (0.18) 18.00 (0.17)
δ1=0,δ0=0 18.46 (0.31) 17.91 (0.23) 17.97 (0.20) 17.82 (0.31) 17.88 (0.23)

δ1=-2,δ0=-2 18.32 (0.09) 18.00 (0.22) 17.95 (0.20) 17.87 (0.26) 17.92 (0.27)

Model 1 (the true model), are very close to the true value, while the other models

yield significantly different values, especially at the case where the non-ignorable

dropout parameters match the true ones. The assumed values for δ0 and δ1 do

not affect the results much in the Model 2 to 5.
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Next we draw 2,000,000 MCMC iterations to calculate Bayes factors for Model

1 against the rest under three sets of assumed non-ignorable dropout parameters.

Since both Laplace and BIC methods are computationally intensive, it is not

feasible to conduct such large amount of computations in a reasonable time, we

choose to apply the exact method to the standardized data (subtracting mean and

dividing standard deviation) which is convert to a binary (above 0 or else). This

method produces results close to Laplace method, yet much faster. Discarding

the first half iterations, we list the results in Table 3.4. We can observe that the

Table 3.4: Log Bayes factors from simulated data.

Drop-out Mechanism BGM 1 vs 2 BGM 1 vs 3 BGM 1 vs 4 BGM 1 vs 5
δ1=2, δ0=2 3.90 (3.53) 0.05 (0.26) 8713.31 (58.23) 8738.03 (74.55)
δ1=0, δ0=0 2.67 (2.12) 0.01 (0.12) 8663.27 (90.82) 8881.11 (136.15)

δ1=-2, δ0=-2 1.41 (1.40) 0.02 (0.03) 9155.37 (51.62) 9076.76 (90.81)

true model - Model 1 is very strongly supported against Model 4 and 5, strongly

supported against Model 2, and weakly supported against Model 3 according to

the guidelines in Table 3.2.

3.4 Analysis of Vioxx Data

Similar to Chapter 2, we use APPROVe study from Vioxx trials and choose

two types of endpoints in this study: systolic blood pressure (SBP) which is

continuous and confirmed thrombotic cardiovascular AE indicator (CVT) which

is binary. Using the similar steps, we set values for response and missing data

indicator at the end of the three year trial. We use the days in study along with

days in treatment to assign the values for compliance indicator to assign values

to the variable set (Y 0
i ,M

0
i , D

0
i , Y

1
i ,M

1
i , D

1
i ) for a i-th subject in the same spirit

of the toy example of Section 3.2.2. With 2,000,000 iterations and 1,000,000

burn-ins, the MCMC convergence appears satisfactory. We list the posterior
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mean CACE and its standard deviation in Table 3.5 for the three endpoints

from various assumed values in (δv, δp) pair, under the five Bayesian graphical

models.

Table 3.5: Estimated one-time point CACE for endpoints of SBP and CVT under
five Bayesian graphical models (BGM).

Endpoint - SBP
BGM 1 BGM 2 BGM 3 BGM 4 BGM 5

Drop-out Mechanism ̂CACE (s.d.) ̂CACE (s.d.) ̂CACE (s.d.) ̂CACE (s.d.) ̂CACE (s.d.)
δv=4,δp=4 0.134 (0.040) 0.163 (0.035) 0.132 (0.033) 0.156 (0.032) 0.175 (0.043)
δv=0,δp=0 0.139 (0.038) 0.144 (0.037) 0.143 (0.039) 0.134 (0.036) 0.155 (0.035)

δv=-4,δp=-4 0.137 (0.037) 0.125 (0.039) 0.143 (0.039) 0.128 (0.038) 0.130 (0.040)

Endpoint - CVT
BGM 1 BGM 2 BGM 3 BGM 4 BGM 5

Drop-out Mechanism ̂CACE (s.d.) ̂CACE (s.d.) ̂CACE (s.d.) ̂CACE (s.d.) ̂CACE (s.d.)
δv=4,δp=4 0.0111 (0.0052) 0.0125 (0.006) 0.0122 (0.005) 0.0108 (0.005) 0.0113 (0.005)
δv=0,δp=0 0.0108 (0.0052) 0.0118 (0.006) 0.0122 (0.006) 0.0103 (0.005) 0.0105 (0.005)

δv=-4,δp=-4 0.0109 (0.0051) 0.0115 (0.006) 0.0143 (0.006) 0.0108 (0.006) 0.0102 (0.005)

Table 3.6: (Log) Bayes Factors under five Bayesian graphical models (BGM) for
SBP and CVT.

Endpoint - SBP
Drop-out Mechanism BGM 1 vs 2 BGM 1 vs 3 BGM 1 vs 4 BGM 1 vs 5

δv=4,δp=4 -16.03 (8.85) 12.52 (1.66) 23422.86 (63.81) 23719.84 (48.31)
δv=0,δp=0 -17.95 (11.94) 13.17 (1.78) 23468.18 (58.12) 23693.45 (59.34)

δv=-4,δp=-4 -18.90 (9.57) 12.88 (2.00) 23868.18 (74.68) 23293.28 (80.34)

Endpoint - CVT
Drop-out Mechanism BGM 1 vs 2 BGM 1 vs 3 BGM 1 vs 4 BGM 1 vs 5

δv=4,δp=4 -0.53 (2.02) 3.61 (5.66) 3.32 (2.90) 584.72 (29.07)
δv=0,δp=0 -0.68 (2.41) 3.28 (5.36) 3.59 (3.13) 599.62 (25.92)

δv=-4,δp=-4 -0.52 (2.53) 4.29 (1.86) 2.71 (2.75) 591.02 (31.45)

We observe that for SBP and CVT, the causal effects of Vioxx are all positive

with significance. This indicates that the drug increased patients’ blood pressure,

the likelihood to incur a CVT adverse event. Also estimated CACE’s are not

sensitive to the different drop-out mechanisms.

Similar to the simulation study, we draw 2,000,000 MCMC iterations with
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first half as burn-ins to calculate Bayes factors of Model 1 versus the rest under

three sets of non-ignorable dropout parameters. The Bayes factor is computed

from the exact method. The results are listed in Table 3.6. Model 2 is supported

weakly against Model 1 for CVT and very strongly for SBP. Model 1 is strongly

favored against Model 3 to 5 with SBP consistently offering stronger support than

CVT.

3.5 Discussions and Conclusion

In the chapter, we propose a Bayesian framework to handle non-compliance at

the presence of drop-out. This framework is generic and can handle non-ignorable

missing data mechanism, accommodate various sensible models, assess model

uncertainty from computing Bayes factor, and eventually obtain the weighted

average CACE from model averaging perspectively.

Because of the drop-out and counter-factual data, we treat more than half of

the data in the analysis as missing. As a result, our Bayesian analysis encoun-

ters significant computational challenges, which we address via a wide variety of

MCMC and computational methods. For example, we apply block level move in

Metropolis random walk to improve the sampling efficiency. Since the Bayes factor

is extremely computationally intensive for the continuous response, we use binary

approximation and achieve similar results to the Laplace and the BIC methods,

and make the computation much faster. We have programmed the MCMC steps

in R, WinBUGS, and C to take advantages of each computer language. We also

tune the trial step parameters in Metropolis Hastings algorithm to increase its

efficiency for different models and dropout mechanisms.

In principle, the study can be extended to longitudinal setting straightforward

in theory (Appendix C). However the additional computational challenges need

to be addressed.
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Chapter 4

Bayesian Sequential Meta-Analysis

4.1 Introduction

Drug safety is an extremely important issue to consider in the drug development

process. Complex drugs involve multiple underlying mechanisms and can produce

adverse effects on various timelines. One key reason drugs may be used for years

by millions of patients before risks of a drug become evident is that we do not have

an active drug-surveillance system. As a result, a leading concern for the Food and

Drug Administration (FDA) is to protect the public from drugs’ risks as effective

as possible (McClellan, 2007). A key incident leading to this concern was the 2004

withdrawal by Merck of rofecoxib (Vioxx) because of an apparent increased risk

of serious cardiovascular events. Questions have been raised whether and when

we can conduct analyses with all available information in order to provide early

alerts for emerging problems. In the case of Vioxx, it would have been desirable

to reveal cardiovascular risks before the drug’s withdrawal. In light of this, there

represents an opportunity to implement a set of systematic and cohesive processes

to improve drug safety and effective use. Ideally this system will consist of data

collections, case reporting and effective data analyses.

Usually major drug development processes include many different clinical tri-

als focused on different doses, routes of administration, indications, endpoints,

etc. To obtain a “big picture” result, we need to aggregate the results from

these trials. Several statistical methodologies are relevant to handle this prob-

lem. Meta-analysis, sequential analysis, and Bayesian statistics are among them.
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Meta-analysis is defined as a quantitative review and synthesis of results from

related but independent studies (Normand, 1999). The objectives of a meta-

analysis can be several-fold. By combining information over different studies, an

integrated analysis will have more statistical power to detect a treatment effect

than an analysis based on one study. When several studies have conflicting con-

clusions, a meta-analysis can be used to estimate an average effect or to identify

a subset of studies associated with a beneficial effect. The basic meta-analysis

method is a weighted average of point estimates (one from each study), with

weights based on the standard errors of the estimates (Whitehead at el., 1991).

Commonly combination of estimates is achieved using either a fixed effect or a

random-effects meta-analysis (DerSimonian at el., 1986). Alternatives and ex-

tensions are frequently used. Sutton at el. (2007) conducts a detailed review of

recent developments in meta-analysis.

In practice, meta-analyses are widely carried out to quantify the effectiveness

of healthcare interventions (Sutton at el., 2007). For example, the Cochrane

Collaboration endeavors to collate and synthesize high-quality evidence on the

effects of important healthcare interventions for a worldwide, multi-disciplinary

audience, and publishes these in the Cochrane Database of Systematic Reviews

(Cochrane, 2007).

In some situations, meta-analysis can be performed repeatedly whenever a new

trial becomes available for inclusion. Termed as sequential or cumulative meta-

analysis, it can retrospectively identify the point in time when a treatment effect

first reached conventional levels of significance. As a result, sequential analyses

can be used to decide whether enough evidence has been gathered in completed

trials to make further trials unnecessary. Lau et al. (1992) used this approach to

analyze 33 trials evaluating a new thrombolytic therapy for acute infarction from

1959 to 1988. They discovered a consistent, statistically significant reduction in

total mortality was achieved in 1973 after only eight trials. Other references can



38

be found in Henderson et al. (1995) and Bollen at al. (2006).

In the meanwhile, Bayesian methods are becoming more frequently used in a

number of areas of healthcare research, including meta-analysis. Though much

of this increase has been directly as a result of advances in computational meth-

ods, it has also been partly due to their appealing nature. Bayesian tools offer

great flexibility in meta-analyses to encourage a model-based approach to the

combination of information from multiple sources. Therefore we can easily in-

corporate the “background” information pertinent to a certain clinical question

being addressed. Similarly, in estimating the true effects of individual studies we

can in some way “borrow strength” from other similar studies (Higgins et al.,

1996). Furthermore, Bayesian methods offer a unified modeling framework which

overcomes issues such as the appropriate treatment of small trials, and a flexibil-

ity which allows the approach to be extended to consider distributions other than

Gaussian for random effects, or to adjust for covariates through regression models

(Warn et al. 2002). Because the posterior distribution is produced by simula-

tion, via Markov Chain Monte Carlo (MCMC) techniques, inference regarding

non-standard functions of the parameters is possible.

Bayesian analysis normally faces difficulty in choosing a suitable prior distribu-

tion. Some have suggested that several priors (reflecting clinicians’ prior opinions)

could be used (from skeptical prior to enthusiastic prior) to better reflect differing

opinions about the likely benefit of the new treatment. A flexible framework for

the analysis of randomized trials was proposed by Spiegelhalter at el. (1994).

They used a Bayesian approach in which a family of priors was adopted instead

of a single prior. In addition, a simple Gaussian model to summarize hazard ratio

of interest was used in each individual trial.

This chapter proposes a Bayesian framework conducting meta-analysis se-

quentially in which information regarding treatment effects is updated as more

trials become available. It provides the history of the evolution of the posterior



39

probability distribution of the clinical trial result and allows us to quantify the

changes in our belief about the treatment effect as the data accumulate. The cur-

rent posterior distribution becomes the new prior distribution at the next time

instance. We extend the study by Spiegelhater at el. (1994) to a meta-analysis

context and generalize the approach in several aspects. First, in addition to the

normal approximation for the summary relative risk of an adverse event (AE) in

a clinical trial, we model directly the event counts with Poisson distributions for

the rate of the AE in each treatment arm. With that, we reduce model assump-

tions. Second, we build hierarchical models to explore different data structures

with varying complexities. Since studies are often put into groups with similar

design and targets, we introduce a block configuration in these models. For a

case study, we pick the set of placebo-controlled trials for Vioxx. We focus on the

relative risk (RR) of the cardiovascular thrombotic (CVT) adverse event using

various models under the family of priors over an eight year period.

The rest of this chapter is organized as follows. Section 4.2 details our frame-

work in dealing with sequential aggregation of individual trials. Section 4.3 ap-

plies the framework to a set of real clinical trials. We conclude the chapter with

discussions in Section 4.4.

4.2 Bayesian Sequential Meta-analysis

4.2.1 General Setup and Notations

We consider placebo-controlled clinical trials and evaluate the RR in logarithmic

scale of an AE from a new drug or treatment. Trials often have different beginning

and ending times. We start at a time when a first trial is completed and estimate

the RR. Following this, every time when a trial ends, we calculate the RR with

the additional data. As a result, we can obtain the RR profile of a new drug

sequentially in time. This profile can assist in the risk assessment of the new
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drug. Depending on the models and assumptions, we can carry out the process

by updating from addition data, or simply calculate the RR using all the available

data up to one particular time.

Assume at any time t, there are nt completed trials. Let nC
i and nT

i be the

number of a particular AE event in the control arm and treatment arm respec-

tively for the i-th trial. Let ri be the estimate of the RR of the AE event under

treatment arm versus placebo arm, δi be the true RR for the i-th trial, δ be

the aggregated or average relative risk for all the trials. We calculate ri using

median-unbiased estimates (Rothman et al., 2008). The standard deviation of

log ri is estimated by
√

1/nC
i + 1/nT

i . Some trial might have zero event count in

either or both arms because the trial’s size is small, or the AE is rare. We use a

continuity correction by splitting count of 1 proportional to the subject number

in each arm and add the value to the event count. Sweeting et al. (2004) has

detailed discussions about this issue.

Sometimes trials might have the same design and target the same set of pa-

tients, the results of them can be reasonably assume to follow a same or related

distribution model. We use the concept of block to present the group effect of the

trials. We expand the notations for an i-th trial within a j-th study block. We

use ri,j to denote the estimate of the RR, δi,j the true RR, nT
i,j and nC

i,j the event

counts under treatment and control arm respectively, and δj the true RR for the

j-th block.

Particularly interested in estimating δ via Bayesian hierarchical models, in

what follows, we will explore multiple models suitable for different situations.

Since this may results in different results from various models, we need a mea-

surement for model selection. Spiegelhalter et al., 2002 introduced the deviance

information criterion (DIC) to compare competing models:

DIC = D(θ) + pD (4.1)



41

where D(θ) is the average deviance (i.e. minus twice the log-likelihood) with

respect to the posterior distribution of the parameter, θ, and pD is the effective

number of parameters for the model. The smaller the DIC is, the better its

associated model is. In this study, the DIC is computed with the complete data

(when all the trial data are available) for all the models.

4.2.2 Family of Priors

In our Bayesian meta-analysis, rather than focusing on single prior, we present

analyses with a “family of priors” following Spiegelhalter et al. (1994). We

propose a “skeptical prior” that represents a priori skepticism that the drug

causes a certain adverse event. We also propose a “cautious prior” that represents

a prior belief that the AE is not so implausible. We define two thresholds to help

specify these priors. The upper threshold, δU , is the relative risk above which

most reasonable people would agree that the drug should not be on the market.

In this study, we choose δU = 1.75. This reflects the belief that anything close to

a doubling of AE risk would certainly be unacceptable. The lower threshold, δL,

is roughly the value below which reasonable people would agree that it might be

appropriate to have the drug on the market, and where informed patients could

consider the risks and benefits on an individual basis. We chose δL = 1.1. In

between these two values, reasonable people could disagree.

We then construct Gaussian prior distributions around these thresholds. Specif-

ically, the skeptical prior is centered on zero with just a 5% prior probability that

the true hazard ratio δ exceeds δU (i.e., skeptical that the drug is dangerous).

The cautious prior is centered on δU with a 5% probability that δ is less than δL.

This is cautious insofar as it reflects a prior 50% probability that the true drug

hazard ratio exceeds δU .
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4.2.3 Gaussian Data Models

Following Spielgelhalter et al. (1994), we start with a simple Gaussian data

model for the RR, thereby circumventing within-trial analytical issues. We build

different models on the data: fixed effect, random effect, block effect and random

block effect model with increasing complexities. Fixed effect Gaussian model is

the simplest and analytically tractable. The other models do not have closed forms

for the posterior distribution of the RR. So we resort to MCMC and aggregate

the trials with all the available data up to that time.

Figure 4.1 represents the four models in the form of Bayesian graphical model,

which is a multivariate probabilistic model that uses a graph to represent a set

of conditional independences (Madigan 2005).

(1) Fixed Effect Model (2) Random Effect Model

(3) Block Effect Model (4) Random Block Effect Model

Figure 4.1: Various Bayesian graphical models under Gaussian data assumption.
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Fixed Effect Model

In this part of the model, we assume that each clinical trial follows the same

distribution with the population mean of δ and all the individual studies are

estimating it. For a completed i-th trial at time t, we model its RR with a

Gaussian distribution as follows:

ri|δ ∝ N(δ, σ2
i )

δ ∝ N(δp, σ
2
p) (4.2)

where σ2
i is the variance, δp and σ2

p are the mean and variance for the prior

distribution of δ. Using a family of priors, we select the values of (δp,σ
2
p) from

skeptical, cautious, reference, outrageous10 and outrageous1 priors as (0, 0.116),

(0.560, 0.116), (0, 40.0), (0, 0.0055) and (0, 0.0579) respectively.

This fixed effect model has the advantage of simplicity and can produce the

posterior distribution of relative risk analytically. As a result, we can easily

update the posterior distribution of δ when the data from a newly completed

trial is available. Without loss of generality, we assume that all n trials end at

different times, T1, T2, ...,Tn. The relative risks for the trials are r1, r2, ..., and

rn.

1. Before time T1, we have prior distribution [δ] ∝ N(δp, σ
2
p), which is one of

the family of priors.

2. At time T1, [δ|r1] = [r1|δ][δ]
[r1]

∝ [r1|δ][δ] ∝ N(µ1 =

r1
σ2
1
+

δp

σ2
p

1/σ2
1+1/σ2

p
, τ 2

1 = 1
1/σ2

1+1/σ2
p
),

where µ1 and τ 2
1 are posterior mean and variance respectively.

3. At time T2, [δ|r1, r2] ∝ [r2|δ, r1][δ|r1][r1] ∝ [r2|δ][δ|r1] (because r1 and r2 are

conditionally independent given δ) ∝ N(µ2, τ2), where µ2 =

r2
σ2
2
+

µ1
τ2
1

1/σ2
2+1/τ2

1
, τ2 =

1
1/σ2

2+1/τ2
1
)

4. At time T3, [δ|r1, r2, r3] ∝ [r3|δ, r1, r2][δ|r1, r2] ∝ [r3|δ][δ|r1, r2] ∝ N(µ3, τ3),

where µ3 =

r3
σ2
3
+

µ2
τ2
2

1/σ2
3+1/τ2

2
, τ3 = 1

1/σ2
3+1/τ2

2
)
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5. In general, at time Tn, [δ|r1, ..., rn] ∝ [rn|δ][δ|r1, ..., rn−1] ∝ N(µn, τn), where

µn =

rn
σ2

n
+

µn−1

τ2
n−1

1/σ2
n+1/τ2

n−1
, τn = 1

1/σ2
n+1/τ2

n−1
)

Therefore, the posterior distribution of δ given the RR’s r1, ...rn can be equiv-

alently obtained by sequentially updating the posterior mean and variance from

Study 1 to n. When there are multiple trials ending at the same time instance,

we can use the same procedure by treating these trials ending at slight different

times since the aggregating result does not depend on the sequence of the trials.

Random Effect Model

Heterogeneity may exist for a variety of reasons: there may be differences in exe-

cution of the trials or in patient populations, or the trials may investigate different

but still related treatments. Random effect model assumes that each individual

study estimates its own, unknown, true effect which in turn is a perturbation

about an overall population effect. In our study, we allow the true RR’s to vary

across studies and they follow a common probability distribution with mean of

δ:

ri|δi ∝ N(δi, σ
2
i )

δi|δ, σ2 ∝ N(δ, σ2)

σ2 ∝ Gamma(α, β)

δ ∝ N(δp, σ
2
p) (4.3)

In this model, a Gamma prior is put on the variance parameter σ. The hyper-

parameter σ2 follows a gamma distribution with fixed parameters α and β: f(x;α, β) =

xα−1e−x/β

Γ(α)βα . To make this distribution a non-informative one, normally we by de-

fault set α = 0.001 and β = 1000 so that the mean of σ2 is 1 and its variance

is 1000. The parameters δp and σ2
p for the prior distribution of δ are chosen the

same way as in (4.2).
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In contrast to the fixed effect model, the extra layer of model on individual δi

makes the posterior distribution [δ|r1, ..., rn] have inexplicit format (Appendix D).

So we will rely on MCMC and use WinBUGS to get the posterior draws and

estimate the posterior probability.

Block Effect Model

In this part of model, we have trials with several similar designs and subjects

which we describe as study blocks. Within each block, we assume a fixed ef-

fect model so that all the trials follow the same distribution. The block level

parameters, especially the true RR from each block, follow a common Gaussian

distribution with the aggregated δ as its mean.

ri,j|δj ∝ N(δj , σ
2
i,j)

δj|δ, σ2 ∝ N(δ, σ2)

σ2 ∝ Gamma(α, β)

δ ∝ N(δp, σ
2
p) (4.4)

The prior distributions are chosen the same way for σ2 and δ as in (4.3).

Random Block Effect Model

This is a model combining block effect with random effect models. Similar to

block effect model, we can group studies into similar blocks while the group

effects represented by δj for all the groups are assumed to come from a common

normal distribution with the aggregated relative risk δ as the mean. However,
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within each study block, we allow the trials to follow their own distributions:

ri,j|δj ∝ N(δi,j, σ
2
i,j)

δi,j|δj , σ2
j ∝ N(δj , σ

2
j )

δj|δ, σ2 ∝ N(δ, σ2)

σ2
j ∝ Gamma(α, β)

σ2 ∝ Gamma(α, β)

δ ∝ N(δp, σ
2
p) (4.5)

The prior distributions are chosen the same way for σ2
j , σ

2 and δ as in (4.3).

4.2.4 Poisson Data Models

The Gaussian data model in Section 4.2.3 greatly simplifies the analysis and

Spiegelhalter et al. (1994) argues that in many situations the approximation is

justified. Nonetheless, a more sophisticated approach that accounts for study-

specific data model would be more satisfactory (Cheng and Madigan, 2010). In

light of this, we model directly the counts of an AE event from both treatment

arms using Poisson models since we have the information of patient year for each

trial. Let λT
i and λC

i represent the Poisson rates, Y T
i and Y C

i the person year

for the treatment arm and control arm respectively in i-th trail, λT and λC the

common Poisson rate for all the trials under treatment arm and control arm

respectively.

Similar to Section 4.2.3, we have four models for the approach. Figure 4.2

presents the graphical representations of the models. The parameter of interest

- RR in logarithmic scale δ=log(λT/λC), is the top level note in these Bayesian

graphical models.
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(1) Fixed Effect Model (2) Random Effect Model

(3) Block Effect Model (4) Random Block Effect Model

Figure 4.2: Various models under Poisson data assumption.

Fixed Effect Model

Assume all the trials follow common distributions for the event counts under the

two arms separately. The Poisson distributions have means of λTY T
i and λCY C

i .

We put a flat prior on the Poisson rate log λC and pick a set from the family of
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priors on log λT conditioning on λC .

nT
i |λT

i ∝ Poisson(λTY T
i )

nC
i |λC

i ∝ Poisson(λCY C
i )

log λC ∝ Normal(λf , σ
2
f )

log λT |λC ∝ Normal(δp + log λC , σ2
p)

δ = log(λT/λC) (4.6)

where λf and σ2
f are mean and variance for the prior distribution of logλC , δp

and σ2
p are chosen to be the same as (4.2). Usually λf = 0 and σ2

f = 104 makes a

non-informative prior distribution for log λC .

Random Effect Model

In the same spirit of Section 4.2.3, each event count follows its own distinct

distribution.

nT
i |λT

i ∝ Poisson(λT
i Y

T
i )

nC
i |λC

i ∝ Poisson(λC
i Y

C
i )

log λT
i |λT ∝ Normal

(
log λT , (σT )2

)
log λC

i |λC ∝ Normal
(
log λC , (σC)2

)
(σT )2 ∝ Gamma(α, β)

(σC)2 ∝ Gamma(α, β)

log λC ∝ Normal(λf , σ
2
f )

log λT |λC ∝ Normal(δp + log λC , σ2
p)

δ = log(λT/λC) (4.7)

where α and β follow (4.3), while λf , σ
2
p , δp and σ2

p are chosen to be the same as

(4.6).
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Block Effect Model

As a counterpart under Gaussian data model, we introduce study blocks to rep-

resent the similarities among subsets of the trials. We use λT
j and λC

j to represent

the parameters for the jth study block, which the ith trial belongs to.

nT
i,j|λT

j ∝ Poisson(λT
j Y

T
i,j)

nC
i,j|λC

j ∝ Poisson(λC
j Y

C
i,j)

log λT
j |λT ∝ Normal

(
log λT , (σT )2

)
log λC

j |λC ∝ Normal
(
log λC , (σC)2

)
(σT )2 ∝ Gamma(α, β)

(σC)2 ∝ Gamma(α, β)

log λC ∝ Normal(λf , σ
2
f )

log λT |λC ∝ Normal(δp + log λC , σ2
p)

δ = log(λT/λC) (4.8)

where α, β, λf , σ
2
f , δp and σ2

p are chosen to be the same as (4.7).

Random Block Effect Model

As a counterpart under Gaussian data model, we have the combination of random

effect models for the AE event counts of the treatment arms within each study
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block as follows:

nT
i,j|λT

j ∝ Poisson(λT
i,jY

T
i,j)

nC
i,j|λC

j ∝ Poisson(λC
i,jY

C
i,j)

log λT
i,j|λT

j ∝ Normal
(
log λT

j , (σ
T
j )2

)
log λC

i,j|λC
j ∝ Normal

(
log λC

j , (σ
C
j )2

)
σT

j ∝ Gamma(α, β)

σC
j ∝ Gamma(α, β)

log λT
j |λT ∝ Normal

(
log λT , (σT )2

)
log λC

j |λC ∝ Normal
(
log λC , (σC)2

)
σT ∝ Gamma(α, β)

σC ∝ Gamma(α, β)

log λC ∝ Normal(λf , σ
2
f)

log λT |λC ∝ Normal(δp + log λC , σ2
p)

δ = log(λT/λC) (4.9)

where α, β, λf , σ
2
f , δp and σ2

p are chosen to be the same as (4.7).

4.3 Sequential Meta-Analysis in Clinical Trials Related to

Vioxx

4.3.1 Vioxx and its Trials

Several plausible mechanisms exist by which Vioxx could cause a variety of car-

diovascular thrombotic adverse events1. Some mechanisms operate on a short

1The specific events are acute myocardial infarction, unstable angina pectoris, sudden and/or
unexplained death, resuscitated cardiac arrest, cardiac thrombus, pulmonary embolism, periph-
eral arterial thrombosis, peripheral venous thrombosis, ischemic cerebrovascular stroke, stroke
(unknown mechanism), cerebrovascular venous thrombosis, and transient ischemic attack.
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time scale while others may concern permanent damage that could lead to ad-

verse events after Vioxx treatment has concluded (Antman et al., 2007). Hence

a complete characterization of Vioxx’s cardiovascular risk profile should include

an array of thrombotic events, on- and off-drug.

Except for a collection of smaller and shorter trials, and two larger trials

that were terminated early when Vioxx was withdrawn from the market, Table

E.1 in Appendix E provides a listing of the placebo-controlled trials that Merck

conducted. The table lists placebo-controlled trails for Vioxx, which enrolled

patients with rheumatoid arthritis (“RA”), with osteoarthritis (“OA”) and with

Alzheimer’s disease (“ALZ”). The earliest of these trials concluded in 1996 while

the latest concluded in 2004. Various publications reported the results of some

of these trials individually and several meta-analysis of subsets of the trials exist

(e.g., Konstam et al., 2001; Reicin et al., 2002; Weir et al., 2003). However, as

the trials progressed, no “big picture” analyses were performed. We contend that

large-scale drug development programs such as that associated with Vioxx, should

monitor safety on a sequential basis as data accumulate, taking into account all

available data.

4.3.2 Analysis Results under Gaussian Data Models

With each model in (4.2), (4.3), (4.4) and (4.5), we conduct Bayesian computa-

tions and obtain the posterior drawings of the RR’s of CVT on the individual trial

level, study block level if relevant, and the aggregated level. The computation

is repeated by using different prior distribution for δ from the family of priors.

The posterior means and standard errors for the RR’s are listed in Table E.2 of

Appendix E. We summarize the results in Table 4.1. From the two tables, we can

observe: 1). the aggregated RR’s are similar under the same prior distribution

for each of the four models; 2). the aggregated RR’s differ significantly among

choices of priors; 3). the block level RR’s do not differ significantly between the
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block effect model and the random block effect model.

Table 4.1: Estimated relative risks using Gaussian data assumption under differ-
ent Bayesian graphical models and priors.

Aggregated-level RR
Family of Priors

Model Skeptical Cautious Reference Outrageous 10 Outrageous 1
Fixed Effect 0.33(0.10) 0.39(0.10) 0.37(0.11) 0.11(0.01) 0.30(0.10)

Random Effect 0.29(0.15) 0.40(0.14) 0.36(0.18) 0.05(0.07) 0.25(0.15)
Block Effect 0.30(0.14) 0.38(0.13) 0.35(0.15) 0.06(0.07) 0.26(0.13)

Random Block Effect 0.17(0.24) 0.42(0.23) 0.32(0.38) 0.02(0.07) 0.12(0.19)

Block-level RR
Family of Priors

Block Model Skeptical Cautious Reference Outrageous 10 Outrageous 1
RA Block Effect 0.31(0.24) 0.40(0.23) 0.37(0.25) 0.13(0.31) 0.28(0.24)

Random Block 0.25(0.45) 0.43(0.44) 0.36(0.50) 0.13(0.44) 0.21(0.44)
OA Block Effect 0.25(0.22) 0.33(0.21) 0.30(0.23) 0.03(0.24) 0.21(0.22)

Random Block 0.13(0.35) 0.25(0.35) 0.19(0.37) 0.03(0.33) 0.10(0.34)
ALZ Block Effect 0.34(0.13) 0.38(0.12) 0.37(0.13) 0.26(0.15) 0.32(0.13)

Random Block 0.25(0.31) 0.35(0.30) 0.31(0.32) 0.18(0.31) 0.23(0.31)

Table 4.2: DIC for the four models at different priors using Gaussian data model.

The Family of Priors
Model Skeptical Cautious Reference Outrageous 10 Outrageous 1

Fixed Effect Model 54.2 54.1 54.3 54.4 54.3
Block Effect Model 58.9 58.7 59.0 60.8 59.0

Random Effect Model 59.0 58.9 59.1 59.1 61.2
Random Block Model 64.3 64.4 64.6 64.4 64.3

Next we use DIC as a criteria to select a model from the four. The DIC is

computed with the complete data (when all the trial data are available) for the

four models under the five different priors. From Table 4.2, the simplest fixed

effect model has the smallest DIC value. This indicates that using Gaussian data

assumption, the more complicated models are not necessary while the fixed effect

model can effectively represent the data.

Last, focusing the fixed effect model, we look a closer look at the posterior

distributions of the aggregated RR δ. We first draw the box plots of the posterior

draws of RR’s in logarithm scale at various time points and prior distributions in
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Figure 4.3. We observe that 1). RR’s under reference, skeptical and outrageous1

prior display the upward trend in time; 2). RR’s under all priors are converging

to be positive (in logarithmic scale).
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Figure 4.3: Box plots for the posterior draws of δ using Gaussian data model.

Now using the posterior draws from the fixed effect model, we estimate the

probability of the (log)RR. Figure 4.4 shows the prior and posterior probability

that δ > δL under skeptical and cautious priors as well as three other priors.
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Figure 4.4: Sequential prior and posterior Pr(δ > δL) for all Vioxx placebo-
controlled trials under Gaussian fixed effect model.

We observe that in the middle of year 2000, some four years before Vioxx was

withdrawn from the market, the posterior probability that the relative risk was

greater than δL exceeded 50% under all priors except the “outrageous10” prior.

In our view, the two outrageous priors represent unreasonable prior beliefs in light

of the available evidence at the outset. A striking feature of this analysis is the

convergence toward Pr(δ > δL) = 1 under four of the five priors. This result is

similar to Cheng and Madigan (2009) which computed the posterior probabilities

every six months.

Figure 4.5 shows the posterior probability that δ > δU over time. Clearly

the data from the placebo-controlled trials provide minimal support for a value

of δ as large as 1.75. Again, while the different priors provide different posterior

estimates at the outset, they have largely converged by 2004.
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Figure 4.5: Sequential prior and posterior Pr(δ > δU) for all Vioxx placebo-
controlled trials under Gaussian fixed effect model.

4.3.3 Analysis Results under Poisson Data Models

Before we apply the Poisson data assumption, we check the overdispersion from

the data. With the available event count data, we estimate the mean and variance

under both Vioxx and placebo arms in the study blocks of RA, OA and ALZ in

Table 4.3. It appears that the event counts in the blocks of RA and OA follow

Poisson distribution well, while the ones in ALZ block do not. This indicates the

differences exit among blocks of studies and advocates the adoption of random

effect models.

Table 4.3: Overdispersion check for Poisson models.

Vioxx Placebo
Block sample mean sample variance sample mean sample variance
RA 0.031 0.035 0.015 0.014
OA 0.030 0.040 0.019 0.021
ALZ 0.046 0.427 0.034 0.145

Similar to Section 4.3.2, we conduct Bayesian computations and obtain the
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posterior estimates of the relative risks. To balance the numerical instability and

desirable non-informative prior distribution, we set λf = 0, σf = 100, α = 1, and

β = 0.01 in Models (4.6), (4.7), (4.8) and (4.9). So the mean and variance for

log λC are 0 and 100, those for (σC)2 (as well as (σT )2) are 100 and 100,00.

Table 4.4: Estimated relative risks using Poisson data models under different
Bayesian graphical models and priors.

Aggregated-level RR
Family of Priors

Model P1 P2 P3 P4 P5
Fixed Effect 0.33(0.10) 0.39(0.10) 0.37(0.11) 0.11(0.06) 0.30(0.10)

Random Effect 0.24(0.23) 0.49(0.24) 0.44(0.34) 0.02(0.08) 0.16(0.19)
Block Effect 0.10(0.31) 0.54(0.29) 0.50(0.76) 0.01(0.07) 0.06(0.22)

Random Block Effect 0.06(0.31) 0.56(0.33) 0.50(0.89) -0.00(0.07) 0.04(0.23)

Block-level RR
Family of Priors

Block Model Skeptical Cautious Reference Outrageous 10 Outrageous 1
RA Block Effect 0.70(0.75) 0.84(0.74) 0.93(0.78) 0.74(0.75) 0.81(0.73)

Random Block 0.72(1.01) 0.96(0.96) 0.99(1.08) 0.69(0.99) 0.66(0.98)
OA Block Effect 0.57(0.43) 0.64(0.42) 0.64(0.44) 0.58(0.43) 0.61(0.43)

Random Block 0.63(0.63) 0.77(0.64) 0.77(0.66) 0.66(0.64) 0.69(0.61)
ALZ Block Effect 0.38(0.15) 0.37(0.15) 0.38(0.15) 0.38(0.16) 0.37(0.15)

Random Block 0.19(0.69) 0.35(0.69) 0.34(0.77) 0.20(0.70) 0.20(0.71)

Table 4.5: DIC for the four models at different priors under Poisson models.

The Family of Priors
Model Skeptical Cautious Reference Outrageous 10 Outrageous 1

Fixed Effect Model 248.8 249.0 249.2 254.5 249.3
Block Effect Model 141.3 141.1 141.3 141.8 141.1

Random Effect Model 143.4 142.8 143.0 143.7 143.1
Random Effect with Block Model 141.7 141.8 141.8 141.7 141.8

The estimated relative risks at relevant levels from four models under families

of priors are listed in Table E.3 of Appendix E. The parameter of interest - RR

in logarithmic scale δ is log λT/λC as the top level note in the Bayesian Graphical

Models. We summarize the results in Table 4.4: 1). the aggregated RR’s are

similar for block effect and randomized block effect model, similar for fixed effect

model and random effect model; 2). RR’s differ significantly between models with
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blocks and one without blocks.

Next we want to select a best model from the four. The DIC is computed

with the complete data for the four models at different priors. From Table 4.5,

the block effect model is the best one. It also indicates that we are better off

to use model with blocks than the simple fixed effect model which now has the

biggest value in DIC.
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Figure 4.6: Box Plots for the log RR under Poisson data models.
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Now focusing on the block effect model, we draw the box plots for the posterior

draws of RR’s in logarithm scale at various time points and prior distributions in

Figure 4.6. The box plot shows that the (log) RR’s are above zero with reference

prior and cautious1 prior so that Vioxx is more like to incur CVT than placebo.

Comparing to the similar box plot in Figure 4.3 under Gaussian data model, the

RR’s under the two prior distributions do not have the upward trend quite as

obvious.

Lastly we use the MCMC draws from the block effect model and estimate the

probability of the (log)RR as in Section 4.3.2.
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Figure 4.7: Sequential prior and posterior Pr(δ > δL) for all Vioxx placebo-
controlled trials under Poisson block effect model.

Figure 4.7 shows the prior and posterior probability that δ > δL under all

priors using the Poisson block effect model. Compared to its counterpart using

the Gaussian fixed effect model in Figure 4.4, the posterior probabilities remain

relatively flat over the time. Consistent with Figure 4.6, the posterior probability

that the relative risk was greater than δL exceeded 50% under all priors except

the “outrageous10” prior after the middle of year 2000.
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Figure 4.8: Sequential prior and posterior Pr(δ > δU) for all Vioxx placebo-
controlled trials under Poisson block effect model.

Figure 4.8 shows the posterior probability that δ > δU over time under Poisson

block effect model. The model provides much stronger support for a value of δ as

large as 1.75 for cautious prior and reference prior than the Gaussian fixed effect

model.

4.4 Discussions and Conclusion

The Poisson data model approach selects a different model from the Gaussian

data model. It appears that the models with block configuration are superior.

To shed light on this, we separately estimate the Poisson rates under Vioxx arm

and placebo arm and plot the confidence interval for the rates in Figure 4.9.

From the plot, we observe that under both treatment arms and for all priors,

the (log) Poisson rates of ALZ-block differ from the ones of OA-block and APP -

block. This shows that block configuration is a complexity that is credible and

necessary under Poisson data model since we model data separately on the two
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treatment arms. On the other hand, the Gaussian data model only considers

the RR’s which are similar among the blocks. As a result, we do not need block

configuration in the model.
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Figure 4.9: Poisson rates under the Vioxx and placebo arm, and log relative risk
under Poisson block effect model.

In this chapter, we propose a general and flexible framework for Bayesian

sequential meta-analysis to aggregate multiple clinical trials. In practice, there

might exist other sources of information, such as subjects’ medical records, in-

surance claim information, prescriptions, etc. This framework can extend to ac-

commodate these kinds of data. With that, we expect more accurate result. On

the other hand, with huge amount of data, the sequential meta-analysis is ideally

carried out by updating the result with newly available data. We can adopt the

approach of particle filter (Ridgeway et al., 2002) to improve the computational

efficiency.
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Chapter 5

A Latent Model to Detect Overlapping Clusters

5.1 Introduction

The question of whether a spatial pattern is randomly distributed over space after

adjusting for a known inhomogeneity has been of interest in many applications

such as spatial cluster monitoring of a disease (Molinari et al., 2001; Demattei

et al., 2007), surveillance of biological terrorism (Wallenstein and Naus, 2004),

detection of unusal pattern clusters in DNA sequencing (Leung et al., 2005), etc.

A traditional statistical method to detect a cluster of events in spatial data is

via Scan Statistics (Glaz and Balakrishnan, 1999; Glaz et al., 2001; Balakrishnan

and Koutras, 2001; Fu and Lou, 2003). The most commonly used scan statistic is

the maximum number of cases in a fixed size moving window that scans through

the study area. The test based on this scan statistic has been shown to be a

generalized likelihood ratio test for a uniform null against a false alternative.

A related scan statistic is the diameter of the smallest window that contains a

fixed number of cases. Other scan statistics and related likelihood based tests

for localized temporal or spatial clustering have been developed, often using a

range of fixed window sizes or a range of fixed number of cases (Kulldorff and

Nagarwalla, 1995; Naus and Wallenstein, 2004; Dembo and Karlin, 1992; Su el

al., 2001).

In addition to classical statistical methods, Bayesian approaches that compute

posterior probabilities of potential clusters have also been proposed for cluster de-

tection problems. “Bayesian spatial scan statistic” is proposed for spatial cluster
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detection by Neill et al. (2006). This method uses a conjugate Gamma-Poisson

model instead of Poisson model for the model assumption. Compared with the

standard frequentist methods, this Bayesian method can not only incorporate

prior information about the size and shape of a cluster, but also the impact of

the cluster on the monitored data stream. However, just as with the standard

frequentist scan statistics methods, the potential spatial clusters are limited to a

finite set of specific choices.

Gangnon and Clayton (2001) developed a “weighted average likelihood ratio”

(WALR) statistic with a Bayesian interpretation. This statistic approximates

posterior probabilities of a cell being part of the cluster, and in turn helps locate

the cluster. Later they (Gangon and Clayton, 2004) further developed two other

scan type statistics: a “weighted average likelihood ratio scan” (WALRS) statistic

and a “penalized scan statistic”.

Some Bayesian methods are based on the “disease mapping framework”(Denison,

2001; Gangon and Clayton, 2000; Gangon and Clayton, 2003; Lawson, 1995)

Among them, the Bayesian approach proposed in Gangnon and Clayton (2000)

incorporates ideas from image analysis, Bayesian model averaging and model

selection. Starting with a saturated model with certain number of clusters, a ran-

domized model search algorithm similar to backwards elimination is proposed by

repeatedly merging adjacent components to produce models with high posterior

densities.

The above Bayesian methods can both allow for multiple cluster detection and

produce estimates for disease rates. However, the potential spatial clusters are

limited to the cell divisions. In addition, disease rates are estimated conditional

on the estimated clusters. Such conditional estimation may not accurately reflect

the uncertainty about the composition of the cluster. Meanwhile, the choice of

priors is always challenging.

Although scan statistics procedures have been successful in detecting a single
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cluster as well as multiple clusters of fixed size, problems arise for detecting mul-

tiple clusters of varying sizes. In recent years, there have been several attempts

to overcome the difficulty. A well known approach is a stepwise regression model

together with model selection procedures to locate and determine the number of

unusually high clustering regions (Demattei et al., 2006; Demattei et al., 2007).

These approaches rely on a weighted least square formulation, although the re-

sponse variable (gaps between incidents) is typically non-Gaussian. Recently, Xie,

Sun and Naus (2009) developed a latent cluster model for temporal data which

allows the use of the standard likelihood inference for detecting multiple clusters.

Sun (2008) extended the temporal cluster detection to spatial data and developed

a spatial cluster detection method to simultaneously detect multiple clusters of

varying sizes, as well as a significant single cluster. These approaches are based

on likelihood inference and they are more efficient in detecting clusters of varying

sizes than the weighted least squares approaches. Cheng and Xie (2009) used

the spatial latent modeling method (Sun, 2008) to design a robust surveillance

system based on a network of mobile sensors for detecting nuclear materials in a

metropolitan area.

The latent model approach (Sun, 2008) made an assumption that all the

clusters are non-overlapping. This assumption simplifies the theoretical formation

as well as its implementation. This chapter extends the approach to the case of

overlapping clusters. The rest of the chapter is organized as follows. Section 5.2

details the latent model allowing overlapping clusters. Section 5.3 applies the

methodology to nuclear detection in a metropolitan area using mobile sensor

network. Section 4.4 concludes the chapter with some discussions.
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5.2 Models and Methodology

We first assume that there are k clusters denoted by I1, ..., Ik in a given two

dimensional region, I = (0, X) × (0, Y ). The clusters are assumed to be circles

with centers at O = (o1, o2, ..., ok) where oj = (xj , yj)
T represents the coordinates

for the j-th cluster, radii r = (r1, r2, ..., rk)
T where rj is the radius for the j-th

cluster. The locations O and sizes of the clusters r are treated as latent random

variables. We assume that centers O follow a density function ψo(x) = ψo(x;λo)

and radii r a density function ψr(x) = ψr(x;λr) with a positive support. One

simple example for ψo(x) to use is a uniform distribution on I. The common

choice of ψr(x) is among a truncated exponential, an inverse Gamma or a log-

normal distributions. Here λo and λr are unknown parameters jointed denoted

by λ = (λo, λr).

For convenience, we introduce a random variable δ such that {δ = k} is the

event that k clusters occur in the region I. Since the probability Pλ(δ = k) is not

explicit, we can use Monte Carlo method to numerically approximate its value.

Given {δ = k}, the joint conditional likelihood function of (O, r) is

fλ(O, r|δ = k) =

∏k
j=1{ψo(oj)ψr(rj)}1{δ=k}

Pλ(δ = k)
(5.1)

5.2.1 Likelihood Function of Event Points

We assume now that at most two clusters overlap and the observations y=(y1,

y2,..., yn) are independent identically distributed (iid) samples from a piecewise



65

uniform density function fθ(ξ|O, r, k) defined as:

fθ(ξ|O, r, k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1/c, if ξ ∈ I1 and η /∈ ⋃
j′ �=1 Ij′

. . . . . .

αk/c, if ξ ∈ Ik and η /∈ ⋃
j′ �=k Ij′

g2(α1, α2)/c, if ξ ∈ I1 ∩ I2;

. . . . . .

g2(αk−1, αk)/c, if ξ ∈ Ik−1 ∩ Ik;

1/c, if ξ /∈ ⋃k
j=1 Ij

(5.2)

where θ = (αT , λT )′ is the collection of all parameters, including parameters

α = (α1, . . . , αk)
′ which are densities inside clusters relative to non-cluster area

(or background), and parameters λ = (λO, λr)
′ that are associated with random

vectors oj’s and variables rj’s. g2(.) is the function for aggregating the densities

from the two clusters. Different application scenario determines the function g2.

When event counts are additive from the two clusters, we can have g2(αi, αj) =

αi +αj . In the case where events occur when a certain threshold is exceeded from

the two clusters, we can have g2(αi, αj) = max(αi, αj) for all i �= j. In this study,

we assume g2 is unknown and treat g2(αi, αj) as an additional parameter for the

(i, j) pair in θ to be estimated.

Using function A(.) for the area of a region, we can express the normalizing

constant c as:

c = A(∩k
j=1I

c
j ) +

k∑
j=1

αjA(Ij ∩ (
⋃
j′ �=j

Ic
j′)) +

∑
j �=j′

g2(αj, αj′)A(Ij ∩ Ij′) (5.3)

In the special case of non-overlapping clusters, the third term in (5.3) disappears.

The conditional joint density function of the observations y = (y1,y2, ...,yn)′

given O, r and k is the product of the stepwise uniform density functions in ( 5.2)
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for the n event points:

fθ(y|O, r, k) = exp

{
k∑

j=1

Zjlogαj +
∑
j �=j′

Zj,j′log[g2(αj, αj′)] − nlog(c)

}
(5.4)

where Zj is the number of points in y that lie only in the region Ij , Zi,j is the

number of points in y that lie in the intersection of Ij and Ij′:

Zj = Zj(y,O, r, k) =
n∑

i=1

1{yi∈Ij∩(
⋃

j′ �=j Ic
j′ )} (5.5)

Zj,j′ = Zj,j′(y,O, r, k) =

n∑
i=1

1{yi∈Ij∩Ij′} (5.6)

We treat (y,O, r) as complete responses and y as observed response. The joint

likelihood of the complete data is

fθ(y,O, r, k) = fθ(y|O, r, k)fθ(O, r|k)Pλ(δ = k)

=

∏
j �=j′[g2(αj, αj′)]

Zj,j′ (y,O,r)

[c(y,O, r, θ)]n

k∏
j=1

{αZj(y,O,r)
j ϕλo(oj)ϕλr(rj)}1{δ=k}

5.2.2 Monte-Carlo EM Algorithm for Model Estimation

When the observations are available, we want to determine whether there are any

significant clusters and also detect the locations of the potential clusters. For the

first problem, we can test a hypothesis H0: α1 = α2 = ... = 1 versus H1: at least

one αj �= 1. The estimation of the model parameters θ solves the second problem.

For both tasks, we need to calculate and maximize the observed likelihood from

the standard likelihood inference procedures:

fθ(y, k)=

∫
...

∫
fθ(y,O, r, δ = k)dOdr (5.7)

The integration is difficult to compute directly. To solve the problem, we use

an Expectation-Maximization (EM) algorithm (Dempster et al., 1977) where we

treat (y, δ = k) as the observed variables:

Step 0. Select a set of starting parameter values θ(0).
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Step 1. (E-step). For s = 0, 1, 2, . . ., calculate the conditional expectation

of the complete log-likelihood function, given the observed and θ = θ(s):

Q(θ|θ(s)) = Q1(α|θ(s)) +Q2(λ|θ(s)) where

Q1(α|θ(s)) =
k∑

j=1

E(Zj|y, k, θ(s)) logαj +
∑
j �=j′

E(Zj,j′|y, k, θ(s)) log g2(αj, αj′)

− nE[log(c)|y, k, θ(s)]

Q2(λ|θ(s)) =
k∑

j=1

E{logψo(oj)|y, k, θ(s)} +
k∑

j=1

E{logψr(rj)|y, k, θ(s)}

Step 2 (M-step). For s = 0, 1, 2, . . ., update the parameter estimates: θ(s+1) =

(α(s+1), λ(s+1))′, by maximizing theQ1(α|θ(s)) andQ2(λ|θ(s)) functions: α(s+1) =

argmaxQ1(α|θ(s)) and λ(s+1) = argmaxQ2(λ|θ(s)).

Step 3. Repeat Steps 2 and 3 until ‖θ(s+1) − θ(s)‖ is very small.

In the E-step of the EM algorithm, we need to calculate the conditional ex-

pectations in terms of the conditional likelihood of the unobserved data given

the observed: fθ(O, r|y, k). Since Pλ(δ = k) does not have an explicit form, we

approximate the expectations by the Monte Carlo simulation, which relies on the

random draws of the multiple clusters based on the observed events points. We

turn to Gibbs sampling scheme to generate clusters one at a time based on the

fully conditional likelihood of (oj, rj):

fθ((oj, rj) | (ol, rl), l = 1, 2.., k, l �= j,y, k) ∝ fθ(O, r,y, k)

∝
∏

j �=j′[g2(αj, αj′)]
Zj,j′ (y,O,r)

[c(y,O, r, θ)]n
α

Zj(y,O,r)
j ϕλo(oj)ϕλr(rj)1{δ=k} (5.8)

which is impossible for direct simulations. Nevertheless, it is straightforward to

simulate a (oj, rj) from ϕλo(oj)ϕλr(rj). Therefore we use an importance sampling

method to get around the problem with the weights computed from (5.8).

Suppose O∗ = (o∗
1, . . . , o

∗
k) and r∗ = (r∗1, . . . , r

∗
k)

′ are a set of Gibbs samples

from f(O, r|y, k, θ(s)). They are generated by cycling through simulations from
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the fully conditional distributions of Aj given the rest of o’s and r’s many times

until the Gibbs sampling chain is ”burn-in”. Repeat the process a large num-

ber of times to get M sets of Gibbs samples. The five conditional expectations

in the E-step of the EM-algorithm can be evaluated by 1
M

∑
∗ Z

∗
j , 1

M

∑
∗ Z

∗
j,j′,

1
M

∑
∗ log c∗, 1

M

∑
∗ log{ψ(o∗

j)}, and 1
M

∑
∗ log{ψ(r∗j )}, respectively, where,

∑
∗ is

the summation over M sets of Gibbs samples O∗ and r∗. Z∗
j , Z∗

j,j′ and c∗ are

computed with oj and rj values replaced by their corresponding Gibbs sample

values o∗
j and r∗j in each of the Gibbs sample sets. We list the pseudo code of the

EM algorithm in Appendix F.

5.2.3 Likelihood Inference for Tests Related to α’s

To test the significance of the estimated parameters, we use either the Wald tests

or a likelihood ratio test. Since the Wald test needs the estimation of the variance-

covariance matrix, it can be computationally unstable. Therefore we will use the

likelihood inference for the two sided tests related to α’s. According to likelihood

inference, the twice of the log likelihood ratio test statistic is

R = 2 log{maxH1∪H0 fθ(y, k)

maxH0 fθ(y, k)
} = 2 log{ max

H1∪H0

fθ(y, k)} − 2 log(
1

E
)n

= 2 log{fθ̂(y, k)} + 2 log(E)n

= 2 log

∫ ∫
fθ̂(y|O, r, k)fθ̂(O, r|k)dOdr + 2 logPλ̂(δ = k) + 2n log(E)

where θ̂ = (α̂, λ̂)T are MLEs estimated from the aforementioned EM algorithm

and E is the area of the study region I.

Suppose for a moment that we know how to simulate O∗∗ = (o∗∗
1 , . . . , o

∗∗
k+1)

and r∗∗ = (r∗∗1 , . . . , r
∗∗
k ) from f(O, r|k) when θ = θ̂, and we have M sets of such

simulated O∗∗ and r∗∗ samples. By Monte-Carlo approximation, the test statistic

R can be approximated by

R∗∗ = 2

[
log{ 1

M

∑
∗∗
f(y|O∗∗, r∗∗, k)} + logPλ̂(δ = k) + n log(E)

]
,
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where
∑

∗∗ is the summation over the M sets of O∗∗ and r∗∗ samples. Based on

the likelihood inference we know that R is asymptotically χ2 distributed with k∗

degrees of freedom, where k∗ is the number of parameters to be estimated. So,

compare R∗∗ with the χ2
k distribution we can perform a formal test for H0 : α1 =

α2 = ... = αk∗ = 1 versus H1 : at least one αj �= 1.

We again use the Gibbs sampling approach to simulate O∗∗ = (o∗∗
1 , . . . , o

∗∗
k )

and r∗∗ = (r∗∗1 , . . . , r
∗∗
k ) from f(O, r|k) from any set of given parameter values θ.

Note that,

f((oj, rj)|(ol, rl), l = 1, 2, . . . , k, l �= j,y, k) ∝ ψo(oj)ψr(rj)1(δ=k)

Similar to the steps in Section 5.2.2, we can use importance sampling method to

simulate from the truncated distributions.

5.2.4 Identification of Cluster Regions

If a cluster is significant (i.e. αj �= 1), we often want to determine the cluster

region. Note that the jth cluster Aj is determined by the center oj and the

radius rj. Their conditional expectations given y and k (posterior means in the

context of Bayesian paradigm) are E{oj|y, k}|θ=θ̂ and E{rj |y, k}|θ=θ̂. The cluster

center oj and the radius rj can be simply estimated by 1
M

∑
∗ o∗

j and 1
M

∑
∗ r

∗
j

respectively. Here
∑

∗ is the summation over the M sets of Gibbs samples in the

last iteration of the EM algorithm.

An alternative approach is to use the medians of the M sets of o∗j and r∗j to

estimate oj and rj , respectively. Since the distribution may not be symmetric,

this median method may provide more accurate estimators.

5.2.5 Determination of the Unknown Number of Clusters

In previous sections, we assume that the number of clusters is known. It is rarely

true in reality. We now describe a model selection approach to determine the
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number of clusters from the observed data. We propose to use both AIC and BIC

criteria. The AIC criterion (Akaike, 1974) is a commonly used model selection

method developed based on the Kullback-Leibler information between the can-

didate models and the true model. Schwarz (1978) obtains the BIC procedure

by using Bayes estimators and a fixed penalty for choosing the wrong dimen-

sion. Both criteria minimize an expression that consists of a term that measures

model fit plus a term that penalizes model complexity. In our context, a direct

application of the AIC and BIC rules yields

AIC(k) = −2 log fθ(y, k) + 2k

= −2 log[

∫ ∫
fθ(y|O, r, k)fθ(O, r|k)dOdr] − 2 logPλ(δ = k) + 2k

and

BIC(k) = −2 log fθ(y, k) + k log(n)

= −2 log[

∫ ∫
fθ(y|O, r, k)fθ(O, r|k)dOdr] − 2 logPλ(δ = k) + k log(n)

Often n > e2 = 7.389, the BIC method places more penalty against a large

number of clusters than the AIC method.

The parameters θ are unknown. To compute the criteria, these parame-

ters should be replaced by their estimators θ̂ = θ̂(k) that are obtained by the

EM/MCMC algorithm proposed in the previous section. Furthermore, the for-

mula involves integrations that do not have explicit forms. We numerically

evaluate their values. From the previous section, we know how to simulate

O∗∗ = (o∗∗
1 , . . . , o

∗∗
k ) and r∗∗ = (r∗∗1 , . . . , r

∗∗
k ) from f(O, r|k) when θ = θ̂. By

Monte-Carlo approximation, the criterion AIC(k) can be approximated by

ÂIC(k) = −2 log
[ 1

M

∑
∗∗
f(y|O∗∗, r∗∗, k)

] − 2 logPλ̂(δ = k) + 2k, (5.9)

and BIC(k) criterion can be approximated by

B̂IC(k) = −2 log
{ 1

M

∑
∗∗
f(y|O∗∗, r∗∗, k)

} − 2 logPλ̂(δ = k) + k log(n), (5.10)
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where
∑

∗∗ are the summations over M sets of repeatedly simulated o∗∗’s and

r∗∗’s. The k to be chosen is in fact the one with the smallest corresponding

ÂIC(k) or B̂IC(k) value.

Denote K as a pre-selected set of k’s. We want this set small for computing

purpose but large enough to cover all potential choices of the correct number of

clusters. For each fixed k in K, we apply the EM/MCMC algorithm to obtain

the parameters estimates. We then use either AIC or BIC rule to determine the

optimal number of clusters. For the chose k, we can determine the cluster regions.

5.2.6 Incorporate Background Information

Sometimes, the underlying sensors density or the radioactive background for the

study region is not uniform. We need to incorporate this information into the

clustering procedure. Let the function B() denote the background density infor-

mation. The piecewise density function (5.2) is modified as

fθ(ξ|O, r, k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1B(ξ)
c∗ , if ξ ∈ I1 and ξ /∈ ⋃

j′ �=1 Ij′;

. . . . . .

αkB(ξ)
c∗ , if ξ ∈ Ik and ξ /∈ ⋃

j′ �=k Ij′;

g2(α1,α2)B(ξ)
c∗ , if ξ ∈ I1 ∩ I2;

. . . . . .

g2(αk−1,αk)B(ξ)

c∗ , if ξ ∈ Ik−1 ∩ Ik;
B(ξ)
c∗ , if ξ /∈ ⋃k

j=1 Ij

(5.11)

where c∗ is the modified normalizing constant

c∗ =

∫ ∫
∩k

j=1Ic
j

B(ξ)dξ +
k∑

j=1

αj

∫ ∫
Ij∩(

⋃
j′ �=j Ic

j′ )
B(ξ)dξ +

∑
j �=j′

g2(αj , αj′)

∫ ∫
Ij∩Ij′

B(ξ)dξ

This model reduces to Equation (5.2) when B(ξ) ∝ 1, or uniform background.

The steps for cluster detection using this model are similar to these with (5.2).
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5.3 Application to Nuclear Detection

Threats to national security have become more dynamic and complex in the past

decade due to global terrorism, increased opposition to U.S. interests, greater

pursuit of nuclear power and expanded access by adversaries to sophisticated

technologies and materials. Among all the threats, nuclear attacks are arguably

the most devastating. They can cause severe losses and casualties in human lives

as well as long term and large scale damage to infrastructure. As the result, there

have been growing concerns regarding the prospect of transporting, storing and

detonating nuclear materials or dirty bombs in the populous metropolitan areas.

Thus it becomes increasingly vital to have sophisticated nuclear detection sys-

tems deployed in major cities. Proactive monitoring and detection via pervasive

surveillance is crucial to detect and thwart the malicious attacks (Carpenter et

al., 2010). To help achieve this goal, we propose a mobile sensor network and use

the latent model approach to detect nuclear sources in a metropolitan area.

5.3.1 Mobile Sensor Network

A surveillance network of mobile sensors has the prototype designs as follows:

• Nuclear sensors and Global Position System (GPS) tracking devices are

installed on a large number of vehicles such as taxicabs, police vehicles, fire

trucks, and buses.

• The sensors and GPS devices constantly send detection and location infor-

mation to a central command center. These signals are marked onto a map

of a metropolitan area under surveillance.

• Real time analysis is performed at the command center using sophisticated

statistical algorithms including the latent modeling method to detect and

pinpoint nuclear sources.
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In such a network, when vehicles with sensors move within a certain range of a

nuclear source, the radiation energy from the source will trigger the sensor devices

to send out wireless signals to a central command center along with the positions

of the sensors. The random movement and extensive coverage of the vehicles

provide a constant surveillance of nuclear materials. With large quantities, the

mobile sensors do not need to be of high accuracy, since the failure of a small

portion of them will not significantly affect the effectiveness of the surveillance

coverage due to sensors’ random movements. Moreover, it is almost impossible

to tamper with such a network of devices.

Due to many attractive characteristics of sensor networks, there have been

many studies and applications of the sensor networks in military and civil ap-

plications including surveillance, smart homes, remote environment monitoring.

See Akyildize et al. (2002a, b) for a recent survey. Much of the research devotes

to sensor placement, sensor reorganization and communications. In the area of

radiation detection, the idea of using massive mobile sensors has been adopted

and tested by the Radiation Laboratory at Purdue University (Purdue, 2008).

They use a network of cell phones with GPS capabilities to detect and track radi-

ation. The noise and false positive detection problems are tackled by setting and

tuning the solid state devices. A multi-sensor nuclear threat detection problem

was studied in Hochbaum (2008) using a combinatorial network flow algorithm.

Since the sensor signals are not 100% accurate, there are always false alarms

or missed detections. For example, a sensor might display positive readings when

there is no such signal, or fail to detect a real signal nearby. In this study we

consider probabilistic models for sensor reading and source detection. These

models are generalized to include multiple sources with different aggregation rules.
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5.3.2 Models for Nuclear Intensity, Sensor Reading and

Detection

We consider a nuclear source in this chapter as a portable nuclear device trans-

ported by an individual via trucks or bags (FEMA, 2008). As the nuclear radiation

starts from a source, the total energy stays as a constant due to the Conserva-

tion Law of Energy. For simplicity, we assume that radiation travels in spherical

waves. Let z(r) denote the intensity at distance r. The total energy remaining a

constant for all r is 4πr2z(r), where 4πr2 is the surface area of the sphere with

radius r. As the radius increases by a factor of k, the surface area of the sphere

will increase by a factor of k2. As a result, the radiation intensity z decreases

by the inverse square of the distance r: z(r) = c/r2, where the constant c is a

factor related to the total energy of the source (Wein, 2006). Since the nuclear

detection device is triggered by radiation intensity, getting closer to the nuclear

source will better the chance for detection. The ubiquitous nature of the mobile

sensor network takes advantage of this property.

Let S denote the status of the sensor’s reading with the value of 1 for a positive

reading and 0 otherwise. We describe S with a threshold model:

S = 1{z(r)≥d} = 1{c/r2≥d} (5.12)

where d is a threshold for detection and 1{.} is the indicator function. That is,

if the intensity z(r) at the sensor location is greater than the threshold d, the

sensor will detect the source; otherwise the sensor reports a negative reading.

In practice there might be multiple nuclear sources, whose energy levels and

positions will jointly determine the reading status of a sensor. In this chapter,

we use a generic approach without assumptions about the nature of the different

sources and how the sensors are activated. In some situations we can have simple

forms for the detection model. Let Ω be the number of sources, cω be energy factor

of the ωth source, rω be the distance from the sensor to this source. When each



75

source has different energy spectrum, they can activate a sensor independently as

long as the energy threshold is exceeded. Now the threshold model is

S = 1{maxω∈{1,..Ω}zω≥d} = 1{maxω∈{1,..Ω}cω/r2
ω≥d} (5.13)

In the other case where the energies from the sources are within same spectrum

of frequencies, the aggregation of intensities from all sources at the senor location

is: ztotal =
∑Ω

ω=1 cω/r
2
ω. From the threshold model (5.12), the reading S can be

determined by:

S = 1{ztotal≥d} = 1{∑Ω
ω=1 cω/r2

ω≥d} (5.14)

As with any detection device, a nuclear sensor may not be 100% accurate. The

sensor errors can be from the variability in the manufacturing process, routine

wear and tear, missing scheduled maintenance and calibrations, and undetected

malfunctions. In addition, random traces of weak environmental nuclear signals

can also trigger false alerts. For example, a person who just went through a ra-

dioactive therapy or a bag of cat litter can set off alarms. We regard such sources

as trivial ones as they are weak and last a short period of time. Furthermore the

wireless signals from the mobile sensor to the control center may incur transmis-

sion errors. We use the two parameters sensitivity and specificity to assess the

average performance of a sensor device. In the context of nuclear detection, sen-

sitivity, denoted as η, presents the probability of detecting nuclear sources where

there are indeed such materials. Specificity, denoted as ζ , is the probability of

not detecting any nuclear materials where there in fact do not exist any. Let D

be the binary indicator of a sensor detecting a true nuclear source, D equal to 1

for the positive detection and 0 otherwise. We have η = P (D = 1|S = 1) and

ζ = P (D = 0|S = 0).

The quality control characteristics of a sensor, false negative rate (FNR) and

false positive rate (FPR), can be expressed in η and ζ as: FNR = P (D = 0|S =

1) = 1 − η and FPR = P (D = 1|S = 0) = 1 − ζ . Then the probability of
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detecting a nuclear source is:

P (D = 1) = P (D = 1|S = 1)P (S = 1) + P (D = 1|S = 0)P (S = 0)

= (1 − ζ) + (ζ + η − 1)P (S = 1). (5.15)

Under the perfect scenario where both η and ζ are 1, the detection D is the same

as the reading S.

The above models are related to the cluster detection problem in statistics.

The threshold model (5.12) can be expressed as S = 1{A}, where A = {r ≤
(c/d)1/2} is a sphere, or a circle on a 2-dimensional map, centered at the nuclear

source and with radius R = (c/d)1/2. The ratio of the probabilities of a positive

reading inside and outside the set A is P (D = 1|A)/P (D = 1|Ā) = P (D = 1|S =

1)/P (D = 1|S = 0) = η/(1 − ζ). In the case when both FNR and FPR are less

than 25%, for instance, we have the ratio greater than 3. That is, the sensor

is 3 times more likely to report a positive signal (D = 1) inside A than inside

Ā with moderate accuracy. This type of statement matches the definition of a

spatial cluster in the statistical literature, in which the clusters are defined as

areas within which an incident of interest is more likely to happen (i.e., with a

higher probability of happening per squared unit) than outside these areas. In

our setting, an incident of interest is an alert signal with D = 1.

5.3.3 Simulation of a Mobile Sensor Network

A street grid based simulation tool was developed in Center for Discrete Math-

ematics and Theoretical Computer Science (DIMACS) at Rutgers University to

study the traffic patterns in a metropolitan area. The tool supports multiple

turnable parameters such as the numbers of streets in either horizontal or verti-

cal direction, the size of street blocks, several types of vehicles and their numbers,

etc. A snapshot of the simulation tool is in Figure (5.1).

We use the simulation tool in this chapter to obtain the random positions of
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Figure 5.1: Snapshot of the simulation tool

vehicles installed with nuclear detectors. The models in Section 5.3.2 determine a

probability of detection for each sensor. With it, we can simulate the positions of

the sensors which might indicate an existence of true nuclear source. Because of

the random errors, we apply the latent modeling approach to detect the sources

with statistical significance. We declare a correct detection if the clusters are

statistically significant and cover the true locations of the nuclear sources.

5.3.4 Power of Detecting Overlapping Clusters

The usefulness of a mobile sensor network is to effectively detect a nuclear source.

Detection power is a measurement of such ability under a set of network design

parameters such as the number, qualities and detection range of sensors. Using

simulations, the power is defined as the ratio of detecting the true clusters over
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the total number of simulations. In this section we conduct simulation studies

to demonstrate that the proposed network and method can effectively detect

multiple and overlapping nuclear sources.

We aim to design a mobile sensor network in an area with similar size of

Downtown Manhattan. The study region is set henceforth to an area of 25×25

blocks. Each block is a 20 by 20 square with one unit representing 10 feet in real

distance. Since total number of taxi cabs in the New York City is about 13,000,

it is reasonable to assume that there are 1,500 to 2,000 cabs operating during the

rush hours in the busy downtown area.

The set of the network parameters is selected as: sensor detection range of

200 feet (the same size of a block), error rates of (5%, 5%)(false positive rate

and false negative rate), number of taxi cabs of 1,500. We set two sources with

various distances resulting in overlapping clusters, close-by but non-overlapping

clusters, and far-away clusters. In each case, the two sources jointly activate

sensors from the threshold model (5.14) where we set c1 = c2 = 20, d = 1. We

repeat 500 simulations and compute how many times (in percentage) the proposed

algorithm can correctly detect a randomly placed nuclear source as an estimate

of the statical power of detection P (D = 1|S = 1).

We use set o1 and o2 for the centers, r1 and r2 for the radii for the two sources.

Let xi and ri be the center and radius for the i-th cluster (i=1,2). The detection

is correct if the two clusters are significant from LRT test and the sources are

inside the clusters, i.e., di = ||xi − oi|| ≤ ri for i=1 and 2. When the LRT test

result is significant and one of the two sources is insides the clusters, we declare

that one single source is detected.

With each set of event points, we use the overlapping, non-overlapping with

preset K = 2, and non-overlapping with preset K = 1 algorithms to detect the

true clusters. For each set of two true clusters, we calculated powers for covering

both of the sources and either one of the two sources. We then use four empirical
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measures to assess the accuracy of the estimated clusters’ locations: sensitivity,

specificity, positive predictive value (PPV), and negative predictive value (NPV).

Sensitivity is the proportion of the event points inside the true clusters, that are

inside the estimated clusters. Specificity is the proportion of the event points

outside the true clusters, that are outside the estimated clusters. PPV is the

proportion of the event points inside the estimated clusters, that are inside the

true clusters. NPV is the proportion of the event points outside the estimated

clusters, that are outside the true clusters. The closer these measures are to one,

the more accurate the estimated clusters are.

Table 5.1: Powers and empirical measures to assess the accuracy of the clusters’
locations.

Overlapping Non-overlapping
Case d/(r1+r2) preset k=2 preset k=1 preset k=2

1 0.2
Power (both) 98.8 % 98.0 % 7.8 %

Power (only 1) 0.6% 0.0 % 82.8 %
Sensitivity 0.982 (0.051) 0.993 (0.040) 0.742 (0.211)
Specificity 0.942 (0.028) 0.937 (0.032) 0.965 (0.026)

PPV 0.666 (0.138) 0.653 (0.141) 0.726 (0.175)
NPV 0.998 (0.005) 0.999 (0.003) 0.972 (0.021)

2 0.7
Power (both) 99.2 % 98.6 % 36.6 %

Power (only 1) 0.1 % 1.0 % 60.8%
Sensitivity 0.977 (0.070) 0.995 (0.049) 0.849 (0.166)
Specificity 0.905 (0.034) 0.886 (0.037) 0.929 (0.035)

PPV 0.535 (0.130) 0.494 (0.120) 0.580 (0.156)
NPV 0.997 (0.007) 1.000 (0.003) 0.983 (0.019)

3 1.4
Power (both) 86.8 % 82.8 % 79.2 %

Power (only 1) 13.0 % 17.0 % 12.6 %
Sensitivity 0.896 (0.132) 0.916 (0.111) 0.854 (0.182)
Specificity 0.936 (0.022) 0.917 (0.027 ) 0.941 (0.024)

PPV 0.674 (0.087 0.656 (0.077) 0.714 (0.089) )
NPV 0.961 (0.024) 0.987 (0.016) 0.978 (0.027)

4 2.5
Power (both) 32.2 % 0.4 % 82.8 %

Power (only 1) 65.4 % 96.0 % 13.4 %
Sensitivity 0.624 (0.154) 0.553 (0.120) 0.905 (0.151)
Specificity 0.980 (0.028) 0.996 (0.010) 0.995 (0.008)

PPV 0.888 (0.120) 0.972 (0.057) 0.977 (0.039)
NPV 0.924 (0.032) 0.912 (0.027) 0.984 (0.022)

Table 5.1 summarizes the results of cluster detection and testing. When we

have overlapping clusters (Case 1 and 2), the overlapping algorithm achieves bet-

ter detection power than the non-overlapping one. The non-overlapping method
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can only detect the two true clusters as one (with preset K = 1). When the dis-

tance between the two clusters increases to a slightly non-overlapping case (Case

3), the non-overlapping with K = 2 increases its detection power dramatically,

while the overlapping method still has its advantage over the non-overlap with

K = 1 method. In the totally non-overlapping case (Case 4), overlapping method

is not doing as good as the non-overlapping K = 2 one which reflects the true

clusters’ configuration. The four empirical measures of the detection do not differ

much among the three algorithms in all cases.

In summary, this set of simulations show that overlapping algorithm perform

well when the true clusters indeed overlap with each other. When the true clusters

are far apart, non-overlapping code is the right method to use and can achieve

better detection power.

5.4 Discussions and Conclusions

We extend and generalize the modeling and inference framework of the latent

model approach (Sun, 2008) to accommodate cases of overlapping clusters. The

method is applied to a mobile sensor network with consistent and pervasive

surveillance for nuclear materials in major cities. Simulation studies suggest that

our method can achieve better detection powers than the original algorithm when

the true clusters overlap.

Even though we have made an assumption that at most two clusters overlap,

we can extend our method to the case of three or more clusters straightforward, at

least in theory. We expect the extension will be more computationally expensive.

Therefore it might not make practically sense to pursue this. Sun (2008) dealt

with spatial clusters with shape of ellipses. This is certainly more general than

the circle clusters that we have in this chapter. Our future research will use the

ellipse in the overlapping cluster detection.
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Chapter 6

Conclusions

We have discussed some non-standard missing data problems in clinical trials and

cluster detection in this thesis.

First, we used a model-base approach to handle non-ignorable drop-out in

longitudinal clinical trials. The sensitivity study was conducted to assess the

robustness of the inference to different assumptions of missing data mechanisms.

We provided insight to the dependence via a simulation study.

Second, we proposed a flexible Bayesian framework to manage non-compliance

coupled with non-ignorable drop-out in clinical trials. Adopting the Rubin Causal

Model, we calculated the complier average causal effect to better estimate the

treatment effect and reconciled different results from various models through

Bayesian model averaging perspective. In the future, we can further enhance

the efficiency of MCMCM methodology and Bayes factor algorithm. With that,

we can extend the framework to a longitudinal setting.

Third, we developed a Bayesian sequential meta-analysis framework. In rela-

tion to the first research topics to provide better and more accurate assessment

of a new treatment, this flexible framework aggregates results from all available

studies and updates the findings as new data becomes available. In practice, there

exist sources of information other than clinical trials, such as medical records, in-

surance claim and prescription information, we can extend this framework to

accommodate these different types of data. To handle the huge amount of data

computationally, we can adopt particle filter approach to sequentially accumulate
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results.

Last, we extended and generalized a latent model approach to overlapping

clusters. We applied this method to a mobile sensor network with consistent and

pervasive surveillance for nuclear materials in major cities. In the future, we can

further extend the approach to shapes more general than circles (such as ellipses)

for the clusters.
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Appendix A

Gibbs Simpler for CACE

We illustrate in details the MCMC steps to calculate CACE under Model 1 in

Chapter 3 (3.2.2). Under Bayesian context, the parameter set P contains both

model parameters Φ = {α1, β1, σ1, γ1, α0, β0, σ0, γ0} and missing data Dmiss =

{D1
miss, D

0
miss, Y

1
miss, Y

0
miss,M

1
miss,M

0
miss}. We use vectors for these variables. For

example, αv = {αv
1, α

v
2}, D1

miss = {D1
miss,i : i = 1, 2, ....ND1

miss
} where ND1

miss
is

the number of missing data in D1. Observed data Dobs is {Dv
obs, D

p
obs, Y

v
obs, Y

p
obs,

Mv
obs, M

p
obs}.

We use random-walk Metropolis-Hasting algorithm to generate samples from

target distribution π(x). Given the current state x(t),

• Generate y = x(t) + ε and ε is a random pertubation, for example, ε ∼
U [−0.1, 0.1] when y is a continuous varaible.

• Simulate u ∼ uniform[0, 1] and set

x(t+1) =

⎧⎨⎩ y if u ≤ π(y)

π(x(t))

x(t) otherwise

To get a Bayesian estimate of the CACE from (3.2), we need samples from

the posterior distribution of the missing variables in Dv, Dp, Y v and Y p through

MCMC. Gibbs sampling achieves this with the fully conditional posterior dis-

tribution of a parameter η given the rest of the paramters (denoted as P−η) and

data:

f(η|P−η,D
obs) = Cf(η,P−η,D

obs) = Cf(P,Dobs) (A.1)
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where the normalizing constant C is independent of η because

C =
1∫

f(P,Dobs)dη
(A.2)

Therefore C will cancel out in the Gibbs sampling procedure when we take the

ratio of the f(ηnew|P−η,D
obs) to f(ηcurrent|P−η,D

obs). As the result, we can use

the joint pdf of data and parameters as the target distribution π(x) instead of the

conditional distributions which depends on the parameter of interest. We further

write the joint pdf as:

f(P,Dobs) = f(Dobs,Dmiss,Φ) =
∏

f(Dobs
i ,Dmiss

i |Φ)f(Φ)

=
∏

f(D1
i , D

0
i , Y

1
i , Y

0
i ,M

1
i ,M

0
i |Φ)f(Φ) (A.3)

The Bayesian models for (D1
i , D

0
i , Y

1
i , Y

0
i ,M

1
i ,M

0
i ) determine the further factor-

ization. Under the Bayesian Network 1:

f(Dobs
i ,Dmiss

i |Φ) = f(D1
i |Φ)f(Y 1

i |D1
i ,Φ)f(M1

i |D1
i , Y

1
i ,Φ)

× f(D0
i |D1

i ,Φ)f(Y 0
i |D0

i , Y
1
i ,Φ)f(M0

i |D0
i , Y

0
i ,M

1
i ,Φ)

The prior distribution of Φ is

f(Φ) = fN (α1)fN(α0)fN(β1)fN(β0)fN(γ1)fN(γ0)fG(σ1)fG(σ0)

where each of the parameters from {α1, α0, β1, β0, γ1, γ0} takes a noninformative

prior of N(0, 104) denoted by fN(.), and σv, σp take Gamma(0.01, 100) denoted

by fG(.).

Initialize all the parameters in Φ and Dmiss. Iterate t=1,2.... update or retain

each element in Φ in the order of αv
1, α

v
2, β

v
1 , βv

2 , βv
3 , γ

v
1 , γ

v
2 , γ

v
3 , α

p
1, α

p
2, α

p
3, β

p
1 , β

p
2 ,

βp
3 , β

p
4 , γ

p
1 , γ

p
2 , γ

p
3 , γ

p
4 , σ

v, and σp. Denote the parameter to be µ. Denote Φ[t−1] to

be the parameter set taking values the previous iteration, and Φ
[t−1]
−µ to be subset

of Φ[t−1] less the element µ.

Then update or retain each element in Dmiss in the order of Dv
obs, Y

v
obs, M

v
obs,

Mp
obs, D

p
obs, and Y p

obs. Denote the variable to be Wi for i-th subject. To simplify
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notations, we denote the collection of (Dv
i , Y

v
i ,M

v
i , D

p
i , Y

p
i ,M

p
i ) for the subject to

be Di, and D
[t−1]
i to take the values from the previous iteration, and D

[t−1]
i,−Wi

to be

subset less the element of Wi. The Gibbs sampling steps are:

1. Generate µ[t] ∼ U [µ[t−1] −0.1, µ[t−1] +0.1] or W
[t]
j ∼ U [W

[t−1]
j −0.1,W

[t−1]
j +

0.1]. (The range of the uniform distribution is to be adjusted for better

sampling efficiency.)

2. Calculate ratio of the joint pdf in (A.3) given the current µ[t] or W
[t]
j plus

the rest of the original parameter/data set to the pdf given the previous

parameter/data set:

• For µ[t], the ratio r is:

r =

∏
i f(Di|µ[t],Φ

[t−1]
−µ )f(µ[t],Φ

[t−1]
−µ )∏

i f(Di|Φ[t−1])f(Φ[t−1])
(A.4)

Take αv
1 for example:

r =

∏
i f(Dv

i |(αv
1)

[t], (αv
2)

[t−1])fN ((αv
1)

[t])∏
i f(Dv

i |(αv
1)

[t−1], (αv
2)

[t−1])fN ((αv
1)

[t−1])
(A.5)

• For W
[t−1]
j ,the pdfs of the subjects other than j and the prior pdf for

the parameters cancel out in the ratio. The ratio r is:

r =
f(W

[t]
j ,D

[t−1]
j,−Wj

|Φ[t])

f(D
[t−1]
j |Φ[t])

(A.6)

3. Generate u ∼ U [0, 1]. If u ≥ r, reject the value of µ[t] or W
[t]
j and keep the

previous values as the current ones.

4. Now calculate CACEt for tth iteration from (3.2).

After discarding burn-in of first 1000 iteration, we can calculate the posterior

mean of CACE by averaging the remaining CACEt with t=1001, 1002.....
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Appendix B

Methods for Computing Bayes Factors

Discrete Random Variable Case

Heckerman (1996) summerizes methods of computing exact marginal likelihood

for discrete random variables. From multinomial sampling, the observed variable

X is discrete, having r possible states {x1, ..., xr}. The likelihood function is

p(X = xk|θ,M) = θk, k = 1, ..., r

where θ = {θ1, ..., θr} are the parameters subject to
∑r

k=1 θk = 1, M is for model

specification. The sufficient statistics for data D = {N1, ..., Nr} where Nk is the

number of times X = xk from data. Using the simple conjugate prior of the

Dirichlet distribution:

p(θ|M) = Dir(θ|α1, ..., αr) =
Γ(α)∏r

k=1 Γ(αk)

r∏
k=1

θαk−1
k

where α =
∑r

k=1 αk, and αk > 0. Let N =
∑r

k=1Nk. Then the marginal

likelihood p(D|M) is deduced as

p(D|M) =
Γ(α)

Γ(α+N)

r∏
k=1

Γ(αk +Nk)

Γ(αk)
(B.1)

Extending the above to n nodes indexed by i (i = 1, ..n), each of which has ri

possible states (or values), qi parent nodes indexed by j, the marginal likelihood

of the data is just the product of the marginal likelihood for each i− j pair from

(B.1):

p(D|M) =

n∏
i=1

qi∏
j=1

Γ(αij)

Γ(αij +Nij)

ri∏
k=1

Γ(αijk +Nijk)

Γ(αijk)
(B.2)
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We can use (B.2) to calculate Bayesian factor between two models which have

discrete reponses. We can use value of 1 for all αk (k=1,...,r) which responds to

a non-informative prior distribution.

For continuous response, we can first standardize the variable (substracting

mean, then dividing by standard deviation) and approximate the resulting vari-

able into a discrete one (e.g., a binary one using 0 as the dividing value).

Laplace Method for Continuous Response

The marginal likelihood under a model Mi (i=1,2) is:

[D|Mi] =

∫
[D,Φ|Mi]dΦ =

∫
[D|Φ,Mi][Φ|Mi]dΦ (B.3)

Usually the Bayes factor is intractable and thus must be computed by numerical

methods. Monte Carlo method is one of the choices and it straightforward since

we can easily obtain draws from [Φ|Mi] - the prior distribution of the parameter

set. However, in practice this approach is problematic. One reason is that when

sample sizes are moderate or large, the integrand becomes highly peaked around

its maximum and the mothod is not efficient as we will have difficulty finding the

region where the integrand mass accumulates. The second reason is that some

problems are of high dimension (i.e. there are 21 parameters in Graphical Model

1 in Section (3.2.2)).

Laplace’s method first maximizes the joint distribution [D,Φ|Mi] at its mode

Φm
Mi

. Use function h to denote the log of the integrand in (B.3) and expand it by

a Taylor series about Φm
Mi

.

[D|Mi] =

∫
exp[h(Φ|D,Mi)]dΦ

≈ exp[h(Φm
Mi
|D,Mi)]

∫
exp[1/2(Φ − Φm

Mi
)(−IMi

)(Φ − Φm
Mi

)]dΦ

= [D|Φm
Mi
,Mi][Φ

m
Mi
|Mi]

∫
exp[1/2(Φ − Φm

Mi
)(−IMi

)(Φ − Φm
Mi

)]dΦ

(B.4)
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Use Hessian matrix IMi
to denote −h′′

(Φ|D,Mi)|Φ=Φm
Mi

and substitute (B.4) into

(B.3):

[D|Mi] =

∫
exp[h(Φ|D,Mi)]dΦ

≈ exp[h(Φm
Mi
|D,Mi)]

∫
exp[1/2(Φ − Φm

Mi
)(−IMi

)(Φ − Φm
Mi

)]dΦ

= [D|Φm
Mi
,Mi][Φ

m
Mi
|Mi]

∫
exp[1/2(Φ − Φm

Mi
)(−IMi

)(Φ − Φm
Mi

)]dΦ

(B.5)

The integrand in (B.5) is proportional to an multivariate normal with AMi
as

a precision matrix. Assume the dimension of Φ is d. This leads to a Laplace

approximation of the marginal distribution:

[D|Mi] ≈ [D|Φm
Mi
,Mi][Φ

m
Mi
|Mi](2π)d/2|IMi

|−0.5 (B.6)

As the result, the ratio of the two marginal distributions or the Bayes factor is

[D|M2]

[D|M1]
≈ [D|Φm

M2
,M2][Φ

m
M2

|M2]|IM2|−0.5

[D|Φm
M1
,M1][Φ

m
M1

|M1]|IM1|−0.5
(B.7)

BIC Method for Continuous Response

An alternative is to adopt an approximation to the Bayes factor, the Bayesian

Information Criterion(BIC) is equal to logp(y|θ̂,M) − p
2
log(n). The first term is

the familiar probability of the data given the model, computed at the value θ̂

that maixmizes this probability. The second term promotes model parsimony by

penalizing models with increased model complexity (large p) and sample size.

Therefore the logorithm of the Bayes factor is

log
[D|M2]

[D|M1]
≈ log[D|Φm

M2
,M2] − log[D|Φm

M1
,M1] − log(n)(p2 − p1)/2 (B.8)
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Appendix C

Extension to Longitudinal Study for CACE

We extend Model 1 in Section 3.2.3 to a longitudinal setting in Figure C.1. The

subscript of each node denotes the time period. Each node at one time is assumed

to depend on its value of the previous period.

Figure C.1: Bayesian graphical model for a longitudinal trial setting.

We work out the conditional likelihood of each node as follows:

1. Dv
i,j - Bayesian Graphic Model: (Dv

i,j−1, X) −→ Dv
i,j

logit(P (Dv
i,0 = 1)) = αv

1,0 + αv
2,0HCi

logit(P (Dv
i,j = 1)) = αv

1,j + αv
2,jHCi + αv

3,jD
v
i,j−1 j ≥ 2 (C.1)

2. Dp
i,j - Bayesian Graphic Model: (Dp

i,j−1, X) −→ Dp
i,j

logit(P (Dp
i,0 = 1)) = αp

1,0 + αp
2,0HCi

logit(P (Dp
i,j = 1)) = αp

1,j + αp
2,jHCi + αp

3,jD
p
i,j−1 j ≥ 2 (C.2)
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3. Y v
i,j (SBP ) - Bayesian Graphic Model: (Dv

i,j, Y
v
i,j−1, X) −→ Y v

i,j

Y v
i,1 = βv

1,1 + βv
2,1HCi + βv

3,1 + βv
4,1D

v
i,1 + εvi,1

Y v
i,j = βv

1,j + βv
2,jHCi + βv

3,jj + βv
4,jD

v
i,j + βv

5,jY
v
i,j−1 + εvi,j , j ≥ 2(C.3)

where εvi,j ∼ N(0, σ2
v).

4. Y p
i,j (SBP ) - Bayesian Graphic Model: (Dp

i,j, Y
p
i,j−1, X) −→ Y p

i,j

Y p
i,1 = βp

1,1 + βp
2,1HCi + βp

3,1 + βp
4,1D

p
i,1 + εpi,1

Y p
i,j = βp

1,j + βp
2,jHCi + βp

3,jj + βp
4,jD

p
i,j + βp

5,jY
p
i,j−1 + εpi,j , j ≥ 2(C.4)

where εpi,j ∼ N(0, σ2
p).

5. Mv
i,j - Bayesian Graphic Model: (Dv

i,j, Y
v
i,j−1, Y

v
i,j,M

v
i,j−1, X) −→ Mv

i,j

logit(P (Mv
i,1 = 1)) = γv

1,1 + γv
2,1HCi + γv

3,1D
v
i,1 + δvY v

i,1

logit(P (Mv
i,j = 1)) = γv

1,j + γv
2,jHCi + γv

3,jD
v
i,j + γv

4,jM
v
i,j−1

+ δv
prevY

v
i,j−1 + δvY v

i,j j ≥ 2 (C.5)

6. Mp
i,j - Bayesian Graphic Model: (Dp

i,j, Y
p
i,j−1, Y

p
i,j,M

p
i,j−1, X) −→ Mp

i,j

logit(P (Mp
i,1 = 1)) = γp

1,1 + γp
2,1HCi + γp

3,1D
p
i,1 + δpY p

i,1

logit(P (Mp
i,j = 1)) = γp

1,j + γp
2,jHCi + γp

3,jD
p
i,j + γp

4,jM
p
i,j−1

+ δp
prevY

p
i,j−1 + δpY p

i,j j ≥ 2 (C.6)

The population Complier Average Causal Effect (CACE) at period j is

CACEj = Ei(Y
v
i,j − Y p

i,j|Dv
i,s = 1, Dp

i,s = 0, 1 ≤ s ≤ J) (C.7)

which is estimated by

ĈACEj =
1∑N

i=1

[∏J
s=1 D̂

v
i,s(1 − D̂p

i,s)
] N∑

i=1

[
(Ŷ v

i,j − Ŷ p
i,j)

J∏
s=1

D̂v
i,s(1 − D̂p

i,s)

]
(C.8)
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Appendix D

Posterior Distribution for δ in Random Effect

Model under Gaussian Data Model

In Section 4.2.3, we have random effect model using Gaussian data model:

ri|δi ∝ N(δi, σ
2
i ), σ2

i = 4/mi

δi|δ, τ 2 ∝ N(δ, τ 2) (D.1)

For illustration, assume there are three time periods (i = 1, 2, 3). At the end of

first time period, we observe r1. The joint posterior distribution of the parameters

(δ, δ1, δ2, δ3, τ
2) given r1 is:

[δ, δ1, δ2, δ3, τ
2|r1] ∝ [r1, δ, δ1, δ2, δ3, τ

2]

∝ [r1|δ, δ1, δ2, δ3, τ 2][δ, δ1, δ2, δ3, τ
2]

∝ [r1|δ1][δ1|δ, τ 2][δ2|δ, τ 2][δ3|δ, τ 2][δ, τ 2] (D.2)

Integrating δ2 and δ3 from the above, we obtain the joint posterior distribution

of (δ, δ1, τ
2) given r1 as:

[δ, δ1, τ
2|r1] ∝ [r1|δ1][δ1|δ, τ 2][δ, τ 2] (D.3)
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Joint posterior distribution for the hyper parameters δ and τ 2

Let δ̂1 = (δ/τ 2 + δ1/σ
2
1)/(1/τ

2 + σ2
1) and 1/V 2

1 = 1/τ 2 + 1/σ2
1, we can integrate

δ1 from ( D.3) directly to obtain:

[δ, τ 2|r1] ∝ [δ, τ 2]

∫
[r1|δ1][δ1|δ, τ 2]dδ1

∝ [δ, τ 2]

∫
e
− 1

2σ2
1
(r1−δ1)2 1

τ
e−

1
2τ2 (δ−δ1)2)dδ1

∝ [δ, τ 2]
1√

σ2
1 + τ 2

e
− 1

2(σ2
1+τ2)

(δ−r1)2
∫

1

V1
e
− 1

2V 2
1

(δ1−δ̂1)2

dδ1

∝ [δ|τ 2][τ 2]N(δ|r1, σ2
1 + τ 2) (D.4)

This is similar to (5.18) of Gelman at el. (2004).

Posterior distribution of δ given τ 2

Holding τ 2 constant and using the family of priors for δ|τ 2 ∝ N(δ0, σ
2
0), we obtain

the conditional posterior distribution of δ given τ 2 and r1 as:

[δ|τ 2, r1] ∝ N(δ|δ0, σ2
0)N(δ|r1, σ2

1 + τ 2)

∝ N(δ|δ̂ =
r1/(σ

2
1 + τ 2) + δ0/σ

2
0

1/(σ2
1 + τ 2) + 1/σ2

0

, σ2
δ =

1

1/(σ2
1 + τ 2) + 1/σ2

0

) (D.5)

Posterior distribution of τ 2

Similar to (5.21) of Gelman et al. (2004), we use (D.4) and (D.5) to get [τ 2|r1]
analytically:

[τ 2|r1] =
[δ, τ 2|r1]
[δ|τ 2, r1]

∝ [τ 2]N(δ|δ0, σ2
0)N(δ|r1, σ2

1 + τ 2)

N(δ|δ̂, σ2
δ )

(D.6)

∝ [τ 2]
σδ√
σ2

1 + τ 2
e
− 1

2σ2
0
(δ̂−δ0)2− 1

2(σ2
1
+τ2)

(δ̂−r1)2

(D.7)

Since [τ 2|r1] does not depend on the value of δ, we obtain (7) by substituting

δ = δ̂ in (6).
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Computation of Posterior Probability P (δ > c|r1) for some constant c

The steps are 1) drawing posterior samples from [δ, τ 2|r1]; 2) retaining only the

component of δ; 3) counting the proportion that the value is grater than c.

Starting with a flat prior for τ ,

• Use (7) to draw samples from [τ 2|r1] (rejection method or numerical inverse

CDF method).

• For each sample of τ , draw δ according to (5).

• repeat the above two steps to get a large number of samples of δ.
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Appendix E

Some Oversized Tables
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Appendix F

EM/Gibbs/Importance Sampling Steps

1. Select a starting point θ(0) = (α(0), λ(0))′.

2. for iteration s = 0, 1, 2..., do (EM Steps)

• 1).Generate k clusters (O, r)(s,0) from λ(s) to satisfy {δ = k}.

• 2). for i = 1, 2, ...I, do (I sets of Gibbs samples)

– Initialize (O, r)(s,i) by its previous version (O, r)(s,i−1).

– for j = 1, 2, ...., k, do (generate a set of clusters from (5.8))

∗ for l = 1, 2, ....L, do (importance sampling for jth cluster)

· a). Generate (oj, rj)
∗ from ϕ

λ
(s)
o

(oj)ϕλ
(s)
r

(rj). Replace the

jth cluster in (O, r)(s,i) and denote the new set as (O, r)∗:

((o1, r1)
(s,i), ..., (oj−1, rj−1)

(s,i)), (oj, rj)
∗, (oj+1, rj+1)

(s,i), ...,

(ok, rk)
(s,i)).

· b). Check if (O, r)∗ makes {δ = k}. If no, go back to a).

· c). Denote the generated cluster as (oj, rj)
[l]. Calculate

weight wl =
∏

j �=j′ [g2((αj )(s),(αj′ )(s))]
Z

j,j′ (y,(O,r)∗)

[c(y,(O,r)∗,(θ)(s))]n
(α

(s)
j )Zj(y,(O,r)∗).

end for (end loop l)

∗ Select one set from the L samples (oj, rj)
[1],....,(oj, rj)

[L] with

respective probabilites (p1, p2, ...pL) where pl = wl/
∑L

k=1wk.

Use this cluster to update the jth cluster in (O, r)(s,i).

end for (end loop j )

end for (end loop i)
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• 3).(E-step) Approximate the conditional expectationsQ(θ|θ(s)) = Q1(α|θ(s))+

Q2(λ|θ(s)) at the current θ(s) by Monte-Carlo simulation (after m burn-

ins): (Note: θ(s) is intrinsic in generating Gibbs samples (O, r)(s,i))).

Q1(α|θ(s)) ≈ 1

M −m

M∑
i=m+1

{
k∑

j=1

Zj(y, (O, r)
(s,i))logαj

+
∑
j �=j′

Zj,j′(y, (O, r)
(s,i))log[g2(αj , α

′
j)] − nlog[c(y, (O, r)(s,i), α)]}

Q2(λ|θ(s)) ≈ 1

M −m

M∑
i=m+1

k∑
j=1

{
log[ϕλo(oj)

(s,i) × ϕλr(rj)
(s,i)]

}
(F.1)

• 4). (M-step) maximize Q1 and Q2 to get θ(s+1).

3. end for if ‖θ(s+1) − θ(s)‖ is very small. Suppose the last step has S for the

index s, then the cluster (oj, rj) is estimated as

ôj = 1
M−m

∑M
i=m+1 oj

(S,i), r̂j = 1
M−m

∑M
i=m+1 r

(S,i)
j
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