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ABSTRACT

We present two new source extraction methods, based on Bayesian model selection and using the Bayesian in-
formation criterion. The first is a source detection filter, which is able to simultaneously detect point sources and es-
timate the image background. The second is an advanced photometry technique that measures the flux, position (to
subpixel accuracy), local background, and point-spread function. We apply the source detection filter to simulated
Herschel SPIRE data and demonstrate the filter’s ability to both detect point sources and simultaneously estimate the
image background. We use the photometry method to analyze a simple simulated image containing a source of un-
known flux, position, and point-spread function; we not only accurately measure these parameters but also determine
their uncertainties (using Markov chain Monte Carlo sampling). The method also characterizes the nature of the source
(distinguishing between a point source and an extended source). We demonstrate the effect of including additional prior
knowledge. Prior knowledge of the point-spread function increases the precision of the flux measurement, while prior
knowledge of the background has only a small impact. In the presence of higher noise levels, we show that prior po-
sitional knowledge (such as might arise from a strong detection in another wave band) allows us to accurately measure
the source flux even when the source is too faint to be detected directly. These methods are incorporated in SUSSEXtractor,
the source extraction pipeline for the forthcoming Akari Far-Infrared Surveyor all-sky survey. They are also implemented
in a stand-alone, beta-version tool that is freely available.

Subject headings: infrared: general — methods: data analysis — methods: statistical

1. INTRODUCTION

Source extraction is close to ubiquitous in modern observational
astrophysics. The ability to identify and accurately quantify objects
of interest in astronomical observations, in particular with reliable
automated methods, is becoming ever more important with the
advent of modern, large-area surveys. It is crucial that we are able
to ask precise, statistical questions of the data from these surveys.
Is there a source at a given location in the sky? Is it pointlike or
extended? And what set of parameters can define it? Any science
derived from the study of astronomical objects proceeds directly
from accurate source extraction.

In order to extract sources from astronomical data, we typically
face a number of challenges. First, there is instrumental noise. It is
often possible to measure this characteristic and use the infor-
mation to partially offset its effects. More problematic are any so-
called backgrounds to the observation. These can be due to
Galactic emission, cosmological backgrounds, faint-source con-
fusion, or even simply emission from parts of the telescope itself.
These are often much harder to account for and often constitute
an in-depth study in themselves. A prime example is the extrac-
tion of sources from cosmic microwave background (CMB) data
(see, e.g., Vielva et al. 2001). One may also have to contend with
systematic effects such as glitches that can be caused by cosmic-ray
hits on the detectors of space telescopes.

Because of these challenges and also because it is critical to ex-
act the utmost precision from our (often very expensive to gather)
data, we must strive to use all the available information when ex-
tracting sources. This means using not only all available data
samples but also accurate noise estimates, measurements of the
point-spread function, and any other prior knowledge we may have.

Over the years, a number of methods have been created in order
to use various sets of information to obtain “optimal” (subject to
certain sets of assumptions) source extraction methods. There are
many techniques based on the concept of filtering data to enhance
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relatively the signal due to objects with a certain set of character-
istics. Examples of these include the matched, scale-adaptive, and
wavelet filters (see, e.g., Vio et al. 2002; Barreiro et al. 2003;
Barnard et al. 2004; Lopez-Caniego et al. 2005). More recently,
Makovoz & Marleau (2005) have derived a filter of this type us-
ing the Bayesian formalism, thus allowing for the explicit inclu-
sion of prior knowledge.

Fitting of the point-spread function to image data has also
been used as a way of accurately determining the position and flux
of a (point) source (e.g., Scott et al. 2002). The model-fitting
methodology has been given a much more general grounding in
statistical theory by Hobson & McLachlan (2003), who have de-
tailed a very general (and powerful ) Bayesian framework for the
extraction of sources. Bayesian methodology has also been used
in the Poisson noise regime (e.g., Guglielmetti et al. 2004). There
are a number of publicly available source extraction packages,
which use a variety of the above methods (plus some other mea-
sures) in order to accurately extract sources. These include, for
example, DAOPHOT (Stetson 1987) and SExtractor (Bertin &
Arnouts 1996).

Perhaps the most flexible of these approaches is that of using
Bayesian statistics (see, e.g., Jaynes 2003; MacKay 2003), as it
allows one to ask very precise statistical questions of the data.
This framework is also highly general, allowing the inclusion
of all pertinent information. In this paper, we explore the use of
Bayesian statistics for source extraction. We present a pair of
new methods based on this formalism, one for simultaneous source
detection and background estimation and subtraction, and the other
for an advanced form of source photometry that also allows the
determination of the nature (pointlike, extended, etc.) of the
source.

The contents of this paper are therefore as follows: In § 2,
we present a general formalism for performing Bayesian source
extraction. We also detail two specific implementations. In
§ 3, we apply these methods to simulated data sets, in order to
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demonstrate their abilities. Finally, our conclusions are presented
in § 4.

2. METHODS

In this section, we present a general formalism for performing
Bayesian source extraction. We then apply this formalism to de-
rive two specific source extraction methods, with an eye to the
analysis of modern, large photometric astronomical surveys (al-
though their applicability is more general). For this reason, both
methods will address two-dimensional (i.e., photometric image)
data, although we note that the formalism extends to an arbitrary
number of data dimensions.

Classic source extraction methodology divides the overall task
into two distinct stages, source detection and source photometry.
While the Bayesian paradigm allows for the possibility ofa single,
combined approach, the nature of the data we are considering dic-
tates that we resist this. Modern photometric surveys are often
large enough that such a combined approach is likely to be com-
putationally prohibitive. The methods we present below retain the
two-stage approach, thereby proving computationally much quicker
to use.

We note that in the following subsections, we will assume
throughout that the noise on each image pixel is Gaussian, of
known variance, and uncorrelated from pixel to pixel. In addition,
when we are summing over pixels, we will always choose a subset
of the image pixels that are local to the center location we are
considering. A method for determining optimally such subsets is
given in § 2.4.

The assumption of Gaussian noise warrants some discussion.
In many real applications the noise distribution will naturally be
close to Gaussian, for example, when the dominant noise comes
from well-behaved instrumental noise. In other cases a Gaussian
distribution might be inappropriate, for example, in a context where
the data are strictly nonnegative. In some such cases a Poisson
distribution might provide a more natural description, when pho-
ton statistics dominates. However, if the photon numbers are suf-
ficiently high, then a Gaussian model is an adequate approximation
to the Poisson distribution. This condition arises often in astron-
omy, for example, when the sky background dominates. In the
case study we are considering, observations with Herschel, the
noise is dominated by the thermal background of the warm tele-
scope primary, and the Gaussian approximation is reasonable. It
would be possible to generalize the method to include non-Gaussian
noise distributions, including Poisson or lognormal distributions,
but that investigation is beyond the scope of this paper.

2.1. General Formalism

The essence of Bayesian data analysis is to create a reasonable
parameterized model of the data. These parameters can then be
constrained by the data themselves, along with any available prior
knowledge.

We begin with Bayes’ theorem,

P(D | 9,H)P(®,H)
P(D|H)

PO |D,H) = (1)

where P(6 | D, H) is the posterior probability of the model pa-
rameters (#), given the data D and a hypothesis H. The quantity
P(D | 0, H) is the likelihood of the data (henceforth referred to
as L, for simplicity) given a set of model parameters, P(, H) rep-
resents any prior knowledge we may have about the likely values
of the parameters, and P(D | H) is the Bayesian evidence. Bayes’
theorem provides the framework for our work.
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We start with the likelihood. If we are able to assess this, then
(after applying a prior), we will have the posterior probability
distribution, which is the result we require. Following the normal
route for uncorrelated, Gaussian noise, we have the following:

exen (1) .

¥ o)’ e

X = o
i=1 !
where d; is the value of the ith data pixel of the subset of image
pixels under consideration, m; is the corresponding value from a
(parameterized) model of the signal, and o; is the standard de-
viation of the (Gaussian) noise associated with that pixel.

Calculation of the likelihood function therefore depends on
the parameterized model of the signal that we are considering. In
this case, the model will contain a source (pointlike or extended).
It will also contain a representation of the astronomical and in-
strumental background, as well as possibly containing parameters
describing instrumental characteristics For example, if not well
defined by independent measurements, the point-spread function
could be parameterized and, hence, simultaneously measured by
the model-fitting procedure.

Once the likelihood has been constructed, any prior knowledge
that we have about the parameters can be included, in the form of
the prior probability (a density function spanning the same pa-
rameter space as the likelihood). This function might typically
include information such as prior knowledge of the positions of
sources, although it is perfectly acceptable to use an uninformative
flat prior (i.e., equal-valued at all points in parameter space) if one
has no relevant prior knowledge (we note that this is the implicit
assumption in maximum likelihood methods).

As the evidence is a constant, normalizing term, we now have
the (unnormalized) posterior distribution. We can map this dis-
tribution by calculating posterior values over a hypercube of
parameter-space points or by Markov chain Monte Carlo (MCMC)
sampling. The peak of this distribution is our most likely solution,
and (once normalized) the distribution as a whole provides the
statistical confidence regions.

The posterior probability distributions of individual parameters
can be obtained by marginalizing over the other parameters (see,
e.g., Sivia & Skilling 2006). This can be done in a number of ways.
If MCMC sampling has been used to map the posterior probability
distribution, then simply making a histogram of the samples using
the values of a single parameter automatically gives the correspond-
ing one-dimensional (1D) marginalized distribution (a well-known
and highly useful feature of sampling from the posterior). If one
were considering only a small number (three or fewer, say) of
parameters, then it might be feasible to calculate posterior values
over a hypercube of parameter points and then marginalize nu-
merically (although this is very much a brute-force approach). Or
one can assume a functional form for the posterior and perform
the marginalization analytically. One common choice for the func-
tional form is that of a multivariate Gaussian, which is often a
reasonable approximation to the posterior and is analytically trac-
table. It also has the advantage that it can be completely speci-
fied by a parameter covariance matrix evaluated at the maximum
a posteriori point.

The method yields a complete analysis, given a particular choice
of model. However, the question of selecting a good model still
remains. This can be addressed by the evidence, which provides
arelative measure of the probability of different models being the
best fit, given the data (see, e.g., Jaynes 2003).
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Bayesian evidence is typically time-consuming to calculate.
This makes analytic approximations desirable, in terms of prac-
ticality. In particular, the Bayesian information criterion (BIC;
Schwarz 1978) provides an easily calculated approximation to
the logarithm of the evidence:

BIC = —21In L ax + v In Nyaa, 4)

where £, 1s the maximum likelihood value for a given hypoth-
esis, v is the number of free parameters in the model, and Ngyy, is the
number of (approximately equally weighted) data used. When
comparing how likely different models are, lower BIC values
indicate a higher probability of the model being the correct one.

Using model selection criteria allows us to address the ques-
tion of which from a range of models is the best description of the
data, and to do so in a statistically rigorous way. This becomes
vital when one’s data contain millions of sources, some pointlike,
some extended (and with different morphologies), and some not
real at all but rather the product of contamination.

2.2. Implementation: Bayesian Source Detection Filter

The first implementation that we present of the above formal-
ism is a Bayesian source detection filter. Source detection is nec-
essary if one has observations of a region of sky but has no
explicit knowledge of the positions of sources in the image (the
case with many astronomical surveys). Our task is therefore to
analyze the entire image, identifying the positions where it is likely
that there is a source present.

One consideration that is often critical for such source detec-
tion is speed of analysis. Modern photometric surveys, in partic-
ular, often produce many large images, necessitating source
detection methods that are computationally quick to apply. With
this in mind, we derive an analytic Bayesian solution to determine
the relative probability (at each pixel position in an image) of the
data’s being best described by an empty sky or a point source
(with an unknown, uniform background in each case).

The two models we therefore consider are the following:

Empty sky, uniform background.—This model consists solely
of aflat, uniform background, described by a single parameter (the
level of the background).

Point source, uniform background.—This model builds on the
empty-sky model, adding a single point source centered at the
pixel currently being considered. The point source is modeled as
a circularly symmetric, two-dimensional (2D) Gaussian profile
of known FWHM. This model has two parameters: the background
level and the integrated flux of the source.

We will compare these models using BIC. This means (see
eq. [4]) that we only need to calculate the maximum posterior
value for each model. By doing this at each (fixed) pixel position,
we can therefore calculate a map of the relative evidence for point
sources across the image.

Because we are considering (for each pixel) a fixed position,
each model comprises a linear sum of fixed components. This
means that we can find analytic solutions in each case for the max-
imum likelihood values. Using the condition that the partial de-
rivatives of the likelihood must be zero at the maximum likelihood
solution, we can solve to find the following maximum likelihood
solutions for each model.

For the point-source model, we have the following description
of the model:

m; = FP; + B. (5)
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For the empty-sky model, we have the following simple description:

Here m; is the ith model pixel, F'is the source flux, P; is the (Gauss-
ian) point-spread function (normalized such that it integrates to
unity), and B is the uniform background.

From this, we find the following analytic maximum likelihood
solutions for F and B:

v3 — be ad — e
Fyource = a2 5 source — 5 5 7
aff — e aff — e )
Bempty = (S/ﬂ, (8)

where the calculated values used in the above equations are given
by the following (with all sums being performed over the image
pixels in a local region; see § 2.4 for a discussion of how to choose
this region):

2 ixels
P’ 1 P
_ i _ _ il
a = PR 6 - s V= 2 (9)
g; g; g;
i=1 i i=1 1 i=1 i
Npixels N, 1
dj pixels P[
=5 4 N T (10)
27 2
g gi

By then feeding the best-fit model back into equations (2) and
(3), we obtain the maximum likelihoods. We can therefore calcu-
late the relative BIC at each pixel position (note that we implicitly
use flat, uninformative priors in the preceding steps). The resulting
map is an estimate of the (logarithm of the) relative probability
of there being a point source, rather than empty sky, at any given
pixel position.

The local extrema of this map therefore give us the locations
where one model is (locally) most favored over the other. Con-
structing the map so that (by convention) high values correspond
to the point-source model’s being more likely, we can identify the
most likely source positions in the input image by identifying the
local maxima in the map, subject to some minimum threshold
value.

This method is closely modeled in some respects on traditional
filtering methods such as matched, scale-adaptive, and wavelet
filters. It does, however, have several key advantages.

1. Simultaneous background estimation, subtraction.—In real
astronomical data, background subtraction is a highly nontrivial
task. In particular, more traditional methods such as median fil-
tering are biased by the presence of sources. By performing the
subtraction simultaneously, we largely avoid this problem.

2. Proper accounting for flagged data and locally varying
noise.—Real astronomical images will typically have gaps due
to flagging and uneven scan strategies, as well as point-to-point
variations in noise levels. This approach allows us to properly ac-
count for these effects by including an individual statistical weight
(i.e., 1/0?) for each image pixel. Similarly, setting a given weight
to zero effectively flags out the corresponding datum (see eq. [3]).
This is mathematically well defined; the principal challenge in such
cases is in fact to estimate accurately the statistical weight (via the
standard deviation) for each image pixel, which will depend on
exactly how the image was created (e.g., if it is the sum of many
repeated observations, the multiple samples contributing to each
image pixel can be used to estimate the standard deviation).
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3. Extensibility—As it is based on a very flexible and general
formalism, this source detection filter can be straightforwardly mod-
ified to accommodate more complex and realistic data models.
For example, many data are subject to “glitches” (caused by
cosmic-ray hits on detectors). By including in this method a third
model of a single very high pixel value, it would be possible to
distinguish between a source and a glitch spike.

2.3. Implementation: Bayesian Source Photometry

Once a source has been detected, we wish to more completely
measure and characterize it. Considering only regions of the sky
in which there is likely to be a source means that we can afford to
devote substantially more computational effort to each candidate
position. This is the principal advantage of performing source ex-
traction in two distinct stages.

In this method, we again adopt the approach of fitting multiple
models to the local data (again using the fact that we are interested
in compact sources, to minimize the data we must consider). How-
ever, in this case we will use a more in-depth approach, allowing
more parameters to vary and mapping out the posterior probability
distribution in each case. The result will be more precise results (in
particular, subpixel positional accuracy) and the determination of
the errors on each parameter (without assumptions as to the form
of the error distributions).

We proceed again by defining a number of models that we will
fit to the data.

Empty sky, uniform background.—This model consists solely
ofaflat, uniform background, described by a single parameter (the
level of the background).

Point source, uniform background.—This model builds on the
empty-sky model, adding a single point source at a given (param-
eterized ) position (X, Y). The point source is modeled as a circularly
symmetric 2D Gaussian profile of known FWHM. This model has
four parameters: the background level, X- and Y-positions, and
the integrated flux of the source.

Extended source, uniform background.—This model is the
logical extension of the point-source model and is identical, with
the exception that the FWHM is now allowed to vary as a model
parameter (giving five in total ). This allows us either to account for
circularly symmetric extended sources or, alternatively, to measure
the FWHM of the point-spread function if this is not known.

We emphasize that there are many other models that can be use-
fully applied. Examples would be noncircular extended sources,
models in which the noise is unknown, and models in which there
are two or more adjacent (blended) sources.

For simplicity, we will again reply on the BIC for model com-
parison, although a full Bayesian evidence calculation could be
used (computational resources permitting). As before, the likelihood
functions are thus defined for any given set of parameter values of
the relevant model. Multiplying by the prior distribution for each
model, we have the posterior for each model, which is mapped us-
ing MCMC sampling (except for the empty-sky model, for which
we only require the analytic best-fit solution, unless a prior is
imposed).

The MCMC sampling returns the best-fit value for each model.
We use this to calculate BIC values and hence determine which
model is mostly likely to be the best representation of the data.
This characterizes the nature of the source in question.

Returning to the MCMC samples for the most likely model,
we have also mapped the posterior probability distribution for that
model. From this we can straightforwardly determine the confi-
dence intervals and best-fit values for all fitted parameters.
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The power of this method lies in its ability to ask precise, sta-
tistical questions as to the nature of a source and to recover the
theoretically optimal amount of pertinent information given the
data. The flexibility of the Bayesian framework means that we
are able to adapt this method, depending on the type of sources
(and data) that we are expecting. It is entirely realistic to deploy a
whole battery of models, fitting each one in turn and determining
which is the most likely representation.

2.4. Determining Optimal Data Subset Size

Because we are concerned with the extraction of compact
sources, the above analyses need only consider a small subset of
local data, for each source position. This region should be large
enough that we obtain good constraints on the source flux and
local background, but small enough that our assumption of a flat
background does not break down. Our definition of the size and
shape of this region will therefore have a direct impact on our
source extraction.

We choose to determine an optimal region size in terms of a
minimized BIC value (and hence maximized Bayesian evidence).
This will give us a data model that best describes our data (for the
types of models we are considering here). If we define the region
as circular, then we reduce this problem to an optimization (in
BIC) with respect to the radius of the region.

One complication is that for BIC comparisons to be valid, the
same data set must be considered in each case. This would plainly
not be true if we simply used the data inside the circular region of
interest. To avoid this problem, we also define a larger superregion
(also circular) and label the superregion image pixels that lie out-
side the region of interest as external pixels. We then redefine our
model as fitting the source and background to the region of in-
terest, as well as allowing additional free parameters for each of the
external pixels so that they are fitted exactly and do not contribute
to the x? of the model fit. Therefore, the external pixels will con-
tribute to the BIC solely as extra parameters, the number of which
will vary depending on the radius of the region of interest.

These nuisance parameters are not trivial to deal with, and we
emphasize that the above procedure makes the simplifying assump-
tion that the nuisance parameters can be fitted to the data with no
uncertainty, so that marginalization over them is not necessary.
In practice this is not true and would alter the BIC calculation
(via the maximum likelihood value).

This could be accounted for in the photometry method because
MCMC methods can straightforwardly include large numbers of
nuisance parameters, which can be marginalized over without ex-
tra effort. Doing so will incur a need for longer sampling chains to
be generated, to ensure adequate convergence.

One peculiarity of this procedure is that the BIC has a weak
dependence (going as the logarithm) on the radius of the super-
region (and hence the maximum possible region radius). While this
is clearly undesirable, the effect will be small for reasonable ranges
of radius.

The minimum sensible region radius will typically be dictated
by the FWHM of the point-spread function, with perhaps a radius
equal to the FWHM being a reasonable starting point. The max-
imum radius is less well defined, but a value of 4 or 5 times the
FWHM would seem intuitively reasonable, and our experiences
in this paper suggest that this is not unreasonable.

For the case offitting a single source (i.e., when we are apply-
ing source photometry), this process is unambiguous. In the case
of the source detection filter, where we may have many detected
sources (and that number may change as we optimize with radius),
we need to choose what metric we will optimize. In general, this
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Fig. 1.—The input flux image (/eff), a map of the background (middle; as estimated by the source detection filter), and a map of the residuals between input flux image and
background map (right; with matched gray scales). As can be seen, even the presence of very bright sources does not appreciably bias the background estimate from our
algorithm. We also note that by setting a threshold of 550 (unusually high, because of small-scale fluctuations in the diffuse background, which act as a source of correlated
noise), we are able to successfully detect 26 of the 33 sources (with three false detections). Simulated flux image courtesy of P. André, B. Sibthorpe, & T. Waskett.

choice will depend on the exact nature of both the data and the
science in question.

One simple approach (and the one that we have adopted here)
is to use an intermediate-radius case (say, twice the FWHM of the
point-spread function) as a starting point, identifying the sources
detected in this case. We then use as our metric the sum of BIC
values for the fits to these sources.

This procedure gives us a way of selecting an optimized de-
finition for a local region of the data. This optimizes the perfor-
mance of the source extraction algorithm but also means that the
user need not waste any time optimizing by trial and error.

2.5. Prior Knowledge

A strength of the Bayesian formalism is its explicit inclusion
of prior knowledge. In the case of source extraction, one typically
assumes that the noise characteristics and the point-spread func-
tion are known (although this need not be the case). One could
also assume prior knowledge about any of the fitted parameters;
for example, source position may have already been determined
in another observing band.

It is also possible to select priors on the basis of more general
knowledge. For example, if one is attempting to detect a population
of galaxies, it may be reasonable to assume a power-law distri-
bution for the source flux (e.g., from a model of the galaxy pop-
ulation). Even in the absence of such knowledge, one could still
choose the Jeffreys prior (a power law with index of —1), which
is the indifference prior for a positive-only scaling parameter.

The source flux is also of particular note, because it will typically
(although not always; e.g., the Sunyaev-Zel’dovich effect for gal-
axy clusters in CMB observations) be subject to the constraint of
being nonnegative. In this case, it is important to properly apply this
as a prior constraint. Because the above source photometry method
uses MCMC sampling, it is straightforward to quantify the as-
sumptions on the prior. In § 3.2, we show examples of this.

The source detection filter relies on analytic solutions in order
to yield a plausible speed of analysis. This makes the application
of non—top-hat priors more difficult, if convenient analytic solu-
tions are to be possible. The potential size of this topic takes it
beyond the scope of this paper, but we note that the exploration
of different priors represents a largely untapped area where source
detection methods could be improved.

3. RESULTS

In this section, we present example results from the two
methods detailed in the previous section. We highlight the speed

of analysis of these methods. Running on a desktop machine
(using two 2.4 GHz AMD Opteron 250 CPUs) and implemented
in IDL, the source detection filter processed 9 x 10* pixels s~
(a784 x 912 pixel image in 8 s), and the photometry method was
able to analyze one source every 9 s (producing 10> MCMC sam-
ples per model, per source). At this rate, for example, the whole
Akari all-sky survey could be source detection—filtered in 4 days
and 4 hours (assuming 40,000 deg? of coverage, with 8" x 8"
image pixels and four observing bands) using a single desktop
machine.

3.1. Bayesian Source Detection Filter

Figure 1 shows images from the analysis of a simulated Herschel
SPIRE (the Spectral and Photometric Imaging Receiver; see, e.g.,
Pilbratt 2004) observation of a number of point sources, along
with a diffuse Galactic foreground (data courtesy of P. André,
B. Sibthorpe, & T. Waskett). Shown are the input flux image, a
map of the background (as estimated by the source detection
filter), and a map of the residuals between input flux image and
background map.

The background map is created using the maximum a poste-
riori estimate of the model background at each pixel position. In
each case, the model used is that which is most likely, on the basis
of BIC score. The residuals map is created by subtracting the
background map from the original input flux image. The resid-
uals will therefore contain the point sources, plus any imperfec-
tions in the background estimation.

FiG. 2.—Simulated images on which photometry was performed. Both images
contain the same underlying signal, consisting of a uniform background (of level
0.5 units), plus a Gaussian point source with position relative to the image center of
(0.3, 0.4) pixels, a FWHM of 5.2 pixels, and an integrated flux of 10 units (cor-
responding to a peak height of 0.231 units). The left image has Gaussian noise with
rms of 0.075, and the right has rms noise of 0.3 (i.e., higher than the peak of the
source).
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Fic. 3.—One-dimensional marginalized posterior probability distributions for the five parameters of the extended source photometry model (solid lines). Also shown are
cases in where the FWHM prior is known perfectly (dashed lines) and where both the FWHM is known and there is a Gaussian prior on the background (dot-dashed lines). The

input values are marked by vertical dotted lines.

3.2. Bayesian Source Photometry

The analyses in this subsection are carried out on a simple, sim-
ulated test image (shown in Fig. 2). The image contains a single
point source on a uniform background, with uncorrelated Gauss-
ian random noise added to each pixel. While this is a benign data
set, it is instructive to consider such an idealized case in order to
better understand the features of the algorithm.

Figure 3 shows the 1D marginalized posterior probability dis-
tributions for a variety of cases. The solid lines show a five-
parameter ““compact’ source model fitted to the data. The five
parameters are a flat background, the FWHM of a Gaussian point-
spread function, the flux of the source, and its X- and Y-coordinates
within the image. The dashed lines show the 1D marginalized pos-
teriors for the case that the FWHM of the point-spread function is
known (e.g., it may have been measured independently of this
“observation”). The dotted lines show the 1D marginalized pos-
teriors for the case in which the FWHM of the point-spread func-
tion is known and we have prior knowledge of the level of the
background. Figure 4 shows the 1D marginalized posteriors
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Fi6. 4—O0One-dimensional marginalized posterior probability distributions for
two parameters of the point-source photometry model. Prior positional knowledge
has been included, in the form of a Gaussian prior on both X and Y (FWHM of
0.1 pixels). In this case, the rms noise of the observation has been increased four-
fold, so that in the absence of the prior, the BIC value would favor an empty sky.
This shows the case in which a source has been detected to high precision in an-
other band but is very faint in this band. The Bayesian formalism allows us to fully
and properly account for this.
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Fic. 5.—Contour plots of the 2D marginalized posterior probability distributions for the parameters of the “compact” source photometry model (shown are the 68% and
95% confidence regions, plus the maximum a posteriori point). The contours are found by using smoothed 2D histograms of the MCMC samples. This gives estimates of the
marginalized 2D posterior probability distributions for these parameter combinations. Note that we exclude the Y-parameter, as its behavior simply mimics that of X. The flux
and FWHM of the point-spread function are correlated. The flux and background are negatively correlated. The FWHM and background also show a slight negative
correlation. As expected, the X-position is uncorrelated with these three other parameters.

arising from analyzing the same source with 4 times the rms
Gaussian noise. The FWHM is taken as known, as is prior knowl-
edge of the source position. This simulates the case in which a
source has been strongly detected at another band and we now
wish to find an estimate of that source’s flux in this band. Figure 5
shows examples of 2D marginalized posteriors for the five-
parameter “compact” source model. These illustrate the different
correlations that exist between the fitted parameters.

4. CONCLUSIONS

In this paper, we have described a Bayesian formalism for the
extraction of sources from astronomical data and have used it to
derive two new source extraction methods. We then demonstrated
the methods on simulated data.

The source detection filter is a deliberately uncomplicated im-
plementation of this formalism; it is designed to analyze images
quickly, something that is often crucial given the size of many
modern astronomical surveys. Estimation of the image background
is an often overlooked (and highly nontrivial) aspect of source
extraction, and the simultaneous estimation performed by our filter
makes unbiased background subtraction much more tractable. An
additional point not to be overlooked is that by combining back-
ground subtraction and source detection, we have created a method
that has essentially only one user-defined parameter (threshold),
substantially simplifying its use.

We applied this filter to a deliberately challenging simulated
image. The presence of a strong diffuse astronomical background
introduces fluctuations on similar angular scales to the point-spread
function, presenting a particular challenge for source extraction.
Despite this, we are still able to detect the majority of sources, with

only a few spurious detections. If computationally fast ways can be
found to better model this background (work that is beyond the
scope of this paper), even more impressive results may be possible
in the future.

Once a candidate source position has been identified, we wish
to characterize the source as precisely as possible. The advanced
photometry method allows just that. It can determine the flux,
position (to subpixel accuracy), local background, and (if required)
point-spread function FWHM, along with the uncertainties on
those estimates. Furthermore, it allows the meaningful compar-
ison of different models, allowing us to determine (in an automated
way) whether any given source is pointlike, extended, or even just
a patch of empty sky. We can also include any additional prior
knowledge we may have about the source. For example, if
the FWHM is known, then the precision of our flux estimate is
improved. With prior positional knowledge (from a strong de-
tection in another band), we can obtain a flux estimate even
when there is insufficient evidence from the data alone to identify
a source.

This formalism allows us to ask precise, statistical questions
of our data. We are able to include all pertinent information, giving
us the best possible measurement and characterization of the
sources. We can also determine a number of figures of merit,
such as Bayesian evidence, BIC, and reduced x?, all of which give
measures of the quality of the extraction. Parameter-space search
techniques such as MCMC sampling allow us to recover the sta-
tistical uncertainties on our measurements while making mini-
mal assumptions. And model selection techniques allow us to
ask which of a range of models best characterizes any given
source.
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In conclusion, in this paper we present the following:

1. A Bayesian formalism for the detection and extraction of
compact sources from astronomical data.

2. The derivation of an analytic source detection filter that
simultaneously detects point sources and estimates the image
background.

3. The detailing of an advanced photometry method, which
determines source parameters such as flux and position (to sub-
pixel accuracy), as well as their uncertainties. It also allows us to
determine the nature of the source (pointlike, extended) and to
include any prior knowledge we may have, thus enhancing the
precision of our results.

4. A method for optimizing the local region from which data
should be used to make the source fits.

Bayesian source extraction is a highly powerful and (perhaps
just as importantly) immensely flexible methodology. The abil-
ity to adapt our methods to the peculiarities of the data we are
considering is a key degree of freedom when dealing with real
astronomical data. Bayesian methods have historically been lim-

ited by lack of computing power; this is demonstrably no longer
the case, giving us an array of new statistical tool with which to
improve astronomical source extraction and hence the astrophys-
ical science that depends upon it.

The methods described in this paper have been implemented
as a beta-version, publicly available software tool (written in IDL).
The code plus associated documentation and test data can be down-
loaded from the Sussex Astronomy Centre.'
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