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Summary

In this paper we propose a class of time-domain models for analyzing possibly nonstationary

time series. This class of models is formed as a mixture of time series models, whose mixing

weights are a function of time. We consider specifically mixtures of autoregressive models

with a common but unknown lag. To make the methodology work we show that it is necessary

to first partition the data into small non-overlapping segments, so that all observations

within one segment are always allocated to the same component. The model parameters,

including the number of mixture components, are then estimated via Markov chain Monte

Carlo methods. The methodology is illustrated with simulated and real data. Supplemental

materials are available online.
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1 Introduction

Our article develops a model for analyzing possibly nonstationary time series. We allow for

parameter evolution using a mixture model whose components are time series with constant

but unknown parameters and mixture probabilities that depend on time. The number of

mixture components is determined from the data. We take a Bayesian approach which is

implemented using Markov chain Monte Carlo sampling.

Many current methods for fitting time series whose parameters change over time are based on

some segmentation of the time series. Fitting piecewise autoregressive models was suggested

by Kitagawa and Akaike (1978) who use AIC to determine the change points. Davis et al.

(2006) propose fitting piecewise autoregressive models using minimum description length and

use genetic algorithms for solving the resulting optimization problem. Ombao et al. (2001)

segment a time series using orthogonal complex-valued transforms that are simultaneously

localized in time and space. A cost is evaluated for each particular segmentation and the

optimal segmentation is the one with minimal cost. Since it is infeasible to consider all

possible segmentations, Ombao et al. (2001) assume dyadic segmentations. Punskaya et al.

(2002) propose a Bayesian method for fitting piecewise linear regression models such as

autoregressive models. They place prior distributions on the number of change points, their

locations and the order of the linear regression in each segment, and use Markov chain Monte

Carlo simulation to estimate the model.

A second approach which allows the parameters to change is to model their evolution. For

example, West et al. (1999) allow the parameters of an autoregressive process to change over

time by modeling them as a random walk. However, they assume that the maximum lag

in the autoregressive process is fixed. The assumption of a fixed lag is relaxed by Prado

and Huerta (2002). Gerlach et al. (2000) provide a sampling scheme that allows for smooth

parameter evolution as well as structural breaks in the parameters. For an application of

the methods in Gerlach et al. (2000) and some further extensions see Giordani and Kohn

(2008).
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Our method differs from the methods described above in that we do not seek to directly

determine which parameters change and which do not, nor do we have to specify the model

for parameter evolution to allow for structural changes. This is an important advantage of

our approach because in models with more than a few parameters not all parameters will

evolve in the same way nor would all parameters change abruptly at the same time. In

addition, it is sometimes difficult to model the evolution of some parameters, e.g. covariance

matrices. We note that our model formulation allows some of the parameters to be the same

over time by making them common across all components.

There are several papers related to our methodology. A basic reference for regression mixture

models having covariates in both the components and the component probabilities is Jacobs

et al. (1991) who call them mixture-of-experts models. Rosen et al. (2009) estimate an

evolving spectral density by partitioning the data into segments of contiguous observations,

calculating the log periodogram of each segment and then fitting a smoothly varying mixture

to these log periodograms. In this paper, we use a time-domain approach which does not

require computation of local periodograms. For this reason, smaller segment lengths can

be used, making it possible to detect changes over smaller time intervals. In addition,

the frequency domain approach of Rosen et al. (2009) assumes local stationarity and is

restricted to modeling the second moments of the process which is inherent to frequency-

domain methods. The current approach does not have any of these restrictions and can

model the entire distribution of the observations.

In other related work, Wong and Li (2001) use a two-component mixture model with lo-

gistic weights that may depend on time and exogenous variables. Parameter estimation

is performed via an EM algorithm, and autoregressive lag selection is facilitated by BIC.

Carvalho and Tanner (2005, 2006, 2007) use a mixture-of-experts approach to model nonlin-

earities in time series models. These authors use maximum likelihood estimation, investigate

identifiability and asymptotic normality of the estimates and use AIC and BIC for select-

ing the number of components in the model. Similarly, Prado et al. (2006) use hierarchical

mixtures-of-experts with vector autoregressive models, with the parameters estimated by the
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EM algorithm, and model selection is performed by BIC. Lau and So (2008) use a Dirichlet

process mixture of autoregressive processes to flexibly model the predictive density of a time

series. Their approach does not handle structural breaks in the time series and their mixture

weights are not functions of time.

The rest of the paper is organized as follows. Section 2 presents the proposed model and the

priors. Section 3 describes the sampling scheme of the proposed Markov chain Monte Carlo

procedure. Section 4 discusses forecasting. Section 5 describes the results of a simulation

study and Section 6 considers applications.

2 The model and prior specification

2.1 The general model

We propose to model a possibly non-stationary time series {yt, t = 1, . . . , n} as a mixture

of autoregressive (AR) processes, where the lag of the AR processes and the number of

components in the mixture are both unknown but finite. Let θθθpr be the set of parameters

needed to prescribe a mixture having r components each of lag p. The predictive density

ppr(yt|yt−1, . . . , y1; θθθpr) is the mixture model,

ppr(yt|yt−1, . . . , y1; θθθpr) =

r∑

j=1

pjpr(yt|yt−1, . . . , y1; θθθjpr)πtjpr, (1)

where θθθpr = (θθθ1pr, . . . , θθθrpr). This model belongs to the class of mixtures-of-experts models

(Jacobs et al. (1991)). An early reference for a mixtures-of-experts time series model is Zeevi

et al. (1996). The mixing weights πtjpr, described more fully in Section 2.3, are multinomial

logit and depend on time. In (1), πtjpr is the weight attached to the jth component at

time t in a mixture containing r autoregressive processes each of lag p. We denote θθθpr =

{(ωωωjpr, δδδjpr)}rj=1, where ωωωjpr are the parameters needed to specify the AR processes, and δδδjpr

are those needed to specify the weights attached to the components of the mixture.

The overall predictive density p(yt|yt−1, . . . , y1; θθθ) is obtained by averaging over the number
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of possible lags and components so that

p(yt|yt−1, . . . , y1; θθθ) =

R∑

r=1

P∑

p=1

ppr(yt|yt−1, . . . , y1; θθθpr) Pr(p, r), (2)

where R and P are the maximum number of components and lags respectively. The density

p(yt|yt−1, . . . , y1; θθθ) in model (2) can be quite general with yt discrete or continuous; for

example, it can be a GARCH model with possible structural breaks in the parameters

or slowly evolving parameters. One important contribution of the paper is that it can

accommodate structural breaks or slowly evolving parameters without having to directly

model the change points or the evolution of the parameters.

2.2 Model and priors for autoregressive components

Model

For simplicity, we assume that all components have the same unknown lag length p. A more

general model would assume a different lag for each component, but for tractability, we do

not pursue this here. We write the jth AR(p) process in a mixture containing r components

as

yt = φjpr,0 +

p∑

k=1

φjpr,kyt−k + σjprejt, ejt ∼ N(0, 1) . (3)

Thus, ωωωjpr = (φjpr,0, φjpr,1, . . . , φjpr,p, σ
2
jpr)

′. Note that although the lag p does not affect the

dimension of σ2, we add the subscript p to indicate that different values of p will result in

different values of σ2.

Priors on φφφpr = (φφφ′
1pr, . . . , φφφ

′
rpr)

′

Zellner’s G-prior distributions (see Marin and Robert (2007))N(000, c σ2
jpr(X

′
pXp)

−1) are placed

on the φφφjpr’s where c = n and

Xp =




1 yP yP−1 yP−2 . . . yP−p+1

1 yP+1 yP yP−1 . . . yP−p+2
...

...
...

...
...

1 yn−1 yn−2 yn−3 . . . yn−p


 .
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Note that Xp is an (n − P ) × (p + 1) matrix with a fixed number of rows and a variable

number of columns, for p = 1, . . . , P .

Priors on σσσ2
pr = (σ2

1pr, . . . , σ
2
rpr)

′

The priors on the σ2
jpr’s are independent inverse gamma distributions with densities p(σ2

jpr) =

βα

Γ(α)
(σ2

jpr)
−(α+1) exp(−β/σ2

jpr), where α = β = 0.01. This choice of α and β reflects vague

knowledge of σ2
jpr. For identifiability, the σ2

jprs are ordered. As described in Section 3,

the first stage of the sampling scheme consists of obtaining posterior means and variances

of the ωωω’s and δδδ’s, which are then used in a second stage to form proposal distributions.

Maintaining identifiability in the first stage is essential to forming good proposals in the

second stage.

2.3 Model and priors for the mixture weights

Model

The mixing weights depend on time and on an unknown parameter vector δδδpr = (δδδ′1pr, . . . , δδδ
′
rpr)

′,

and have the multinomial logit form

πtjpr =
exp(δδδ′jprssst)∑r

h=1 exp(δδδ
′
hprssst)

, (4)

where ssst = (1 t)′. For identifiability we take δδδ1pr = 000. Again, we note that although the

value of p does not affect the dimension of δδδ, we add the subscript p to indicate that different

values of p will result in different values of δδδ.

Prior on δδδpr

The priors on δδδjpr, j = 2, . . . , r, are independent bivariate normal N(000, σ2
δI2), where σ2

δ = n.

The variance of the prior on δpr is chosen to be proportional to the sample size so that the

prior remains diffuse with respect to the likelihood. Such a prior is similar to Zellner’s G

prior, which is discussed in detail in Marin and Robert (2007). This prior should not be

improper for the following two reasons.

1. Not all the mixing parameters, δδδpr, are common to all models. The single-component
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mixture has no mixing parameters, a two-component mixture has two, a three com-

ponent mixture has four and so on. Placing improper priors on these parameters will

result in all of the probability in the posterior being assigned to the simplest model

(the one-component mixture). This will occur even if the posterior distribution of the

mixing parameters, for a given model, is proper.

2. In logistic regression, if there is complete separation of the data, then the likelihood is

not bounded. Placing a proper prior on the mixing parameters means that, for a given

model, the posterior will be proper.

2.4 Priors on r and p

The maximum number of components is R and Pr(j = r) = 1/R for r = 1, . . . , R. Similarly,

the maximum value of the lag is P and Pr(k = p) = 1/P for p = 1, . . . , P .

2.5 Segmentation

In mixture models for independent observations, the allocation of an observation to a com-

ponent is usually done by computing the probability that the observation arose from that

component. However, with time series data, computing the probability that a single obser-

vation belongs to a component does not take into account the dependence of the data over

time. This time dependence must be accounted for, and for this reason, we propose to divide

the time series into S small segments, each of length L. In particular, all observations yt

for t ∈ {1 + (s − 1)L, . . . , sL} are included in segment s, s = 1, . . . , S, and allocation to

a component is done by computing the probability that the segment was generated from a

particular AR process. The predictive density in (1) becomes

ppr(yt|yt−1, . . . , y1; θθθpr) =

r∑

j=1

pjpr(yt|yt−1, . . . , y1; θjpr)πsjpr (5)

7



for all yt for t ∈ {1 + (s− 1)L, . . . , sL}. The corresponding likelihood function is

S∏

s=1

sL∏

t=1+(s−1)L

r∑

j=1

pjpr(yt|yt−1, . . . , y1; θjpr)πsjpr.

The mixing weights are a function of s, s = 1, . . . , S rather than of time. Thus,

πsjpr =
exp(δ′jpruuus)∑r

h=1 exp(δ
′
hpruuus)

,

where uuus = (1 s)′. Note that different segments may, and often do, belong to the same

component, in the same way that individual observations in independent data may belong

to the same component. Thus, segments and structural breaks are not equivalent, but

structural breaks in the data are accommodated automatically through the mixing weights.

Unlike Rosen et al. (2009), our method does not require segmentation, but we segment the

data because it improves the performance of our method.

In selecting the segment length, L, it is necessary that L satisfy the following two criteria, (i)

L contains enough observations to estimate the dependence in the time series and (ii) L is

as small as possible to accurately detect changes in the time series. We found that selecting

L = P + 2, where P is the maximum allowable number of lags, met these two criteria. We

also found the results were insensitive to the choice of L for P + 2 < L < 3× P .

We now give an example to demonstrate the need for segmentation, while Section 5 which

describes simulation results, provides more details about the benefits of segmentation.

Example:

We generated a realization of 500 observations from the following process

yt =

{
0.9yt−1 + ǫ

(1)
t for 1 ≤ t ≤ 470

−0.9yt−1 + ǫ
(2)
t for 471 ≤ t ≤ 500 ,

(6)

where ǫ
(1)
t

iid∼ N(0, 0.82) and ǫ
(2)
t

iid∼ N(0, 1). Stage I of the sampling scheme (see details in

Section 3) was then performed, once without segmenting the time series, and a second time,

after dividing it into 50 segments of length 10 each. The number of mixture components
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Figure 1: A realization from model (6)
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Figure 2: The mixing probabilities vs. time (rescaled to the unit interval). Left panel: no
segmentation; right panel: 10 observations per segment.

and the lag were fixed at 2 and 1, respectively. Figure 1 displays one realization from

model (6). Figure 2 presents the mixing probabilities for each component when the time

series is not segmented (left panel) and when it is segmented (right panel). The plots show

that without segmentation, each component is weighted either too heavily or too lightly,

whereas segmentation results in weights that closely reflect the change in the time series.

The improved behavior of the mixing weights also results in better forecasts. The top row

of Figure 3 displays in solid lines the true k-step-ahead predictive densities for k = 1, . . . , 5,

as well as their estimates in dotted lines, based on the unsegmented data. The value of k

increases from left to right. The bottom row shows the analogous densities based on the

segmented times series. The figure shows that the estimates based on the segmented time

series are closer to the true densities than their counterparts based on the unsegmented series.
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Note that the bottom left estimate is bimodal which may happen because the estimate is a

mixture of two predictive densities. More details on forecasting are given in Section 4.
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Figure 3: k-step-ahead predictive densities, k = 1, . . . , 5. The true densities are plotted
in solid lines, while their estimates are in dotted lines. The top row corresponds to the
unsegmented time series, whereas the bottom row is based on the segmented data. The
value of k increases from left to right.

Segmentation also results in improved spectrum estimation. For the realization from model

(6), we estimated the local log spectral densities at t = 45, 95, 155, 215, 275, 335, 395, 475,

485, 495 based on the unsegmented time series, as well as at segments s = 5, 10, 16, 22,

28, 34, 40, 48, 49, 50 based on the segmented time series. The change in the time series

occurs at t = 471, and the values of t and s were chosen so that the first 7 spectral densities

correspond to the first AR(1) process, and the last 3 spectral densities correspond to the

second AR(1) process. The estimates of the log spectral density for the no-segmentation

case were obtained as the mixture
∑2

j=1 π̂tj12 log f̂j12(ν), where f̂j12(ν) is the estimate of the

jth spectral density at frequency ν (0 ≤ ν ≤ 0.5) in a mixture of two AR(1) components.

In the case of segmentation, the weight πtj12 is replaced by πsj12. The estimate of fj12(ν) is

given by

f̂j12(ν) = σ̂2
j12|φ̂j12(e

−2πiν)|−2 ,

where i =
√
−1 and φj12(x) = 1 − φ1j12x is the AR(1) characteristic polynomial. For a

discussion of time-varying local spectra, see Dahlhaus (1997). Figure 4 presents plots of

the true and estimated log spectral densities for both the unsegmented and segmented time
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Figure 4: True (solid) and estimated (dotted) log spectral densities for the realization from
model (6). The top two rows are based on the unsegmented series. The bottom two rows
are based on the segmented time series.

series. The last three panels of the second row in Figure 4 show that the change in the

spectral density is not detected for the unsegmented time series. The bottom two rows of

Figure 4 show that the true and estimated log spectral densities are almost indistinguishable

for the first 7 panels, and in the last three panels the estimated spectral densities are much

closer to the true spectral densities than in the unsegmented case. If r and p are not fixed,

the estimates obtained without segmentation are even poorer.

3 The sampling scheme

All the parameters, including r and p, are sampled from their posterior distribution, in two

stages. In stage I, R separate chains are run for r = 1, . . . , R. In each of these chains, r is

fixed while all other parameters, including p, are sampled. The results from this preliminary

analysis are utilized in stage II to perform a reversible jump step corresponding to varying

values of r. The reversible jump step is needed to perform model averaging (as opposed

to model selection), which requires the estimation of Pr(r|Y ) and Pr(p|Y ). Model selection
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techniques such as AIC or BIC do not yield estimates of Pr(r|Y ) and Pr(p|Y ). The advan-

tages of model averaging over model selection have been researched by a number of authors,

see Hoeting et al. (1999) and Kadane and Lazar (2004), who conclude that model averaging

has better predictive ability than model selection. In the real examples of Section 6, most of

the probability mass of the posterior distributions of r and p is concentrated on a single value

and therefore model selection and model averaging will give very similar results. However,

this can only be known after performing reversible jump MCMC, not before, and it cannot

be assumed that all datasets will have this property.

To simplify the sampling scheme of Stage I, we introduce latent indicator variables to indicate

the component to which a segment belongs. Let zsjpr = 1 if yt, t = 1 + (s − 1)L, . . . , sL,

s = 1, . . . , S, is generated by the jth component, and zsjpr = 0 otherwise. Note that zsjpr = 1

means that ztjpr = 1 for all t ∈ {1+(s−1)L, . . . , sL}. The augmented conditional likelihood

is

L(yyy∗, zzz|y1, . . . , yP , θθθ) =
S∏

s=1

r∏

j=1

{πsjpr

sL∏

t=1+(s−1)L

p(yt|yt−1, . . . , yt−p;φφφjpr, σ
2
jpr)}zsjpr , (7)

where yyy∗ = (yP+1, . . . , yn)
′ and zzz contains all the zsjpr’s for j = 1, . . . , r and s = 1, . . . , S.

Note that for s = 1, i.e., for the first segment, t = P + 1, . . . , L.

3.1 Stage I: fixed r

Given r, drawing p, φφφpr, σσσ
2
pr, δδδpr and zzz is based on (7) in combination with the prior distri-

butions. In particular, the sampling scheme consists of the following steps.

1. Fix r and initialize zzz.

2. Draw the lag p from the multinomial distribution p(p|yyy∗, r, zzz).

3. For j = 1, . . . , r, draw σ2
jpr from the inverse gamma distribution p(σ2

jpr|yyy∗, zzzjpr, r, p).

4. For j = 1, . . . , r, draw φφφjpr from the multivariate normal distribution p(φφφjpr|σ2
jpr, zzzjpr, yyy

∗, p).
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5. For j = 2, . . . , r, draw δδδjpr from the multivariate normal distribution p(δδδjpr|zzz).

6. Draw zs from the multinomial distribution p(zs|φφφpr, σσσ
2
pr, δδδpr, r, p), for s = 1, . . . , S.

R chains are run for r = 1, . . . , R. From the iterates of each of these chains, we obtain the

posterior distribution of the lag, as well as the posterior mean vectors φ̂̂φ̂φpr, δ̂̂δ̂δpr and ν̂̂ν̂νpr =

log σ̂̂σ̂σ2
pr. The corresponding variance-covariance matrices Σ̂φpr

, Σ̂δpr and Σ̂νpr are obtained

as sample variance-covariance matrices based on the iterates of φφφpr, δδδpr and νννpr = logσσσ2
pr,

respectively. Computing the sample mean and covariance of νννpr rather than of σσσ2
pr allows us

to use a multivariate normal distribution as a proposal distribution for ννν in stage II.

3.2 Stage II: variable r

Stage II consists of a reversible jump step, corresponding to the values r and p of the unknown

number of components and autoregressive lag. Specifically, the Metropolis-Hastings step is

performed as follows.

1. Draw r(n) from a discrete uniform distribution over {1, 2, . . . , R}. Here and in the

following steps, the superscript (n) on a parameter denotes a newly proposed value for

that parameter.

2. Draw p(n) from the posterior distribution of the lag over {1, 2, . . . , P} obtained from

Stage I.

3. Draw a vector φφφ(n) from the multivariate normal distribution N(φ̂̂φ̂φp(n)r(n), Σ̂φ
p(n)r(n)

),

where φ̂̂φ̂φp(n)r(n) and Σ̂φ
p(n)r(n)

are from stage I.

4. Draw a vector δδδ(n) from the multivariate normal distribution N(δ̂̂δ̂δp(n)r(n) , Σ̂δ
p(n)r(n)

),

where δ̂̂δ̂δp(n)r(n) and Σ̂δ
p(n)r(n)

are from stage I.

5. Draw a vector ννν(n) from the multivariate normal distribution N(ν̂̂ν̂νp(n)r(n), Σ̂ν
p(n)r(n)

),

where ν̂̂ν̂νp(n)r(n) and Σ̂ν
p(n)r(n)

are from stage I.
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Note that the maximum number of components, R, and the maximum allowable lag, P , are

chosen so that the model is flexible enough to capture features which may be present in

complex data, while remaining computationally tractable.

4 Forecasting

One of our goals is to improve prediction of future observations based on the mixture model

(2), compared to prediction based on a model with a single component (r = 1). For a time

series yyy = (y1, . . . , yn)
′ with yt modeled by a density function p(yt|yt−1, . . . , y1;ωωω) indexed by

a parameter vector ωωω, the k-step-ahead predictive distribution is

p(yn+k|yyy) =
∫

p(yn+k|yyy,ωωω)p(ωωω|yyy)dωωω ,

where p(ωωω|yyy) is the posterior distribution of ωωω. For an autoregressive model of order p,

the density p(yn+k|yyy,ωωω) is normal with mean and variance µk and σ2
k, respectively, which

are computed using the Kalman filter. Using the MCMC iterates (p(l), r(l), δδδ(l)pr , ωωω
(l)
pr ), l =

1, . . . ,M , a k-step-ahead prediction based on the mixture model is

p̂(yn+k|yyy) =
1

M

M∑

l=1

r(l)∑

j=1

πjpr(tn+k|δδδ(l)pr )p(yn+k|yyy,ωωω(l)
jpr) , (8)

where M is the number of iterates used, and tn+k is the time corresponding to yn+k. To quan-

tify the distance between a known normal predictive density p(yn+k|yyy,ωωω) and its estimate

p̂(yn+k|yyy) based on (8), we use the Kullback-Leibler (KL) divergence, given by

KL(p̂(yn+k|yyy), p(yn+k|yyy,ωωω)) =
∫

p(yn+k|yyy,ωωω) log
p̂(yn+k|yyy)

p(yn+k|yyy,ωωω)
dyn+k . (9)

Note that p(yn+k|yyy,ωωω) is the predictive density evaluated at the known true parameter ω.

This divergence satisfies KL(p̂, p) ≤ 0 with equality if and only if the two densities are equal.

For a normal density p(yn+k|yyy,ωωω), the integral in (9) can be approximated by

KLGH(p̂(yn+k|yyy), p(yn+k|yyy,ωωω)) =
1√
π

N∑

m=1

wmg(µk +
√
2σkum) , (10)
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which is an N -point Gauss-Hermite quadrature. In (10), g(·) = log
p̂(·|yyy)

p(·|yyy,ωωω)
, and wm and um

are constants depending on N , which can be found for example in Abramowitz and Stegun

(1965). The KL divergence can also be approximated via Monte Carlo integration as

KLMC(p̂(yn+k|yyy), p(yn+k|yyy,ωωω)) =
1

I

I∑

i=1

g(y
(i)
n+k) , (11)

where y
(i)
n+k is drawn from p(yn+k|yyy,ωωω), i = 1, . . . , I.

5 Simulations

5.1 The effect of segmentation

In Section 2, we saw, based on a single realization, that segmentation leads to improved

estimates of the mixing weights in the model which in turn results in better forecasts and

spectral estimates. This section describes results based on 50 realizations from model (6).

Two different segment lengths are used, L = 10 and L = 5. Figure 5 displays the mixing
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Figure 5: The mixing weights for all 50 samples without segmentation (left) and with seg-
mentation (right), where L = 10.

weights against (rescaled) time (or segments) for all 50 realizations without (left) and with

(right) segmentation, when L = 10. The figure shows that segmentation leads to better-

behaved mixing weights for all the 50 realizations.
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For each realization and segment length, we compute the predictive densities for k-step-

ahead forecasts, where k = 1, . . . , 5. Thus, for each value of k, k = 1, . . . , 5, we compare the

predictive density for L = 1 with the ones corresponding to L = 5 and L = 10. For a given

realization and a given value of k, the Kullback-Liebler divergence is computed for the pair

of densities corresponding to L = 1 and L = 5, as well as for the pair corresponding to L = 1

and L = 10. Figures 6 and 7 display boxplots of

100∆ log(|KL|) = 100(log(|KL1|)− log(|KLL|)), (12)

where the subscripts 1 and L indicate no segmentation and segmentation with segments of

length L, respectively. A positive value of expression (12) indicates a reduction in the abso-

lute value of the KL divergence as a result of segmentation, compared to no segmentation.

When L = 10, the median and third quartile of 100∆ log(|KL|) are positive for all values

of k. The third quartile of 100∆ log(|KL|) is greater than 100 for all values of k, which

means that segmentation leads to reduction in the absolute value of the KL divergence by

a factor of almost 3. When L = 5, the third quartile of 100∆ log(|KL|) exhibits a similar

behavior to the third quartile when L = 10, but the first quartile and the median do not

always indicate improvement. More details are given in Table B.1 of Appendix B. For each k

and L, k = 1, . . . , 5, L = 5, 10, the middle line of this table presents the 25th, 50th and 75th

percentiles (across the 50 realizations) of criterion (12). For each k and L, the first and third

lines are, respectively, the lower and upper confidence limits of 95% confidence intervals for

the respective percentiles. These confidence limits were obtained by the bootstrap percentile

method using 2000 bootstrap samples.

Section 2.5 shows that segmentation also improves spectral density estimation. To compare

the estimates of the local spectral densities with and without segmentation, we use the L2

distance between the true log spectral density and its estimate. By analogy to equation

(12), we then compute 100∆ log(L2). Figure 8 presents boxplots of 100∆ log(L2) for ten

different segments, as described in Section 2.5. It is evident that segmentation leads to

significant improvement in estimating the local spectral densities. More details are presented

in Table B.2.
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Figure 6: Boxplots of 100∆ log(|KL|) for the k-step-ahead forecasts, k = 1, . . . , 5, based on
the simulated data from model (6). The segment length used was L = 10.
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Figure 7: Boxplots of 100∆ log(|KL|) for the k-step-ahead forecasts, k = 1, . . . , 5, based on
the simulated data from model (6). The segment length used was L = 5.

5.2 Simulation from a model with a single component

Fifty time series, each of length 1008, are generated from an AR(3) model with parameter

values σ2 = 56.73 and φφφ = (−0.0178, 0.4408, 0.1657, 0.1603)′. These values are obtained by

fitting a single AR(3) component to the Southern Oscillation Index data

(http://www.bom.gov.au/climate/current/soihtm1.shtml). The segment length, maximum

number of components and maximum lag length were 12, 2 and 10, respectively. Figure 9

displays the posterior probability of the number of components based on all 50 simulated

times series. The posterior probability of a single component is 0.96. For each simulated

time series, the spectral density was estimated twice; one estimate was based on a single-
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Figure 8: Boxplots of 100∆ log(L2) for the log spectral densities in ten different segments
for the simulated data from model (6).
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Figure 9: Posterior probability of the number of components for the simulated AR(3) time
series

component, i.e., a standard autoregressive model, and the other estimate was based on the

mixture model with unknown number of components and lag length. For each of these two

estimates, the L2 distance between the true spectral density and the estimate was computed.

Let L21 and L2r denote the L2 distances corresponding to a single-component model, and

an r-component mixture model, respectively, where r is a random variable taking values in

{1, 2}. Figure 10 displays a boxplot of the differences L21 − L2r. It is seen that although

in this case the underlying process is a single autoregression, fitting the mixture model

(r > 1) still yields estimates which are not significantly different from estimates obtained

using a single autoregressive process. This is not surprising given that the average posterior

probability Pr(r = 1|yyy) has an average of 0.96 across the 50 replications. We tried other more
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Figure 10: Boxplot of the difference L21 − L2r.

complex single-component generating processes and found that our methodology produces

spectral density estimates close to those obtained by fitting a single-component model to the

data. For more details, see Appendix C.

5.3 Simulation from a model with multiple components

This section analyzes 50 time series, each containing 2000 observations, generated from the

piecewise autoregressive model described by

yt =





∑6
k=1 φk1yt−k + σ1ǫ

(1)
t for 1 ≤ t ≤ 200∑6

k=1 φk2yt−k + σ2ǫ
(2)
t for 201 ≤ t ≤ 1000∑6

k=1 φk3yt−k + σ3ǫ
(3)
t for 1001 ≤ t ≤ 1300∑6

k=1 φk4yt−k + σ4ǫ
(4)
t for 1301 ≤ t ≤ 1600∑6

k=1 φk5yt−k + σ5ǫ
(5)
t for 1601 ≤ t ≤ 2000,

with parameter values

j φ1j φ2j φ3j φ4j φ5j φ6j σj

1 0.8874 -0.8523 0.2484 -0.6520 0.3224 -0.3287 0.0429
2 0.6955 -0.5518 0.3117 -0.6293 0.1137 -0.1003 0.0169
3 1.3415 -1.3702 0.8900 -0.9627 0.5807 -0.4173 0.0686
4 0.9776 -0.8560 0.4272 -0.6103 0.2016 -0.1631 0.0326
5 0.7995 -0.6821 0.2463 -0.5712 0.1656 -0.2169 0.0188

This piecewise autoregressive model is based on the model estimated for the explosion data

and reported in Section 6. The segment length, maximum number of components and max-
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imum lag length are 20, 6 and 10, respectively. Figure 11 presents boxplots of criterion (12)
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Figure 11: Boxplots of 100∆ log(|KL|) for the k-step-ahead forecasts, k = 1, . . . , 10, for
simulated data similar to the explosion data.

for k-step-ahead forecasts, k = 1, . . . , 10. This figure shows that the mixture model leads to

significantly better k-step-ahead forecasts compared to a model with a single autoregressive

component. More details are given in Table B.3.
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Figure 12: Boxplots of 100∆ log(L2) for the log spectral densities in ten different segments
for the simulated data similar to the explosion data.

Based on the parameter estimates from each simulated data set, we also estimate the log

spectral density in ten representative segments for (i) a model with a single component and

for (ii) a model where the number of components is allowed to vary. For each of the ten

segments and models (i) and (ii) we then compute the L2 distance between the estimate and

the true log spectral density. Figure 12 presents boxplots of 100∆ log(L2) for each of the 10
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segments and shows that in 8 of the 10 segments, model (ii) resulted in improved estimates

of the log spectral densities. Table B.4 gives more details.

6 Application

This section analyzes the seismic traces of a mining explosion and an earthquake. A seismic

trace is a plot of the earth’s motion over time. The data presented here are measurements

of the earth’s vertical displacement where the recording frequency is 40 per second. The

datasets are from a recording station in Scandinavia, and are reported by Shumway and

Stoffer (2006). Plots of the seismic traces of the explosion and earthquake appear in fig-

ures 13 and 14, respectively. Both earthquake and explosion seismic traces consist of two

waves, the compression wave, also known as primary or P wave, which occurs at the start of

the series shown in Figure 13, and the shear, or S wave, which arrives at the midpoint of the

series. Our analysis has two goals. The first is to obtain an estimate of the time-varying log

spectrum of the process, and the second is to distinguish between a nuclear explosion and

an earthquake.
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Figure 13: Seismic trace of an explosion.

Our analysis sets the maximum number of components to 6 and the maximum number of

lags to 10. Two segmentation schemes are used; the first consists of 12 observations per

segment, and the second consists of 20 observations per segment. We present the results

from the first scheme because the results for the two schemes are almost identical. Table 1

shows the posterior probability of the number of components for both datasets. Interestingly,
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Figure 14: Seismic trace of an earthquake.

Number of components Posterior Probability
Explosion Earthquake

1 0.00 0.00
2 0.00 0.05
3 0.00 0.95
4 0.02 0.00
5 0.98 0.00
6 0.00 0.00

Table 1: Posterior probability of the number of components

the number of components with the highest posterior probability for the nuclear explosion

was 5 and not 4 as might be expected from Figure 13. This is primarily because the 5-

component mixture selected 6 as the maximum number of lags, whereas the 4-component

mixture selected 10. The number of parameters needed to prescribe a 5-component mixture

with 6 lags is 48, while the number of parameters needed to prescribe a 4-component mixture

with 10 lags is 54. Thus, the 5-component mixture is more parsimonious.

Figure 15 shows the mixing functions for the explosion data for the 5-component mixture.

Although it is difficult to attribute features of the time series to individual components, it

appears that the component indicated by the solid thin line in Figure 15 corresponds to

the high-noise component of the P wave, while the component indicated by the dashed line

corresponds to the low-noise component of the P wave. The components indicated by the

dotted and solid thick lines appear to be capturing the high- and low-noise components of

the S wave, respectively. The dotted-dashed line appears to be capturing the transition
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from the high-noise component to the low-noise component of the S wave. Note that the

transition from one component to another is gradual, and therefore a technique based on

piecewise segments cannot capture these gradual transitions.

Given that the components identified in this example may correspond to differing levels

of σ2, we reran the analysis for the five-component mixture, varying the prior for σ2. In

particular, we increased/decreased the values of the hyper-parameters, α and β, by an order

of magnitude (0.1/0.001) and found that the results were insensitive to these changes.
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Figure 15: Mixing functions of the 5-component mixture for the nuclear explosion data. The
σ̂2’s in the legend are estimates of the σ2’s for the components as given by equation (3) in
Section 2.2.

Figure 16 shows the estimated time-varying log spectrum of the explosion time series. The

top panel corresponds to the P wave, while the bottom panel corresponds to the S wave.

The top panel of Figure 16 shows that the power of the spectrum of the P wave decreases

over time; the power of the spectrum in the first plot of the top panel is twice that of the

next four plots. The estimated log spectrum of the S wave is similar to that of the P wave,

with two exceptions. First, the second peak of the estimated log spectrum of the S wave

gradually diminishes, whereas the second peak of the P wave remains, and second, the power

of the S wave is higher and lasts longer than that of the P wave.
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Figure 16: Estimated time-varying log spectrum for the explosion data.

Figure 17 depicts the mixing functions for the earthquake data for the 3-component mixture.

This figure shows clearly that there is a strong correspondence between attributes of the time

series and the individual components in the mixture. The components indicated by the solid

and dashed lines appear to be capturing the P and S waves respectively, while the third

component, indicated by the dashed-dotted line captures the transition from the P to the S

wave. The correspondence between attributes of the time series and the components is more

transparent because in contrast to the explosion data, the transition from one component to

another is sudden.

Figure 18 shows the estimated time-varying log spectrum for the earthquake time series.

The most notable feature of this figure is the marked difference in the estimated log spectra

between the P wave (top panel) and the S wave (bottom panel). The first peak of the P wave

covers a broader range of frequencies than the first peak of the S wave. In addition, while

there is a second peak in power at higher frequencies for the P wave, there is no second peak

for the S wave. However, the estimated log spectra for the P and S waves seem to suggest

that within each wave, the time series is stationary. This observation is supported by the

fact that the mixing functions for the earthquake data are constant within each wave.
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Figure 17: Mixing functions of a 3-components mixture for the earthquake data. The σ̂2’s in
the legend are estimates of the σ2’s for the components as given by equation (3) in Section 2.2.

To ensure that the choice of R = 6 and P = 10 provides sufficient flexibility, the sensitivity

of the priors on the number of lags p and the number of components r on the posterior

distribution of these parameters is explored for the earthquake data. These data were chosen

because the posterior mode of the number of lags is on the boundary of the support for the

prior, that is Pr(p = 10|Y ) = 0.98, while the prior for p is a discrete uniform with a maximum

allowable value of 10. Two sets of priors for the number of lags are considered; a discrete

uniform with the maximum number of components varying from 10 to 15, and a Poisson

prior with three values of λ. Table 2 shows that the posterior distribution of the number of

lags is not sensitive to the prior.

The sensitivity of the posterior of the number of components to the prior was also examined.

In addition to the discrete uniform described above, a Poisson prior with λ = 2 and λ = 3

was also used. For this analysis, we used a discrete uniform prior for p with P = 12. The

results were identical for all three priors and so are not reported.

Both the explosion and the earthquake data are nonstationary time series. The major

difference between the two is the source of the nonstationarity. The earthquake data suggest
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Figure 18: Estimated time-varying log-spectrum for the earthquake data.

Prior on p Posterior Probability of p
9 10 11 12 13

Discrete Uniform
P = 10 0.020 0.980 0.000 0.000 0.000
P = 12 0.000 0.982 0.010 0.008 0.000
P = 15 0.001 0.979 0.012 0.008 0.000

Poisson
λ = 3 0.013 0.995 0.003 0.001 0.000
λ = 4 0.002 0.993 0.003 0.001 0.000
λ = 5 0.002 0.992 0.004 0.002 0.000

Table 2: Posterior probability of the number of lags, p, for different priors on p, for a mixture
of 3 components using the earthquake data.

that the source of the nonstationarity is attributable to the arrival of the different waves,

namely the P and S waves. However, within the P or S waves, the series appears stationary;

the mixing functions are constant over time and the estimated time-varying log spectrum

does not appear to change. In contrast, the nonstationarity of the explosion data is apparent

both between and within the P and the S waves. Figure 15 shows that the mixing functions

vary across time within each of the P and S waves, as well as across time between the two
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waves. These observations are consistent with those of Korrat et al. (2008), who state that

one of the defining features of nuclear explosions is that the energy from the P and S waves

decays more rapidly than it does for earthquakes.

Supplemental Materials

Data and Computer Code: The data and Matlab code for implementing the methods

described in the article are available in a single archive. Please read the README file

contained in the zip file for more details (code data wood etal.zip).

Appendix The appendix contains in a single file (appendices.pdf) details of the sampling

scheme (Appendix A), simulation results (Appendix B) and an addition to Section 5.2

(Appendix C).
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