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Abstract

Like mean, quantile and variance, mode is also an important measure of central tendency of

a distribution. Many practical questions, particularly in the analysis of big data, such as “Which

element (gene or file or signal) is the most typical one among all elements in a network?” are

directly related to mode. Mode regression, which provides a convenient summary of how the re-

gressors affect the conditional mode, is totally different from other models based on conditional

mean or conditional quantile or conditional variance. Some inference methods for mode regres-

sion exist but none of them is from the Bayesian perspective. This paper introduces Bayesian

mode regression by exploring three different approaches, including their theoretic properties.

The proposed approacher are illustrated using simulated datasets and a real data set.

Keywords: Bayesian inference; Empirical likelihood; Mode regression

1. INTRODUCTION

Mode, the most likely value of a distribution, has wide applications in biology, astronomy,

economics and finance. In these fields, it is not uncommon to encounter data distributions that are

skewed or contain outliers. In those cases, the arithmetic mean may not be an appropriate statistic

to represent the center of location of the data. Alternative statistics with less bias are the median

and the mode. The mean or the median of two densities may be identical, while the shapes of the

two densities can be quite different. The mode preserves some of the important features, such as

wiggles, of the underlying distribution function, whereas the mean and the median tend to average

out the data.
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The mode has been used in modern science to identify the most frequent or the most typical

element in certain network systems (Hedges and Shah (2003), Heckman et al. (2001), Kumar and

Hedges (1998), Markov et al. (1997)). Mode estimation has attracted significant attention in the

statistics literature for decades by various authors [Yasukawa (1926), Parzen (1962), Grenander

(1965), Eddy (1980), Bickel and Fan (1996), Birgé (1997), Berlinet et al. (1998) and Meyer (2001)

among others]. Moreover, identifying the typical value or pattern could be one of the most efficient

statistical approaches for the analysis of big data.

However, mode estimation is more difficult than estimating the mean or the median. The

mode estimator is often defined as the maximum of the estimated distribution density, typically

under nonparametric kernel estimation. Conditional mode estimation is typically carried out by

conditional density estimation via different nonparametric methods [see for example Gasser et al.

(1998), Hall and Huang (2001) and Hall et al. (2001), Brunner (1992), Ho (2006), Dunson et al.

(2007)].

However, these nonparametric conditional density-based mode regression models do not provide

a direct estimate of the conditional mode. The problem with these methods is twofold: the estima-

tion of the conditional density may suffer from the well-known “curse of dimensionality” and, it is

hard to describe and interpret the estimated conditional mode in terms of predictors or covariates.

Direct inference for mode regression was explored by Lee first in 1989, Lee (1989), and then

in 1993, Lee (1993). However, it has not been well-applied due to lack of proper inference tools.

Recently, Kemp and Santos Silva (2012) relaxed Lee’s restriction on truncated dependent variables

and employed alternative kernel estimation. However, their regression coefficient estimator has slow

convergence rate, involves bandwidth selection and provides only approximate Normal confidence

intervals. Furthermore, Yao and Li (2013) proposed an Expectation-Maximisation algorithm in

order to estimate the regression coefficients of the modal linear regression. These methods involve

either semiparametric or nonparametric estimation methods. A direct Bayesian method for mode

regression is not available even though there is a clear practical motivation from this perspective.

In conventional regression models, the method of least squares is usually applied to investigate

the effect of the predictor variables on the conditional mean of the response variable. However, in

the presence of outliers, the mean is pulled in the direction of the tail, making mean regression a less

representative method of analysis. Mode regression, on the other hand, is robust to the presence
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of outliers. Quantile regression is an alternative approach to estimate models with skewed data, as

it can provide a complete picture of the conditional distribution of the response variable given the

covariates. However, it cannot reveal any information about the typical value (mode).

Take the analysis of the adult Body Mass Index (BMI) used in this paper as an example. BMI,

defined by BMI = weight(kg)
height2(cm)

, is a measure of the relative weight and is used in a wide variety of

contexts as a simple method to assess how much an individual’s body weight deviates from what

is normal or desirable for a person of his or her height. Such analysis is important as it is well-

known that obesity has overtaken smoking as the biggest threat to people’s health, in particular

for middle-aged and old adults.

The dataset used in this paper to demonstrate mode regression is taken from the Health Survey

for England (HSE) 2011 teaching dataset. The Health Survey for England is a series of annual

surveys about the health of people living in England, commissioned by the Department of Health.

The sample contains observations for 4,138 individuals (1,814 males and 2,324 females) with two

thirds being older than 40 years old. A BMI of 27kg/m2 for middle-aged and old adults can be

classified as the cut-off point of unhealthy weight. An interesting question is how some covariates,

such as units of alcohol and portions of fruit/vegetables consumed keep one’s BMI in the healthy

range. It would be safe to assume that the BMI for the majority of people in the data example falls

in the desirable BMI range. Indeed, the typical BMI for the whole sample as well as separately

for men or women are below 27kg/m2, but the corresponding mean BMI and median BMI were

near or greater than 27kg/m2. Therefore, employing mode regression is preferable than mean and

quantile regression for answering this scientific question.

In this paper we introduce a fully Bayesian framework for direct mode regression inference

by using three approaches: a parametric Bayesian method, a nonparametric Bayesian method

and an empirical likelihood based Bayesian method. The remainder of the paper is organized as

follows. Section 2 introduces the three approaches, describes the theoretical and computational

framework of these methods and gives their mathematical justification. In Section 3 we illustrate

the proposed methods through two simulated case-studies and a real example. We conclude with

a short discussion in Section 4.

3

Page 3 of 28 Scandinavian Journal of Statistics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

2. BAYESIAN MODE REGRESSION

2.1. Mode Estimation

Consider an arbitrary random variable Z, with distribution function FZ(z) and density function

fZ(z). Let K(Z; ·) be the step-loss function (Manski (1991)) such as,

K(Z;µ) = I

[
|Z − µ|
σ

> 1

]
, (2.1)

with σ > 0 and I[A] being the indicator function of event A. If fZ(z) is symmetric around µ or if

µ is the middle value of the interval of length 2σ that captures the most probability under FZ(z),

then

µ̂ = argminµE{K(Z;µ)}

is the mode of Z.

Therefore, given a sample {Z1, ... Zn} from Z, let µ̂ be the estimator of the mode of Z, then,

µ̂ = argminµ

n∑
i=1

I [|Zi − µ| > σ] .

Generally, if we define a uniform density function fσ(u) over the interval (µ− σ, µ+ σ) as

fσ(u;µ) =
1

2σ
I(|u− µ| ≤ σ), (2.2)

where −∞ < µ <∞ and σ > 0 are the location parameter and scale parameter respectively, then

clearly the mode of Z can be estimated by

µ̂ = argmaxµ

n∏
i=1

fσ(Zi;µ). (2.3)

2.2. Parametric Bayesian Mode Regression

Let mode(y|x) = x′β be the conditional mode of Y given X = x. A standard regression model

to formulate the mode regression could be as:

y = x′β + ε, (2.4)
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with mode(ε|x) = 0 of model error ε.

Lee (1989,1993) showed that, given a sample {(x1, y1), ... (xn, yn)} from (x, y), the classical

mode regression estimator, β̂ is given by:

β̂ = argmaxβ
1

n

n∑
i=1

I[|yi − x′iβ| ≤ σ]. (2.5)

Therefore, using equation (2.3), β̂ can be regarded as the maximum likelihood estimator of the

“working” likelihood function

L(y|β, σ) =

n∏
i=1

fσ(yi;x
′
iβ). (2.6)

Now a natural joint posterior distribution of the unknown model parameters, β and σ under a

Bayesian framework is given by

π(β, σ|y) ∝ L(y|β, σ)π(β, σ), (2.7)

where π(β, σ) is the joint prior distribution of β and σ.

The Bayesian mode regression estimates, denoted as β̂B can be obtained using the marginal

posterior distribution of β, given by

π(β|y) =

∫
π(β, σ|y)dσ, (2.8)

In a similar manner, an estimate of σ, denoted as σ̂, can be obtained using the marginal posterior

distribution of σ,

π(σ|y) =

∫
π(β, σ|y)dβ, (2.9)

Although a standard conjugate prior distribution is not available for the mode regression for-

mulation, Markov Chain Monte Carlo (MCMC) methods may be used for extracting the posterior

distributions of both β and σ.
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2.3. Estimation of Covariance Matrix of Classical Estimates

Under the classical approaches of Lee (1989, 1993) and Kemp and Santos Silva (2012), the

covariance matrix, cov{β̂} of the classical estimator β̂ and its inverse are often required but difficult

to estimate or compute numerically, especially under small or moderate samples. A by-product of

the proposed Bayesian approach is that using the MCMC posterior sample leads to a natural and

efficient estimation of cov{β̂} and other asymptotic quantities of β̂.

In fact, a MCMC scheme constructs a Markov chain whose equilibrium distribution is the joint

posterior, p(β|data). After running the Markov chain for a burn-in period, one obtains samples

from the limiting distribution, provided that the Markov chain has converged. Given that the chain

has converged, the frequency of appearance of the parameters in the Markov chain represents their

posterior distribution. An informative full density distribution of the model parameters is readily

obtained rather than a single point estimate as in the classical approach.

When a Markov chain, S, is drawn from the posterior distribution, p(β|data): S = (β(1),β(2), ...,β(N)),

where N is the number of draws after burn-in, a consistent estimate of the inverse of the covariance

matrix cov{β̂} can be obtained by multiplying by N the variance-covariance matrix of this MCMC

sequence (Chernozhukov and Hong 2003).

2.4. Prior Section and Proper posteriors

In this section first we demonstrate that almost all priors for (β, σ) could be used and yield a

proper joint posterior. In fact we have the following theorem.

Thm 2.1. Given the mode regression (2.4) and the ‘working’ likelihood (2.6), if the joint prior

distribution π(β, σ) follows one of the following three choices:

(1) π(β, σ) ∝ 1 (totally non-informative prior)

(2) π(β, σ) = π(β)π(σ|β) and one of π(β) and π(σ|β) ∝ 1 and the other is a proper prior,

(3) π(β, σ) = π(β)π(σ|β) and both π(β) and π(σ|β) are proper priors,

then the posterior distribution of β and σ, π(β, σ|y), will be a proper distribution. In other

words

0 <

∫
π(β, σ|y) dβ dσ <∞,

6
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or, equivalently,

0 <

∫
L(y|β, σ)π(β, σ) dβ dσ <∞.

The proof can be found in the Appendix.

In practice one usually assumes that the components of β have independent prior distributions

which is a special case of the above theorem.

2.5. One practical selection of prior on σ

If the conditional distribution is strictly unimodal and symmetric or if the regressors affect only

the location of the distribution, then a consistent estimate of the mode can be obtained with a

fixed σ (Lee (1989)). In practice, however, data with such characteristics is relatively rare. In

addition, in such cases the added value of mode regression is rather limited as the mode coincides

with the mean and the median. To extend mode regression to more interesting applications σ must

be allowed to approach zero as the sample size goes to infinity.

A suitable prior distribution for σ would be one with a positive support. To this end it is

proposed to use either a Uniform(w1, w2) or a Gamma distribution with mean wi, where, in both

cases wi can be determined using one of the following options, commonly used in bandwidth

selection methods for kernel density estimation:

• The empirical rule, which states that, given a symmetric distribution, approximately 99.7%

of the data values fall within three standard deviations (sd) of the mean, therefore, wi = 3sd;

• Variations of Silverman’s plug-in estimate for the bandwidth (Silverman (1986)), in which

wi = 1.3643δn−0.2[min(ŝd, IQR/1.349)], where, IQR is the sample inter quantile range and

δ = 1.3510 for a uniform kernel. To cover data with large number of outliers IQR/1.349 can

be replaced by 1.4826MAD, where MAD is the median absolute deviation.

Alternatively, as the next section demonstrates, a more flexible model can be developed by

relaxing the distributional assumption on the prior for σ using a Dirichlet process prior. This leads

to a flexible nonparametric mixture model. The method is nonparametric in the sense that it is

not assumed that the prior belongs to any fixed class of distributions.
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2.6. Nonparametric Bayesian method

In this section, we formulate a nonparametric Bayesian mode regression model to avoid critical

dependence on the mode uniform distribution assumption thus to address the issue of misspecifi-

cation that may arise under the parametric Bayesian method.

A density f(·) on R+ is non-increasing if and only if there exists a distribution function G such

that f(x|G) =
∫
σ−1I[0<x<σ]dG(σ) (Feller 1971). Therefore, any unknown density f(·) (with mode

θ), symmetric or not, can be represented as a scale mixture of symmetric uniform distributions,

that is

f(x|θ,G) =

∫
1

2σ
I[−σ<x−θ<σ]dG(σ), (2.10)

where G is the mixing distribution supported on R+.

Then, a nonparametric Bayesian mode regression model can be expressed in the hierarchical

form

yi|β, σi
ind∼ f(yi − x′iβ;σi), i = 1 · · ·n

σi|G
iid∼ G, i = 1 · · ·n

G|M,d ∼ DP (M,G0(·, d))

β,M, d ∼ p(β), p(M), p(d),

(2.11)

where, G is the mixing distribution, with base distribution G0 and concentration parameter M and

f(yi − x′iβ;σi) = 1
2σ I[−σ<yi−x′iβ<σ]

is the density of a uniform distribution on (−σ, σ).

We take a uniform distribution as the base distribution, G0, uniform prior for M and we choose

non-informative Normal priors for all the components of β.

2.7. Empirical Likelihood based Bayesian Method

In addition to parametric and nonparametric likelihood, an empirical likelihood based method

could be an alternative for Bayesian mode regression. To derive an empirical likelihood for mode

regression we begin with notations and a moment restriction. Lee (1993) generalized the mode

regression estimator of Lee (1989), β̂ = argminβE{L(Y − x′β)}, by using the triangular kernel

L(Y ;µ) = {(σ2 − (Y − µ)2)I[|Y − µ| < σ]}.

Therefore, the moment restriction for the empirical likelihood can be obtained by the derivative

8
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∂
∂µL(Y ;µ) = 2(Y − µ)I[|Y − µ| < σ]. Let l(Y ;µ) be the ‘derivative’ of L(.;µ) with respect

to µ, then the mode, µ, of Y satisfies the moment restriction E(l(Y ;µ)) = 0, where l(Y ;µ) =

(Y − µ) I(|Y − µ| < σ).

Under an empirical likelihood for mode regression µ = x′β, thus for any proposed β to estimate

the true p dimensional β0 via empirical likelihood, we use the vector estimating functions g(X,Y,β)

with component gj(X,Y,β) = l(Y ;β′X)Xj for j = 1, .., p. Then, the profile empirical likelihood

ratio is given by

R(β) = max{
n∏
i=1

(n pi)|
n∑
i=1

pi g(Xi, Yi,β) = 0, pi ≥ 0,
n∑
i=1

pi = 1}.

By a standard Lagrange multiplier argument we have

R(β) =
n∏
i=1

{n pi(β)}, (2.12)

with the weights pi(β) = 1
n(1+λ̂(β)′g(Xi,Yi,β))

, where the Lagrange multiplier λ̂(β) is the solution of

λ to the following equation
n∑
i=1

g(Xi, Yi,β)

1 + λT g(Xi, Yi,β)
= 0. (2.13)

According to Qin and Lawless (1994), among others, the existence and uniqueness of λ̂(β) are

guaranteed when the following two conditions are satisfied: (1) zero belongs the convex hull of

{g(Xi, Yi,β), i = 1, ..., n} and (2) the matrix
∑n

i=1{g(Xi, Yi,β)g(Xi, Yi,β)′} is positive definite.

Under Bayesian inference we consider the empirical likelihood function R(β)/nn =
∏n
i=1{pi(β)},

which can be combined with a prior specification π(β) on the parameter β to obtain the posterior

distribution

π(β|data) ∝ π(β)R(β).

2.8. Asymptotic Properties of Bayesian Empirical Likelihood

Before establishing the asymptotic normality of the empirical likelihood-based Bayesian mode

regression parameter estimates, the consistency of the empirical likelihood estimator must be es-

tablished, which is a necessary condition for the asymptotic normality of the posterior. Since the

criterion function g(X,Y,β) results in a non-smooth estimating equations, a similar method to

9
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the one used by Molanes Lopez et al. (2009), among others, is employed to derive the asymptotic

results.

Let β̂ = argmaxβR(β) be the maximum empirical likelihood estimator (MELE) in a compact

set of parameter space which contains the true parameter β0. Then note that the criterion function

g(X,Y,β) can be regarded as a special case of M-estimators as discussed in Chapter 5 of Van der

Vaart (1998) and satisfies the conditions of theorem 5.7 in the book. Under some regular conditions

imposed on the marginal distribution of X and on the conditional distribution of Y given X, such as

uniformly continuous and bounded, and since both E{g(X,Y,β)} and E{g(X,Y,β) g(X,Y,β)′} > 0

are sufficiently smooth in a compact set of parameter space, which contains β0, the consistency

condition C3 of Molanes Lopez et al. (2009) holds. Then the consistency of empirical likelihood

estimates is established. Specifically, a rigorous statement of the conditions and theorem is as

follows:

Assumption 1. There exists a neighborhood N of β0 such that P (R(β) > 0)→ 1 for any β ∈ N ,

as n→∞.

Assumption 2. The distribution function GX of X has bounded support X .

Assumption 3. The conditional distribution FX(t) of Y given X is twice continuously differen-

tiable in t for all X ∈ X .

Assumption 4. At any X ∈ X , the conditional density function F ′X(t) = fX(t) > 0 for t in a

neighborhood of β′0X.

Assumption 5. E{g(X,Y,β0) g(X,Y,β0)
′} > 0 is positive definite.

Thm 2.2. Under Assumptions 1–5, the MELE β̂ is a consistent estimator of β0.

Assumptions 1-5 are standard conditions in this kind of asymptotic problems. For example,

these conditions are basically similar to Assumptions 3.1-3.5 of Yang and He (2012, pp. 1110) for

Bayesian empirical likelihood quantile regression. Assumption 1 is to guarantee that the interior of

the convex hull of {g(Xi, Yi,β) : i = 1, · · · , n} for β ∈ N contains the vector of zeros with probabil-

ity tending to one. Assumption 4 ensures that β0 is indeed the unique solution for Eg(X,Y,β) = 0.

The proof of Theorem 2.2 is sketched in the Appendix.

The asymptotic normality of the posterior distribution π(β|data) could be established using the

fact that the empirical log-likelihood ratio for β is well approximated by certain quadratics in the

10

Page 10 of 28Scandinavian Journal of Statistics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

sense of Lemma 6 of Molanes Lopez et al. (2009) so that,

Γn(β) ≡ −n−1
n∑
i=1

log(1 + λ̂(β)′g(Xi, Yi,β)) (2.14)

= −1

2
(β − β0)

′V ′12V
−1
11 V12(β − β0) + n−1/2(β − β0)

′V ′12V
−1
11 Wn

− 1

2
n−1W ′nV

−1
11 Wn + oP (n−1), (2.15)

with matrices V11 = (E{gj(X,Y,β0) gk(X,Y,β0)
′})pj,k=1, V12 = (− ∂

∂βk
E{gj(X,Y,β)}|β=β0

)pj,k=1,

and vector Wn = n−1/2
∑n

i=1 g(Xi, Yi,β0)).

Specifically, we make one more assumption on the prior specification π(β).

Assumption 6. log{π(β)} has bounded first derivative in a neighborhood of β0.

Then from logR(β) = nΓn(β) we have

Thm 2.3. Under Assumptions 1-6, the posterior density of β has the following expansion on any

sequence of sets {β : β − β0 = O(n−1/2)},

π(β|data) = π(β)R(β) ∝ exp{−1

2
(β − β̂)′In(β − β̂) +Qn} (2.16)

with In = nV ′12V
−1
11 V12 and empirical likelihood estimate β̂ and Qn = op(1). When In is positive

definite, we have I
1/2
n (β − β̂) converging in distribution to N(0, I).

The proof of Theorem 2.3 is sketched in the Appendix.

We finally remark that, as similarly remarked for quantile regression by Remark 3.2 of Yang and

He (2012, pp. 1110), the posterior will be improper for flat priors on β in the Bayesian empirical

likelihood approach for our mode regression, and therefore we should avoid using flat priors on β.

In the case of the prior distribution shrinking with n, we may use πn(β) satisfying condition

similar to Assumption 3.7 of Yang and He (2012) as priors for our mode regression; see Theorem 3.3

of Yang and He (2012) for details.

3. NUMERICAL EXPERIMENTS

In this section we demonstrate our approach to Bayesian mode regression through two simulated

and one real examples. For the real example we consider a dataset which investigates how factors

11
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such as gender, age, consumption of alcohol, consumption of fruit and vegetables and smoking can

affect the body mass index (BMI).

3.1. Simulation Example 1

We consider a simulated data from the model

yi = β0 + β1xi + εi, (3.1)

where xi ∼ N(0, 1), i = 1, ..., n for n = 50, 100, 200 and β = (1, 2). The following three specifications

were considered for the model error ε:

• Case 1: the standard Normal distribution, εi ∼ N(0, 1) - a symmetric error distribution.

• Case 2: a Fisher’s Z distribution, εi ∼ 1/2logZ with Z ∼ F2,2 - a skewed error distribution.

• Case 3: a Normal distribution with normally distributed outliers (contaminants) centred at

twice the distance between the true mode and the 99th percentile of the original Normal

distribution and accounting for 20% of the total data points, εi ∼ 0.80N(0, 14)+0.20N(2.5, 14)

(Hedges and Shah (2003)) - an asymmetric error distribution.

We fit parametric Bayesian mode regression (labeled PBMR) for all the cases above. Then for

demonstration and comparison purposes we fit empirical likelihood based Bayesian mode regression

(labeled ELBMR) for case 2 and nonparametric Bayesian mode regression (labeled NBMR) for case

3.

For the PBMR and ELBMR models, independent Normal distributions were used as priors of

each component of β, where the mean and standard derivation of the Normal prior are given by the

classical estimator of Lee (1989, 1993) and its estimated standard error respectively. Realisations

were simulated from the posterior distributions by means of a single-component Metropolis-Hastings

algorithm. Each of the parameters was updated using a random-walk Metropolis algorithm with a

Gaussian proposal density centred at the current state of the chain. The variance of the proposal

density was chosen to provide an acceptance rate close to the optimal acceptance rate as defined in

Roberts and Rosenthal (2001). Convergence was assessed using time series plots and the R package
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Table 1: Simulation Example 1: True parameter values (T.V.) and their posterior means, standard
deviations (S.D.) and 95% credible intervals (C.I)

PBMR ELBMR NBMR

Normal Skewed Asymmetric Skewed Asymmetric

n β0 β1 β0 β1 β0 β1 β0 β1 β0 β1

50

T.V 1 2 1 2 1 2 1 2 1 2
Mean 0.92 2.00 1.07 2.01 0.96 2.02 1.01 2.00 1.09 1.94
S.D. 0.78 0.77 0.78 0.49 0.34 0.24 0.01 0.01 0.24 0.19

95%CI (-0.6,2.1) (0.5,3.3) (-0.3,2.6) (1.2,3.1) (0.4,1.7) (1.6,2.5) (0.99,1.02) (1.99,2.01) (0.7,1.5) (1.5,2.3)

100

T.V 1 2 1 2 1 2 1 2 1 2
Mean 1.01 2.10 0.95 1.89 1.06 1.94 1.01 2.00 1.06 2.00
S.D. 0.18 0.25 0.52 0.37 0.98 0.76 0.01 2 0.14 0.12

95%CI (0.6,1.3) (1.6,2.6) (0.0,1.9) (1.2,2.6) (-0.7,2.9) (0.5,3.3) (0.99,1.02) (1.99,2.01) (0.8,1.3) (1.8,2.2)

200

T.V 1 2 1 2 1 2 1 2 1 2
Mean 1.26 1.99 1.00 1.99 1.06 1.96 1.01 2.00 1.04 1.91
S.D. 0.86 0.52 1.29 0.75 0.82 0.42 0.01 0.01 0.07 0.06

95%CI (-0.5,2.8) (0.9,3.0) (-1.3,3.5) (0.6,3.3) (-0.4,2.6) (1.2,2.7) (0.99,1.02) (1.99,2.01) (0.92,1.19) (1.78,2.03)

boa (Smith (2007)). The estimates are posterior means using 10,000 iterations of the MCMC

sampler (after 10,000 burn-in iterations).

The estimates for the NBMR model were obtained by fitting a truncated Dirichlet Process (DP)

mixture model, which leads to a computationally straightforward approximation and can be easily

implemented in the freely available WinBUGS software. Two parallel chains of equal length with

different initial values were run for the model. The results were based on 10,000 iterations which

followed a burn-in period of 40,000 for each chain.

Table 1 compares the posterior means with the true values of β0 and β1 and also gives standard

deviations and 95% credible intervals for each of the models considered in this example.

The results of the analysis indicate that the PBRM works well, as all the absolute biases for the

estimated parameters turn out to be in the range [0.01, 0.26]. Furthermore, under both ELBMR and

NBRM, the true values for both β0 and β1 are recovered successfully indicating that the methods

also work well. However, it should be noted that the standard deviations for both parameters are

smaller than in the PBMR, giving shorter confidence intervals.

The MCMC sampler for the regression parameters β̂0 and β̂1 can be used to obtain the empirical

samples from the joint posterior distributions of the PBMR parameters. These samples can be

used to obtain a consistent estimator of the covariance or correlation structure of the parameter

estimators, which is difficult to estimate under the classical approach. For example in case (a),
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with sample size n=100, we have

Ĉov

(
β̂0

β̂1

)
=

 3 −1

−1 6

 .

3.2. Simulation Example 2

In this section we present the results of a second simulation example with the aim of comparing

the performance of our approach with the classical mode regression approach. Specifically, we

replicate the simulation study in Kemp and Santos Silva (2012), but only for a sample of size 250,

and compare their results with the results obtained under our Bayesian mode regression approach.

Simulation data are generated by the simple linear model

yi = β0 + β1xi + (1 + vxi)εi, (3.2)

where xi are generated from a χ2
(3) distribution, scaled to have variance 1, and εi are generated as

independent draws from a re-scaled log-gamma random variable,

εi = −λ ln(Zi), (3.3)

where Z follows a gamma distribution with mean 1 and scale parameter 1
α , to ensure that εi has zero

mode. Furthermore, we set λ = [(1 + 2E(xi)v + E(x2i )v
2)ψ(α)] 1 to ensure that the unconditional

variance of the error (1 + vxi) is equal to one.

The study was performed for α ∈ {0.05, 5} and for v ∈ {0, 2}. Table 1 compares the 95%

Bayesian credible intervals (BCI) for the estimates obtained under PBMR and NBMR with the

95% classical confidence intervals (CI) for the estimates under the two classical mode regression

models: Mode 1.6 and Mode 0.8. Mode 1.6 and Mode 0.8 correspond to k = 1.6 and k = 0.8

respectively in the bandwidth selection rule, bandwidth=kmadn−0.143, where mad is the median

of the absolute deviation from the median of ordinary least squares regression residuals.

The results of the analysis suggest that the Bayesian mode regression estimates are strong

competitors of the classical mode regression estimates since in almost all the examples both PBMR

1ψ(·) is the trigamma function
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Table 2: Simulation Example 2: Comparison between Classical and Bayesian approach for mode
regression

PBMR NBMR Mode 1.6 Mode 0.8

α n 95% BCI 95% BCI 95% CI 95% CI

5.00
0

β0 (-0.37,0.29) (-0.21,0.36) (-0.31, 0.41) (-0.69, 0.75)
β1 (0.82,1.28) (0.89,1.32) (0.77, 1.24) (0.56,1.45)

2
β0 (-0.06,0.07) (-0.03,0.21) (-0.15,0.23) (-0.25,0.29)
β1 (0.99,1.14) (0.80,1.22) (0.63,1.37) (0.48,1.53)

0.05
0

β0 (0.00, 0.14) (-0.03,0.07) (0.12,0.42) (-0.09,0.35)
β1 (0.95,1.13) (0.95,1.06) (0.90,1.11) (0.87,1.17)

2
β0 (0.02,0.08) (0.04,0.09) (0.09,0.29) (0.01,0.21)
β1 (0.99,1.08) (0.97,1.04) (0.91,1.19) (0.85,1.19)

and NBMR estimators outperform the two classical estimators.

Finally, as also evident from Kemp and Santos Silva (2012), the selection of the value/prior for

σ plays an important role on the precision of the parameters.

3.3. Factors Affecting the Body Mass Index (BMI)

Following the introduction of the BMI example in Section 1, the proposed methodology was

applied to investigate the research question: “What is the effect of factors such as gender, age,

consumption of alcohol, consumption of fruit and vegetables and smoking on the typical body mass

index (BMI)?”

A person’s typical BMI was modelled as a function of the person’s age, agei, the total units of

alcohol consumed per week, alcoholi, the portion of fruit and vegetables consumed the previous day,

fruit&vegi the person’s cigarette smoking status, smokingi (1= Non-smoker, 2= Light smokers,

under 10 a day, 3= Moderate smokers, 10 to under 20 a day, 4=Heavy smokers, 20 or more a day),

and of a gender indicator, malei (1=male, 0=female):

bmii = β0 + β1agei + β2alcoholi + β3fruit&vegi + β4smokingi + β5genderi + εi (3.4)

The BMI range is from 15.9 to 56.0 (range =40.1) indicating a significant disparity between

high and low BMI scores. The average BMI is 27.75 with standard deviation of 5.13. The high
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levels for range and standard deviation suggest the presence of outliers which cause the mean to be

pulled in the direction of the tail. As a consequence, the mean, median, and mode do not coincide

and it can be easily concluded that the distribution of the data is positively skewed. Figure ??

in section 1 demonstrates the density of BMI for the total, males and females, verifying that all

three distributions are positively skewed. The mode represents the most typical value and is the

value at the peak of the distribution. Even though, mean regression and quantile regression could

have been applied to model BMI these methods cannot reveal any information about the mode, or

about the effect of the covariates on the most typical case.

Table 3 presents the estimation results obtained with the traditional mean, quantile regressions

and with the proposed mode regression. The analysis was performed for the total of responders

but also for males and females separately. For the mode regression, an independent improper uni-

form prior was chosen for all the components of β and a gamma prior with mean 3sd(bmi) for

σ. Realisations were simulated from the posterior distributions by means of a single-component

Metropolis-Hastings algorithm. Each of the parameters was updated using a random-walk Metropo-

lis algorithm with a Gaussian proposal density centred at the current state of the chain. The

estimates are posterior means using 10,000 iterations of the MCMC sampler (after 10,000 burn-in

iterations).

As expected, mean regression indicates that on average the BMI is lower for women than for men

but, as indicated by quantile regression, the effect of gender differs significantly at different quantile

levels. More specifically, at the 25% level, the BMI of women is around 1.36 units lower than the

corresponding BMI for men but this gap is smaller for the median case (0.75) and decreases further

at the 75% quantile level (0.29). Mode regression reveals that the gender differential in the most

typical BMI is lower than both the mean and the median, since as opposed to the other statistics,

mode is not influenced by the extreme observations. According to the results, the typical BMI for

women is 0.27 units lower than the corresponding BMI for men.

The effect of fruit and vegetables is not significantly different from zero for mean and quantile

regression at the 25% level and at the median. However, at the 75% level the consumption of

additional fruit and vegetables has a negative effect on the typical BMI (-0.11). Similar results are

obtained for both males and females, however, under quantile regression for males the effect is not

significant at any quantile levels. However, under mode regression it seems that the consumption of
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Table 3: BMI dataset: Estimation results for mean, quantile and mode regression

Mean Quantile Regression Parametric Bayesian
Regression 0.25 0.50 0.75 Mode Regression

Total (n=4,138)
Variable Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.D.

const 25.74 0.33 21.32 0.29 24.04 0.37 28.42 0.53 34.44 10.6
age 0.05 0.004 0.05 0.004 0.06 0.005 0.05 0.01 -0.01 0.16

alcohol -0.01 0.004 0.004 0.001 0.001 0.004 -0.004 0.001 -0.01 0.05
fruit&veg -0.07 0.03 -0.002 0.02 -0.06 0.02 -0.11 0.04 -0.24 0.54
smoking -0.37 0.13 -0.40 0.11 -0.34 0.17 -0.36 0.20 -1.16 3.34

male 0.42 0.16 1.36 0.15 0.75 0.17 0.29 0.24 0.27 6.15
Males (n=1,814)

const 25.78 0.45 22.81 0.44 24.85 0.47 27.99 0.70 34.7 9.70
age 0.05 0.006 0.05 0.006 0.06 0.01 0.05 0.01 -0.003 0.15

alcohol 0.01 0.004 0.01 0.005 0.01 0.01 0.01 0.01 -0.01 0.06
fruit&veg -0.03 0.04 -0.02 0.04 -0.03 0.04 -0.02 0.06 -0.31 0.68
smoking -0.43 0.19 -0.57 0.20 -0.48 0.24 -0.51 0.33 -1.47 3.53

Females (n=2,324)
const 26.05 0.47 21.36 0.40 23.76 0.47 28.51 0.83 33.8 10.25
age 0.04 0.006 0.05 0.006 0.06 0.01 0.05 0.01 0.01 0.16

alcohol -0.03 0.01 -0.01 0.01 -0.01 0.01 -0.02 0.01 -0.04 0.01
fruit&veg -0.1 0.04 0.01 0.03 -0.07 0.04 -0.15 0.06 -0.17 0.53
smoking -0.27 0.20 -0.29 0.18 -0.19 0.27 -0.29 0.37 -1.32 3.73

an additional unit of fruit and vegetables is negatively correlated with the typical BMI level. The

negative effect for males is almost twice as high as for females. This results imply that, typically,

eating more fruit and vegetables can contribute to lowering BMI levels; thus losing weight.

Furthermore, the results of the analysis suggest that heavier smoking is also negatively correlated

with the BMI under all three methods. However, under mode regression the negative effect of

heavier smoking on the typical BMI is 3 times higher as compared to the effect on the mean BMI

and at different quantile levels.

Finally, under all three methods, the effect of age and alcohol cannot be considered as signifi-

cantly different from zero for the total, but also for males and females separately.

In conclusion, the results indicate that mode regression is a useful statistical technique, espe-

cially when analysing data with outliers. In this example, even though the overall effect of covariates

on the response variable was similar under the three regression methods, the marginal effects of

the covariates were often different, justifying the usefulness of mode regression as an alternative

analysis tool.
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4. CONCLUSIONS

Identifying the typical value or pattern could be one of the most efficient statistical methods of

data analysis, in particular, for big data analysis. In this paper a novel Bayesian mode regression

framework has been presented which includes three approaches: a parametric method, a nonpara-

metric method and an empirical likelihood-based method. It should be noted that, in the area

of mode regression, there is no literature from a Bayesian perspective. The paper demonstrates

that the estimates are consistent and asymptotically Normal under fairly standard conditions and

even under misspecification of the likelihood function. The numerical studies suggest that the pro-

posed Bayesian mode regression estimates are strong competitors to the classical mode regression

estimates.

APPENDIX: PROOFS OF THEOREMS

Proof of theorem 2.1

The γth moments of marginal posterior distribution of β is given by

E[|β|γ |σ,y] =

∫
1

(2σ)n

n∏
i=1

I[|yi − x′iβ| < σ]π(β, σ)dβ dσ.

Noting that
∏n
i=1 I[|yi − x′iβ| < σ] provides joint bands for all components βj (j = 0, 1, ..., p) of β. Let us

say 0 < |βj | < Bj <∞ (j = 0, 1, ..., p), even if some of |yi − x′iβ| < σ are true and some are not. Therefore,

E[|β|γ |σ,y] =

∫
1

(2σ)n
dσ

∫ B0

−B0

∫ B1

−B1

...

∫ Bp

−Bp

p∏
j=0

|βj |rj π(β, σ) dβ,

which is clearly finite. Similarly, for the γth moment of marginal posterior of σ with γ < n is defined as

E[|σ|γ |β,y], and can be provided finite in the same way.

Proof of theorem 2.2

We will show Theorem 2.2 by applying a generic consistency lemma, Lemma 4.1, of Lu et al. (2007). For

convenience of statement, we define Rn(λ,β) ≡ n−1
∑n
i=1 log(1 + λ′g(Xi, Yi,β)) and R(λ,β) ≡ E{log(1 +

λ′g(Xi, Yi,β))}. Then note that Rn(λ̂(β),β) = −Γn(β) and β̂ = arg minβ∈BRn(λ̂(β),β), where λ̂(β) and

Γn(β) are defined in (2.13) and (2.14), respectively, and B is a compact subset of Rp containing the true

parameter vector β0 as an interior point. Further, we denote by Hn(λ,β) for the left-hand side of (2.13)

divided by n, that is Hn(λ,β) ≡ n−1
∑n
i=1{g(Xi, Yi,β)/[1 + λ′g(Xi, Yi,β)]}, and hence for any β ∈ B, λ̂(β)
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is the solution of λ to the equation Hn(λ,β) = 0.

We will need the following lemma on the continuity for the quantities related.

Lemma .1. Under Assumptions 2 and 3, we have the following results:

(L1) E{g(X,Y,β)} and E{g(X,Y,β)g(X,Y,β)′} are twice continuously differentiable with respect to β.

(L2) There exist p dimensional compact neighborhoods Cλ and Cβ around 0, in which H0(λ,β) =

E[g(X,Y,β)/{1+λ′g(X,Y,β)}] is twice continuously differentiable in β ∈ Cβ and λ ∈ Cλ, and E[g(X,Y,β)g(X,Y,β)′/{1+

λ′g(X,Y,β)}] is uniformly continuous with respect to β ∈ Cβ and λ ∈ Cλ.

The proof of this lemma is similar to that of Lemma A.1 of Yang and He (2012, pp. 1121). We only need

to notice g(Xi, Yi,β) = (Yi −β′Xi)I{|Yi−β
′
Xi|<σ}

Xi and apply Assumptions 2 and 3. As an illustration, we

provide the proof for Eg(Xi, Yi,β) here. Note that

Eg(Xi, Yi,β) = EX

∫
(y − β′X)I{|y−β′

X|<σ}XfX(y)dy

= EX

∫ β′
X+σ

β′
X−σ

(y − β′X)XfX(y)dy,

where EX stands for the expectation with respect to the distribution GX of the random variable X. Then

the first order derivative of Eg(Xi, Yi,β) with respect to β, through simple algebraic calculations, is

∂Eg(Xi, Yi,β)

∂β
= EX{σX(fX(β′X + σ)− fX(β′X − σ))−XX ′(FX(β′X + σ)− FX(β′X − σ))}.

Now by Assumptions 2 and 3, clearly
∂Eg(Xi,Yi,β)

∂β
is further differentiable with respect to β. The remaining

parts of this lemma can be proved similarly with details omitted. ‡

We further define λ0(β) to be the solution of λ to the equationH(λ,β) ≡ E{g(Xi, Yi,β)/[1+λ′g(Xi, Yi,β)]} =

0. By Lemma .1, Assumption 5 and the implicit function theorem, λ0(β) uniquely exists in the neigh-

bourhood Cλ of 0 ∈ Rp. By this uniqueness, as Eg(X,Y,β0) = 0, we have λ0(β0) = 0. Therefore it

follows that R(λ0(β0),β0) = E{log(1 + (λ0(β0))′g(Xi, Yi,β0))} = 0. Note that under Assumptions 1–5,

β0 = arg minβ∈BR(λ0(β),β).

To show the consistency of β̂ to β0, we will apply a lemma below that is a special case of Lemma 4.1 of

Lu et al. (2007). Here we need to define a uniform metric ‖ · ‖B for the distance of any continuous function

λ : B 7→ Rp from λ0(·), that is ‖λ(·)−λ0(·)‖B = supβ∈B ‖λ(β)−λ0(β)‖ with ‖ · ‖ standing for the Euclidean

norm of Rp.

Lemma .2. Suppose β0 ∈ B (a compact subset of Rp) satisfies R(λ0(β0),β0) = infβ∈BR(λ0(β),β), and

that the following hold.
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(i) Rn

(
λ̂(β̂), β̂

)
≤ infβ∈BRn

(
λ̂(β),β

)
+ oP (1).

(ii) For all δ > 0, there exists ε(δ) > 0 such that

inf
‖β−β0‖>δ

R (λ0(β),β) ≥ R (λ0(β0),β0) + ε(δ).

(iii) Uniformly for all β ∈ B, R (λ(β),β) is continuous [with respect to the uniform metric ‖ · ‖B] in λ(β)

at λ0(β).

(iv) ‖λ̂(·)− λ0(·)‖B = oP (1).

(v) For all {δn} with δn = o(1),

sup
β∈B

sup
‖λ(β)−λ0(β)‖B≤δn

|Rn (λ(β),β)−R (λ(β),β)| = oP (1).

Then β̂ − β0 = oP (1).

The proof of this lemma is omitted; see that of Lemma 4.1 of Lu et al. (2007, pp. 186).

The consistency of β̂ can be proved by checking the conditions in Lemma .2 step by step: As β̂ and

β0 are the minimizers of Rn(λ̂(β),β) and R(λ0(β),β), respectively, (i) and (ii) hold obviously. By noting

Lemma .1, simple algebraic calculations lead to

R(λ,β) = EX

∫ β′
X+σ

β′
X−σ

log{1 + λ′X(y − β′X)}fX(y)dy, (.1)

H(λ0(β),β) = EX

∫ β′
X+σ

β′
X−σ

X(y − β′X)

1 + (λ0(β))′X(y − β′X)
fX(y)dy = 0, (.2)

and therefore (iii) also holds clearly by the following fact: as ‖λ(·)− λ0(·)‖B → 0,
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sup
β∈B
|R(λ(β),β)−R(λ0(β),β)|

≤ sup
β∈B

∣∣∣∣∣EX
∫ β′

X+σ

β′
X−σ

[
log{1 + (λ(β))′X(y − β′X)} − log{1 + (λ0(β))′X(y − β′X)}

]
fX(y)dy

∣∣∣∣∣
≤ sup
β∈B

∣∣∣∣∣EX
∫ β′

X+σ

β′
X−σ

[
(λ(β)− λ0(β))′X(y − β′X)

1 + (λ0(β))′X(y − β′X)

− (λ(β)− λ0(β))′XX ′(y − β′X)2(λ(β)− λ0(β))

[1 + (λ0(β) + ξ(λ(β)− λ0(β)))′X(y − β′X)]2

]
fX(y)dy

∣∣∣∣
≤ ‖λ(·)− λ0(·)‖2B sup

β∈B

∣∣∣∣∣EX
∫ β′

X+σ

β′
X−σ

[
‖XX ′‖(y − β′X)2

[1 + (λ0(β))′X(y − β′X)]2

]
fX(y)dy

∣∣∣∣∣→ 0, (.3)

where |ξ| < 1, the last inequality follows from equality of (.2), and the last limit is owing to the compactness

of B together with the continuity of the integration part as a function of β on the RHS of the last inequality

in (.3). (iv) follows from a standard argument of the Z-estimator λ̂(β), which is the solution to Hn(λ,β) = 0,

uniformly converging to λ0(β), which is the solution to H(λ,β) = 0, in Chapter 5.1 of Van der Vaart (1998);

see also the argument on uniform convergence in the second paragraph on Yang and He (2012, pp. 1124).

For (v), letting δn = o(1) and ‖λ− λ0‖B ≤ δn, we notice that

Rn(λ(β),β)−R(λ(β),β)

= {Rn(λ(β),β)−Rn(λ0(β),β)}+ {Rn(λ0(β),β)−R(λ0(β),β)}

+ {R(λ0(β),β)−R(λ(β),β)}

= I + II + III,

where by (.3) III tends to 0, uniformly for β ∈ B and with λ satisfying ‖λ− λ0‖B ≤ δn. That I tends to 0,

uniformly for β ∈ B and λ with ‖λ− λ0‖B ≤ δn, can be proved in the same way as for III, because in fact

E[I] = III; II can also be proved easily to tend to zero.

Proof of theorem 2.3

Based on the consistency in Theorem 2.2, Theorem 2.3 can be proved similarly to Theorem 3.2 of Yang

and He (2012) by noticing the difference of mode regression in this paper from quantile regression in Yang

and He (2012). First, under Assumptions 2–4, it is easy to show as done in Lemma A.5 of Yang and He

(2012) that

(C1)‖
∑n
i=1[g(Xi, Yi,β)− Eg(Xi, Yi,β)]‖ = Op(n

1/2), uniformly in β in a o(1)-neighborhood of β0.

(C2) ‖
∑n
i=1[g(Xi, Yi,β)g(Xi, Yi,β)′ − Eg(Xi, Yi,β)g(Xi, Yi,β)′]‖ = op(n), uniformly in β in a o(1)-
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neighborhood of β0.

(C3) ‖
∑n
i=1[g(Xi, Yi,β) − Eg(Xi, Yi,β) − g(Xi, Yi,β0) + Eg(Xi, Yi,β0)]‖ = op(n

−1/2), uniformly in β

for β − β0 = Op(n
−1/2).

These (C1)-(C3) together with Assumptions 1–5 ensure (2.15) holds true (c.f., Lemma 6 of Molanes Lopez

et al. (2009)).

Further, maximizing the main terms on the RHS of (2.15) with respect to β, we have

β̂ − β0 = n−1/2(V ′12V
−1
11 V12)−1V ′12V

−1
11 Wn + oP (n−1/2), (.4)

where β̂ is the maximum empirical likelihood estimator of β0.

Then it follows from (2.15) and (.4) that

π(β|data) = π(β)R(β)

= π(β)× exp
{
−n

2
(β − β0)′V ′12V

−1
11 V12(β − β0) + n1/2(β − β0)′V ′12V

−1
11 Wn

−1

2
W ′nV

−1
11 Wn + oP (1)

}
= π(β)× exp

{
−n

2
(β − β0)′V ′12V

−1
11 V12(β − β0) + n(β − β0)′V ′12V

−1
11 V12(β̂ − β0)

−1

2
W ′nV

−1
11 Wn + oP (1)

}
= π(β)× exp

{
−n

2
(β − β0)′V ′12V

−1
11 V12(β − 2β̂ + β0)− 1

2
W ′nV

−1
11 Wn + oP (1)

}
= π(β) exp{−n

2
(β − β̂)′In(β − β̂) +Qn}, (.5)

where, by (.4),

Qn = −n
2

(β̂ − β0)′V ′12V
−1
11 V12(β − 2β̂ + β0) +

n

2
(β − β̂)′V ′12V

−1
11 V12(β̂ − β0)

− 1

2
W ′nV

−1
11 Wn + oP (1)

=
n

2
(β̂ − β0)′V ′12V

−1
11 V12(β̂ − β0)− 1

2
W ′nV

−1
11 Wn + oP (1)

=
n

2
(n−1/2(V ′12V

−1
11 V12)−1V ′12V

−1
11 Wn + oP (n−1/2))′V ′12V

−1
11 V12

× (n−1/2(V ′12V
−1
11 V12)−1V ′12V

−1
11 Wn + oP (n−1/2))− 1

2
W ′nV

−1
11 Wn + oP (1)

=
1

2
W ′nV

−1
11 Wn + oP (1)− 1

2
W ′nV

−1
11 Wn + oP (1) = oP (1). (.6)

Therefore (2.16) follows from (.5) and (.6) together with log(π(β)) = log(π(β0)) + O(n−1/2) for β − β0 =

O(n−1/2) owing to Assumption 6.
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The remaining part of Theorem 2.3 can be proved, by using Assumption 6, as done in the corresponding

proof of Theorem 3.2 of Lu et al. (2007, pp. 186). The details are therefore omitted.
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