
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2421096

Bayesian Model Averaging And Model Selection For Markov Equivalence Classes

Of Acyclic Digraphs

Article  in  Communication in Statistics- Theory and Methods · February 2000

DOI: 10.1080/03610929608831853 · Source: CiteSeer

CITATIONS

131
READS

381

4 authors, including:

Steen Andersson

Indiana University Bloomington

41 PUBLICATIONS   1,360 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Steen Andersson on 06 July 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2421096_Bayesian_Model_Averaging_And_Model_Selection_For_Markov_Equivalence_Classes_Of_Acyclic_Digraphs?enrichId=rgreq-9a245c1196cd869efc11bf64aec0945b-XXX&enrichSource=Y292ZXJQYWdlOzI0MjEwOTY7QVM6MTE1ODk5MDM4MTc5MzI4QDE0MDQ2NDM4OTIwNzI%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2421096_Bayesian_Model_Averaging_And_Model_Selection_For_Markov_Equivalence_Classes_Of_Acyclic_Digraphs?enrichId=rgreq-9a245c1196cd869efc11bf64aec0945b-XXX&enrichSource=Y292ZXJQYWdlOzI0MjEwOTY7QVM6MTE1ODk5MDM4MTc5MzI4QDE0MDQ2NDM4OTIwNzI%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-9a245c1196cd869efc11bf64aec0945b-XXX&enrichSource=Y292ZXJQYWdlOzI0MjEwOTY7QVM6MTE1ODk5MDM4MTc5MzI4QDE0MDQ2NDM4OTIwNzI%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Steen-Andersson?enrichId=rgreq-9a245c1196cd869efc11bf64aec0945b-XXX&enrichSource=Y292ZXJQYWdlOzI0MjEwOTY7QVM6MTE1ODk5MDM4MTc5MzI4QDE0MDQ2NDM4OTIwNzI%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Steen-Andersson?enrichId=rgreq-9a245c1196cd869efc11bf64aec0945b-XXX&enrichSource=Y292ZXJQYWdlOzI0MjEwOTY7QVM6MTE1ODk5MDM4MTc5MzI4QDE0MDQ2NDM4OTIwNzI%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Indiana-University-Bloomington?enrichId=rgreq-9a245c1196cd869efc11bf64aec0945b-XXX&enrichSource=Y292ZXJQYWdlOzI0MjEwOTY7QVM6MTE1ODk5MDM4MTc5MzI4QDE0MDQ2NDM4OTIwNzI%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Steen-Andersson?enrichId=rgreq-9a245c1196cd869efc11bf64aec0945b-XXX&enrichSource=Y292ZXJQYWdlOzI0MjEwOTY7QVM6MTE1ODk5MDM4MTc5MzI4QDE0MDQ2NDM4OTIwNzI%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Steen-Andersson?enrichId=rgreq-9a245c1196cd869efc11bf64aec0945b-XXX&enrichSource=Y292ZXJQYWdlOzI0MjEwOTY7QVM6MTE1ODk5MDM4MTc5MzI4QDE0MDQ2NDM4OTIwNzI%3D&el=1_x_10&_esc=publicationCoverPdf


BAYESIAN MODEL AVERAGING AND MODEL
SELECTION FOR MARKOV EQUIVALENCE

CLASSES OF ACYCLIC DIGRAPHS

David Madigan1
, Steen A. Andersson2, Michael D. Perlman1,

and Chris T. Volinsky1

1Department of Statistics, Box 354322,
University of Washington,
Seattle, WA 98195, USA.

2Department of Mathematics,
Indiana University,

Bloomington, IN 47405, USA.

KEYWORDS: Bayesian graphical model; Essential graph; model uncertainty;
model averaging; Markov equivalence; Markov chain Monte Carlo.

ABSTRACT

Acyclic digraphs (ADGs) are widely used to describe dependences among variables
in multivariate distributions.  In particular, the likelihood functions of ADG models
admit convenient recursive factorizations that often allow explicit maximum
likelihood estimates and that are well suited to building Bayesian networks for
expert systems.  There may, however, be many ADGs that determine the same
dependence (= Markov) model.  Thus, the family of all ADGs with a given set of
vertices is naturally partitioned into Markov-equivalence classes, each class being
associated with a unique statistical model.  Statistical procedures, such as model
selection or model averaging, that fail to take into account these equivalence classes,
may incur substantial computational or other inefficiencies.  Recent results have
shown that each Markov-equivalence class is uniquely determined by a single chain
graph, the essential graph, that is itself Markov-equivalent simultaneously to all
ADGs in the equivalence class.  Here we propose two stochastic Bayesian model
averaging and selection algorithms for essential graphs and apply them to the
analysis of three discrete-variable data sets.

1. Introduction.

The use of directed graphs to represent possible dependencies among
random variates dates back to Wright (1921) and has generated
considerable research activity in the social and natural sciences.  Since
1980, particular attention has been directed at graphical Markov models
specified by conditional independence relations among the variables, i.e.,
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by the Markov properties determined by the graph.  The recent books by
Whittaker (1990) and Lauritzen (1996) conveniently summarize the
statistical perspective on these developments.

Graphical Markov models determined by acyclic directed graphs (ADGs)
admit especially simple statistical analyses.  In particular, ADG models
admit convenient recursive factorizations of their joint probability density
functions (Lauritzen et al. (1990)), provide an elegant framework for
Bayesian analysis (Spiegelhalter and Lauritzen (1990)), and, in expert
system applications, allow simple causal interpretations (Lauritzen and
Spiegelhalter (1988)).  In the multinomial and multivariate normal cases,
the likelihood function (i.e., both the joint probability density function
and the parameter space) factorizes and admits explicit maximum
likelihood estimates.  Furthermore, the only undirected graphical (UDG)
models that provide these conveniences are the decomposable models,
i.e., the UDG models which have the same Markov properties as ADG
models (Dawid and Lauritzen (1993), Andersson et al. (1995a)).

For these reasons, ADG models have become popular across an
extraordinary range of applications; see, for example, Heckerman et al.
(1992), Lauritzen and Spiegelhalter (1988), Pearl (1988), Neapolitan (1990),
Spiegelhalter and Lauritzen (1990),  Spiegelhalter et al. (1993),  Madigan
and Raftery (1994), and York et al. (1995).  Indeed, the vigorous
“Uncertainty in Artificial Intelligence” community focuses much of its
effort on ADG models.

Much of this applied work has adopted a Bayesian perspective: “experts”
specify a prior distribution on competing ADG models.  These prior
distributions are combined with likelihoods (typically integrated over
parameters) to give posterior model probabilities.  Model selection
algorithms seek out the ADG models with the highest posterior
probability, and subsequent inference proceeds conditionally on these
selected models (Cooper and Herskovits (1990), Buntine (1994),
Spiegelhalter et al. (1993), Heckerman et al. (1994), Madigan and Raftery
(1994)).  Non-Bayesian model selection methods proceed in a similar
manner, replacing posterior model probabilities by, for example,
penalized maximum likelihoods (Chickering (1995)).

Heckerman et al. (1994) highlight a fundamental problem with these
approaches.  Because several different ADGs may determine the same
statistical model, i.e., may determine the same set of conditional
independence restrictions among a given set of random variates, the
collection of all possible ADGs for these variates naturally coalesces into
one or more classes of Markov-equivalent ADGs, where all ADGs within a
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Markov-equivalence class determine the same statistical model.  Model
selection algorithms that ignore these equivalence classes face three main
difficulties:

1. Repeating analyses for equivalent ADGs leads to significant
computational inefficiencies.

2. Ensuring that equivalent ADGs have equal posterior probabilities
imposes severe constraints on prior distributions.

3. Bayesian model averaging procedures that average across ADGs
assign weights to statistical models that are proportional to
equivalence class sizes.

Treating each Markov-equivalence class as a single model would
overcome these difficulties.  Andersson et al. (1995b) show that for every
ADG D, the equivalence class [D] can be uniquely represented by a
certain Markov-equivalent chain graph D*, the essential graph associated
with the equivalence class. (Chain graphs may have both directed and
undirected edges but may contain no partially directed cycles; they
include both ADGs and UDGs as special cases.)  They provided an
explicit characterization of those graphs G such that G = D* for some ADG
D, and provide a polynomial-time algorithm for constructing D* from D.
Meek (1995) and Chickering (1995) have independently provided
alternative constructions.
This characterization and construction enable more efficient model
selection and model averaging procedures for ADG models, based on
essential graphs.  Such procedures are not immediate, however, and
Section 3 describes some of the difficulties that arise, as well as two
possible solutions.

Section 2 provides basic results concerning graphical models, and their
Markov equivalence. Section 3 discusses Bayesian model averaging for
essential graphs and Section 4 illustrates and evaluates the proposed
methods in the context of three applications.  We refer the reader to
Andersson et al. (1995a or 1995b) for definitions and basic graph theoretic
results.
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2. Markov Equivalence of Acyclic Digraphs; the Essential
Graph D*.

We begin with the well-known graph-theoretic criterion for the Markov
equivalence of ADGs.  This was first discovered by Verma and Pearl
(1992, Corollary 3.2) and, independently, by Frydenberg (1990, Theorem
5.6) for the more general class of chain graphs (also see Andersson et al.
(1995a, Theorem 3.1)).

Theorem 2.1.  Two ADGs are Markov equivalent if and only if they have
the same skeleton and the same immoralities (see Figure 2.1).

a

c
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d a

c

b

da

c

b

d a

c

b

d

D 1 D 2 D 3 D 4

Figure 2.1:  The four ADGs with the same skeleton as D1 and the immorality (b, d, c).

The ADGs D1, D2, and D3 have no other immoralities, hence are Markov equivalent

by Theorem 2.1.  The ADG D4 has the additional immorality (b, a, c), hence is not

Markov equivalent to the others.  Thus, [D1] = {D1, D2, D3}.

The equivalence class containing D is denoted by [D].

a

c

b

d a

c

b

da

c

b

d a

c

b

d

D 1 D 2 D 3 D 4

a

c

b

d a

c

b

da

c

b

d a

c

b

d

D 5 D 6 D 7 D 8

Figure 2.2:  The 23  = 8 possible digraphs with the same skeleton as D1 and the

immorality (b, d, c).  Of these 8, D5, D6, and D7 are not acyclic, while D4 and D8 are

acyclic but possess the additional immorality (b, a, c), so [D1] = {D1, D2, D3}.
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While Theorem 2.1 provides a practical criterion for deciding whether
two given ADGs are Markov equivalent, it does not directly yield a
characterization of the entire equivalence class [D] for a given ADG D.
Consider, for example, the ADG D1 in Figure 2.2. Theorem 2.1 implies

that each digraph in [D1] must have the same skeleton as D1 and Figure

2.2 shows all such digraphs.  Since (b, d, c) is an immorality in D1, the

arrows b→d and c→d are essential in D1, i.e., these arrows must occur in

every member of [D1].  The remaining three edges of D1 might be

oriented in 23  = 8 possible ways, as shown in Figure 2.2; of these 8
digraphs, only 5 are acyclic, and of these 5, only three (D1, D2, D3) possess

the same immoralities as D1.  Thus, [D1] = {D1, D2, D3}.

Since the number of possible orientations of all arrows that do not
participate in any immorality of an ADG D grows exponentially with the
number of such arrows, hence super-exponentially with the number of
vertices, determination of the equivalence class [D] by exhaustive
enumeration of possibilities rapidly becomes computationally infeasible
as the size of D increases.  A closer examination of this example reveals,

however, that the arrow a→d occurs in every member of  [D1], hence is an

essential arrow of D1 even though it is not involved in any immorality of

D1.  Had we been able to identify all 3 essential arrows of D1 directly

from D1 itself, it would not have been necessary to consider D5 - D8 in

order to determine [D1].  On the other hand, it appears necessary to

determine [D1] before we can identify the essential arrows of D1.

Fortunately, this is not the case.  Andersson et al. (1995b) present a
polynomial-time algorithm for determining all essential arrows of an
ADG D.  This is done by introducing and characterizing the essential graph
D* associated with D:

Definition 2.1.  The essential graph D* associated with D is the graph with
the same skeleton as D, but where an edge is directed in D* if and only if

it occurs as a directed edge (≡ arrow) with the same orientation in every D’

∈ [D]; all other edges of D* are undirected (See Figure 2.3 for examples).
The directed edges in D* are called the essential arrows of D.

Clearly, every arrow that participates in an immorality in D is essential,

but D may contain other essential arrows as well, e.g., the arrow a→d in

the second graph in Figure 2.3 and the arrows a→d and b→d  in the third
graph in Figure 2.3.  Andersson et al. (1995b) show that D* is a chain graph
that is itself Markov equivalent to D, so that D* contains the same
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statistical information as D.  Definition 2.2 and Theorem 2.2 provide a
complete characterization of essential graphs.

a

c

b

d a

c

b

d

a

c
b

d

Figure 2.3:  Three examples of essential graphs D*.  In the first example, D is the
ADG D1 of Figure 2.1.  In the second example, D is the ADG D1 of Figure 2.2.  In the

third example, D = D*.

Definition 2.2.  Let G be a graph.  An arrow a→b ∈ G is strongly protected

in G if a→b occurs in at least one of the following four configurations as
an induced subgraph of G:

a b

c

(a)

a b

c

(b)

a b

c

(c)

a b

c 1

(d)

c 2

(c1≠c 2)

Theorem 2.2  (Characterization of D*; Andersson et al. (1995b)).  A

graph G ≡ (V, E) is equal to D* for some ADG D if and only if G satisfies
the following four conditions:

(i) G is a chain graph;

(ii) for every chain component τ of G, Gτ is chordal;

(iii) the configuration a→bc does not occur as an induced subgraph of
G;

(iv) every arrow a→b ∈ G is strongly protected in G.

3. Bayesian Model Averaging and Model Selection for
Essential Graphs

Madigan and York (1995) introduced Markov chain Monte Carlo model
composition (MC3) for approximate Bayesian model averaging (BMA).
MC3 generates a stochastic process that moves through the class of models
under consideration.  Specifically, let  denote the model class. MC3

constructs an aperiodic and irreducible Markov chain, {M(t), t=1,2,...},

with state space  and equilibrium distribution Pr(M|δ), where δ denotes

the data. If we simulate this Markov chain for t=1,2,...,N, then under mild
regularity conditions, for any function g(M) defined on , the average:
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1
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g M t

t

N
( ( ))

=
∑

is a simulation-consistent estimate of the expectation of g(M) with respect

to  Pr(M|δ) (Smith and Roberts, 1993).  To estimate the posterior

distribution of some quantity of interest, ∆, in this manner, set

g(M)=Pr(∆|M,δ).  Madigan and York (1995) provide details about
parametrizations, prior distributions, and likelihood calculations for
graphical models.

For graphical models, selection and averaging algorithms typically move
through model space by changing one edge at a time (see, for example,
Edwards and Havránek (1985) or Madigan and Raftery (1994)). However,
when  is the class of essential graphs with a specified vertex set V,

Markov chains that change one edge at a time will not be irreducible.
Consider, for example, the essential graph M of Figure 2.4.  Changing a
single edge of M leads to one of M1 through M9, none of which is an

essential graph.  Therefore, it is not possible to get from M to any other
three-vertex essential graph by changing just one edge.

M

M 1 M 2 M 3 M 4 M 5 M 6 M 7 M 8 M 9

Figure 2.4: M is an essential graph. M1 through M9 are the graphs reachable from M

by changing a single edge.

A chain that moves one or two edges at a time, while computationally
more complex than a single edge algorithm, does overcome this
irreducibility problem. Section 3.1 describes one such approach. Section
3.2 adopts an auxiliary variables approach to provide an alternative
scheme that may be more efficient.

3.1 Gibbs MC3

Here we denote essential graphs by M≡(V,E) and the data by δ.
Andersson et al. (1995b) note that it is possible to traverse the space of
essential graphs by changing one or two edges at a time. Here we propose
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a corresponding Gibbs sampling scheme that is related to the SSVS
scheme of George and McCullogh (1994).  For every pair of vertices (vi,vj)

∈ (V×V), define Eij as follows:

E

v v E v v E

v v E v v E

v v E v v E

v v E v v E

ij

i j j i

i j j i

i j j i

i j j i

=

∉ ∉
∈ ∉
∉ ∈
∈ ∈










0

1

2

3

, ( , ) ( , )

, ( , ) ( , )

, ( , ) ( , )

, ( , ) ( , ) .

 if  and 

 if  and 

 if  and 

 if  and 

Note that a graph M≡(V,E) is fully specified by the collection Ω≡{Eij}.  Our

Gibbs sampler proceeds by choosing three vertices vi, vj, and vk from V

either according to some systematic irreducible scheme or at random, and
then drawing from

Pr(Eij, Ejk | Ω\{Eij, Ejk}, δ).  Calculation of this conditional distribution is

computationally demanding. It requires that we construct the 16 graphs
corresponding to the possible states of (Eij,Ejk) and, using Theorem 2.2

above, check whether each graph is an essential graph, assign zero
probability to non-essential graphs, and compute posterior model
probabilities for the remaining essential graphs.

Andersson et al. (1995b) suggest that it may be possible to develop more
efficient Gibbs samplers. It follows from the proof of their Proposition 4.5
that the Markov chain on  will be irreducible whenever the chain has

positive probability of moving from the current essential graph to any
essential graph:

(a) that differs by exactly one edge from the current graph; or
(b) that is obtained from the current graph by deleting both arrows in an

immorality a→b←c, where b is a terminal vertex of the current graph
and where a and c are the only parents of b in the current graph; or

(c) that is obtained from the current graph by adding two arrows to form an

immorality a→b←c, where b is an isolated vertex of the current graph
and where a and c are not adjacent in the current graph.

We will pursue this approach in a future paper.

3.2 Augmented MC3 (AMC3)
To circumvent the computational overhead associated with the Gibbs
sampler algorithm defined above, we introduce an auxiliary variable
Markov chain Monte Carlo model composition scheme.  Rather than

construct a Markov chain with equilibrium distribution Pr(M|δ), we
define an auxiliary variable T taking values in , the set of total orderings
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of V, and construct a Markov chain with equilibrium distribution

Pr(M,T|δ)≡Pr(M|δ)Pr(T|M,δ), where Pr(M|δ) is the usual posterior

model distribution and Pr(T|M,δ) can be chosen arbitrarily. A Gibbs

sampler that draws in turn from Pr(M|T,δ) and Pr(T|M,δ) defines the

required Markov chain for Pr(M,T|δ) and thence Pr(M|δ) (Besag and
Green (1993)).  We use Markov chain methods to draw from both
conditional distributions (Tierney, 1995, Smith and Roberts, 1993); we
devise Hastings-Metropolis algorithms for each one.

A total ordering T is said to be compatible with an essential graph M, if vi<T

v
j whenever (vi, vj) is a directed edge in M and Tτ is a perfect ordering for

each chain component τ of M (so that orienting the lines in τ according to

Tτ generates an ADG that is Markov equivalent to M).  Furthermore, for
technical reasons we require that T is restricted to those total orderings
that the maximum cardinality search (MCS) algorithm can generate. MCS
provides a convenient method of generating perfect orderings for chordal
graphs but does not generate all possible perfect orderings. Now define

Pr(T|M,δ) as follows:

Pr( | , )
,

,
T M

T M
δ =





constant  if  is compatible with 

 otherwise0

Note that by construction, T ⊥δ | M, so that Pr(M|T,δ) ∝ Pr(δ|M) ×
Pr(M|T).

The Gibbs sampler begins at an arbitrary M∈  and a total ordering T

compatible with M, generated by the following algorithm:

1. For each chain component τ of M:

1.1 Choose a vertex v1
τ ∈τ at random.

1.2 Using MCS, order the remaining vertices v vm2
τ τ

τ
,... , ∈τ (if any)

breaking ties by random selection.
1.3 Store p, the probability of having chosen this ordering.

2. Now generate T as follows:

2.1 Let T=∅.

2.2 Choose a chain component τ∈ M at random such that τ is initial in

M. Append v vm1
τ τ

τ
,... ,  to T.

2.3 Remove τ from M and if M≠∅, go to 2.2.
2.4 Store p, the probability of choosing this sequence of chain

components.

Note that given M, the probability of generating this T is p p pT ≡ ∏ τ
τ

.
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To draw from Pr(T|M,δ), use the above algorithm to generate T’, a
candidate total ordering compatible with M.  T’ is then accepted with
probability

min , ;1
p

p
T

T

′
















otherwise the chain remains at T.  This is an example of an “independence
chain” (Tierney, 1995).

To draw from Pr(M|T,δ), first generate an ADG, D≡(V,F), by orienting all

lines in M in accordance with T.  Next, generate an ADG D’≡(V,F’)  as

follows. Randomly choose a pair of vertices (vi,vj)∈V×V, with vi<T 
vj.  If

(vi,vj)∈F, then let F’=F\(vi,vj).  If (vi,vj)∉F , let F’=F∪(vi,vj).  Next generate

the essential graph M’≡(V,E’) corresponding to D’ and accept it with
probability

min ,
Pr( | )Pr( | )

Pr( | )Pr( | )
1

′ ′















M T M

M T M

δ
δ

.

Otherwise, the chain stays at M.  Note that since D and D’ have different

skeletons, they are not Markov equivalent, so that M’≠M.  Furthermore,

Pr(M→M’)=Pr(M’→M)=2/n(n-1) so that the Metropolis algorithm applies.

The calculation of Pr(M’|T)/Pr(M|T) presents a potential difficulty with
this algorithm. First note that

(1)
Pr( | )

Pr( | )

Pr( | )Pr( )

Pr( | )Pr( )
.

′
=

′ ′M T

M T

T M M

T M M

Pr(T|M) is the reciprocal of the number of compatible orderings
associated with M and can be formidable to compute.  However, since M
and M’ correspond to ADGs that differ by just one edge,
Pr(T|M’)/Pr(T|M) is typically close to one.  A further refinement is
provided by noting that pT  is a consistent estimator of Pr(T|M). Since pT

will be calculated for every ordering, this can provide an estimate of
Pr(T|M’)/Pr(T|M) at no extra computational cost.  In what follows, we
refer to the algorithm with Pr(T|M’)/Pr(T|M) in the right hand side of
(1) replaced by the approximation p pT T′ / , as the adjusted AMC3

algorithm.

For both MC3 algorithms, aperiodicity is guaranteed since the chain
always has positive probability of remaining in its current state.  Both
algorithms can also be used to find the essential graph with the maximum
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posterior probability, although the introduction of an annealing
parameter would then hasten convergence.  We note that it may be
possible to develop more efficient Gibbs MC3 algorithms by combining
the algorithms of Andersson et al. (1995b, Section 5) and Meek (1995) to
transform proposed non-essential graphs to essential graphs.

Non-stochastic model selection and model averaging schemes based on
essential graphs also can be developed, analogous to those proposed by
Heckerman et al. (1994), Højsgaard and Thiesson (1995), and Madigan
and Raftery (1994) for ADGs.

4. Applications

We have applied both MC3 algorithms to two much-studied datasets, both
involving six binary variables, as well as a third example involving 14
binary variables.  Even for the six vertex examples there are
approximately 106 essential graphs.  Thus an exhaustive search over the
space of essential graphs would be laborious.

In each case we started the Markov chain at the empty model and ran the
chain for 100,000 iterations, discarding the first 10,000. The prior
distributions on the parameters of each of the models used an equivalent
prior sample size of one.  We assumed that all models were equally likely
a priori.

4.1 Coronary Heart Disease
Our first example concerns data on 1,841 men cross-classified according to
risk factors for Coronary Heart Disease. This data set was previously
analyzed by Edwards and Havránek (1985) and others. The risk factors
are as follows: A, smoking; B, strenuous mental work; C , strenuous
physical work; D, systolic blood pressure; E, ratio of beta and alpha
proteins; F, family anamnesis of coronary heart disease. Figure 2.5 shows
the leading three models from the adjusted AMC3 algorithm:
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B E D

C A F

P(M|D) = 0.25

B E D

C A F

P(M|D) = 0.09

B E D

C A F

P(M|D) = 0.06

Figure 2.5: The top three models for the Coronary Heart Disease example visited by
the adjusted AMC3 algorithm, and their respective estimated posterior probabilities.

For comparison purposes, Figure 2.6 shows the four ADG models selected
by the Occam’s Window procedure of Madigan and Raftery (1994) and
Figure 2.7 shows the corresponding essential graphs:

B E D

C A F

P(M|D) = 0.52

B E D

C A F

P(M|D) = 0.40

B E D

C A F

P(M|D) = 0.05

B E D

C A F

P(M|D) = 0.04

Figure 2.6: ADG models selected by Madigan and Raftery (1994) for the Coronary
Heart Disease example.  The model probabilities have been normalized.

B E D

C A F

P(M|D) = 0.52

B E D

C A F

P(M|D) = 0.40

B E D

C A F

P(M|D) = 0.05

B E D

C A F

P(M|D) = 0.04

Figure 2.7: The essential graphs corresponding to the ADG models selected by
Madigan and Raftery (1994) for the Coronary Heart Disease example.

By summing the posterior model probabilities for models in which a
particular arrow or line occurs, we obtain corresponding posterior
probabilities. Table 1 shows these probabilities for the Coronary Heart
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Disease example.  We believe that this output may be of interest from a
causal modeling perspective.

Similarly by summing the posterior model probabilities for models in
which a particular conditional independence occurs, we obtain
corresponding posterior probabilities. Table 2 shows these probabilities
for three medically interesting conditional independences for the
Coronary Heart Disease example. There is a 0.77 probability that F (family
anamnesis) is marginally independent of the remaining variables, a 0.60
probability that D (systolic blood pressure) is conditionally independent
of A (smoking), B (strenuous mental work), and C (strenuous physical
work) given E (proteins), and a 0.35 probability that B (strenuous mental
work) and E (proteins) are conditionally independent given C (strenuous
physical work). These posterior probabilities are not conditional on a

Table 1: Edge probabilities for the Coronary Heart
Disease example provided by the adjusted AMC3

algorithm.

Posterior Probabilities

Vertices •    • •→• •←• ••

A B 1.00 0.00 0.00 0.00

A C 0.00 0.03 0.41 0.56

A D 0.65 0.09 0.01 0.25

A E 0.11 0.17 0.41 0.31

A F 0.98 0.01 0.00 0.01

B C 0.00 0.00 0.04 0.96

B D 1.00 0.00 0.00 0.00

B E 0.37 0.15 0.00 0.47

B F 0.89 0.00 0.00 0.10

C D 1.00 0.00 0.00 0.00

C E 0.68 0.00 0.03 0.29

C F 0.99 0.00 0.00 0.01

D E 0.27 0.02 0.11 0.59

D F 0.97 0.00 0.00 0.03

E F 0.95 0.01 0.00 0.04
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model and may be more useful to a data analyst than the list of
independences in a single selected model. Our approach may also
provide a better “oracle” for inferring causation from data (Spirtes, et al.,
1993).

Table 2: Marginal probabilities associated
with specific conditional independences for
the Coronary Heart Disease example
provided by the adjusted AMC3 algorithm.

Madigan and Raftery (1994) in their analysis of the Coronary Heart Data
impose a partial ordering on the variables: F, (B, C), A, (E, D) noting that
“The variables B, F, or C could not be influenced by the other factors and
must be exogenous, although the ordering of B and C is unclear. Similarly
D or E could hardly influence A, although the ordering of E and D is
unclear.”  While Table 1 does suggest that the data supports the
precedence of C over A, it also suggests that the data does not support the
precedence of A (smoking) over E (protein ratio).

Madigan and Raftery (1994) further report that their data analysis
provided “strong evidence for the precedence of E over D and weak
evidence for the precedence of C over B”.  From Table 1, the odds in favor

of E→D as against D→E are 5.5 and there is no support for a B→C edge,
so that our data-driven results are in agreement with those of Madigan
and Raftery (1994).

Both the non-adjusted AMC3 algorithm and the Gibbs MC3 algorithm
produce essentially identical results to those in Table 1 and Figure 2.5,
although the Gibbs MC3 algorithm takes approximately fifteen times more
CPU time. This discrepancy may be somewhat illusory however, since the
Gibbs MC3 algorithm accepts all proposed moves, whereas the AMC3

algorithm typically accepts 10-20% of the proposed moves.

Conditional

Independence

Posterior

Probability

F ⊥  (A,B,C,D,E) 0.77

D ⊥  (A,B,C)|E 0.60

B ⊥  E|C 0.35
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4.2 Women and Mathematics
Our second example concerns a survey which was reported in Fowlkes et
al. (1988) concerning the attitudes of New Jersey high-school students
towards mathematics. A total of 1,190 students in eight schools took part
in the survey. The variables collected were: A, lecture attendance; B, Sex;
C, School Type (suburban or urban); D, “I’ll need mathematics in my
future work” (agree or disagree); E, Subject Preference (maths/science or
liberal arts); F, Future Plans (college or job). In what follows we refer to
this as the “Women and Mathematics” example.

Figure 2.8 shows the leading three models from the adjusted AMC3

algorithm:

B E C

A D F

P(M|D) = 0.26

B E C

A D F

P(M|D) = 0.21

B E C

A D F

P(M|D) = 0.05

Figure 2.8: The top three models for the Women and Mathematics example visited by
the adjusted AMC3 algorithm, and their respective estimated posterior probabilities.

Again, for comparison purposes, Figure 2.9 shows the sole ADG model
selected by the Occam’s Window procedure of Madigan and Raftery
(1994):

B E C

A D F

Figure 2.9: ADG model selected by Madigan and Raftery (1994) for the Women and
Mathematics example.  The essential graph corresponding to this ADG is the
leftmost (and MAP) graph in Figure 2.8.

Table 3 shows the edge probabilities for the Women and Mathematics
example.
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Madigan and Raftery (1994) in their analysis of the Women and
Mathematics assume that B (Sex) and C (School Type) were exogenous.
Our analysis provides some support for this assumption - the posterior
probability that B and C are marginally independent is 0.64.  They later
removed the restriction that C be exogenous and found some support for
a link from E to C, “although its interpretation is somewhat unclear”.
Table 3 suggests that if there is an edge connecting E and C, it is an
undirected edge.  Our analysis does provide strong support for directed
links from C (School Type) to F (Future Plans) and D (I’ll need math) to F.

4.3 Coronary Artery Disease
Our final example concerns a study of risk factors for coronary artery
disease reported by Hansen (1980) and reanalyzed by Anderson et al.
(1991) using decomposable graphical models and Højsgaard and Thiesson
(1995) using ADG-equivalent chain graphs.  Coronary artery disease is a
disease caused by a reduction in the ability of the coronary arteries to

Table 3: Edge probabilities for the Women and Mathematics
example provided by the adjusted AMC3 algorithm.

Posterior Probabilities

Vertices •    • •→• •←• ••

A B 0.98 0.00 0.00 0.02

A C 0.98 0.00 0.00 0.02

A D 0.98 0.00 0.00 0.01

A E 0.98 0.00 0.00 0.02

A F 0.99 0.00 0.00 0.00

B C 0.99 0.00 0.00 0.01

B D 0.42 0.00 0.00 0.58

B E 0.00 0.00 0.00 0.99

B F 1.00 0.00 0.00 0.00

C D 0.98 0.00 0.00 0.02

C E 0.82 0.00 0.00 0.17

C F 0.00 0.70 0.00 0.30

D E 0.00 0.00 0.03 0.97

D F 000 0.70 0.03 0.27

E F 1.00 0.00 0.00 0.00
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supply the heart muscle. Physicians refer patients suspected of having
coronary artery disease to coronary arteriography if their presenting
features, disease manifestations, and non-invasive tests are indicative of
coronary artery disease. Due to the morbidity and cost associated with
arteriography, Hansen’s (1980) study sought to provide improved
screening.  Hansen (1980) reports data for 236 patients on 14 binary
variables (“the learning cases”) and data on 67 patients on subsets of the
14 variables (“the test cases”). Hansen (1980) actually reports Angina
Pectoris with three levels: none, typical, and atypical. In our analysis we
combined the typical and atypical categories. Table 4 presents the
fourteen variables:

Figure 2.10 shows the leading model from the adjusted AMC3 algorithm.
Note that this graph contains no essential arrows. One possible
interpretation of this model is that the data provide little evidence about
possible causal relationships between these variables.

Table 4: The fourteen variables in the
coronary artery disease example.

Symbol Variable Name

s Sex

S Smoking

H Hypercholesterolaemia

I Hereditary Predispositions

w Workload (adequate ECG)

A Previous Myocardial Infarction

a Angina Pectoris

h Left Ventricular Hypertrophy

K Congenital Heart or Valve Disease

Q Q-wave in ECG

T ST Segment Shift in ECG

q Q-wave informative

t ST-shift Informative

c Coronary Artery Disease
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P(M|D) = 0.31

Figure 2.10: The top model for the Coronary Artery Disease example visited by the
adjusted AMC3 algorithm, and its estimated posterior probability.

In consultation with a physician, Højsgaard and Thiesson (1995) a priori
impose a block recursive structure on the variables, and also constrained
their model selection algorithm to include certain links and exclude
others. Figure 2.11 displays these constraints.

I

s

H

S

w

t

q

T

Q

K

c

h

A

a
0 .88

0 .00

0 .98
1 .00

0 .98

1 .00

0 .00 1 .00

1 .00

0 .00

0 .08

1 .00

Figure 2.11: A priori constraints imposed by Højsgaard and Thiesson (1995).  The
block recursive structure shown constrained their model selection algorithm.  Edges
drawn as solid lines were forced to be present; edges drawn as zigzag lines were
forced to be absent. The probabilities attached to each edge are the estimated
posterior probability that the purported event (i.e., edge present regardless of
orientation or edge absent) occurred.  The data provides widely varying support for
their prior assumptions.

Using different selection criteria, Højsgaard and Thiesson (1995) select
several ADG-equivalent chain graph models for this example. Among
these, a selection criterion similar to BIC produced the single model with
the best predictive performance on the test cases and Figure 2.12 shows
this chain graph model.  This model is similar to the leading model from
the AMC3 algorithm shown in Figure 2.10. However, the model of Figure
2.10 has edges connecting q and Q, and S and H, and no edges connecting
a and A, and c and h, contrary to Højsgaard and Thiesson’s prior
constraints.  Furthermore, the model of Figure 2.10 contains edges
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connecting s and w, K and t, a and Q, and c and S, and does not have an
edge connecting t and c.

I

s

H

S

w

t

q

T

Q

K

c

h

A

a

Figure 2.12: Of the models selected by Højsgaard and Thiesson (1995), this model
provided the best predictive performance on the test cases.

We note that via Pr(M), the MC3 algorithms can incorporate a priori
constraints  such as those imposed by Højsgaard and Thiesson (1995).

4.4 Predictive Performance
An effective method to judge a modeling strategy is to see how well the
resulting models predict future observations. We have assessed the
predictive performance of the adjusted AMC3 method for the three
examples.  For the Coronary Heart Disease and Women and Mathematics
examples, predictive performance, measured by the average predictive
probability, is assessed by randomly splitting the complete data sets into

two subsets. One subset, δS, containing 50% of the data, is used to select

models with the other subset, δT ≡ δ\δS, being used as set of test cases. For

the Coronary Artery Disease example, δS, consists of the 236 learning

cases and δT consists of the 67 test cases referred to in Section 4.3.

Specifically, we measure the predictive ability of an individual model, M,
by

1

# ( )
Pr( | , )δ

δ
δT

S
d

d M
T∈

∑ ,

while we measure the predictive performance of BMA by

1

# ( )
{ Pr( | , )Pr( | )}δ

δ δ
δT

S S
Md

d M M
T

∑∑
∈

.

The intuition here is that effective models should assign high probability

to the observations in δT and hence have a higher predictive score.
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Table 5 shows the predictive performance for the Coronary Heart Disease
example. The numbers can be compared with the probability of 0.0156
that a uniform distribution would assign to each observation.  Adjusted
AMC3 assigns probabilities to the observations in the test dataset that are,
on average, 1.5% higher than those assigned by the single model with the
(estimated) largest posterior probability.

Table 5: Predictive performance for the Coronary Heart Disease example
showing the average predictive probability for the three models with
the highest posterior probability, the maximum a posteriori (MAP)
model from Madigan and Raftery (1994), and the Adjusted AMC3

method. Note that this analysis uses half the data to select models so
that the leading models are different from those in Figure 2.5.

Model Posterior

Probability %

Average Predictive

Probability

C A F

B E D

0.35 0.0263

C A F

B E D
0.02 0.0264

C A F

B E D

0.02 0.0264

C A F

B E D
Madigan and Raftery

MAP ADG model.
0.0265

Adjusted

AMC3

BMA 0.0267
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Table 6 shows the predictive performance for the Women and
Mathematics example. Adjusted AMC3 assigns probabilities to the
observations in the test dataset that are, on average, 3% higher than those
assigned by the single model with the largest posterior probability.

Table 6: Predictive performance for the Women and
Mathematics example showing the average predictive
probability for the three models with the highest posterior
probability, MAP model from Madigan and Raftery (1994),
and the Adjusted AMC3 method.

Model Posterior

Probability %

Average Predictive

Probability

A D F

B E C

0.29 0.0235

A D F

B E C

0.07 0.0231

A D F

B E C

0.07 0.0233

A D F

B E C
Madigan and Raftery

MAP ADG model.
0.0241

Adjusted

AMC3

BMA 0.0242



22

Table 7: Predictive performance for the Coronary Artery Disease example showing
the average predictive probability for the model with the highest posterior
probability, the model selected by Højsgaard and Thiesson (1995), and the Adjusted
AMC3 method.

Model Posterior

Probability %

Average Predictive

Probability

I

s

H

S

w

t

q

T

Q

K

c

h

A

a

0.31 0.00063

I

s

H

S

w

t

q

T

Q

K

c

h

A

a
Model from

Højsgaard and
Thiesson (1995) with

best predictive
performance

0.00059

Adjusted

AMC3

BMA 0.00066

Table 7 shows the predictive performance for the Coronary Artery
Disease example. Adjusted AMC3 assigns probabilities to the observations
in the test dataset that are, on average, 4% higher than those assigned by
the single model with the largest posterior probability.

Repeating the random split, varying the subset proportions, or starting
the Markov chain from a different location produces very similar results,
so here we have reported the results from a single split for each
application.

5. Discussion

By focusing on Markov-equivalence classes of ADGs rather than on the
individual ADGs themselves, data analysts and expert system builders
can overcome several difficulties associated with ADG models.  Three
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such difficulties were listed in Section 1 - here we examine these in more
detail and indicate how the introduction of essential graphs can help to
overcome them.

Heckerman et al. (1994) and Chickering (1995) argue that statistical
inference for ADG models should be “score equivalent”:  in the absence of
a priori causal knowledge, Markov-equivalent ADGs should have
identical posterior model probabilities (Bayesian) or identical penalized
likelihoods (non-Bayesian).  Under this criterion, therefore, model
selection and model averaging algorithms need to visit each Markov-
equivalence class only once.  However, standard algorithms (e.g.,
Madigan and Raftery (1994), Madigan and York (1995), Heckerman et al.
(1994)) fail to treat each Markov-equivalence class of ADGs as a single
statistical model and search in the space of ADGs, introducing
considerable computational inefficiency.  For example, an exhaustive
search amongst all ADGs on four variables would require the calculation
of posterior probabilities for all 453 such ADGs, whereas a search over the
space of essential graphs (in 1-1 correspondence with the equivalence
classes) would require only 185 such calculations.  For five variables the
numbers become 29,281 and 8,782, respectively (see Andersson et al.
(1995b, Section 6)).

For a Bayesian analysis over the space of all individual ADG models with a
fixed vertex set V, score equivalence imposes severe restrictions on the
prior distributions that may be used to represent prior knowledge about
the parameters in these models.  For any individual ADG D, the joint pdf
(if it exists) of a global D-Markovian distribution admits the factorization
(cf. Lauritzen et al. (1990, Theorem 1)):

f V f a a a V( ) ( ( | ( ))| )= ∈∏ pa D .

For categorical data, where each conditional pdf f a a( | ( ))pa D  is
multinomial, Spiegelhalter and Lauritzen (1990) proposed the now-
widely accepted conjugate family of Dirichlet prior distributions for the
parameters occurring in these conditional multinomial distributions.
However, Heckerman et al. (1994) show that score equivalence requires
that the sum of the parameters of all the Dirichlet distributions associated with

each a ∈ V (ie, the Dirichlet distributions for each of the levels of paD(a)) be

identical for all a ∈ V.  Since these sums behave as “equivalent sample
sizes” in subsequent Bayesian updating, this constraint severely restricts
an “expert” with more prior knowledge about some variables than others
- he must use a single equivalent sample size for each of the Dirichlet
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distributions occurring in the conjugate prior, and is therefore unable to
fully utilize his prior knowledge.

We overcome this difficulty by constructing prior distributions over
Markov-equivalence classes of ADG models, rather than over the
individual ADG models themselves, and since score equivalence is no
longer an issue, no constraints are required on the parameters of these
hyper-Dirichlet priors.

Furthermore, although the Dirichlet and hyper-Dirichlet families provide
considerable flexibility for modeling prior knowledge in the Bayesian
analysis of categorical data, more general priors, such as mixtures of
Dirichlet distributions, sometimes may be needed to adequately reflect
prior knowledge (Bernardo and Smith (1994), p.279).  When working in
the space of individual ADG models, however, Geiger and Heckerman
(1995) show that the Dirichlet family is the only family of prior distributions
that can be used to achieve score  equivalence.  Working in the space of
Markov-equivalence classes, conveniently represented by essential
graphs, eliminates the issue of score equivalence and therefore allows the
adoption of arbitrary prior distributions on the associated parameters, at
least in principle.

Madigan and Raftery (1994) and others argue that basing inference on a
single model ignores model uncertainty and leads to poorly calibrated
predictions.  Bayesian model averaging provides a remedy:  current BMA
procedures average inferences or predictions over all models in the class
under consideration, or at least over a subset of the models that receive
substantial posterior weight (see Madigan and York (1995) for a review.)
When applied naively to ADG models, however, BMA assigns a weight to
each Markov-equivalence class that is proportional to its size.  Instead,
averaging directly over equivalence classes overcomes this problem.
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