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Abstract

We consider the problem of accounting for model uncertainty in linear regression

models. Conditioning on a single selected model ignores model uncertainty, and thus

leads to the underestimation of uncertainty when making inferences about quantities

of interest. A Bayesian solution to this problem involves averaging over all possible

models (i.e., combinations of predictors) when making inferences about quantities of

�Adrian E. Raftery is Professor of Statistics and Sociology, David Madigan is Assistant Professor
of Statistics, both at the Department of Statistics,University of Washington, Box 354322, Seattle,
WA 98195-4322. Jennifer Hoeting is Assistant Professor of Statistics at the Department of Statistics,
Colorado State University, Fort Collins, CO 80523. The research of Raftery and Hoeting was partially
supported by ONR Contract N-00014-91-J-1074. Madigan's research was partially supported by NSF
grant no. DMS 92111627. The authors are grateful to Danika Lew for research assistance and the
Editor, the Associate Editor, two anonymous referees and David Draper for very helpful comments
that greatly improved the article.

1



interest. This approach is often not practical. In this paper we o�er two alternative

approaches. First we describe an ad hoc procedure called \Occam's Window" which

indicates a small set of models over which a model average can be computed. Second,

we describe a Markov chain Monte Carlo approach which directly approximates the

exact solution. In the presence of model uncertainty, both these model averaging

procedures provide better predictive performance than any single model which might

reasonably have been selected.

In the extreme case where there are many candidate predictors but no relationship

between any of them and the response, standard variable selection procedures often

choose some subset of variables that yields a high R2 and a highly signi�cant overall

F value. In this situation, Occam's Window usually indicates the null model as the

only one to be considered, or else a small number of models including the null model,

thus largely resolving the problem of selecting signi�cant models when there is no

signal in the data.

Software to implement our methods is available from StatLib.

Key Words: Bayes factor; Markov chain Monte Carlo model composition; Model

uncertainty; Occam's Window; Posterior model probability.

1 Introduction

The selection of subsets of predictor variables is a basic part of building a linear

regression model. The objective of variable selection is typically stated as follows:

given a dependent variable Y and a set of a candidate predictors X1;X2; : : : ;Xk, �nd

the \best" model of the form

Y = �0 +
pX

j=1

�ijXij + �;
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where Xi1 ;Xi2 ; : : : ;Xip is a subset of X1;X2; : : : ;Xk. Here \best" may have any of

several meanings, e.g., the model providing the most accurate predictions for new

cases exchangeable with those used to �t the model.

A typical approach to data analysis is to carry out a model selection exercise lead-

ing to a single \best" model and then to make inference as if the selected model were

the true model. However, this ignores a major component of uncertainty, namely

uncertainty about the model itself (Leamer 1978; Hodges 1987; Raftery 1988, 1996;

Moulton 1991; Draper 1995). As a consequence, uncertainty about quantities of inter-

est can be underestimated. For striking examples of this see Miller (1984), Regal and

Hook (1991), Madigan and York (1995), Raftery (1996), and Kass and Raftery (1995),

and Draper (1995). A complete Bayesian solution to this problem involves averaging

over all possible combinations of predictors when making inferences about quantities

of interest. Indeed, this approach provides optimal predictive ability (Madigan and

Raftery 1994). In many applications however, this averaging will not be a practical

proposition and here we present two alternative approaches.

First we extend the Bayesian graphical model selection algorithm of Madigan and

Raftery (1994) to linear regression models. We refer to this algorithm as \Occam's

Window." This approach involves averaging over a reduced set of models. Second,

we directly approximate the complete solution by applying the Markov chain Monte

Carlo model composition (MC3) approach of Madigan and York (1995) to linear

regression models. In this approach the posterior distribution of a quantity of interest

is approximated by a Markov chain Monte Carlo method which generates a process

that moves through model space. We show in an example that both of these model

averaging approaches provide better predictive performance than any single model

which might reasonably have been selected.
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Freedman (1983) pointed out that when there are many predictors and there is

no relationship between the predictors and the response, variable selection techniques

can lead to a model with a high R2 and a highly signi�cant overall F value. By

contrast, when a data set is generated with no relationship between the predictors

and the response, Occam's Window typically indicates the null model as the \best"

model or as one of a small set of \best" models, thus largely resolving the problem of

selecting a signi�cant model for a null relationship.

The background literature for our approach includes several areas of research,

namely the selection of subsets of predictor variables in linear regression models

(Hocking 1976, Draper and Smith 1981, Shibata 1981, Linhart and Zucchini 1986,

Miller 1990, Breiman 1992, Breiman and Spector 1992, Breiman 1995), Bayesian ap-

proaches to the selection of subsets of predictor variables in linear regression models

(Mitchell and Beauchamp 1988, Schwarz 1978, George and McCulloch 1993, Laud

and Ibrahim 1995), and model uncertainty (Leamer 1978, Freedman et al. 1986,

Stewart and Davis 1986, Stewart 1987, Madigan and Raftery 1994).

In the next section we outline the philosophy underlying our approach. In Section

3 we describe how we selected prior distributions, and we outline the two model

averaging approaches in Section 4. In Section 5 we provide an example and describe

our assessment of predictive performance. In Section 6 we compare the performance

of Occam's Window to that of standard variable selection methods when there is no

relationship between the predictors and the response. In Section 7 we discuss related

work and suggest future directions.
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2 Accounting for Model Uncertainty using BMA

As described above, basing inferences on a single \best" model as if the single selected

model were true ignores model uncertainty which can result in underestimation of

uncertainty about quatities of interest. There is a standard Bayesian solution to

this problem, proposed by Leamer (1978). If M = fM1; : : : ;MKg denotes the set

of all models being considered and if � is the quantity of interest such as a future

observation or the utility of a course of action, then the posterior distribution of �

given the data D is

pr(� j D) =
KX
k=1

pr(� jMk;D)pr(Mk j D): (1)

This is an average of the posterior distributions under each model weighted by the

corresponding posterior model probabilities. We call this Bayesian Model Averaging

(BMA). In equation (1), the posterior probability of model Mk is given by

pr(Mk j D) = pr(D jMk)pr(Mk)PK
l=1 pr(D jMl)pr(Ml)

; (2)

where

pr(D jMk) =
Z
pr(D j �k;Mk)pr(�k jMk)d�k (3)

is the marginal likelihood of model Mk, �k is the vector of parameters of model Mk,

pr(�k jMk) is the prior density of �k under modelMk, pr(D j �k;Mk) is the likelihood,

and pr(Mk) is the prior probability that Mk is the true model. All probabilities are

implicitly conditional onM, the set of all models being considered. In this paper, we

consider M to be equal to the set of all possible combinations of predictors.

Averaging over all the models in this fashion provides better predictive ability, as

measured by a logarithmic scoring rule, than using any single model Mj:

�E
"
log

(
KX
k=1

pr(� jMk;D)pr(Mk j D)
)#

� �E [logfpr(� jMj;D)g] (j = 1; : : : ;K);
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where � is the observable to be predicted and the expectation is with respect to

PK
k=1 pr(� jMk;D)pr(Mk j D). This follows from the non-negativity of the Kullback-

Leibler information divergence.

Implementation of Bayesian model averaging is di�cult for two reasons. First,

the integrals in (3) can be hard to compute. Second, the number of terms in (1) can

be enormous. In this paper, we present solutions to both of these problems.

3 Bayesian Framework

3.1 Modelling Framework

Each model we consider is of the form

Y = �0 +
pX

j=1

�jXj + � = X� + �; (4)

where the observed data on p predictors are contained in the n � (p + 1) matrix X.

The observed data on the dependent variable are contained in the n-vector Y . We

assign to � a normal distribution with mean 0 and variance �2 and assume that the

�'s in distinct cases are independent. We consider the (p + 1) individual parameter

vectors � and �2 to be unknown.

Where possible, informative prior distributions for � and �2 should be elicited

and incorporated into the analysis|see Kadane et al. (1980) and Garthwaite and

Dickey (1992). In the absence of expert opinion we seek to choose prior distributions

which reect uncertainty about the parameters and also embody reasonable a priori

constraints. We use prior distributions that are proper but reasonably at over the

range of parameter values that could plausibly arise. These represent the common

situation where there is some prior information, but rather little of it, and put us

in the \stable estimation" case where results are relatively insensitive to changes in
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the prior distribution (Edwards, Lindman, and Savage 1963). We use the standard

normal-gamma conjugate class of priors,

� � N(�; �2V );

��

�2
� �2

�:

Here �, �, the (p+1)�(p+1) matrix V , and the (p+1)-vector � are hyperparameters

to be chosen.

The marginal likelihood for Y under a model Mi based on the proper priors

described above is given by

p(Y j�i; Vi;Xi;Mi) =
�(�+n2 )(��)

�
2

�
n
2 �(�

2
)jI +XiViX t

i j
1
2

� (5)

h
�� + (Y �Xi�i)

t(I +XiViX
t
i )
�1(Y �Xi�i)

i� (�+n)
2 ;

where Xi is the design matrix and Vi is the covariance matrix for � corresponding to

model Mi (Rai�a and Schlaifer 1961). The Bayes factor for M0 versus M1, the ratio

of equation (5) for i = 0 and i = 1, is then given by

B01 =

 jI +X1V1X
t
1j

jI +X0V0X t
0j

! 1
2

(6)

"
�� + (Y �X0�0)t(I +X0V0X

t
0)
�1(Y �X0�0)

�� + (Y �X1�1)t(I +X1V1X t
1)�1(Y �X1�1)

#� (�+n)
2

:

3.2 Selection of Prior Distributions

The Bayesian framework described above gives the user of the BMA approach the

exibility to modify the prior set-up as desired. In this section we describe the prior

distribution set-up we adopt in our examples below.
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For non-categorical predictor variables we assume the individual �'s to be in-

dependent a priori. We center the distribution of � on zero (apart from �0) and

choose � = (�̂0; 0; 0; : : : ; 0) where �̂0 is the ordinary least squares estimate of �0.

The covariance matrix V is equal to �2 multiplied by a diagonal matrix with entries

(s2Y ; �
2s�21 ; �2s�22 ; : : : ; �2s�2p ) where s2Y denotes the sample variance of Y , s2i denotes

the sample variance of Xi for i = 1; : : : ; p, and � is a hyperparameter to be cho-

sen. The prior variance of �0 is chosen conservatively and represents an upper bound

on the reasonable variance for this parameter. The variances of the remaining �-

parameters are chosen to reect increasing precision about each �i as the variance

of the corresponding Xi increases and to be invariant to scale changes in both the

predictor variables and the response variable.

For a categorical predictor variable Xi with (c + 1) possible outcomes (c � 2),

the Bayes factor should be invariant to the selection of the corresponding dummy

variables (Xi1; : : : ;Xic). To this end we set the prior variance of (�i1; : : : ; �ic) equal

to �2�2
�
1
n
X iTX i

��1
where X i is the n � c design matrix for the dummy variables,

where each dummy variable has been centered by subtracting its sample mean. This

is related to the g-prior of Zellner (1986). The complete prior covariance matrix for

� is now given by

V (�) = �2

0
BBBBBBBBBBBBBBBB@

s2Y
�2s�21

. . .

�2s�2i�1

�2
�
1
n
X iTX i

��1
�2s�2i+1

. . .

�2s�2p

1
CCCCCCCCCCCCCCCCA

:

To choose the remaining hyperparameters, �, �, and �, we de�ne a number of
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reasonable desiderata and attempt to satisfy them. In what follows we assume that

all the variables have been standardized to have zero mean and sample variance one.

We would like:

1. The prior density pr(�1; : : : ; �p) to be reasonably at over the unit hypercube

[�1; 1]p.

2. pr(�2) to be reasonably at over (a; 1) for some small a.

3. Pr(�2 � 1) to be large.

The order of importance of these desiderata is roughly the order in which they are

listed. More formally, we maximize Pr(�2 � 1) subject to:

a. pr(�1=0;:::;�p=0)
pr(�1=1;:::;�p=1)

� K1

Following Je�reys (1961) we choose K1 =
p
10.

b.
max

a��2�1 pr(�
2)

pr(�2=a) � K2

c.
max

a��2�1 pr(�
2)

pr(�2=1) � K2

Since desideratum 2 is less important than desideratum 1, we have chosen K2 =

10.

For a = 0:05 this yields � = 2:58, � = 0:28, and � = 2:85: For this set of hyperpa-

rameters Pr(�2 � 1) = 0:81. These settings of the hyperparameters were used in the

examples below.

To compare our prior for �i; i = 1; : : : ; p, for a non-categorical predictor with the

actual distribution of coe�cients from real data, 13 data sets from several regression

textbooks were collected (Appendix A). A histogram of the 100 coe�cients from the
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Figure 1: Histogram of 100 coe�cients from standardized data, from 13 textbook
data sets. The solid line is the prior density for �i; i = 1; : : : p.

standardized data plotted with the prior distribution resulting from the hyperparam-

eters we use in this paper is shown in Figure 1. As desired, the prior density is

relatively at over the range of observed values.

4 Two approaches to Bayesian Model Averaging

4.1 Occam's Window

Our �rst method for accounting for model uncertainty starting from equation (1)

involves applying the Occam's Window algorithm of Madigan and Raftery (1994) to

linear regression models. Two basic principles underly this ad hoc approach.

First, if a model predicts the data far less well than the model which provides

the best predictions, then it has e�ectively been discredited and should no longer be

considered. Thus models not belonging to:

A0 =

(
Mk :

maxlfpr(Ml j D)g
pr(Mk j D) � C

)
; (7)

should be excluded from equation (1) where C is chosen by the data analyst and

maxlfpr(Ml j D)g denotes the model with the highest posterior model probability.
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In the examples below we use C = 20. The number of models in Occam's Window

increases as the value of C decreases.

Second, appealing to Occam's razor, we exclude models which receive less support

from the data than any of their simpler submodels. More formally we also exclude

from (1) models belonging to:

B =

(
Mk : 9Ml 2 M;Ml �Mk;

pr(Ml j D)
pr(Mk j D) > 1

)
: (8)

Equation (1) is then replaced by

pr(� j D) =
P

Mk2A pr(� jMk;D)pr(D jMk)pr(Mk)P
Mk2A pr(D jMk)pr(Mk)

; (9)

where

A = A0nB 2 M: (10)

This greatly reduces the number of models in the sum in equation (1) and now all

that is required is a search strategy to identify the models in A. Two further principles
underly the search strategy. The �rst principle| \Occam's Window" | concerns the

interpretation of the ratio of posterior model probabilities pr(M1 j D)=pr(M0 j D).
Here M0 is a model with one less predictor than M1. The essential idea is shown in

Figure 2. If there is evidence for M0 then M1 is rejected, but to rejectM0 we require

strong evidence for the larger model, M1. If the evidence is inconclusive (falling in

Occam's Window) neither model is rejected. The second principle is that if M0 is

rejected, then so are all of the models nested within it.

These principles fully de�ne the strategy. Typically, in our experience, the number

of terms in (1) is reduced to fewer than 25, and often to as few as one or two. Madigan

and Raftery (1994) provide a detailed description of the algorithm and show how

averaging over the selected models provides better predictive performance than basing

inference on a single model in each of the examples they consider.
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Figure 2: Occam's Window: Interpreting the posterior odds for nested models.

4.2 Markov Chain Monte Carlo Model Composition

Our second approach is to approximate (1) using a Markov chain Monte Carlo

(MCMC) approach (see, for example, Smith and Roberts 1993). For our application,

we adopt the Markov chain Monte Carlo model composition (MC3) methodology of

Madigan and York (1995) which generates a stochastic process which moves through

model space. We can construct a Markov chain fM(t); t = 1; 2; : : :g with state space

M and equilibrium distribution pr(Mi j D). If we simulate this Markov chain for

t = 1; : : : ; N , then under certain regularity conditions, for any function g(Mi) de�ned

on M, the average

Ĝ =
1

N

NX
t=1

g(M(t)) (11)

converges almost surely to E(g(M)) as N ! 1 (Smith and Roberts 1993). To

compute (1) in this fashion set g(M) = pr(� jM;D).

To construct the Markov chain we de�ne a neighborhood nbd(M) for eachM 2 M
which consists of the model M itself and the set of models with either one variable

more or one variable fewer than M . De�ne a transition matrix q by setting q(M !
M 0) = 0 for all M 0 62 nbd(M) and q(M ! M 0) constant for all M 0 2 nbd(M). If

the chain is currently in state M , we proceed by drawing M 0 from q(M !M 0). It is
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then accepted with probability

min

(
1;
pr(M 0 j D)
pr(M j D)

)
:

Otherwise the state stays in state M . Madigan and York (1995) described MC3 for

discrete graphical models.

Software for implementing the MC3 algorithm is described in the Appendix.

5 Model uncertainty and prediction

5.1 Example: Crime and Punishment

5.1.1 Crime and Punishment: Overview

Up to the 1960s, criminal behavior was traditionally viewed as deviant and linked

to the o�ender's presumed exceptional psychological, social or family circumstances

(Taft and England 1964). Becker (1968) and Stigler (1970) argued, on the contrary,

that the decision to engage in criminal activity is a rational choice determined by its

costs and bene�ts relative to other (legitimate) opportunities.

In an inuential article, Ehrlich (1973) developed this argument theoretically,

speci�ed it mathematically, and tested it empirically using aggregate data from 47

U.S. states in 1960. Errors in Ehrlich's empirical analysis were corrected by Vandaele

(1978) who gave the corrected data, which we use here; see also Cox and Snell (1982)1.

Ehrlich's theory goes as follows. The costs of crime are related to the probability

of imprisonment and the average time served in prison, which in turn are inuenced

by police expenditures, which may themselves have an independent deterrent e�ect.

The bene�ts of crime are related to both the aggregate wealth and income inequality

1Ehrlich's study has been much criticized (e.g. Brier and Fienberg 1980) and we use it here
for purely illustrative purposes. For economy of expression, we use causal language and speak of
\e�ects", even though the validity of this language for these data is dubious. Since people, not
states, commit crimes, these data may reect aggregation bias.
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in the surrounding community. The expected net payo� from alternative legitimate

activities is related to educational level and the availability of employment, the latter

being measured by the unemployment and labor force participation rates. The pay-

o� from legitimate activities was expected to be lower (in 1960) for nonwhites and

for young males than for others, so that states with high proportions of these were

expected also to have higher crime rates. Vandaele (1978) also included an indica-

tor variable for southern states, the sex ratio, and the state population as control

variables, but the theoretical rationale for inclusion of these predictors is unclear.

We thus have 15 candidate predictors of crime rate (Table 4), and so potentially

215 = 32,768 di�erent models. As in the original analyses, all data were transformed

logarithmically. Standard diagnostic checking (e.g. Draper and Smith 1981) did not

reveal any gross violations of the assumptions underlying normal linear regression.

Ehrlich's analysis concentrated on the relationship between crime rate and predic-

tors 14 and 15 (probability of imprisonment and average time served in state prisons).

In his original analysis, Ehrlich (1973) focused on two regression models, consisting of

the predictors (9, 12, 13, 14, 15) and (1, 6, 9, 10, 12, 13, 14, 15), respectively, which

were chosen in advance based on theoretical grounds.

To compare Ehrlich's results with models that might be selected using standard

techniques, we chose three popular variable selection techniques, Efroymson's stepwise

method (Miller 1990), minimumMallow's Cp, and maximum adjusted R2 (Weisberg

1985). Efroymson's stepwise method is like forward selection except that when a

new variable is added to the subset, partial correlations are considered to see if any

of the variables currently in the subset should be dropped. Similar hybrid methods

are found in most standard statistical computer packages. Problems with stepwise

regression, Mallow's Cp, and adjusted R2 are well known (see, for example, Weisberg

14



Table 1: Models selected for crime data. For the stepwise procedure, F=3.84 was
used for the F-to-enter and F-to-delete value. This corresponds approximately to the
5% level.

R2 #

# Method Variables (%) vars. �̂14 �̂15 P15

1 Full model All 87 15 �.30 �.27 .133
2 Stepwise regression 1 3 4 9 11 13 14 83 7 �.19 | |
3 Mallows' Cp 1 3 4 9 11 12 13 14 15 85 9 �.30 �.30 .050
4 Adjusted R2 1 3 4 7 8 9 11 12 13 14 15 86 11 �.30 �.25 .129
5 Ehrlich model 1 9 12 13 14 15 66 5 �.45 �.55 .009
6 Ehrlich model 2 1 6 9 10 12 13 14 15 70 8 �.43 �.53 .011

Note: P15 is the p-value from a two-sided t-test for testing �15 = 0.

1985).

Table 1 displays the results from the full model with all 15 predictors, three models

selected using standard variable selection techniques, and the two models chosen by

Ehrlich on theoretical grounds. The three models chosen using variable selection

techniques (models 2, 3, 4) share many of the same variables and have high values

of R2. Ehrlich's theoretically chosen models �t the data less well. There are striking

di�erences, indeed conicts between the results from the di�erent models. Even the

models chosen using statistical techniques lead to conicting conclusions about the

main questions of interest, in spite of the models' super�cial similarity.

Consider �rst the predictor for probability of imprisonment,X14. This predictor is

signi�cant in all six models, so interest focuses on estimating the size of its e�ect. To

aid interpretation, recall that all variables have been transformed logarithmically, so

that, when all other predictors are held �xed, �14 = �:30 means roughly that a 10%

increase in the probability of imprisonment produces a 3% reduction in the crime rate.
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The estimates of �14 uctuate wildly between models. The stepwise regression model

gives an estimate that is about one-third lower in absolute value than the full model,

enough to be of policy importance; this di�erence is equal to about 1.7 standard

errors. The Ehrlich models give estimates that are about one-half higher than the

full model, and more than twice as big as those from stepwise regression (in absolute

value). There is clearly considerable model uncertainty about this parameter.

Now consider �15, the e�ect of the average time served in state prisons. Whether

this is signi�cant at all is not clear, and t-tests based on di�erent models lead to

conicting conclusions. In the full model, �15 has a non-signi�cant p-value of .133,

while stepwise regression leads to a model that does not include this variable. On the

other hand, Mallows' Cp leads to a model in which the p-value for �15 is signi�cant

at the .05 level, while with adjusted R2 it is again not signi�cant. In contrast, in

Ehrlich's models it is highly signi�cant.

Together these results paint a confused picture about �14 and �15. Below we

will argue that the confusion can be resolved by taking explicit account of model

uncertainty.

5.1.2 Crime and Punishment: Model Averaging

For the model averaging strategies, all possible combinations of predictors were as-

sumed to be equally likely a priori. To implement Occam's Window, we started from

the null model and used the \Up" algorithm only (see Madigan and Raftery 1994).

The selected models and their posterior model probabilities are shown in Table 2.

The models with posterior model probabilities of 1.2% or larger as indicated by MC3

are shown in Table 3. In total, 1772 di�erent models were visited during 30,000 iter-

ations of MC3. Occam's Window chose 22 models in this example, clearly indicating
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model uncertainty. Choosing any one model and making inferences as if it were the

\true" model ignores model uncertainty. The consequences of basing inferences on a

single model will be explored further in the next section.

The top models indicated by the two methods (Tables 2 and 3) are quite simi-

lar. The posterior probabilities are normalized over all selected models for Occam's

Window and over all possible combinations of the 15 predictors for MC3. So, the

posterior probabilities for the same models di�er across the model averaging method,

but this has little e�ect on the relationships between the models as measured by the

Bayes factor.

Table 4 shows the posterior probability that the coe�cient for each predictor does

not equal 0, i.e., Pr(�i 6= 0jD), obtained by summing the posterior model proba-

bilities across models for each predictor. The results from Occam's Window and

MC3 are fairly close for most of the predictors. There are several predictors with

high Pr(�i 6= 0jD) including the proportion of young males, mean years of schooling,

police expenditure, income inequality, and probability of imprisonment.

Comparing the two models analyzed by Ehrlich (1973), consisting of the predictors

(9, 12, 13, 14, 15) and (1, 6, 9, 10, 12, 13, 14, 15), with the results in Table 4, we

see that there are several predictors included in Ehrlich's analysis that receive little

support from the data. The estimated Pr(�i 6= 0jD) is quite small for predictors

6, 10, 12, and 15. There are also variables for which there is empirical support but

which Ehrlich did not include (3 and 4). Indeed, Ehrlich's two selected models have

very low posterior probabilities.

Ehrlich's work attracted attention primarily because of his conclusion that both

the probability of imprisonment (predictor 14) and the average prison term (predictor

15) reduced the crime rate. The posterior distributions for the coe�cients of these

17



Table 2: Crime data: Occam's Window Posterior Model Probabilities.

Posterior model
Model probability %

1 3 4 9 11 13 14 12.6
1 3 4 11 13 14 9.0
1 3 4 9 13 14 8.4
1 3 5 9 11 13 14 8.0

3 4 8 9 13 14 7.6
1 3 4 13 14 6.3
1 3 4 11 13 5.8
1 3 5 11 13 14 5.7
1 3 4 13 4.9
1 3 5 9 13 14 4.8

3 5 8 9 13 14 4.4
3 4 9 13 14 4.1
3 5 9 13 14 3.6

1 3 5 13 14 3.5
2 3 4 13 14 2.0

1 3 5 11 13 1.9
3 4 13 14 1.6
3 5 13 14 1.6
3 4 13 1.4

1 3 5 13 1.4
3 5 13 0.7

1 4 12 13 0.7
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Table 4: Crime data: Pr(�i 6= 0jD), expressed as a percentage

Predictor Occam's Ehrlich's
number Predictor Window MC3 models

1 percent of males 14{24 73 79 ?
2 indicator variable for southern state 2 17
3 mean years of schooling 99 98
4 police expenditure in 1960 64 72
5 police expenditure in 1959 36 50
6 labor force participation rate 0 6 ?
7 number of males per 1000 females 0 7
8 state population 12 23
9 number of nonwhites per 1000 people 53 62 � ?
10 unemployment rate of urban males 14-24 0 11 ?
11 unemployment rate of urban males 35-39 43 45
12 wealth 1 30 � ?
13 income inequality 100 100 � ?
14 probability of imprisonment 83 83 � ?
15 average time served in state prisons 0 22 � ?

predictors, based on the model averaging results of MC3, are shown in Figures 3

and 4. The MC3 posterior distribution for �14 is indeed centered away from 0 with a

small spike at 0. The posterior distribution for �14 based on Occam's Window is quite

similar. The spike corresponds to P(�14 = 0jD). This is an artifact of our approach

in which it is possible to consider models with a predictor fully removed from the

model. This is in contrast to the practice of setting the predictor close to 0 with

high probability as in George and McCulloch (1993). In contrast to Figure 3, the

MC3 posterior distribution for the coe�cient corresponding to average prison term is

centered close to 0 and has a large spike at 0 (Figure 4). Occam's Window indicates

a spike at 0 only, or no support for inclusion of this predictor. By averaging over

all models, our results indicate support for a relationship between crime rate and
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The model averaging results for the predictors for police expenditures lead to

an interesting interpretation. Police expenditure was measured in two successive

years and the measures are highly correlated (r = :993). The data show clearly

that the 1960 crime rate is associated with police expenditures, and that only one

of the two measures (X4 and X5) is needed, but they do not say for sure which

measure should be used. Each model in Occam's Window and each model visited

by MC3 contains one predictor or the other, but not both. For both methods we

have Pr[(�4 6= 0) [ (�5 6= 0) jD] = 1, so the data provide very strong evidence for an

association with police expenditures.

In summary, we found strong support for some of Ehrlich's conclusions but not

for others. In particular, by averaging over all models, our results indicate support

for a relationship between crime rate and probability of imprisonment, but not for

average time served in state prisons.

5.1.3 Crime and Punishment: Assessment of Predictive Performance

We use the predictive ability of the selected models for future observations to measure

the e�ectiveness of a model selection strategy. Our speci�c objective is to compare

the quality of the predictions based on model averaging with the quality of predictions

based on any single model that an analyst might reasonably have selected.

To measure performance we randomly split the complete data set into two subsets.

Other percentage splits can be adopted. A 50=50 split was chosen here so that each

portion would contain enough data to be a representative sample. We ran Occam's

Window and MC3 using half of the data. This set is called the training set, DT .

We evaluated performance using the prediction set made up of the remaining half of

the data, DP = D nDT . Within this framework, we assessed predictive performance
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using numerical and graphical measures of performance.

Predictive coverage was measured using the proportion of observations in the per-

formance set that fall in the corresponding 90% prediction interval. For both Occam's

Window and MC3, 80% of the observations in the performance set fell in the 90%

prediction intervals over the averaged models (Table 5). David Draper (personal

communication) suggested that BMA falls somewhat short of nominal coverage here

because aspects of model uncertainty other than model selection have not been as-

sessed. In Hoeting et al. (1995, 1996) we extend BMA to account for uncertainty in

the selection of transformations and in the identi�cation of outliers.

For comparison with other standard variable selection techniques, three popular

variable selection procedures, discussed above, were used to select two or three \best"

models. The models chosen using these methods are given in Table 5. All of the

individual models chosen using standard techniques performed considerably worse

than the model averaging approaches, with prediction coverage ranging from 58% to

67%. Thus the model averaging strategies improved predictive coverage substantially

compared with any single model that might reasonably have been chosen.

A sensitivity analysis for priors chosen within the framework described in Section

3.2 indicates that the results for Occam's Window and MC3 are not highly sensitive

to the choice of prior. The results for Occam's Window and MC3 using 3 di�erent

sets of priors were quite similar.

In an attempt to provide a graphical measure of predictive performance, a \cali-

bration plot" was used to determine if the predictions were well calibrated. A model

is well calibrated if, for example, 70% of the observations in the test data set are

less than or equal to the 70th percentile of the posterior predictive distribution. The

calibration plot shows the degree of calibration for di�erent models with the pos-
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Table 5: Crime data: Performance comparison. Predictive coverage % is the percent-
age of observations in the performance set that fall in the 90% prediction interval.
Model numbers correspond to the ith model chosen using the given model selection
method. For example, Cp (1) is the �rst model chosen using the Cp method. The
percentage values shown for the stepwise procedures correspond to the signi�cance
levels for the F-to-enter and F-to-delete values. For example, F=3.84 corresponds
approximately to the 5% level.

Predictive
Method Model coverage %
MC3 model averaging 80
Occam's Window model averaging 80
Stepwise (5%) 3 4 9 13 67
Adjusted R2 (2) 1 2 3 4 5 8 11 12 13 15 67
Adjusted R2 (3) 1 2 3 4 5 6 8 11 12 13 15 67
Stepwise (15%) 3 4 8 9 13 15 63
Cp (2) 1 2 3 4 11 13 63
Adjusted R2 (1) 1 2 3 4 5 11 12 13 15 58
Cp (1) 1 2 3 4 11 13 15 58
Cp (3) 1 2 3 4 11 12 13 15 58

terior predictive probability on the x-axis and the percentage of observed data less

than or equal to the posterior predictive probability on the y-axis. In a calibration

plot, perfect calibration is the 45� line and so the closer the a model's calibration

line is to the 45� line, the better calibrated it is. The calibration plot is similar to

reliability diagrams used to assess probability forecasts (see, for example, Murphy

and Winkler 1977). The calibration plot for the model chosen by stepwise selection

and for model averaging using Occam's Window is shown in Figure 5. The shaded

area in Figure 5 shows where the model averaging strategy produces predictions that

are better calibrated than predictions from the model chosen by the stepwise model

selection procedure. The calibration plot for MC3 is similar.
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Figure 5: Crime data: Calibration plot

These performance measures support our claim that conditioning on a single se-

lected model ignores model uncertainty which, in turn, leads to the underestimation

of uncertainty when making inferences about quantities of interest. Model averaging

leads to better calibrated predictive distributions.

5.2 Simulated Examples: Predictive Performance

In the example above, the true answer is unknown. To further demonstrate the

usefulness of BMA, we use several simulated examples. In our examples below, we

follow the format of George and McCulloch (1993).

Example 5.2.1 In this example we investigate the impact of model averaging on

predictive performance when there is little model uncertainty. For the training set,

we simulated p = 15 predictors and n = 50 observations as independent standard

normal vectors. The response was generated using the model

Y = X4 +X5 + � (12)

where � � N50(0; �2) with � = 2:5. Least squares estimates for these data are given

in Table 6. There is little model uncertainty in this example; only the p�values for
�4 and �5 were smaller than 0.1. Fifty additional observations were generated in the
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Table 6: Least Squares Estimates for Example 5.2.1 (�̂ = 2:9).
�0 �1 �2 �3 �4 �5 �6 �7 �8 �9 �10 �11 �12 �13 �14 �15

� 0 0 0 0 1.00 1.00 0 0 0 0 0 0 0 0 0 0

�̂ .42 .21 .40 .07 .95 1.72 .20 .34 -.32 .24 -.15 .6 -.45 -.08 .20 .18
�̂� .46 .55 .56 .36 .52 .47 .39 .58 .49 .45 .44 .55 .48 .52 .45 .47

Table 7: Performance comparison for Example 5.2.1. Predictive coverage for a 90%
prediction interval. Predictive coverage for BMA (all models) is estimated using the
371 models with posterior model probabilities greater than 0.0001. See Table 5.

Predictive
Method Model coverage %
BMA (estimated coverage) model averaging 72
Occam's Window model averaging 70
Adj R2 (3) 2 4 5 8 11 70
Cp (3) 4 5 11 70
True model & Stepwise (5%) 4 5 68
Stepwise (15%) & Cp (2) 2 4 5 68
Cp(1) 4 5 68
Adj R2 (2) 2 4 5 10 11 68
Adj R2 (1) 2 4 5 11 66

same manner to create the prediction set.

In this example the true model, the model averaging techniques, and models se-

lected using standard techniques all have poor predictive coverage (Table 7). It is

slightly encouraging that BMA performs better than the true model, but the improve-

ment is too small to be signi�cant. This and other similar examples simulated by the

authors show that when there is very little model uncertainty, predictive performance

is not signi�cantly improved by model averaging.

Example 5.2.2 This example demonstrates the performance of BMAwhen a subset
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Table 8: Least Squares Estimates for Example 5.2.2 (�̂ = 2:21).
�0 �1 �2 �3 �4 �5 �6 �7 �8 �9 �10 �11 �12 �13 �14 �15

� 0 1.00 1.00 1.00 1.00 1.00 0 0 0 0 0 0 0 0 0 0

�̂ 0.12 .80 1.07 1.03 -.18 .55 -.67 .28 -.11 .31 .29 .11 -.09 -.39 .73 -.96
�̂� .38 .49 .41 .45 .53 .58 .37 .41 .49 .33 .34 .40 .32 .35 .37 .40

of the predictors is correlated. For the training set, we simulated p = 15 predictors

and n = 50 observations. Predictors 1 through 10 were obtained as independent

standard normal vectors, X1; : : : ;X10 iid � N(0; 1), and predictors 11 through 15

were generated using the framework

[X11; : : : ;X15] = [X1; : : : ;X5]
�
[0:3 0:5 0:7 0:9 1:1]T [1 1 1 1 1]

�
+ �

where � � N(0; 1). The response was generated using the model

Y = X1 +X2 +X3 +X4 +X5 + � (13)

where � � N50(0; �2) with � = 2:5. Least squares estimates for these data are

given in Table 8. The correlation structure resulted in moderate pairwise correla-

tion between predictors 1 to 5 and 11 to 15 (corr(X1;X11)=0.39, corr(X2;X12)=0.41,

corr(X3;X13)=0.56, corr(X4;X14)=0.71, corr(X5;X15)=0.69) and small pairwise cor-

relations elsewhere (median correlation equal to -0.02). Fifty additional observations

were generated in the same manner to create the prediction set.

Table 9 shows that in this example model averaging has better predictive perfor-

mance than any single model that might have been selected. In this example, the

poor performance of the true model and the other single models selected using stan-

dard techniques demonstrate that model uncertainty can strongly inuence predictive

performance.
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Table 9: Performance comparison for Example 5.2.2. Predictive coverage for a 90%
prediction interval. Predictive coverage for BMA (all models) is estimated using the
1014 models with posterior model probabilities greater than 0.00005. See Table 5.

Predictive
Method Model coverage %
MC3 model averaging 92
Occam's Window model averaging 86
Stepwise (5 & 15%) 1 2 3 4 80
True Model 1 2 3 4 5 78
Cp (2) & 1 2 3 6 13 14 15 72
Adjusted R2 (1)
Cp (3) 1 2 3 6 10 14 15 72
Adjusted R2 (3) 1 2 3 6 7 13 14 15 72
Cp (1) 1 2 3 5 14 15 70
Adjusted R2 (2) 1 2 3 6 10 13 14 15 70

6 Successful identi�cation of the null model

Linear regression models are frequently used even when little is known about the rela-

tionship between the predictors and the response. When there is a weak relationship

between the predictors and the response, the overall F -statistic will be small and

thus the null hypothesis that the null model is true fails to be rejected. However,

many data analysts carry out model selection regardless of the F -statistic value for

the overall model. Problems can then occur as subsequent model selection techniques

often choose a model which includes a subset of the predictors. Freedman (1983) has

shown that in the extreme case where there is no relationship between the predictors

and the response variable, omitting the predictors with the smallest t-values (e.g.,

p > 0:25) can result in a model with a highly signi�cant F statistic and high R2. In

contrast, if the response and predictors are independent, Occam's Window typically
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indicates the null model only, or as one of a small number of \best" models.

Following Freedman (1983), we generated 5100 independent observations from

a standard normal distribution to create a matrix with 100 rows and 51 columns.

The �rst column was taken to be the dependent variable in a regression equation

and the other 50 columns were taken to be the predictors. Thus the predictors are

independent of the response by construction. For the entire data set, the multiple

regression results were as follows:

� R2 = :55, p = :29;

� 18 coe�cients out of 50 were signi�cant at the .25 level;

� 4 coe�cients out of 50 were signi�cant at the .05 level.

Three di�erent variable selection procedures were used on the simulated data. The

�rst of these was the method used by Freedman (1983), in which all predictors with

p-values of 0.25 or lower were included in a second pass over the data. The results

from this method were as follows:

� R2 = :40, p = :0003;

� 17 coe�cients out of 18 were signi�cant at the .25 level;

� 10 coe�cients out of 18 were signi�cant at the .05 level.

These results are highly misleading as they indicate a de�nite relationship between

the response and the predictors, whereas, in fact, the data are all noise.

The second model selection method used on the full data set was Efroymson's

stepwise method. This indicated a model with 15 predictors with the following results:

� R2 = :40, p = :0001;

� all 15 were signi�cant at the .25 level;
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� 10 coe�cients out of 15 were signi�cant at the .05 level.

Again a model is chosen which misleadingly appears to have a great deal of explana-

tory power.

The third variable selection method used was Occam's Window. The only model

chosen by this method was the null model.

The procedure described above was repeated 10 times with similar results. In 5

simulations, Occam's Window chose only the null model. For the remaining simu-

lations 3 models or fewer were chosen along with the null model. For the non-null

models that were chosen, all models had R2 values less than 0.15. For all of the sim-

ulations the selection procedure used by Freedman (1983) and the stepwise method

chose models with many predictors and highly signi�cant R2 values.

At best, Occam's Window correctly indicates that the null model is the only

model that should be chosen when there is no signal in the data. At worst, Occam's

Window chooses the null model along with several other models. The presence of the

null model among those chosen by Occam's Window should indicate to a researcher

that there may be evidence for a lack of signal in the data he or she is analyzing.

To examine the possibility that our Bayesian approach favors parsimony to the

extent that Occam's Window �nds no signal even when there is one, we did an

additional simulation study. We generated 3000 observations from a standard normal

distribution to create a data set with 100 observations and 30 candidate predictors.

The response Y was allowed only to depend on X1, where Y = 0:5X1 + � with

� �N(0,0.75). Thus Y still has unit variance and the \true" R2 for the model equals

0.20.

For this simulated data, Occam's Window contained one model only, the correct

model with X1. In contrast, the screening method used by Freedman produced a

30



model with 6 predictors, including X1, with 4 of them signi�cant at the 0.1 level.

Stepwise regression indicated a model with 2 predictors, including X1, both of them

signi�cant at the 0.025 level. So the two standard variable selection methods indicated

evidence for variables that were in fact not at all associated with the dependent

variable while Occam's Window chose the correct model.

These examples provide evidence that Occam's Window overcomes the problem

of selection of the null model when there is no signal in the data.

7 Discussion

7.1 Related Work

Draper (1995) has also addressed the problem of assessing model uncertainty. Draper's

approach is based on the idea of model expansion, i.e., starting with a single reason-

able model chosen by a data-analytic search, expanding model space to include those

models which are suggested by context or other considerations, and then averaging

over this model class. Draper does not directly address the problem of model uncer-

tainty in variable selection. However, one could consider Occam's Window to be a

practical implementation of model expansion.

George and McCulloch (1993) have developed the Stochastic Search Variable Se-

lection (SSVS) method, which is similar in spirit to MC3. They de�ne a Markov

chain which moves through model space and parameter space at the same time. Their

method never actually removes a predictor from the full model, but only sets it close

to zero with high probability. Our approach avoids this by integrating analytically

over parameter space.

We have focused here on Bayesian solutions to the model uncertainty problem.

There has been very little written about frequentist solutions to the problem. Perhaps
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the most obvious frequentist solution is to bootstrap the entire data analysis, including

model selection. However, Freedman et al. (1986) have shown that this does not

necessarily give a satisfactory solution to the problem.

7.2 Conclusions

The prior distribution of the covariance matrix for � described in Section 3.2 depends

on the actual data, including both the dependent and independent variables. A

similar data{dependent approach to the assessment of the priors was used by Raftery

(1996). While this may appear at �rst sight to be contrary to the idea of a prior, our

objective was to develop priors that lead to posteriors similar to those of a person

with little prior information. Examples analyzed to date suggest that this objective

was achieved. The priors for � lead to a reasonable prior variance and result in

conclusions that are not highly sensitive to the choice of hyperparameters. Thus the

data{dependence does not appear to be a drawback.

In a strict sense, our data dependent priors do not correspond to a Bayesian

subjective prior. Our priors might be considered to be an approximation to a true

Bayesian subjective prior and might be appropriate when little prior information

is available. We have followed other authors, including Zellner (1986), George and

McCullough (1993), and Laud and Ibrahim (1995), in referring to our approach as

Bayesian.

The choice of which procedure to use | Occam's Window or MC3 | will depend

on the particular application. Occam's Window will be most useful when one is in-

terested in making inferences about the relationships between the variables. Occam's

Window also tends to be much faster computationally. MC3 is the better procedure

to choose if the goal is good predictions or if the posterior distribution of some quan-
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tity is of more interest than the nature of the \true" model and if computer time is

not a critical consideration. However, each approach is exible enough to be used

successfully for both inference and prediction.

We have described two procedures that can be used to account for model un-

certainty in variable selection for linear regression models. In addition to variable

selection, there is also uncertainty involved in the identi�cation of outliers and in

the choice of transformations in regression. To broaden the exibility of our current

procedures as well as to improve our ability to account for model uncertainty, we have

extended BMA to include transformation selection and outlier identi�cation (in work

reported elsewhere Hoeting et al. 1995, 1996).
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Appendix A: Data for Figure 1

Data from selected textbooks used to make Figure 1.

number of
page obser- number of

Data set Source number vations predictors
Attitude Survey Chatterjee and Price (1991) 70 30 6
Equal Education Chatterjee and Price (1991) 176 70 3
Opportunity

Gasoline Mileage Chatterjee and Price (1991) 261 30 10
Nuclear Power Cox and Snell (1982) 81 32 10
Crime Cox and Snell (1982) 170 47 13
Hald Draper and Smith (1981) 630 13 4
Grades Hamilton (1993) 83 118 3
Swiss Fertility Mosteller and Tukey (1977) 550 47 5
Surgical Unit Neter, Wasserman 439, 468 108 4

and Kutner (1990)
Berkeley Study Weisberg (1985)

Girls 56 32 10
Boys 57 26 10

Housing Weisberg (1985) 241 27 9
Highway Weisberg (1985) 206 39 13

Appendix B: Software for Implementing MC3

BMA is a set of S-PLUS functions which can be obtained free of charge via the World

Wide Web address http://lib.stat.cmu.edu/S/bma or by sending an e-mail mes-

sage containing the text \send BMA from S" to the Internet address statlib@stat.cmu.edu.

The program MC3.REG performs Markov chain Monte Carlo model composi-

tion for linear regression. The set of programs fully implements the MC3 algorithm

described in Section 4.2.
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